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Abstract
Classical generalized linear models assume that marginal e�ects are homogeneous in the population given
the observed covariates. Researchers can never be sure a priori if that assumption is adequate. Recent
literature in statisticsandpolitical sciencehaveproposedmodels thatuseDirichletprocesspriors todealwith
the possibility of latent heterogeneity in the covariate e�ects. In this paper, we extend and generalize those
approaches and propose a hierarchical Dirichlet process of generalized linear models in which the latent
heterogeneity can depend on context-level features. Such a model is important in comparative analyses
when the data comes fromdi�erent countries and the latent heterogeneity can be a function of country-level
features. We provide a Gibbs sampler for the general model, a special Gibbs sampler for gaussian outcome
variables, andaHamiltonianMonteCarlowithinGibbs tohandlediscreteoutcomevariables.Wedemonstrate
the importance of accounting for latent heterogeneity with aMonte Carlo exercise andwith two applications
that replicate recent scholarly work. We show how Simpson’s paradox can emerge in the empirical analysis
if latent heterogeneity is ignored and how the proposedmodel can be used to estimate heterogeneity in the
e�ect of covariates.

Keywords: bayesian nonparametric model, latent variables, heterogeneous e�ects, generalized linear
models, semiparametric mixture modeling, Dirichlet regression

1 Introduction
This paper proposes a model to deal with context-dependent latent heterogeneity in the e�ect
of covariates in generalized linear models (GLMs). Generalized linear models, including those
with mixed e�ects, are still one of the most used tools for multivariate analyses in political
science. Amongmany assumptions required by suchmodels, e.g., the conditional independence,
researchers need to assume that important covariates were not le� out. In that regard, much
has been said in political science, statistics, and econometrics about the problems caused by
omittingadditive covariates in themodel, butmuch less about the issues surroundingunobserved
confounders that condition the e�ects of observed covariates. Conditioning features can lead to
a well-known phenomenon in statistics called Simpson’s paradox (a.k.a. aggregation paradox):
an e�ect found when data are aggregated can be completely di�erent or even reversed when
data are separated into groups (Pearson, Lee, and Bramley-Moore 1899; Yule 1903; Simpson
1951; Blyth 1972). The crucial point connecting the paradox and omitting variables is that, in the
typical situation, researchers can never be sure a priori that there are not latent or unobserved
groups—a.k.a. clusters—with heterogeneous e�ect nor howmany of them exist.
Consider for example the study of voter’s preferences for redistribution. It is well known

that features such as income and race can a�ect support for redistributive policies (Alesina
and Angeletos 2005; Rehm 2009; Shayo 2009; Alesina and Giuliano 2010), but the e�ects of
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also thanks the editor Je� Gill and two anonymous reviewers for their invaluable suggestions. Replication materials are
publicly available on the Political Analysis Harvard Dataverse (Ferrari 2018) as well as author’s website.
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such observed factors like income and race can be heterogeneous among subpopulations due
to unobserved factors such as motivation, personal history, and ability (Stegmueller 2013).
Consequently, the estimated e�ect of income, e.g., found when data are aggregated can be very
di�erent from the e�ect that would be estimated if we had observed motivation and considered
low- and high-motivation groups separately or considered the income e�ect as conditional upon
motivation.
Although that problemoccurs in all scientific disciplines, perhaps it ismore salient in the social

sciences because, to mention a few reasons, problems have high dimensionality and o�en many
dimensions remain unmeasured; data are o�en di�icult to collect or are unavailable for privacy
or other reasons; culture-specific aspects are not well measured; some subjects may conceal
information from researchers purposefully; or researchers may simply be unaware of possible
latent interactive factors (Stegmueller 2013; Traunmuller, Murr, and Gill 2015).
Especially in comparative politics, an additional layer of complication seems likely: the latent

heterogeneity can depend on context-level features. For instance, some researchers have shown
that the e�ect of income is conditional on country-level variables such as the progressivity of
the tax system (Beramendi and Rehm 2016), the levels of inequality and crime rates (Rueda and
Stegmueller 2016), national identity (Johnston et al. 2010), and the existing levels of redistribution
(Svallfors 1997; Arts and Gelissen 2001). If there is latent e�ect heterogeneity due to unobserved
factors likemotivationorpersonal experiential historyamong thepopulation fromagivencontext,
say a country, it is very likely that a di�erent heterogeneity manifests in other countries. In other
words, suppose the e�ect of income is heterogeneous between two groups of voters (clusters) in
the United States (the context) and we do not know the group membership of individual voters.
We would expect to see heterogeneity among the population in another context, say Italy, but
we should not expect to have the same two latent groups in Italy (or in other contexts). Maybe
there are more or fewer latent groups in Italy, or maybe some latent subpopulations are similar
in Italy and the United States. For instance, high- and low-motivation Italians and Americans
may have welfare opinions similarly a�ected by their income. But Italians’ personal experiences
of crime modify income e�ects on welfare support very di�erently than Americans’ personal
experiences of crimemodify their income e�ects onwelfare support. In sum, the characteristics of
the within-context heterogeneity (clustering) can vary from one context (e.g., country) to another,
and that within-context heterogeneity may depend on the characteristics of the context itself.
Practitioners in political science have long recognized these challenges. The possibility of

omitting relevant conditioning factors, in conjunction with cross-context di�erences, have been
stressed as an important source of an attitude of radical skepticism regarding the results of
observational and experimental empirical investigation in the social sciences in general, and in
comparative analysis in particular (Przeworski 2007; Stokes 2014).
The literature has proposed di�erent approaches to address e�ect heterogeneity. The

approaches dependonwhether the grouping features are knownandmeasured.When the groups
are observed, classical approaches include mixed models with gaussian distributed random
e�ects (e.g., hierarchical linear models (HLMs)). Suppose, for example, that we are analyzing
data from many countries (contexts) and in each country there are di�erent subpopulations
with heterogeneous e�ects. If we knew the subpopulation to which each individual belongs, we
could use a classical mixed-e�ects model at country and subpopulation levels. However, the
distributional assumption on the random e�ect in such an approach is o�en criticized because
of the single modality, light tails, and symmetry of the normal distribution, which imposes
unnecessary and o�en unjustifiable constraints to the analysis in the empirical modeling stage
(Verbeke and Lesa�re 1997; Heinzl and Tutz 2013). In addition, such approach only works if the
heterogeneous groups within each context are known and observed, but researchers have to
assume that there is no other latent or unobserved feature that can cause e�ect heterogeneity.
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There are some modeling approaches that work for single-context cases in which subpopulation
membership is unknown or unobserved. When one wants to investigate subpopulations with
latent heterogeneity within a given context and the number of subpopulations are known or are
assumed to be finite and fixed, finite mixture models (FMM) are o�en used (Ng et al. 2006; De la
Cruz-Mesía, Quintana, and Marshall 2008; Villarroel, Marshall, and Barón 2009). More commonly,
however, researchers do not know if or how many latent heterogeneous subpopulations exist
within a given context. Recent contributions in statistics literature have proposed models
that use Dirichlet process prior (DPP) to deal with these single-context cases with unknown
subpopulationheterogeneity/clustering (MukhopadhyayandGelfand 1997;Kleinmanand Ibrahim
1998b; Hannah, Blei, and Powell 2011; Heinzl and Tutz 2013). Models using DPP have been used
in marketing literature to model the error term with a flexible distribution, the heterogeneity
of consumer’s demand in discrete choice models (Rossi, Allenby, and McCulloch 2006; Rossi
2014), and in latent instrumental variable (LIV) models to deal with endogeneity of covariates
(Ebbes et al. 2005; Ebbes, Wedel, and Böckenholt 2009). Relatedwork has also been developed in
econometricsandprogramevaluation literature to studye�ectheterogeneityof trainingprograms
(Aakvik, Heckman, and Vytlacil 2005; Chen 2007; Heckman and Vytlacil 2007; Ichimura and Todd
2007; Matzkin 2007). DPP models have been applied in political science to study lengths of time
political appointees stay in their appointed position (Gill and Casella 2009), political priorities
of senators (Grimmer 2009), intraparty voting (Spirling and Quinn 2010), immigrant turnout in
elections (Traunmuller, Murr, and Gill 2015), and dynamic aspects of preferences for redistribution
(Stegmueller 2013).
Those DPP approaches, however, have three limitations. First, they are usually designed to be

used with specific types of dependent variables, e.g., with outcome variables measured on an
ordered scale. Second, particularly in political science literature, previous works have used DPP
mostly as a prior only for the intercept (or error) term. Third andmore importantly, previousworks
were not designed to study cases in which the latent heterogeneity is context-dependent.
To redress these limitations, this paper proposes a Dirichlet mixture of generalized linear

models in which the within-context e�ect heterogeneity (clustering) can be context-dependent.
Theproposedmodel is ageneralization, fromthepointof viewof theexpectationof thedependent
variable, of usual generalized linear model (GLM), classical generalized linear mixed models
(GLMM), finitemixturemodels (FMMs), andcurrent single-contextDirichletmixturesof generalized
linear models. The proposedmodel has several advantages over those special cases.
First, when there aremultiple contexts, for instance in cross-country comparative analysis, the

