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Summary

The aim of the present study was to investigate several common conditions that may potentially
be correlated with follicular oxidative status during an intracytoplasmic sperm injection (ICSI)
cycle and that include the serum oestrogen level on the day of oocyte pick-up, maternal age and
pregnancy outcome. Patients that were enrolled in the study were classified randomly into three
groups using their numerical order. The first group were classified based on maternal age (<35
and ≥35 years) (n= 398), the second group on the serum oestradiol (E2) level on the day of
human chorionic gonadotropin (hCG) administration (levels >90th percentile and≤ 90th
percentile) (n= 491) and the third group on pregnancy outcome (positive/negative) (n= 376).
The groups were matched for the other variables (stimulation protocol, dose of gonadotropin,
duration of stimulation, antral follicle count, body mass index, basal follicle stimulating
hormone (FSH), and E2 levels and day of hCG trigger) to prevent the possible contribution
of those parameters to the results. Each group was matched for other variables (stimulation
protocol, dose of gonadotrophin, duration of stimulation, antral follicle count, bodymass index,
basal FSH and E2 levels and day of hCG trigger) that may have affected the outcome, except for
the parameter under investigation. Maternal age (P = 0.044,168 r= 0.418), oestrogen level on
day of hCG administration (P= 0.001, r= 0.436) and pregnancy outcome (AUC= 0.65,
P= 0.071) were found to be correlated with follicular oxidative status. The results obtained will
help us to shield patients from possible situations that may cause oxidative stress and therefore
adverse outcomes of an ICSI cycle.

Introduction

Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique that is widely used
for infertility treatment. Oxidative stress (OS) has been suggested as one of the important causes
of female infertility and is defined as the imbalance between the oxidants produced and the anti-
oxidants that scavenge them (Ruder et al., 2009; Agarwal et al., 2012; Gupta et al., 2014). OS is
shown to contribute to the development of many diseases including cancer, heart disease, dia-
betes and neurological diseases such as Alzheimer’s disease and Parkinson’s disease (Kryston
et al., 2011; Radi et al., 2014; Neri et al., 2015; Newsholme et al., 2016).

OS has also been shown to have an important role in the pathophysiology of reproductive
capacity and is responsible for or partially contributes to the development of infertility (Agarwal
and Allamaneni, 2011; Gupta et al., 2014). Studies that have investigated the effects of OS on
female infertility have mainly focused on the microenvironment of the developing oocyte that
includes the ovarian follicles and the follicular fluid in it (Oyawoye et al., 2003; Pasqualotto et al.,
2004; Appasamy et al., 2008; Revelli et al., 2009; Fujimoto et al., 2011; Agarwal et al., 2012;
Pereira and Martel, 2014). These areas are the sites of developing oocytes and therefore are
shown to affect oocyte competency dramatically in a bidirectional manner (Tatemoto et al.,
2000, 2004; Matos et al., 2009). Several studies have reported the negative role of OS on oocyte
quality and fertilization capacity (Oyawoye et al., 2003; Bedaiwy et al., 2012; Borowiecka et al.,
2012; Gupta et al., 2014; Palini et al., 2014).

ICSI treatment includes ovarian stimulation procedures that dramatically alter the hormo-
nal, physiological, biochemical and genetic status of a menstrual cycle. As a result, regarding OS
in subfertile women undergoing IVF cycles, treatment leading to ovarian stimulation was
associated with an increased production of reactive oxygen species (ROS) (Aurrekoetxea
et al., 2010; Borowiecka et al., 2012; Celik et al., 2012). Among the many reasons for IVF failure,
OS seems to be one of the important contributors (Sikka, 2004). In the female reproductive
system, OS and antioxidants perform physiological roles during folliculogenesis and oocyte
maturation and may also be related to conditions that limit the success of assisted reproductive
techniques (Pacella et al., 2012).
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OS is induced as a result of various extrinsic and intrinsic
agents, but the factors that induce OS during an ICSI cycle are
not well known. We aimed to investigate several common
conditions that may potentially be correlated with follicular
oxidative status during an ICSI cycle and that included serum
oestrogen level on day of oocyte pick-up, maternal age and preg-
nancy outcome.

