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Abstract
Hordeum chilense Roem. et Schultz. is a diploid wild barley native to Chile and Argentina. The

high crossability of this species with other members of the Triticeae tribe promoted the devel-

opment of the new species £ Tritordeum Ascherson et Graebner. Hexaploid tritordeum was

developed from the hybrid derived from the cross between H. chilense (used as female

parent) and durum wheat. The interest of H. chilense is based on the presence of traits poten-

tially useful for wheat breeding, including high endosperm carotenoid content, septoria tritici

blotch resistance and abiotic stress tolerance. Besides, the variability at cytoplasm level is also

important in this species. The development of common wheat–H. chilense alloplasmic lines

(nucleus from wheat and cytoplasm from H. chilense) results in fertile or male sterile geno-

types, depending on the accession donating the cytoplasm. Furthermore, these alloplasmic

lines constitute an ideal system for deepening our knowledge on nuclear–cytoplasm inter-

actions. In conclusion, H. chilense is an interesting source of variability for wheat breeding.
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Wild relatives for crop breeding: potential of
nuclear variability in Hordeum chilense Roem.
et Schultz

The progressive narrowing of the genetic base in crops

(Tanksley and McCouch, 1997; Warburton et al., 2006)

has promoted a renewed interest in wild relatives such

as Hordeum vulgare ssp. spontaneum (Matus et al.,

2003; Inostroza et al., 2009) or other distant relatives

such as Aegilops tauschii, donor of the D genome

of common wheat (van Ginkel and Ogbonnaya, 2007);

or H. chilense Roem. et Schultz. (Atienza et al., 2000;

Atienza et al., 2005b; Martin et al., 2008b). The wild

barley H. chilense shows a wide range of variation

(at both morphological and molecular levels) distributed

into two main groups plus an intermediate group, as

revealed by molecular markers (Vaz Patto et al., 2001;

Castillo et al., 2010). The high compatibility of H. chilense

with the genomes of Triticum species gives rise to fertile

and stable amphiploids and allows the transfer of traits

to wheat (Martin et al., 1998), such as resistance to sep-

toria tritici, abiotic stress tolerance or endosperm storage

proteins (Martin et al., 1999; Atienza et al., 2002), but

probably the main interest of this species is its potential

for increasing carotenoid content (Alvarez et al., 1999;

Atienza et al., 2004; Atienza et al., 2005a; Atienza et al.,

2007b). The phytoene synthase 1 from H. chilense is a

good candidate gene for the improvement of carotenoid

content (Atienza et al., 2007a), and, therefore, the

cloning and characterization of this gene offer new possi-

bilities for wheat breeding (Rodriguez-Suarez et al.,

2010). Similarly, the development of H. chilense durum*Corresponding author. E-mail: sgatienza@ias.csic.es
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wheat chromosome substitution lines will be useful for

evaluating the substitution effect of durum wheat by

H. chilense genes for carotenoid content. The use of barley

expressed sequence tag (EST) markers (Hagras et al., 2005a;

Hagras et al., 2005b; Nasuda et al., 2005) has proven

very useful for physical mapping in H. chilense (Atienza

et al., 2007c; Said and Cabrera, 2009; Cherif-Mouaki et al.,

2011). Besides, the development of the genetic linkage

map using ESTs, conserved orthologous set (Bolot et al.,

2009) and H. chilense-specific diversity arrays technology

markers will allow the establishment of precise relation-

ships between H. chilense and related species genomes,

thus providing more efficient tools for the use of this wild

barley in wheat breeding.

Cytoplasm 3 nuclear variability in H. chilense–
wheat interactions

The nuclear genome has a predominating role for

the inheritance of most plant traits Nevertheless, cyto-

plasmic factors and cytoplasm £ nucleus interactions

are also important and still largely unexplored. Genetic

information of eukaryotic organisms is divided into a

nuclear genome in the nucleus and organelle genomes

(sometimes referred to as plasmon) in the cytoplasm.

Since the cytoplasm is maternally inherited in Triticeae

species (Kihara, 1951), the best way to investigate

nuclear–cytoplasm interactions is by developing allo-

plasmic lines, i.e. lines with the same nucleus but

cytoplasms from different species.

H. chilense–wheat alloplasmic lines have been devel-

oped by repeated substitution backcross as described

by Kihara (1951). First, amphiploids H. chilense £ wheat

are developed as described by Martin and Chapman

(1977). This step is essential since the hybrids between

H. chilense and wheat are sterile while the amphiploids

are fertile. Backcrossing to the nucleus donor is repeated

until H. chilense chromosomes are fully eliminated. After

somatic chromosome counting, the cytoplasm origin has

to be checked, since paternal inheritance of cytoplasm

has also been reported (Soliman et al., 1987; Laser et al.,

1997; Aksyonova et al., 2005; Badaeva et al., 2006).