model can be used to investigate if country features are associated with latent heterogeneity in
the covariate e�ects; that is, if country-level features a�ect the number and the characteristics of
the subpopulation clusters.
Second, the proposed Dirichlet mixture of generalized linear models is developed in its full

generality to handle Dirichlet mixtures of any distribution in the exponential family, investigate
heterogeneity not only in the error term but in the e�ect of any observed covariates, and,
as mentioned, study how such heterogeneity varies with context-level features. This paper
implements two special cases: binary and continuous outcomes, modeled using Bernoulli and
gaussian distributions, respectively. The algorithms for estimation of these special cases are
presented, but an MCMC algorithm with a Gibbs sampler is derived for the more general model,
so it can easily be extended to other outcome variable distributions.
Third, as a generalization of the other models, it can be used in situations in which any of the

more specialized models are well justified. If, in fact, one believes that a single GLM can be used
across contexts and there is no latent heterogeneity in the population, the proposed model can
be estimated and it will produce similar results for the conditional expectation of the dependent
variable as thoseestimatedusingaGLM. If there is just onecontext, butunknownclusters, it canbe
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used insteadof the single-contextDirichletmixture ofGLMs. Theanalogous situation is true for the
other special cases, i.e., whenever the researcher is estimating a GLMM or a finite mixture model
(FMM) the proposed model can be used, and it has two additional advantages: the number of
latent clusters, whose number is allowed to growwith the size of the data, is being simultaneously
estimated. As already mentioned, if the data comes from di�erent contexts, the e�ect of the
context on the characteristics of the clusters are also being investigated.
Fourth, the model estimates cluster memberships, so we can classify the data points into

(latent) groups. The clusters di�er in terms of the vector of linear coe�icients that connect
covariates to the outcome variable. So it can be used to study and characterize the heterogeneity
in the e�ect of the covariates within and across contexts.
Fi�h, the statistics and epidemiology literature has proposed approaches for dealing with

Simpson’s paradox based on domain knowledge (Hernán, Clayton, and Keiding 2011) and
estimation diagnostics (Kievit et al. 2013). Its formal aspects and its connection to other problems
have also been studied (Samuels 1993; Hernán, Clayton, and Keiding 2011; Pearl 2011, 2014).
However, to the best of our knowledge, the literature has not proposed any modeling solution.
We connect themodel proposed here with Simpson’s paradox in the context of generalized linear
models and show how it can be used to detect the occurrence of the paradox and to deal with
such problems by estimating the cluster-specific e�ects.
The rest of the paper is organized as follows. The next section presents the model. Then,

the following section demonstrates how the proposed model is connected to classical GLM,
mixed models, FMM, and the econometric models mentioned above that use DPP to deal with
heterogeneity in single-context analyses. Section 4 develops MCMC algorithms to estimate the
model in its full generality and for two special cases of outcome variables. In the Section 5
we conduct a Monte Carlo exercise to study the frequentist properties of the estimation. The
estimation is tested against a large variety of scenarios with and without latent heterogeneity.
The section also illustrates how the model can be used to deal with Simpson’s paradox in the
context of generalized linear models. It also compares the estimated results of GLM using a
maximum likelihood estimator (MLE) with those produced by the proposed model using the
MCMC developed in the Section 4. Section 6 uses themodel to analyze real data sets. It replicates
some studies and shows how it uncovers latent heterogeneity and Simpson’s paradox. Finally, the
conclusions are presented.

2 The Model
To restate the problem, we want to use a generalized linear model to estimate the e�ect of
the covariates Xi on yi . Second, we want to take into account the possibility that the e�ect of
the covariates is heterogeneous across di�erent subgroups whose defining features are latent
or were not observed. In other words, there might be latent subpopulations of individuals for
which the covariates have a di�erent relationship with the outcome. Finally, we want to allow
this latent subpopulation heterogeneity or clustering to be investigated both for data that comes
from a single context or from multiple contexts. Finally, when the observed population comes
from di�erent contexts (e.g., di�erent countries and di�erent years), we want to investigate if
context-level features change not only the e�ect of observed covariates on the outcome but also
the existence and the characteristics of latent subpopulations in which the observed covariates
have di�erent e�ects.
Themodel that deals with such problems can be developed as follows. For each observation i ,

suppose we have a set of observed covariates X ′i ∈ ÒDx and an outcome variable yi . Denote
Xi = (1,X ′i ). LetK denote the number of heterogeneous groups in the population such that it can
be bigger if the population is bigger, and let Zi indicate the group of i . Zi and K may or may not
be known or observed. When Zi is not observed, we use the term “clusters” instead of “groups.”
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DenoteCi the context of i , so Ci = j indicates that the observation i comes from context indexed
by j ∈ {1, . . . , J}, were J is the number of contexts.
For the purpose of illustration and as a toy example, suppose we want to investigate the e�ect

of income and race on voters’ support for welfare policies in di�erent countries. Then Xi are
measuresof incomeand raceof individual i , and yi is hisdegreeof support forwelfarepolicies. The
variableCi = j indicates the country where i lives, and data are collected in J countries. Suppose
further that in each country the population is divided into types of individuals with di�erent
personal experiences with class and racial conflict. The types are not observed but we suspect
the e�ect of income and race is conditional on the type. The latent variable Zi = k indicates that
i is type k and K denotes the number of di�erent types.
If p( ) denotes a distribution in the exponential family, g a link function, and θ = (β ,σ), then the

group- and context-specific GLM is given by:

yi ` Zi ,Xi ,Ci , θCi Zi ∼ p(yi ` Xi , θCi Zi ) 3 Å[yi ` ·] = µi = g
−1(XTi βCi Zi ), Zi = 1, . . . ,K . (1)

If Zi was observed and K was therefore known, one could use classical mixed-e�ects models
to estimate groups and context-specific heterogeneous e�ects. IfK was known, but Zi was latent
or unobserved, one option would be to use finite mixture models for the estimation (Ga�ney
2003; Ng et al. 2006; De la Cruz-Mesía, Quintana, and Marshall 2008; Villarroel, Marshall, and
Barón 2009). When Zi is latent and K is unknown, some authors have proposed models that
use DPP on θ in order to estimate cluster-specific e�ects1 (Mukhopadhyay and Gelfand 1997;
Kleinman and Ibrahim 1998a,b; Dorazio et al. 2008; Gill and Casella 2009; Heinzl and Tutz 2013;
Stegmueller 2013; Traunmuller, Murr, and Gill 2015). We refer here to such models as Dirichlet
process generalized linear model (dpGLM), as adopted by Hannah, Blei, and Powell (2011).
Contrary to their formulation, however, we assume that Xi is given. If we denote by DP(α ,G )
the Dirichlet process with location parameter α and base measure G , the GLM is modified in the
following way to produce the dpGLM:

G ` αo ,Go ∼ DP(αo ,Go )

θi ` G ∼ G

yi ` Xi , θi , ∼p(yi ` Xi , θi ), Å[yi ` ·] = µi = g
−1(XTi βi ).

(2)

Authors havewarned that using DPP can lead to biased estimators, and it is known that neither
weakconsistencynorasymptoticunbiasednessareguaranteed ingeneral inDPPmodels (Diaconis
and Freedman 1986; Ghosal, Ghosh, and Ramamoorthi 1999; Tokdar 2006; Kyung et al. 2010).
Although bias will always be present due to the bayesian priors, Hannah, Blei, and Powell (2011)
demonstrated that thedpGLMsatisfies the conditions that guaranteeweakconsistencyof the joint
posterior distribution and consistency of the regression estimates (see also Tokdar 2006).
The dpGLMs lacks the hierarchical clustering approach thatwewould like to have in themodel,

that is, that the clusters can be a function of higher level context features in a multi-context
analysis. We want to preserve the structure of the dpGLM and the DPP—because there might be
unknownclusterswithheterogeneous e�ect andunknownclustermembership—but include such
context dependency—because the heterogeneity may depend on the context characteristics.
Some authors have proposed di�erent approaches to model hierarchical clustering and to

create dependencies among multiple Dirichlet processes (Mallick and Walker 1997; Carota and
Parmigiani 2002; De Iorio et al. 2004; Müller, Quintana, and Rosner 2004; Teh et al. 2006). We can

1 The clustering property of the DPPwill not be revised here because there are already good sources explaining such feature
of the Dirichlet process prior. The reader interested in a review can check Teh et al. (2006) and Müller and Mitra (2013) and
the references therein.
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generalize and combine these approaches with the dpGLM in the following way. LetW ′
j ∈ ÒDw

denote the context-level features of context j and J the total number of contexts as before. Let
Wj = (1,W ′

j ).
In our toy example,Wj can be thought of as the level of economic development and inequality

of the country (context) j . It means we want to investigate if the e�ect of income and race (the
observed covariates Xi ) on support for redistribution (yi ) varies with the degree of economic
development and inequality of the country (Wj ). Moreover,we alsowant to investigate if the e�ect
of those observed covariates (incomeand race) is di�erent amongwithin-country subpopulations
whose membership (Zi ) is unobserved. Finally, we want to verify if those subpopulations vary
from one country (context) to another due to a country’s level of inequality and economic
development (context-level featuresWj ).
Themodel can bemodified in the followingway to introduce context-level dependency among

DPP:

G j ` αo ,Go ,Wj ∼ DP(αo ,Go (Wj ))

θj i ` G j ∼ G j

yi ` Xi ,Ci , θj i , ∼p(yi ` Xi , θj i ), Å[yi ` ·] = µj i = g
−1(XTi βj i ).