Materials and methods

Study participants

This prospective clinical study was conducted at the Medicana
Çamlıca Hospital, IVF Center between March 2018 and
September 2019. In total, 1386 cycles were analyzed and, of these,
1265 cycles resulting in fresh embryo transfer in 1132 patients con-
stituted our final study cohort.

Only female factor infertility cases were enrolled in the study to
avoid the possible contribution of the male factor to the pregnancy
outcome. Women with a smoking history, poor responders in
accordance with European Society of Human Reproduction and
Embryology (ESHRE) consensus, polycystic ovary syndrome as
defined by the Rotterdam criteria (Rotterdam ESHRE/ASRM,
2004), endometriosis, a body mass index (BMI) of <19 and >26
kg/m2 were excluded from the study. ICSI cycles with preimplan-
tation genetic screening, coasting, assisted hatching or any other
empirical technique were also excluded.

Study design

Patients that were enrolled in the study were classified randomly
into three groups using their numerical order. The first group were
classified based onmaternal age (<35 and≥35 years) (n= 398), the
second group on serum E2 level on the day of hCG (levels >90th
percentile and≤ 90th percentile) (n= 491) and the third group on
pregnancy outcome (positive/negative) (n= 376).

The groups were matched for the other variables [stimulation
protocol, dose of gonadotropin, duration of stimulation, antral fol-
licle count, BMI, basal FSH, and oestradiol (E2) levels and day of
hCG trigger] to prevent the possible contribution of those param-
eters to the results.

Follicular fluid collection and processing

Follicular aspirates of patients were collected by a single lumen fol-
licle puncture needle (Swemed, Sweden) during oocyte retrieval for
ICSI. Flushing was not performed to avoid the contamination of
aspirates by flushing medium. Follicular samples with blood con-
tamination were discarded. The aspirates of all follicles from each
patient were combined and centrifuged at 1000 g for 5 min.
Sedimented cell pellets were discarded to separate the fluid from
the cells, as described by Rice et al. (2005). Supernatants were then
analyzed for oxidative status immediately after centrifugation.

Ovarian stimulation protocol

All women underwent ovulation induction using either long day 21 or
antagonist protocols. In the long cycle protocol, a gonadotrophin-
releasing hormone agonist was used to suppress the pituitary produc-
tion of gonadotrophins for 2 weeks starting from the 21st day of the
menstrual cycle. After confirmation of ovarian suppression by meas-
uring an E2 level of<50, recombinant follicular stimulating hormone
(recFSH) was started. The dose of recFSH used was based on ovarian
reserve and maternal age and ranged between 125 and 600 units.

Alpha-human chorionic gonadotropin (AhCG; Ovitrelle, Merck
Serono) (5000 units) was administered when at least three follicles
reached a diameter of ≥18 mm, and oocyte pick-up was carried
out at about 35.5 h after hCG administration. The antagonist
protocol was started on the third day of the menstrual cycle. Then,
gonadotropin-releasing hormone (GnRH) antagonist (Cetrorelix or
Ganirelix 0.25 mg daily, Merck Serono, Feltham, UK) was used from
day 5. When at least three follicles reached a diameter of ≥18 mm,
hCG (5000 units; Ovitrelle, Merck Serono) was administered and
oocyte pick-up was carried out after about 35.5 h.

Microinjection and embryo manipulation

Oocytes were collected using a IVF Pasteur pipette (OMPP800
Optimas, Turkey) and denuded enzymatically; mature oocytes
with a polar body (metaphase II) were microinjected using micro-
manipulation tools (OMIS6530 and OMH1202030, Optimas,
Turkey). LifeGlobal (IVFOnline, USA) culture medium was used
for the culture and manipulation of oocytes and embryos.

E2 measurement

Blood samples were taken on the day of hCG administration.
Serum E2 concentrations (nmol/l) were determined using an
enzyme-immune technique (AXSYM; Abbott, Germany).