Indeed, we have observed this phenomenon with both

H. chilense (Atienza et al., 2007d) and H. vulgare cyto-

plasms (Martin et al., 2008a) using the chloroplastic

marker ccSSR4 (Chung and Staub, 2003).

Alloplasmic lines are very useful for elucidating plant

phylogeny and determining the genetic effect of different

plasmons. Furthermore, since the discovery of cyto-

plasmic male sterility (CMS) in wheat (Kihara, 1951),

breeders have been very interested in CMS systems, look-

ing for a viable procedure for hybrid wheat production

(for a review, see Martin, 2009).

The development of H. chilense–common wheat

alloplasmic lines gives rise to two types of lines:

male-sterile when the line H1 is used as cytoplasm

donor, or fully fertile when other H. chilense lines are

used. Accordingly, a research line is being developed

to investigate the potential of this new CMS source,

designated msH1, to produce hybrid wheat. The male

sterile line does not show any floral or developmental

abnormalities, but reduced height and delayed heading

(Martin et al., 2008b). Fertility restoration is obtained

when chromosome 6HchS from H. chilense line H1 is

added (Martin et al., 2008b). Further research allowed

the obtaining of a fertile euplasmic line carrying the

translocation T6HchS·6DL (Martin et al., 2009). How-

ever, a single dose of this translocation is insufficient

for fertility restoration, which suggests the presence of

one or more inhibitors of fertility genes in chromosome

6DL (Martin et al., 2009). More recently, a highly fertile

line with 42 chromosomes plus an extra acrocentric

chromosome has been obtained (Martin et al., 2010),

whose long arm is the 1HchS chromosome, as demon-

strated by molecular markers and fluorescent in situ

hybridization. It seems that this chromosome originated

from a deletion of the distal part of chromosome 1HchL

and that the restorer gene is located on the retained

segment from the 1HchL (Martin et al., 2010). The diso-

mic addition of this acrocentric chromosome is fully

fertile and thus constitutes an additional source of

restoration for wheat hybrid production based on

msH1 system.

On the other hand, fully fertile alloplasmic lines

were also obtained (Atienza et al., 2007d). Preliminary

evidence suggested that phenotypic and metabolic vari-

ations in wheat are associated with different nuclear–

cytoplasmic combinations (Atienza et al., 2007c; Atienza

et al., 2008), including phenotypic traits such as height

or quality traits like endosperm carotenoid content.

In other cases, the use of either wheat or H. chilense

cytoplasm did not result in any phenotypic variation

in Tritordeum (Atienza et al., 2007e). The genetic

effects of the plasmon have been studied in several

species affecting different traits including yield (Loessl

et al., 2000), disease or pest resistance (Voluevich and

Buloichik, 1992; Matsui et al., 2002) and tolerance to

abiotic stresses (Uprety and Tomar, 1993; Shonnard

and Gepts, 1994; Zhang et al., 2003). Nevertheless,

the most detailed studies have been performed in the

Triticum–Aegilops complex (Tsunewaki et al., 1996,

2002; Tsunewaki, 2009) and in teosinte–maize combi-

nations (Allen, 2005).

Recently, parallel transcriptomic and metabolomic ana-

lyses have been carried out on three alloplasmic lines

to investigate the effect of H. chilense, Ae. uniaristata

and Ae. squarrosa cytoplasms on nuclear–cytoplasm
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interaction with common wheat (Crosatti et al., 2010).

The gas chromatography-mass spectrometer metabolic

profiling of leaves revealed significant differences

between the alloplasmic lines and their euplasmic con-

trol. Transcriptomic analyses using the Affimetrix 61k

wheat gene chip showed that more than 500 genes modi-

fied their behaviour in the H. chilense alloplasmic line

compared with the euplasmic control (Crosatti et al.,

2010). Most of them encoded for chloroplast/mitochon-

drion localized proteins. The simultaneous consideration

of transcriptomic and metabolomic data underlined that

the amino-acid biosynthetic pathways are highly depen-

dent on the nuclear–cytoplasm interaction.

In conclusion, H. chilense is an interesting source

of variability for wheat breeding and the study of the

alloplasmic lines allows us to increase our understanding

of how nuclear and cytoplasmic genomes interact. Thus,

this may open up new opportunities for plant improve-

ment through cytoplasm modification.
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