(3)

We refer to themodel (3) as hierarchical Dirichlet process generalized linearmodel (hdpGLM). It
generalizes theGLMand thedpGLMandprovidesahierarchical clustering structure that is context-
dependent. Because it generalizes GLMs, it can be used even if there is neither heterogeneity
nor multiple contexts. The advantage of using hdpGLM is that clusters can be uncovered if the
researcher is uncertain about the existence of heterogeneous e�ects. Amodel selectionprocedure
can be adopted to decide if either the results of GLM or hdpGLM is adequate for the data at hand
(Mukhopadhyay and Gelfand 1997).
To complete the formulation of themodel and connect (3) and (1), denote Zi k the case inwhich

individual i belongs to the subpopulation indexed by k , that is, Zi = k . Let Ci j indicates that
individual i belongs to the context (country) j , that is, Ci = j . We can parameterize the e�ect
of the context-level covariatesW with τ ∈ Ò(Dw+1)×(Dx+1) and rewrite the model (3) using the
stick-breaking construction (Sethuraman 1994; Teh et al. 2006). The resulting model in its full
generality is the following:

Vl ` αo ∼ Beta(1, αo )

πk =




V1, k = 1,

Vk

k−1∏
l=1

(1 −Vl ), k > 1,

Zi ` π ∼ Cat(π), π ∈ ∆∞

τd ∼ p(τd ), d = 1, . . . ,Dx + 1

θk j ` Zi k , τ,Ci j ,W ∼ p(θj k `W , τ), j = 1, . . . , J

yi ` Zi k , θk j ,Xi ,Ci j ∼ p(yi ` Zi k ,Ci j ,Xi , θk j ) 3 Å[yi ` Zi k , θk j ,Xi ,Ci j ] = g−1(XTi βk j ),

p(yi ` Zi k ,Ci j ,Xi , θk j ) from exponential family.

(4)

We further assume that, for θ = (β ,σ)

τd ` µτ ,Στ ∼ NDw+1(µτ ,Στ ), d = 1, . . . ,Dx + 1

βk j ` Zi k , τ,Ci j ,W ∼ NDx+1([WT
j τ]

T ,Σβ ), j = 1, . . . , J .

So, the variable τd is a vector of linear coe�icients of the country-level features. It determines
the average e�ect of the individual-level features Xi d on the outcome yi in the cluster k .
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In our toy example, τ1 = (τ11, τ21) would be the linear e�ect of the inequality and economic
development (the context-level features) on β1k , the linear e�ect of income (observed covariate)
on support for redistribution among peoplewith similar history of social and racial conflict, which
are unobserved, indexedby k . Theparameterτ2 = (τ12, τ22) would be the linear e�ect of inequality
and economic development on β2k , which is the e�ect of race on support for redistribution among
people of type k . Therefore, we have a DPP clustering model that is context-dependent because
the linear coe�icients β of the outcome variable depend on the cluster probability π, (thought Zi )
and on the context-level featureW (through its linear e�ect τ).

3 Generalized Linear Models, Finite Mixture Models, and hdpGLM
This section shows the relationship between the hdpGLM and the classical GLMs, GLMM, FMMs,
and dpGLM in terms of the structure of the average parameters of the outcome variable yi . In that
sense, the hdpGLM can be viewed as a generalization of the other models. That generalization
allows us to estimate latent or unobserved heterogeneity in the population in terms of how the
covariates and the outcome are linearly related when the number of heterogeneous groups is
not known in advance. The section also explores some connections between hdpGLM, latent
instrumental variable (LIV) and latent-index models, which are approaches that use DPP with
regression models.
As before,wedenoteXi = (1,X ′i ) ∈ Ò

(Dx+1)×1 the observed characteristics of unit i , Zi ∈ {0, 1}κ

the design variable indicating the group (or cluster) of i . The parameter κ represents the number
of clusters. Let γi ∈ Ò(Dx+1)×κ be the cluster-specific matrix of linear coe�icients such that γi k ∈
Ò(Dx+1)×1 is the k th column of γi with linear coe�icients of cluster k . Themost general formulation
of the GLM in which every individual and groups have their own set of linear coe�icients is:

yi ` Xi , βi , γi ∼ p(yi ` Xi , βi , γi ) 3 Å[yi ` ·] = µi = g−1(XTi βi + X
T
i γi Zi ). (5)

Define ηi = XTi βi + X
T
i γi Zi and for simplicity letDx = 1. We can write

ηi = (βoi + γoi Zi ) + (β1i + γ1i Zi )X ′i
ηi k = (βoi + γoi k ) + (β1i + γ1i k )X ′i .

ClassicalGLMs,GLMMs, FMMs, or hdpGLMsemerge frommodel (5) dependingonwhatweknow
or believe about κ, Zi , γi and βi . More precisely, it depends on the structural assumptions we
impose on those parameters.
Classical GLM can be interpreted in two ways. Either one assumes γi = 0 for all i and βi = β ,

which gives

ηi = βo + β1X
′
i (6)

or one assumes κ = 1, which gives

ηi = (βo + γo ) + (β1 + γ1)Xi = θo + θ1X ′i . (7)

Clearly, (6) and (7) are structurally equivalent, and treating either θ in (7) of β in (6) as the
parameter to be estimated should produce the same results.
When κ > 1, Zi is observed, and one believes γ , 0, the common approach is to use

fixed, random, or mixed-e�ects models. For fixed e�ects, one either assumes that each group
k has its own fixed intercept term θok , or both its own fixed intercept and slope (θok , θ1k ).
Classical models with random e�ects similarly assume that each observed group has its own
intercept (and/or slope) but also that, instead of being fixed, they are drawn from a common
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distribution. A gaussian distribution with zeromean is the standard choice for the random e�ects
(Hayashi 2000; Woodridge 2002), but one can also have group-specific averages (Gelman and Hill
2007) (see Table 1). Mixedmodels use a combination of random and fixed e�ects.
WhenZi is not observed, obviously it is not possible touse classicalmixedmodels for the group

heterogeneity.WhenonedoesnotobserveZi , but κ is knownor it is assumed tobe finite and fixed,
then a finite mixturemodel is usually used (Lenk and DeSarbo 2000). If we let Zi ∼ Cat(π), π ∈ ∆κ

then

η ′i = Å[ηi ` Xi ] = (βo + γoπ) + (β1 + γ1π)X ′i = θo + θ1X
′
i (8)

and

η ′i k = Å[ηi ` Xi ] = (βo + γoπk ) + (β1 + γ1πk )Xi = θok + θ1kX ′i

which implies a finite mixture distribution for yi , that is,

Zi ` π ∼ Cat(π), π ∈ ∆κ

yi ` Xi , Zi k , θk ∼ p(yi ` µi k ).
(9)

By averaging over κ we get

η ′i = θo + θ1X
′
i .

Again, it has the same basic structure of the classical GLM.
The dpGLM generalizes that structure by allowing κ to be undetermined. It emerges naturally

from finite mixtures when there might be clusters in the populations that are latent or that were
not measured and, in addition, we do not know exactly the number of clusters. By letting κ → ∞
in the finite mixture model in (9), and by putting a prior on θ and a stick-breaking prior on π we
have the dpGLM, as described in (10) (Teh et al. 2006; Hannah, Blei, and Powell 2011).

Vl ` αo ∼ Beta(1, αo )

πk =




V1, k = 1,

Vk

k−1∏
l=1

(1 −Vl ), k > 1,

Zi ` π ∼ Cat(π), π ∈ ∆∞

θZ i ` Zi ∼ pθ

yi ` Xi , Zi k , θk ∼ p(yi ` µi k ).

(10)

Startingwith the dpGLM, by restricting the possible number of clusters to be finite (κ < ∞), and
treating π and θ as fixed we are again back to the FMM. If, in addition, we either average out the
clusters and treat those averaged elements as the fixed parameters to estimate or if κ = 1, we have
the classical GLM. In sum, the GLM can be viewed a special case of the dpGLM.
Finally, the hdpGLM proposed here generalizes that structure to account for the possibility

of context-dependent clustering. It does that by letting the linear coe�icients of the clusters
be a function of context-level covariates. We modify the model (10) by adding the parameter
τ and context-level information W . Given J di�erent contexts, the context-level covariates
W ∈ ÒJ×(Dw+1), and the variable Ci that indicates the context to which i belongs, we have the
hdpGLMmodel by modifying the dpGLM and adding the following structure to it:

τd ∼ p(τd ), d = 1, . . . ,Dx + 1

θZiCi ` Zi k , τ,Ci j ,W ∼ p(θj k `W , τ), j = 1, . . . , J .
(11)
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Table 1. Relationship between GLM, GLMM, FMM and hdpGLM based on structural assumptions on κ, Zi andϕi .