Cycles were divided into two groups based on the serum E2
measurement on the day of hCG administration. Cycles with
elevated E2 levels greater than the 90th percentile comprised the
study group, while cycles with levels less than the 90th percentile
served as the control. The 90th percentile threshold was chosen
based on published data that suggested that patients with extremes
of serum E2 levels measured on the day of hCG trigger were more
likely to develop preeclampsia and deliver small-for-gestational-
age infants (Farhi et al., 2010; Imudia et al., 2012).

Pregnancy assessment

Serological documentation of pregnancy was scheduled 16 days
after embryo transfer. A blood positive pregnancy test (≥50)
and ultrasound evidence of a gestational sac were defined as
pregnancy.

Oxidative status determination

Total antioxidant status (TAS) and total oxidant status (TOS) lev-
els in follicular fluid samples were determined using Rel assay kits
(Rel Assay Diagnostics, Turkey). Spectrophotometric measure-
ment (Molecular Devices SpectraMax i3 Multi-Mode Microplate
reader) was used for absorbance.

TOS levels were measured using the Total Oxidant Status Assay
Kit, whose method is based on the principle that oxidants in the
sample oxidize the ferrous-o-dianisidine complex to ferric ions
(Erel, 2005). Absorbances were measured at 530 nm. Results were
expressed in micromoles hydrogen peroxide equivalent per litre
(H2O2eq μmol/μl). TAS levels were measured using the Total
Antioxidant Status Assay Kit, based on the principle that hydroxy
radicals, the product of the Fenton reaction, react with colourless o-
dianisidine to form a radical bright yellowish brown dianisyl sub-
strate. Absorbances were measured at 660 nm. Measurement
results were expressed in Trolox equivalent of millimoles per litre
(TroloxEq μmol/μl) (Erel, 2004). The Oxidative Stress Index (OSI)
was calculated using the formula: TOS/TAS.
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DNA fragmentation and chromatin integrity assessment

Terminal deoxynucleotidyl transferase dUTP nick end labelling
(TUNEL) was used to evaluate DNA fragmentation levels; tolui-
dine blue (TB) staining was performed to determine the chromatin
integrity of granulosa cells. TB staining was evaluated under a light
microscope as positive (dark stained) or negative (pale stained) by
comparing dye intake.

For the TUNEL procedure, slides were fixed in freshly prepared
4% paraformaldehyde (PFA) at room temperature for 20 min. For
permeabilization, 0.1% Triton X-100 in phosphate-buffered saline
(PBS) was used on ice for 2 min. DNA fragmentation was deter-
mined by TUNEL assay using a commercially available kit (In Situ
Cell Death Detection Kit, fluorescein, Roche, Indianapolis, IN,
USA). Cells were incubated at 37°C with the TUNEL reaction sol-
ution (supplied in the kit) for 1 h. Slides were rinsed three times
with PBS. DAPI was used to label nuclei. Cells were examined
under a Zeiss Cell Observer SD Spinning Disk Time-Lapse
Microscope (Carl Zeiss, Jena, Germany) at ×400 magnification.
A minimum of 100 granulosa cells was chosen randomly in at least
10microscopic fields with a×10magnification and the results were
given as mean percentage (%). TUNEL-positive cells were counted
to calculate the ratio of apoptotic cells in each group. Cells that
stained green were those with fragmented DNA, and cells not
stained green did not contain fragmented DNA.

For TB staining, cells were fixed in freshly prepared 96%
ethanol:acetone (1:1) at 4°C for 1 h and hydrolyzed in 0.1 N
HCl at 4°C for 5 min. Slides were rinsed three times in distilled
water for 2 min and stained with 0.05% TB for 5 min at room tem-
perature. Slides were then rinsed thoroughly in distilled water
before mounting. Images were obtained using a Nikon Eclipse
(Nikon, Japan) microscope fitted with a ×100 oil-immersion
objective.