Model* κ Zi γi ηi

(# of groups) (group indicator) (group e�ect) (linear predictors)

GLM Known (κ = 1) Observed (Zi = 1) γi = γ = 0 Xi β1
FE (I) Known (κ = K ∈ Î) Observed (Zi ∈ {1, . . . ,K }) γoi = γok , γ1k i = 0 βo + γok + X

′
i β1

FE (I+ S) Idem Idem γoi = γok , γ1k i = γ1k βo + γok + (β1 + γ1k )X ′i
RE (I) Idem Idem γoi = γok , γ1k i = 0 3 γok ∼ N (µγo ,σγo ) βo + γok + X

′
i β1

RE (I+ S) Idem Idem γoi = γok , γ1k i = γ1k 3 γdk ∼ N (µγd ,σγd ) βo + γok + (β1 + γ1k )X ′i

FMM Idem Unobserved/latent γoi = γok , γ1k i = γ1k βo +
K∑
k=1

Zi k γok + (β1 +
K∑
k=1

Zi k γ1k )X ′i

hdpGLM Unknown (κ ∈ Î ∪ {∞}) Unobserved/latent Idem βo +
κ∑
k=1

Zi k γok + (β1 +
κ∑
k=1

Zi k γ1k )X ′i

* GLM: Generalized Linear Models; FE: Fixed E�ect in the intercept (FE (I)) and both in the intercept and slope (FE (I+ S)); RE: RandomE�ect in the intercept (FE (I)) and both in the intercept
and slope (RE (I+ S)); FMM: finite mixture models.
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Hence, if there is just one context (J = 1) we have the dpGLM again, and it demonstrates the
connection between hdpGLM and the other models. Table 1 summarizes the connection between
them.
The hdpGLMmodel is also structurally connected to latent instrumental variable (LIV) models

(Ebbes, Böckenholt, and Wedel 2004; Ebbes et al. 2005; Ebbes, Wedel, and Böckenholt 2009).
Such models can be used to deal with endogenous covariates. The main feature of the LIV is the
introduction of a latent categorical instrumental variable, which turns the instrumental variable
(IV) regressionmodel into a FMM. To see this, consider this simple example of a classical IV model
with endogenous covariate x1, a gaussian outcome, and the instrumental variable z (index i
omitted for simplicity):




y = β0 + β1x1 + β2x2 + ε

x1 = γ0 + γ2x2 + γ3z + ν.
(12)

Forφ0 = β0 + βiγ0,φ2 = β1γ2 + β2,φ3 = β1φ3, and ε ′ = β1ν + ε we have the reduced form:

y = ϕ0 +ϕ2x2 +ϕ3z + ε
′. (13)

The LIV approach defines a latent K -level categorical random variable Zi to be used instead of
the instrument zi . Each group k is assumed to have its is own mean value ϕ0k . It leads to a FMM
with K latent groups such that the outcome is given by:

y = (ϕ0 +ϕ0k ) +ϕ2x2 + ε
′ = θ0k + θ2x2 + ε

′ (14)

or equivalently, and assuming group-specific errors:

y = β0 + β1x1k + β2x2 + ε (15)

x1k = γ0 + γ2x2 +ϕ0k + νi .

Ebbes et al. (2005) and Ebbes, Wedel, and Böckenholt (2009) have proposed (15), called LIV, to
dealwith endogeneity in the regressors. Obviously, by (14) and (15)we can seehow it is structurally
connected to the hdpGLM. Some di�erences between LIV and themodel presented here is that in
the former the number of latent groups needed to be selected in advance before the parameters
are estimated, which is a feature of any FMM. Moreover, LIV is designed for a single-context
estimation, that is, the endogeneity and the instrument are not context-dependent. The main
di�erence, however, is that the LIV approach uses the joint distribution of the endogenous
covariates and the outcome due to its goal of dealing with endogeneity of the covariate, while
here the covariates are assumed tobeexogeneous. ThehdpGLM leads toaLIVmodel ifwe truncate
the DPP, restrict the hdpGLM to its non-hierarchical version (dpGLM) with gaussian outcome, and
model the distribution of the endogenous covariates as in the equations above.
Finally, the hdpGLM also has a close connection with the latent-index model that has been

designed to deal with single-context heterogeneity (Aakvik, Heckman, and Vytlacil 2005; Rossi
2014). Aakvik, Heckman, and Vytlacil (2005) propose a model in which the marginal e�ects are
heterogeneous in the population and indexed by a continuous latent random variable. They also
provide a special case with two latent groups by using a binary transformation of that (gaussian
distributed) latent index, which produces a mixture model with two latent components. The
model here generalizes that continuous latent-index approach in two ways. First, it imposes a
muchmore flexible distribution on the latent index and allows us to estimate e�ect heterogeneity
when there are unknown number of finite or countably infinite groups. Their gaussian index
model can be approximated by a countably infinity partition of the real line and a symmetric
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unimodal discrete distribution on that partition. It is embedded in the structure of the model
and the DPP can naturally be used to estimate such a distribution of the indexes. Second, the
model here generalizes their approach by adding a context-dependent structure to the latent
heterogeneity.

4 Estimation
There aremany options in the literature to estimatemodels that use DPP (Ishwaran and Zarepour
2000; Neal 2000; Blei et al. 2006; Walker 2007). Here we extend the approach proposed by
Ishwaran and James (2001). In order to implement a (blocked) Gibbs sampler for a DPP model,
one of the algorithms they propose uses a truncated version of the stick-breaking construction
in conjunction with the generalized Dirichlet distribution. We extend their basic algorithm in
two ways. First, we incorporate the hierarchical structure of the model proposed here and
develop a Gibbs sampler in its full generality. Second, we derive the sampler for two special
cases: continuous outcome variable yi , modeled using a gaussian distribution, and a binary
outcome variable, modeled using a Bernoulli distribution with a logistic transformation of the
average parameter. For the gaussian outcome, the Gibbs update can be used for all parameters.
Therefore, in practice for that special case the estimation shows good convergence diagnostics
within thousand iterations and it can be performed in a relatively short time depending on the
size of the data set. For the binary outcome, the Gibbs update is available for all parameters
but the linear coe�icients of the generalized linear model. So we extend the algorithm and
implement a Metropolis–Hasting update within Gibbs to sample the linear coe�icients (β ) using
Riemann manifold Hamiltonian Monte Carlo (Neal 2000; Shahbaba and Neal 2009; Neal et al.
2011). The R package hdpGLM contains the implementation of the model with the algorithms
presented here.
The truncation of the DPP used in the MCMC algorithm restricts the mixing probability

parameter π ∈ ∆∞ described in (4) to π ∈ ∆K . To estimate themodel properly, we set a large value
for K and monitor the estimation to check the maximum number of clusters the sampler used to
allocate the data points during the iterations. If it reachedK at any point we increase its value and
repeat theprocess. By selecting aK much larger than thenumber of clusters the sampler activates
during the estimation, wemake sure the truncation is not changing the estimated results.
As before, let X ∈ Òn×(Dx+1) denote the individual-level covariates including a column with

ones for the intercept term, and n the number of data points including all contexts. Denote C =

(C1, . . . ,Cn ) and Ci ∈ {1, . . . , J} the variable that indicates the context to which i belongs, and
letW ∈ ÒJ×(Dw+1) be the (Dw + 1)-dimensional context-level features of the contexts J . Finally, let
Z = (Z1, . . . , Zn ).
The following additional notation is used toderive the algorithm:Z ∗ denotes theunique values

of Z , and Z ∗C the values between 1 and K that are not in Z ∗. We denote by Z ∗j the unique values
of Z in the context j , and Z ∗C

j
its complement in j , Ik is the set of indexes i of the data points

assigned to the cluster k , Nk the total number of data points in k , and Xj k (or yj k ) the covariates
(outcome variable) of the observations i in context j and assigned to the cluster k .
Given the most general formulation of the hdpGLM in (4) and the truncation used for the

sampler we have the following proposition (see proof in the appendix A):

PROPOSITION 1 (Blocked Gibbs sampler for hdpGLM). A Blocked Gibbs sampler for the model
described in (4) with π ∈ ∆K is given by the Algorithm 1.

A special case of the model described in (4) occurs when yi is gaussian distributed. Let
Nd (µ,Σ ) denote a d-dimensional multivariate gaussian distribution. Then, for θ = (β ,σ), we
can have a Gibbs sampler for all parameters if we use the following distribution for τ, β and σ
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Algorithm 1 Gibbs Sampler for hdpGLM

Require: Z (t ) = (Z (t )
1 , . . . , Z

(t )
n ), θ

(t )
Zi
, τ (t ), π (t )

1: For d ∈ {1, . . . ,Dx + 1}, sample τ (t+1)
d

` θ(t ),W ∼ p(θ(t )
d

` W, τ (t )
d
)p(τd )

2: For j = 1, . . . , J

For all k ∈ Z ∗j sample θ
(t+1)
k j

` Z (t ), θ(t ), τ (t+1), X,W,C ,

y ∼ p(θk j ` τ (t+1),W)
∏
i ∈Ik

p(yi ` Z
(t )
i k
,Ci j ,Xi , θ

(t )
k j
)

For all k ∈ Z ∗C
j
sample θ(t+1)

k j
` τ (t+1),W ∼ p(θk j ` τ (t+1),W)

3: For i = 1, . . . , n, sample Z (t+1)
i

` θ(t+1), π (t ),Xi , y ∼
K∑
k=1

pi k δ(Zi k ) 3 pi k

∝ π (t )
k
p(yi ` Xi , Z

(t )
i k
,Ci j , θ

(t+1)
k j

)

4: For k = 1, . . . ,K − 1 sample v (t+1)
k

i i d
∼ Beta *

,
1 + N (t+1)

k
, α +

K∑
l=k+1

N (t+1)
l

+
-
3 N (t+1)

k

=
n∑
i=1

I (Z (t+1)
i k

)

Set v (t+1)K = 1 and compute π (t+1)
k

=




v (t+1)1 , k = 1

v (t+1)
k

k−1∏
l=1

(1 − v (t+1)
l

), k = 2, . . . ,K .

(see proof in the appendix A):

τd ` µτ ,Στ ∼ NDw+1(0,Στ ), d = 1, . . . ,Dx + 1

βk j ` Zi k , τ,Ci j ,W ∼ NDx+1([WT
j τ]

T ,σβ I ), j = 1, . . . , J , k = 1, . . . ,K

σ2
k ` Zi k ∼ Scale-inv-χ2(ν, s2)

εi ` σk , Zi k ∼ N (0,σk )

yi = X
T
i βZiCi + εi

(16)

PROPOSITION 2 (Gibbs for hdpGLMwith gaussian mixtures). The Gibbs sampler for the model
described in (16) is given by the Algorithm 2.

When the outcome variable yi in the model (4) is binomial distributed, or in general has a
distribution that does not have a conjugate prior for the linear coe�icients, the full conditional
of the parameters θ (or β ) is not standard and we cannot sample from it directly. To deal with
such cases we use a Riemman manifold Hamiltonian Monte Carlo (RMHMC) update (Girolami
and Calderhead 2011) within Gibbs to sample the β coe�icients. We can still sample all the other
parameters as before. For the sake of completeness, the RMHMC algorithm is presented in the
supplementary material.
The random variable of interest is βk j ∈ ÒDx+1, called the position variable of the Hamiltonian

Monte Carlo (HMC) algorithm (Neal et al. 2011), and we denote by v ∈ ÒDx+1 the ancillary variable
(momentum) such that v ∼ NDx+1(0,G (βk j )). The Hamiltonian for our model is defined by

H (βk j ,v ) =U (βk j ,v ) + K (βk j ,v )

= − ln p(βk j ` ·) +
Dx + 1

2
ln(2π) +

1

2
[ln(det[G (βk j )]) + vTG (βk j )−1v ] (17)
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Algorithm 2 Gibbs Sampler for the hdpGLMwith gaussian mixtures

Require: Z (t ) = (Z (t )
1 , . . . , Z

(t )
n ), θ

(t )
Zi
, τ (t ), π (t )

1: For all d ∈ {1, . . . ,Dx + 1} sample τ (t+1)
d

` β (t ),W ∼ N (µτdj ,Στd ) 3

µτdj =
1

K

K∑
k=1

µ(k )
A
; Στd =

1

K
ΣA; SA = (Σ−1τ σ

2
β +W

TW)−1; µ(k )
A

= SAWT β (t )dk ; ΣA = SAσ
2
β

2: For j = 1, . . . , J

For all k ∈ Z ∗j sample β
(t+1)
k j

` Z (t ),σ2(t ), τ (t+1), X,W,C , y ∼ ND+1(µβ ,Σ β ) 3

Sβ = (Σ−1β σ
2
k + X

T
k jXk j )

−1, µβ = Sβ


Σ−1β (WT τ (t+1))T +

XTk j yk j

σ2(t )
k


σ2
k ; Σ β = Sβσ

2(t )
k

For all k ∈ Z ∗C
j
sample β (t+1)

k j
` τ (t+1),W ∼ ND+1((WT τ (t+1))T ,Σβ )

3: For all k ∈ Z ∗ sample σ2(t+1)
k

` Z (t ), β (t+1), τ (t+1), X,W,C , y ∼ Scale-inv-χ2(ν, s2) 3

ν = ν + N (t )
k
; s2 =

νs2 + N (t )
k
ŝ2

ν + N (t )
k

; ŝ2 =
1

N (t )
k

(yk − Xk β (t+1)k
)T (yk − Xk β (t+1)k

)

For all k ∈ Z ∗C sample σ2(t+1)
k

` Zi = k ∼ Scale-inv-χ2(ν, s2)

4: For i = 1, . . . , n, sample Z (t+1)
i

` θ(t+1), π (t ),Xi , y ∼
K∑
k=1

pi k δ(Zi = k ) 3

pi k ∝ π
(t )
k
p(yi ` Xi , Z

(t )
i k
,Ci j , θ

(t+1)
k j

)

5: For k = 1, . . . ,K − 1 sample v (t+1)
k

i i d
∼ Beta *

,
1 + N (t+1)

k
, α +

K∑
l=k+1

N (t+1)
l

+
-
3

N (t+1)
k

=
n∑
i=1

I (Z (t+1)
i k

)

Set v (t+1)K = 1 and compute π (t+1)
k

=




v (t+1)1 , k = 1

v (t+1)
k

k−1∏
l=1

(1 − v (t+1)
l

), k = 2, . . . ,K .

whose solution is

+vH (βk j ,v ) =G (βk j )−1v

+βk jH (βk j ,v ) = −
[
+βk jU (βk j ,v ) −

1
2 tr{G (βk j )

−1+βk jG (βk j )}

+ 1
2 (v

TG (βk j )−1G (βk j )−1v )+βk jG (βk j )
]
.

(18)

TheHamiltonian equations are solvedusing the generalizedStormer–Verlet leapfrog integrator
(Calin and Chang 2006; Girolami and Calderhead 2011). For L leapfrog steps with size ε, and
l = 1, . . . , L, it is given by:

v l+ε/2 = v l −
ε

2
+βk jH (β

l
k j ,v

l+ε/2)

β l+εk j = β lk j +
ε

2
[+vH (β lk j ,v

l+ε/2) + +vH (β l+εk j ,v
l+ε/2)]

v l+ε = v l+ε/2 −
ε

2
+βk jH (β

l+ε
k j ,v

l+ε/2).

(19)

When yi is binomial, that is, the distribution of yi in the model (4) is defined by

yi ∼ Bin(pk j ), pk j =
1

1 + e−X
T
i
βk j
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then, given the Equation (A 4), the elements of the RMHMC for the model hdpGLM when k ∈ Z ∗j
are defined by the following equations:

U (βk j ) = − ln p(βk j ` ·)

∝ −

[
−
Dx + 1

2
ln 2π −

1

2
ln(det(Σβ )) −

1

2
(βk j − (WT

j τ)
T )TΣ−1β (βk j − (WT

j τ)
T )

−
∑
i ∈Ik

yi ln(1 + e−X
T
i
βk j ) −

∑
i ∈Ik

(1 − yi ) ln(1 + eX
T
i
βk j )



+βk jU (βk j ) = −

−(βk j − (WT

j τ)
T )TΣ−1β +

∑
i ∈Ik

Xi yi p(yi = 0 ` ·) −
∑
i ∈ik

Xi (1 − yi )p(yi = 1 ` ·)

.

In practice we use G (βk j ) = I(Dx+1)×(Dx+1), which is the most widely used approach in
applications (Liu 2008; Neal et al. 2011). It also simplifies the Equations (17), (18), and (19)
substantially. Using v ∼ NDx+1(0, I ), the integrator reduces to the standard Stormer–Verlet
leapfrog integrator (Duane et al. 1987; Neal et al. 2011). We follow that approach in this paper.

5 Monte Carlo Simulation
In this section, we conduct aMonte Carlo exercise2 to demonstrate the properties of the estimates
of the model produced by the algorithms developed in Section 4. The exercise is divided into
three parts. First, we reproduce a particular situation that o�en occurs in practice if one omits
factors that condition the association between the variable of interest and the outcome. In order
to do that, we compare results produced by hdpGLM with those produced by GLM when there
is no latent heterogeneity in the population and when there are latent clusters. We show how
Simpson’s paradox can happen in the latter case and how it is uncovered by the proposedmodel.
In the second part of the MC exercise we simulate a large variety of possible scenarios, each with
di�erent types of heterogeneity and numbers of observed covariates to show that the model has
good performance in a large variety of situations. We evaluate the frequentist properties of the
estimators in each case, particularly their coverage probability (Carlin and Louis 2000; Little et al.
2011). Lastly, we compare the predictive performance of GLM and hdpGLM for di�erent possible
number of clusters in terms of root-mean-squared error (RMSE).
We start by comparing the estimates produced by GLM and by hdpGLMwith andwithout latent

heterogeneity in the population. We generated data sets from two parameter configurations with
3 continuous covariates sampled from a gaussian distribution. In the first data set, there is no
e�ect heterogeneity. Hence, a single GLM would be appropriate because the e�ect of those three
covariates are homogeneous in the population. In the second data set, we let the e�ect of one
covariate to be conditional on a latent factor such that it has opposite signs and similarmagnitude
for half of the population. The e�ect of the other two covariates is homogeneous. Data sets used
in this exercise contain 2000 observations.
As a toy example, we can think that the first covariate represents income, the second age, the

third the degree of racial fragmentation in the neighborhood, and the outcome the degree of
support for redistributive policies. The e�ect of income on support for redistribution depends on
a latent feature, let’s say, if the individuals have experienced economic reward due to their e�ort
and hard work, as opposed to luck or family monetary heritage. The latent heterogeneous e�ect
of income can occur, for instance, if more income means less support for redistribution only for
those that believe upwardmobility can be achieved through e�ort and hard work.