Statistics

All statistical analyses were performed using Statistical Package for
Social Sciences (SPSS, Version 21 for Windows; SPSS, Inc.,
Chicago, IL, USA). Sample size was calculated for a significance
level of 5% and a power higher than 80%, to detect a difference
between means higher than 15%. The StatMate for Windows
(GraphPad Software, USA) program package was used for sample
size calculations. Univariate (mean, standard deviation and fre-
quency) and bivariate (Student’s t-test, Mann–Whitney U-test
and Wilcoxon test) descriptive statistics were performed.
Statistical comparisons for categorical variables were carried out
using the chi-squared test. The Kolmogorov–Smirnov test was
used to assess compliance of the variables to normal distribution.
All tests were conducted using a P-value≤ 0.05 defining statistical
significance. Data were expressed as mean ± standard deviation for
continuous variables and number of cases (n) and percentage of
occurrence (%) for qualitative variables.

Results

Total oxidant capacity (TOS) and total antioxidant capacity (TAS)
levels are listed in Table 1 and total oxidative status (TOC/TAC
ratio) in Fig. 1. Demographic characteristics and ICSI outcome
parameters of each group are presented in Table 2. Each group
was matched for other variables (stimulation protocol, dose of
gonadotrophin, duration of stimulation, antral follicle count,
BMI, basal FSH, and E2 levels and day of hCG trigger) that may

affect the outcome except for the parameter under investigation
(Table 1).

Maternal age, oestrogen level on the day of hCG administration
and pregnancy outcome were found to be correlated with follicular
oxidative status.

Maternal age

Maternal age was positively correlated with the oxidative status of
the follicular fluid (P= 0.044, r= 0.418). DNA fragmentation and
chromatin integrity were not statistically different between the
older and younger patients, although a higher DNA fragmentation
rate (32.12% ± 9.1 vs 45.2 ±11.2, respectively) and a lower mean
chromatin integrity rate (47.2% ± 12.1 vs 39.2% ± 4.5, respectively)
were observed in the older age group.

E2 level

Percentiles were determined and >90th percentile (higher) for E2
level was calculated as>3191 pg/ml. We found that oestrogen level
was positively correlated with the oxidative status in the follicular
fluid (P= 0.001, r= 0.436 respectively). DNA fragmentation and
chromatin integrity were not statistically different between the
lower and higher E2 groups with a mean DNA fragmentation rate
of 42.7% ± 12.5 vs 36.8 ±10.1, respectively and a mean chromatin
integrity rate of 39.5% ± 8.9 vs 50.2% ± 9.9, respectively.

Pregnancy outcome

A significant increase in the total oxidative status of non-pregnant
patients was observed compared with the pregnant women group
(P = 0.042) (Fig. 2). Oxidative level was not predictive for pregnancy
outcome as determined by receiver operating characteristic (ROC)
curve analysis. (AUC= 0.65, P= 0.071) (Fig. 3). Although there
was no significant difference in DNA fragmentation levels between
pregnant and non-pregnant group, mean chromatin integrity rate
was significantly higher in the pregnant group (Fig. 2).

Discussion

ICSI treatment includes complexmedications that aim to take con-
trol of women’s natural reproductive physiology that is altered dra-
matically during ovarian stimulation procedures. As a result, many
modifications in the ovarian cycle and in the biochemical, genetic
and metabolic processes inside the ovary become possible. OS is
known to be induced by many intrinsic and extrinsic factors that
are likely to develop during ICSI treatment. The factors that cor-
relate with or accompany OS during ICSI cycles are not fully
understood. We investigated three potential situations (maternal
age, E2 level and pregnancy outcome) that may partially contribute
to, or at least relate to, follicular OS in women undergoing ICSI
cycles.

Maternal age

Maternal age is a very well known factor that negatively affects the
overall outcome of an IVF cycle. Many studies have evidenced that
there is age-related decrement in non-growing follicles (Klinkert,
2005), oocyte quality subsequent to enhanced meiotic non-
disjunction, oocyte damage, and changes in the quality of the sur-
rounding cells (Miao et al., 2009; Da Broi et al., 2018), further
emphasizing the importance of the oocyte environment. The effect
of maternal age on oocyte quality and fertilization is a well known
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phenomenon in female fertility and in the present study it was fur-
ther correlated with follicular oxidative status.