2 See Ferrari (2018) for replication.
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Table 2. Comparing estimates of GLM (estimated using MLE) and hdpGLM (estimated using MCMC) with and
without latent heterogeneity in the population.

hdpGLMwith MCMC estimates GLMwith MLE estimates

Cluster Covariate Parameter True MCMCMean 95%HPD MLE estimate 95% CI

No latent heterogeneity in the population (K = 1)
1 (Intercept) β0 −0.15 −0.16 (−0.21, −0.12) −0.16 (−0.21, −0.12)
1 X1 β1 −3.09 −3.11 (−3.15, −3.07) −3.11 (−3.15, −3.07)
1 X2 β2 9.90 9.91 (9.86, 9.95) 9.91 (9.86, 9.95)
1 X3 β3 3.90 3.87 (3.83, 3.92) 3.87 (3.83, 3.92)

Two subpopulations (K = 2)with heterogeneous e�ect on X1

1 (Intercept) β0 −3.30 −3.23 (−3.30, −3.14) −3.25 (−3.34, −3.17)
1 X1 β1 2.00 2.00 (1.93, 2.08) 0.16 (0.08, 0.25)
1 X2 β2 −5.29 −5.31 (−5.39, −5.23) −5.33 (−5.41, −5.24)
1 X3 β3 2.25 2.29 (2.21, 2.36) 2.23 (2.14, 2.32)
2 (Intercept) β0 −3.30 −3.28 (−3.35, −3.21) — —
2 X1 β1 −1.50 −1.52 (−1.58, −1.45) — —
2 X2 β2 −5.29 −5.29 (−5.37, −5.24) — —
2 X3 β3 2.25 2.19 (2.11, 2.26) — —

Table 2 compares the point estimates and their confidence intervals produced by estimating
a GLM using MLE, with the posterior average and the 95% HPD interval produced by estimating
the hdpGLM with the MCMC proposed here. We can compare the estimates with the true value,
which is displayed in the fourth column of the table. A�er estimating the hdpGLM, we classified
the data into clusters using the estimated cluster probability of each data point. We assigned
each observation to the cluster they have the highest probability to belong to. The indexes of the
clusters occupied by data points are displayed in the first column of the table. We can see in the
upper half of the Table 2 the estimates when the data comes from a population in which there is
no heterogeneity. All data points were classified into the same single cluster by the hdpGLM. The
estimates of the twomodels are very similar. In fact, they are identical up to two significant figures,
as shown in the table. The lower half of the table presents the results of the estimation using
GLM and hdpGLM for the second data set with heterogeneous e�ects in the first covariate X1. We
used the same procedure just described to classify the data into clusters. The hdpGLM estimated
two clusters in virtually all repetitions of the procedure. The results produced by the GLM and the
hdpGLM are very similar for the covariates 2 and 3 (β3 and β4), whose e�ects are homogeneous
in the population. For the hdpGLM, the values of the linear e�ect of those covariates with
homogeneous e�ects are indistinguishable in the two clusters estimated, as expected. However,
for the heterogeneous e�ect β1 (e.g., income) the GLM estimated a positive e�ect when in fact
there are twosubpopulations, onewithapositive andanotherwith anegative e�ect. ThehdpGLM,
on the other hand, estimated the marginal e�ect of X1 correctly for both clusters.
Table 2 contains an example of Simpson’s paradox: the aggregate e�ect found forX1 when one

uses GLM and ignores the clusters is quite di�erent from the e�ect found when the clusters are
considered. We can see it clearer in Figure 1. The lines represent the fitted values using the MLE
estimate for the GLM model and the fitted values using the posterior average for the hdpGLM. In
the le� panel, we can compare the estimated marginal e�ects produced by each model. In the
right panels, we see the data points a�er they were clustered by the hdpGLM. The right panels
also display the fitted values. We would have reached incomplete conclusions using GLM in such
situation: the e�ect is positive and significant for the MLE estimates of the GLM but, in fact, it is
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Figure 1. Comparing marginal e�ect estimated using GLM (MLE estimator) and hdpGLM (MCMC posterior
average) when there are 3 clusters in the population.

negative for half of the population, and it has a larger positive e�ect than estimated by the GLM
for the other half.
The general take away from these results is that when GLM is well specified and there is no

e�ect heterogeneity due to latent features, using hdpGLM will not harm the estimation. When
there are clusterswith heterogeneous e�ects, GLMwill produce accurate aggregate results but can
nevertheless be incorrect for each one of the subpopulations. Table 2 and Figure 1 demonstrate
that the hdpGLM reduces to GLM when there is no heterogeneity (see Section 3). When the
assumptions that justify the adoption of the GLM holds, the hdpGLM can still be used and it
estimates the mean value of the linear parameters quite close to the ones produced by MLE
estimatesofGLM.When therewasheterogeneity, thehdpGLMclassified thedata correctly into two
clusters, the marginal e�ects were correctly estimated, and Simpson’s paradox was uncovered.
Next, in order to evaluate the performance of the hdpGLM in awide range of possible scenarios,

we randomly generated 10 di�erent sets of parameters. To make the Monte Carlo exercise faster
and easy to visualize, we simulate data for a single context (J = 1) with a continuous outcome
variable. An example with context-dependent heterogeneity (J > 1) are presented in the sequel.
Examples with binary outcome variables are provided in the supplementary material.
For each parameter set, we randomly generated 100 data sets. The number of clusters K and

thenumberof covariates in each casewasalso randomlygenerated.Weallowed theheterogeneity
to occur in the e�ect of all covariates. Values of the linear coe�icients range from −20 to 20. We
estimated the hdpGLM for each one of the 1,000 data sets (10 parameter sets times 100 data sets
for each parameter set) and all the usual convergence diagnostics were conducted (Geweke 1992;
Cowles and Carlin 1996; Brooks and Gelman 1998; Flegal 2008; Flegal, Haran, and Jones 2008).
The high posterior density (HPD) intervals were computed across data sets generated by each
parameter set and so was the posterior average.
Table 3 summarizes the coverage probability of the linear coe�icients β for each one of the

10 parameter sets along with the cluster estimation. The first column indicates the number
of covariates in each parameter set, and the second indicates the true number of clusters
in the population. The third through fi�h columns display the summaries of the estimation
across the 100 data sets generated by each parameter set. It shows the mean, minimum, and
maximum number of clusters the data points were assigned to a�er the estimation. As before,
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Table 3. Summary of the performance of the hdpGLM when estimating number of clusters (K) and linear
coe�icients (β ) across 100 replications generated by 10 di�erent parameter sets.

Number of Clusters (K )

Estimates across replications Coverage and HPD of linear coe�icients (β )

Numberof
Covariates

True Mean Minimum Maximum Correct (%) Minimum Average 95%HPD
(largestaverage)

0 1 1.05 1 2 95 99.05 99.05 (−0.49, 0.04)
5 2 2.04 2 3 96 90.00 93.20 (−7.74, −7.1)
2 3 3.15 3 4 85 95.00 97.66 (2.02, 4.05)
3 4 4.14 4 5 86 91.00 95.44 (−3.04, −1.09)
2 4 4.12 4 5 88 93.00 96.28 (−5.97, −4.30)
3 5 5.02 5 6 98 93.00 96.27 (7.69, 8.20)
4 7 7.07 7 9 95 91.59 96.54 (−3.69, −2.69)
5 7 7.08 7 8 92 92.00 96.30 (−2.87, −1.77)
3 10 10.11 10 12 91 93.00 96.54 (0.76, 3.34)
2 10 10.25 10 12 76 92.31 96.73 (−2.8, 2.03)

we assigned the data points to the clusters based on the maximum estimated probability of
cluster membership. The sixth column shows the proportion of the time the data was classified
into correct number of clusters across the replications. The table also displays the minimum and
the average coverage across linear coe�icients for each parameter set. For instance, the second
line displays a case in which there are two latent clusters in the population and five covariates.
The sixth column indicates that the data points were classified into two clusters in 96% of the
estimations performed using the 100 data sets generated by that parameter set. There are 10
linear coe�icients across clusters for that case (5 linear coe�icients per cluster). Among those 10
linear coe�icients, theminimumcoverageprobabilitywas90%. Itmeans that the linear parameter
whose estimation had theworst coverage still was correctly estimated 90%of the time. By correct
estimationwemean the true valuewaswithin the 95%HPDI. So in at least 90 out of 100 cases, the
true values were contained in the 95% HPD interval for all the linear parameters. One may argue
that such good coverage probability occurs because the posterior intervals are too wide. So, we
display in the last columnof the table themaximumaverage of theHPD intervals among the linear
coe�icients in each case. As the intervals are generally small we can be confident that the model
and the estimation procedure proposed here have good coverage probability and such results
are not due to the large variance of the posterior distribution. Another possible objection is that
the number of replications is too small. In the supplementary material we provide a much larger
MC exercise for two additional parameter sets with 1,000 replications each. The supplementary
material also contains tables with the MC standard error for all simulations and for all linear
parameter β . The results are similar to those presented here.
Now we turn to a full example of an estimation with context-dependent latent heterogeneity.

For this example, we used ten contexts (J = 10) and two covariates (Dx = 2). We let the
expectation of the e�ect β1 of first covariate X1 be a function of the context-level featureW1, but
the expectation of the linear e�ect β2 of the second covariate X2 is not a function of context-level
features. In otherwords, we randomly sampled τ11 (the e�ect ofW1 on the expectation of β1) from
its prior distribution and set τ12 (the e�ect ofW1 on the expectation of β2) to zero. We set the
number of clusters to two (K = 2). Figure 2 shows the result of the estimation. On the le� panel of
the figure we see the posterior distribution of the linear coe�icients in each context. The vertical
lines indicate the true values. We clearly see the posterior concentrated around the true values
of the clusters. On the top right of the figure, we see the estimated posterior averages for β1 and
β2 for each cluster, in each context, as a function of the context featureW1. We clearly see that
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Figure 2. Output of estimation of hdpGLM model for a data set with 10 contexts and positive e�ect of
context-level featureW1 on the marginal e�ect β1 ofX1.

Figure 3. Comparing performance of hdpGLM and GLM using root-mean-squared error (RMSE) as a function
of the number of clusters in the data.

the expectation of β1 and the clusters are positive functions ofW1, but that is not the case for β2.
Finally, in the bottom right we see the posterior expectation of τ . The estimated values are quite
close to the true values and within a small 95% HPD interval.
To complete this section,we compared the predictive performance of theGLMand the hdpGLM

in terms of RMSE for di�erent numbers of latent clusters. We randomly generated 30 parameter
sets, each one with the number of clusters ranging from 1 to 30. For each case, we generated 10
data sets and estimated both the GLM and the hdpGLM. The RMSE was computed in each case.
The Figure 3 compares the predictive performance of the GLM and the hdpGLM. The value of the
RMSE stays always low for the hdpGLM, as expected.
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Figure 4. Le� panel shows the e�ect of altruism, cosmopolitanism, and income on support for bailout
estimatedbyGLM, reproducing Table 3 of Bechtel, Hainmueller, andMargalit (2014). Right panel shows latent
heterogeneity in the marginal e�ect of very high cosmopolitanism as function of German states.

All estimations in this section and in the following use (µτd ,στd I ,σβk j I , s2, ν, α0) =

(0, 10I , 10I , 10, 10, 1) as prior parametrization, where I represents the identity matrix. Those
values give a reasonably large variation for the underlying random variables, and the simulation
results have shown that they produce good coverage and small 95% HPD intervals in a large
variety of situations. The supplementary material contains details of a prior perturbation study.
Briefly, it shows that on average the model is not very sensitive to di�erent prior settings, but in
the worst case for certain combinations of prior parameters the model can demand very large
data sets to escape the influence of the prior specification. This is true specially for extreme values
of the concentration parameter α and values that produce highly dispersed inverse-scaled-χ2

distribution, which can be generated by low values (below five) of the scale parameter s2. For
details, see supplementary material.

6 Empirical Application
In this section, we illustrate some applications of the model by replicating empirical studies and
comparing the original results with the ones produced by the hdpGLM estimates.
We start with Bechtel, Hainmueller, and Margalit (2014), who present a study in Germany using

online and telephone survey data. The paper investigates why some voters agree with bailout
payments for other countries. The dependent variable is a dichotomous measure coded as 1 if
the person is against bailout payments for over-indebted EU countries and 0 otherwise. They find
that social dispositions, in particular feelings of cosmopolitanism and altruism, are the strongest
predictors of attitudes towardproviding financial help to other countries. The le�panel of Figure 4
reproduces their results and displays the marginal e�ects of their three main variables. The right
panel shows theestimationof thehdpGLMusingan indicator variable forGermanstates. Thepanel
shows the e�ect of (very high) cosmopolitanism on support for bailout payments in each region.
We see that formost of the states there is no latent heterogeneity.Moreover, the aggregate average
e�ect estimated using a GLM is similar, for most cases, to the posterior average e�ect found
by hdpGLM in each state. One exception is Lower Saxony, in which we see Simpson’s paradox:
there are two clusters with opposite e�ects of very high cosmopolitanism on support for bailout.
Although we would need further investigation to provide a substantive account of these results,
we can see how the hdpGLM can be used to estimate context-dependent heterogeneity.
For the second empirical application, we replicate Newman, Johnston, and Lown (2015). Using

national surveys conducted in the USA, they investigate if residential proximity to inequality
a�ect US citizens’ beliefs in meritocracy, defined as the idea that the economic system rewards
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Table 4. GLM vs hdpGLM estimates for counties with no latent heterogeneity.

Covariate Parameter GLM estimate GLM Std Error Average of posterior
expectation across

counties

Std Dev of posterior
expectation across

counties
(Intercept) β0 0.54 0.06 0.50 0.32
Income β1 −0.01 0.07 −0.08 0.33
educi β2 −0.10 0.02 −0.07 0.29
agei β3 −0.00 0.00 0.00 0.01
genderi β4 0.00 0.01 −0.00 0.19

unempi β5 0.01 0.01 0.02 0.22
unioni β6 0.02 0.01 0.06 0.20
partyidi β7 −0.12 0.01 −0.13 0.24
ideoi β8 −0.07 0.02 −0.06 0.29
attendi β9 −0.03 0.01 −0.02 0.26

individualsbasedon their hardworkandability. Thedata set contains individual- andcounty-level
covariates. They show that the association between the individual’s income and the probability
of rejecting meritocracy is conditional on the levels of inequality in the county: low-income
individuals become more likely to reject meritocracy when inequality increases. We reproduce
their results for white residents, as they present in Table 1 of their paper, using a linear probability
model. In their results, income and the percentage of blacks in the county do not matter alone,
but the interaction between income and inequality is significant. We focus here on that result.
We estimate the hdpGLM using the same individual- and county-level covariates they included
in their model. County covariates are inequality, county income, percentage of black, percentage
of votes for Bush in 2004, and county population. The estimation of the hdpGLM found no latent
heterogeneity in 1,633 out of 1,688 counties. Two latent clusters were estimated in 54 counties,
and three latent clusters in one of them. Table 4 compares the MLE estimates of the GLMwith the
posterior expectation of the hdpGLM, averaged across counties with no latent heterogeneity. We
can see in that table that those values are similar.
The le� panel of Figure 5 shows the posterior distribution of the income e�ect in 20 randomly

sampled counties. We see that the GLM and the hdpGLM estimates agree in many cases, but
for some counties, there are latent heterogeneous groups and the estimates of the two models
disagree. In the county with index 543, for instance, there are three latent groups, one in which
the income plays no role, and twowith opposite income e�ects. That case represents an example
of Simpson’s paradox in the e�ect of income in that county.
Asdiscussed,oneof theadvantagesofusinghdpGLM is thatwecanevaluate if there is anye�ect

of context(county)-levels variables a�erwe take into account the latent heterogeneity in the e�ect
ofobserved individual-level covariates.Newman,Johnston, andLown (2015) found that inequality
conditions thee�ect of incomeon theprobability of rejectingmeritocracy.However,whenwe take
into account the latent heterogeneity of the income e�ect in each county, that conditional e�ect
disappears. It can be seen in Figure 5. In the top-right panel of the figure, we see the posterior
expectation of each cluster within each one of the 1,688 counties. In the bottom right, we see the
posterior distribution of τ11, the e�ect of inequality on the expectation of the e�ect of income for
each county and cluster. The results indicate that inequality does not change the e�ect of income
when we consider latent heterogeneity in the e�ect of covariates.
As we can see, the hdpGLMmodel can be used to investigate latent heterogeneity in the e�ect

of observed covariates in generalized linearmodels. When there is no heterogeneity, the results of
GLM and hdpGLM are similar. When there is latent heterogeneity, the GLM can produce estimates
that are incorrect for all or some subpopulations. By using GLM, one is simply assuming that
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Figure 5. Posterior distribution of income e�ect for 20 selected counties (le� panel), posterior expectation
of income e�ect in each cluster as function of inequality (top-right panel), and posterior distribution of the
e�ect of inequality on the income e�ect (bottom right).

Simpson’s paradox does not occur in the analysis. The hdpGLM can be used instead to estimate
the heterogeneous e�ect, cluster the data into groups, uncover Simpson’s paradox, and evaluate
if the e�ect of context-level features remains relevant a�er latent heterogeneity is considered.