We found that female age was positively correlated with the oxi-
dative status of the follicular fluid. This may have been partially
explained previously, as ageing accompanies an increase in ROS

production and a decrease in antioxidant production (Fissore
et al., 2002; Takahashi et al., 2003; Thouas et al., 2005). This
may be a reason why impaired oocyte competency accompanies
increased maternal age (Tarín, 1996; Fissore et al., 2002;
Takahashi et al., 2003; Thouas et al., 2005; Lord and Aitken, 2013).

Table 1. Oxidative parameters (TAC levels, TOC levels) in each subgroup

Oxidative stress parameters

Maternal agea E2 levelb Pregnancy outcomec

≤35 >35 P-value ≤ 90th percentile > 90th percentile P-value Pos. Neg. P-value

Total antioxidant capacity
level (mean OD)d

1.75 ± 1.52 1.52 ± 1.58 0.520 1.46 ± 1.54 1.99 ± 1.56 0.240 2.05 ± 1.47 1.61 ± 1.59 0.287

Total oxidant capacity
level (mean OD)d

12.36 ± 3.68 12.74 ± 5.43 0.994 12.88 ± 4.95 12.23 ± 4.50 0.845 12.69 ± 6.47 15.07 ± 4.83 0.091

aMaternal age: ≤35 years and >35 years.
bOestradiol (E2) level: ≤ 90th percentile (lower) and> 90th percentile (higher).
cPregnancy outcome: positive (pos.) and negative (neg.) respectively.
dResults are given as mean optical density (OD).
*P< 0.05.

Figure 1. Oxidative status (TOC/TAC ratio) within three sub-
groups. Maternal age: ≤35 years and >35 years. Oestradiol
level: LoE (lower) and HiE (higher) and pregnancy outcome:
pos (positive) and neg (negative) (beginning from the left side,
respectively). Box-and-whisker plot shows median, 25th and
75th percentiles, minimum andmaximum values, and the out-
liers of the distribution. E2, oestradiol. *P< 0.05.
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Figure 2. DNA fragmentation and chromatin
integrity rates in accordance with pregnancy out-
come. Results are given as percentage (%).
*P< 0.005.
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Table 2. Demographic data and ICSI outcome measures among patients in three subgroups during an IVF cycle

Maternal age (n= 398)a Oestradiol level (n= 491)b Pregnancy outcome (n= 376)c

Variables ≤35 years (n= 186) >35 years (n= 212) P-value ≤90th percentile (n= 413) >90th percentile (n= 78) P-value Pos (þ) (n= 166) Neg (−) P-value (n= 210)

Age (years) 29 ± 5.1 37.1 ± 4 0.034* 36.2 ± 4 35.9 ± 3.1 0.029* 33.4 ± 4.1 36 ± 4.1 0.04*

Antral follicle count 12 ± 7.3 8.2 ± 5.9 0.06 10.2 ± 5.1 12.6 ± 6.1 0.12 14 ± 3.1 10.2 ± 3.9 0.04

Body mass index (kg/m2) 24.1 ± 3.2 23.6 ± 4.1 0.08 23.2 ± 3.2 24.6 ± 2.6 0.23 23.1 ± 2.6 23.6 ± 3.1 0.13

Basal FSH (mIU/ml) 6.4 ± 2.7 7.9 ± 2.8 0.61 7.6 ± 4.1 6.7 ± 2.3 0.41 5.4 ± 4.4 7.4 ± 3.8 0.31

Basal oestradiol (pg/ml) 46.3 ± 31.4 47.7 ± 15.2 0.77 49.5 ± 41.2 52.1 ± 11.9 0.68 41.5 ± 18.8 52.6 ± 10.1 0.76

Day of hCG trigger 10.6 ± 1.2 11.9 ± 2.4 0.54 11 ± 1.4 10.7 ± 1.1 0.56 11.6 ± 1.7 11.7 ± 1.4 0.36