7 Final Discussion
Researchers in any academic discipline can never be sure a priori that there is no e�ect
heterogeneity caused by latent or omitted variables in their investigation. In other words, we
are never sure if there are latent subpopulations in which the average e�ect found using the
aggregated data is di�erent or even reversed. When there are such subpopulations, using GLM or
GLMM can produce an incomplete picture and in the worst case scenario a completelymisleading
conclusion. This is true in analyses using either observation or experimental data. It is desirable
to use amethod that is robust to latent heterogeneity. Moreover, when data comes from di�erent
contexts, for instance, di�erent states or di�erent countries, it is common toassume that the e�ect
of observed covariates varies from context to context due to context-level features. Likewise, it is
also desirable to consider that the latent heterogeneity of the covariate e�ectswithin each context
(e.g., country) can vary from context to context (from country to country) due to context-level
features.
We have provided a model to deal with those issues. The model is designed to estimate

marginal e�ects in linear models and consider if there are latent subpopulations in which the
marginal e�ects di�er. If data comes from di�erent contexts, the model also estimates if the
existence of such subpopulations and their specific marginal e�ects are functions of context-level
features. We have shown that the proposedmodel causes no harmwhen the GLM is correct—that
is, when there are no latent heterogeneous e�ects—but it correctly estimates the heterogeneous
e�ects when they exist.
Similar to GLM, however, the proposed model requires specifying which and how observed

covariates are included in themodel. This is not a trivial task. It can a�ect the estimation asmuch
as it does for GLMs. Further research is needed to develop methods to compare and select which
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observed covariates should beused andhow.However, if for any reasononebelieves a specific set
of covariates is adequate for a GLM, the proposed model can be used instead with the advantage
that it will be robust to subpopulation heterogeneous e�ects.

Appendix A. Markov Chain Monte Carlo Algorithms
The proof of the Proposition 1 is the following.

PROOF (Blocked Gibbs sampler for hdpGLM). The full conditional of τ is given by

p(τ ` θ, π, Z , y ,X ,W ,C ) ∝ p(θ `W , τ)p(τ) ∝
Dx+1∏
d=1

p(θd `W , τd )p(τd ).

For each d = 1, . . . ,Dx + 1we have

p(τd ` ·) ∝ p(θd `W , τd )P (τd ).

The full conditional for θ is

p(θ ` τ, π, y ,X ,W , Z ,C ) ∝ p(y ` θ,X ,W , Z ,C )p(θ `W , τ)

=
J∏
j=1

∏
i :Zi ∈Z ∗j

p(yi ` Xi , Zi ,Ci , θCi ,Zi )p(θCi Zi ` τ,Wj )
∏

i :Zi ∈Z ∗Cj

p(θCi Zi `Wj , τ)

=
J∏
j=1



*..
,

∏
k ∈Z ∗

j

p(θj k `Wj , τ)
∏

i :Zi ∈Z ∗j

p(yi ` Xi , θj k )
+//
-

*..
,

∏
k ∈Z ∗C

j

p(θj k `Wj , τ)
+//
-


.

Therefore, for all j = 1, . . . , J and k = 1, . . . ,K , we have

p(θj k ` ·) ∝




p(θj k `Wj , τ)
∏
i :Zi=k

p(yi ` Xi , θj k ), if k ∈ Z ∗j ,

p(θj k `Wj , τ), if k ∈ Z ∗C
j
.

(A 1)

For the variable Z , the full conditional is given by

p(Z ` τ, θ, π, y ,X ,W ,C ) ∝ p(y ` θ, Z ,X ,W ,C )p(Z ` π)

=
n∏
i=1

p(yi ` θCi Zi ,Xi ,Ci , Zi )p(Zi ` π).

Therefore for all i = 1, . . . , n we have

p(Zi = k ` ·) ∝ πk p(yi ` θCi k ,Xi ,Ci )

or similarly

p(Zi ` ·) ∝
K∑
k=1

pi k I (Zi = k ) 3 pi k = πk p(yi ` θCi k ,Xi ,Ci ). (A 2)

Finally, for π the full conditional is

p(π ` τ, θ, Z , y ,X ,W ,C ) ∝ p(Z ` π)p(π) =
n∏
i=1

p(Zi ` π)p(π).
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Now, for simplicity, let π ∼ Dir(α/K ). The connection between this distribution and the stick-
breaking process described in (4) can be found in Ishwaran and James (2001). Then we have

p(π ` τ, θ, Z , y ,X ,W ,C ) ∝
n∏
i=1

*
,

K∏
k=1

πI (Zi=k )
k

+
-

K∏
k+1

πα/K−1
k

=
K∏
k=1

πNk+(α/K )−1
k

.

Therefore,

p(π ` ·) ∝ Dir
(
N1 +

α

K
, . . . ,NK +

α

K

)
. � (A 3)

The proof of the Proposition 2 is the following.

PROOF (Gibbs for hdpGLMwith gaussian mixtures). Considering the results in Proposition 1
and the model described in (16), we have the following. For τ , for each d = 1, . . . ,Dx + 1

p(τd ` ·) ∝ p(βd `W , τd )P (τd ) =
K∏
k=1



J∏
j=1

p(βdk j `W , τd )p(τd )

.

But by conjugacy of the gaussian distributions, we have
∏J
j=1 p(βdk j `W , τd )p(τd ) ∝

NDw+1(µ
(k )
A
,ΣA) where

SA = (Σ−1τ σ
2
β +W

TW )−1

ΣA = SAσ
2
β

µ(k )
k

= SAW
T βdk .

Therefore

p(τd ` ·) ∝
K∏
k=1

NDw+1(µ
(k )
A
,ΣA) ∝ exp



−
1

2


τTd (kΣ

−1
A )τd − 2τTd Σ

−1
A

*
,

K∑
k=1

µ(k )
A
+
-





.

If we denoteΣτd = 1
K ΣA and µτd = 1

K

∑K
k=1 µ

(k )
A
then

τd ` · ∝ NDw+1(µτd ,Στd ).

The full conditional for β is

p(β ` τ,σ2, π, y ,X ,W , Z ,C ) ∝ p(y ` β ,σ2,X ,W , Z ,C )p(β `W , τ)

=
J∏
j=1

∏
i :Zi ∈Z ∗j

p(yi ` Xi , Zi ,Ci , βCi ,Zi ,σ
2
Zi
)p(βCi Zi ` τ,Wj )

∏
i :Zi ∈Z ∗Cj

p(βCi Zi `Wj , τ)

=
J∏
j=1



*..
,

∏
k ∈Z ∗

j

p(βj k `Wj , τ)
∏

i :Zi ∈Z ∗j

p(yi ` Xi , βj k ,σ2
k )
+//
-

*..
,

∏
k ∈Z ∗C

j

p(βj k `Wj , τ)
+//
-


.

Therefore, for all j = 1, . . . , J and k = 1, . . . ,K , we have

p(βj k ` ·) ∝




p(βj k `Wj , τ)
∏
i :Zi=k

p(yi ` Xi , βj k ,σ2
k ), if k ∈ Z ∗j ,

p(βj k `Wj , τ), if k ∈ Z ∗C
j
.

(A 4)
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Denote Xk j = {Xi ` Ci = j , Zi = k }, yk j = {yi ` Ci = j , Zi = k }, it is clear from (A 4), (16), and
the conjugacy of the normal distribution that for k ∈ Z ∗j

βj k ` · ∝ NDx+1(µβ ,Σ β ) where Sβ = (Σ−1β σ
2
k + X

T
k jXk j )

−1, Σ β = Sβσ
2
k

µβ = Sβ


Σ−1β (WT

j τ)
T +

XTk j yk j

σ2
k


σ2
k .

The full conditional for σ2 is

p(σ2 ` τ, β , π, Z , y ,X ,W ,C ) ∝ p(y ` β ,σ2, Z ,X ,W ,C )p(σ2)

=
n∏
i=1

p(yi ` βCi Zi ,σ
2
Zi
,Xi , Zi ,Ci )p(σ2

Zi
)

= *.
,

∏
k ∈Z ∗

p(σ2
k )

∏
i :Zi=k

p(yi ` βCi k ,Xi ,Ci )
+/
-

*.
,

∏
k ∈Z ∗C

p(σ2
k )
+/
-
.

Therefore, for all k = 1, . . . ,K we have

p(σ2
k ` ·) ∝




p(σ2
k )

∏
i :Zi=k

p(yi ` βCi k ,Xi ,Ci ), if k ∈ Z ∗

p(σ2
k ), if k ∈ Z ∗C .

(A 5)

Given the full conditional of σ2 in (A 5), the distributions in (16), and the fact that the scaled
inverseχ2 distribution is a conjugate prior for a gaussian likelihoodwith knownmean, which is
the case for the full conditional, it is straightforward to see that for k ∈ Z ∗,Xk = {Xi ` Zi = k },
and yk = {yk ` Zi = k }

σ2
k ` · ∝ Scale-inv-χ2(ν, s2)

where

ν = ν + Nk , s2 =
νs2 + Nk ŝ

2

ν + Nk
, ŝ2 =

1

Nk
(yk − Xk βk )T (yk − Xk βk ).

The full conditionals for Z and π are as in (A 2) and (A 3), respectively. �

Supplementarymaterial
For supplementary material accompanying this paper, please visit https://doi.org/10.1017/pan.
2019.13.
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