Dose of gonadotropin (IU) 1922 ± 735 2584 ± 1043 0.001** 2026 ± 824 2413 ± 943 0.04* 1418 ± 846 2110 ± 943 0.03

Stimulation protocol

Lut phase GnRH ago. 82 (44%) 122 (57.5%) 0.04* 212 (51.3%) 42 (53.8%) 0.34 92 (55.4%) 160 (76.1%) 0.001

Foll. phase GnRH ago. 39 (20.9%) 34 (16%) 82 (19.8%) 13 (16.6%) 53 (31.9%) 35 (16.6%)

Foll. phase GnRH antag. 65 (34.9%) 56 (26.4%) 119 (28.8%) 23 (29.4%) 21 (12.6%) 15 (7.1%)

Number of oocytes retrieved 8 .78 ± 5.05 6.53 ± 5.02 0.062 4.12 ± 3.06 9.95 ± 5.14 0.00** 8.61 ± 3.16 6.88 ± 5.72 0.015*

Number of mature oocytes (MII) 6.84 ± 3.87 4.95 ± 2.97 0.075 4.125 ± 3.06 8.17 ± 3.53 0.00** 7.08 ± 2.84 4.73 ± 3.51 0.026*

Good quality oocyte rate (%) 72 ± 12.2 52.2 ± 11.1 0.032* 69 ± 12.8 59.3 ± 14.6 0.43 69 ± 16.7 51.5 ± 15.4 0.34

Normal fertilization rate (%)

No. of 2PN/no. of mature oocytes (%) 81.16 ± 15.75 83.13 ± 22.34 0.58 82.68 ± 21.25 78.77 ± 13.02 0.42 80.54 ± 14.80 80.94 ± 20.7 0.75

Embryo development rate (%) 90.2 ± 3.2 79 ± 4.9 0.67 82.3 ± 6.2 89.8 ± 9.1 0.71 88.5 ± 6.2 69.2 ± 4.9 0.36

No. of 6–8-cell on day 3/no. of 2PN

Top quality embryo rate (%) 22.9 ± 4.1 16.7 ± 2.3 0.71 18.1 ± 4.2 25.5 ± 6.1 0.36 23 ± 6.1 12.6 ± 4.5 0.09

Number of embryos transferred 1.33 ± 0.49 2.18 ± 1.22 0.018* 2.00 ± 1.11 1.16 ± 0.40 0.028* 1.87 ± 1.35 1.88 ± 0.96 0.56

Embryo transfer day rate (%) Day 3 46.2 87.5 0.31 81.9 28.6 0.31 42.9 84.13 0.31

Day 5 53.8 12.5 0.31 18.1 71.4 0.31 57.1 15.7 0.31

Pregnancy rate (positive β-hCG) (%) 42.42 ± 0.50 25 ± 0.44 0.024* 22.86 ± 0.42 53.85 ± 0.50 0.30 100

Biochemical pregnancy rate (%) 3.2 ± 0.9 4.1 ± 1.1 0.32 2.5 ± 1.1 1.9 ± 1.2 0.24 2.4 ± 1.2

Clinical pregnancy rate (%) 39.22 20.9 0.045* 20.36 51.95 0.022* 82.1 ± 2.4

Implantation rate (%) 24.1 ± 1.6 16.7 ± 2.1 0.062 14.1 ± 1 23.7 ± 2.4 0.09 25.3 ± 2.4

Spontaneous miscarriage rate (%) 2.3 ± 0.8 3.7 ± 1.5 0.234 3.6 ± 1.1 2.7 ± 0.5 0.64 4.1 ± 1.4

aMaternal age: ≤35 years and >35 years.
bOestradiol level: ≤ 90th percentile (lower) and> 90th percentile (higher).
cPregnancy outcome: positive (pos.) and negative (neg.) respectively.
Results are given as percentage (%) ± SD.
2PN, 2 pronucleus; MII, metaphase II.
*P< 0.05; **P< 0.005.
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One of the main targets of oxidants is nucleic acids and, there-
fore, chromatin structure. To analyse this effect, we investigated
DNA fragmentation and chromatin integrity based on maternal
age and found that the incidence of DNA fragmentation and chro-
matin integrity levels were not significantly different between older
and younger women, although both results were in favour of young
women. A bovine animal study investigating the relationship
between follicular cell DNA status and the oocyte reported that
the degree of cumulus cell apoptosis was correlated with develop-
mental competence of the enclosed oocytes (Janowski et al., 2012).
Our study was the first to investigate this correlation in humans.
The difference we obtained did not reach a significant level, prob-
ably because of the limited number of patients in our study pop-
ulation. This non-significant decrease may be a cause or a result of
OS, which may also be correlated with other ageing mechanisms
within the cell. Further studies comparing DNA fragmentation
in different age groups with or without OS, should be conducted
to demonstrate this relationship more clearly. Subsequently, anti-
oxidant therapies may be considered in the light of these data. This
was investigated in a study by Luddi et al. (2016) who demon-
strated increased oocyte quality following antioxidant intake in
women aged >39 years who were undergoing IVF.

E2 level

Oestrogens are known to contribute to the redox state of cells,
showing both pro-oxidative and antioxidative properties. The
ovary, which is the main source of oestrogens and maintains the
balance between the production and detoxification of ROS, is of
critical importance. Current evidence suggests that oestrogens
can reduce OS through two mechanisms: by preventing ROS pro-
duction and by scavenging free radicals. Oestrogens have been
shown to upregulate endogenous antioxidative defence mecha-
nisms by regulating the expression and the activity of several anti-
oxidant enzymes, including superoxide dismutase and glutathione
peroxidase (Zhang et al., 2007).

Oestrogen levels on the day of hCG administration in an ICSI
cycle reflect the ovarian response to ovarian stimulation. In a
recent study, Klinkert reported that E2 levels were correlated with
follicular oxidative status and that OSmarkers had a negative effect
on the ovarian response (Klinkert, 2005). Recent studies have sug-
gested that supraphysiological hormonal status during controlled
ovarian hyperstimulation in an ICSI cycle may be responsible for
adverse outcomes such as delivery of small fetuses (Farhi et al.,
2010; Calhoun et al., 2011; Imudia et al., 2012). One of the possible
reasons for these findings may be OS, which was demonstrated in
the recent study. We demonstrated that oestrogen level was pos-
itively correlated with the oxidative status measured in the follicu-
lar fluid (P= 0.001, r= 0.436, respectively). However, high E2
levels seemed not to significantly affect DNA fragmentation and
chromatin integrity of the granulosa cells, which was found in
our study to favour lower E2 levels.

Pregnancy outcome

In the third group,we classified patients based on their pregnancy out-
come as pregnant or non-pregnant to provide data on whether preg-
nancy outcome was correlated with oxidative status. We found a
significant increase inOS levels in the non-pregnant group, indicating
the potential effect of OS on pregnancy outcome. Increased OS deter-
mined in non-pregnant patients confirmed the results of several stud-
ies, which also reported negative effects ofOS on fertility potential and
pregnancy (Okyay et al., 2014; Smits et al., 2018).

Although there were no significant differences in DNA frag-
mentation levels between the groups, chromatin integrity rates
were significantly higher in the pregnant group. Based on these
data, it may be concluded that DNA abnormalities could be over-
whelmed by repair mechanisms, while chromatin problems in the
granulosa cells reflect the epigenetic alterations of the individual
that may somehow affect embryonic development and, therefore,
implantation by affecting cell cycle and mitotic divisions.

In conclusion, age of women and oestrogen levels on the day of
hCG administration were positively correlated with oxidative sta-
tus measured in follicular fluid and there was a significant increase
in the oxidative status of non-pregnant patients compared with the
pregnant women group. Further studies are needed to investigate
the correlation with other parameters such as dose of gonadotro-
phin, stimulation duration, ovulation induction protocol, and
coasting procedure. Results obtained will help us to shield the
patients from possible situations that may cause OS and therefore
adverse outcomes during an ICSI cycle.
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