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Abstract. Two-field fluid models for low-frequency density and electrostatic poten-
tial fluctuations in a purely toroidal magnetized low-β plasma are discussed. In par-
ticular, we present some simple models suitable for investigating plasma transport
close to marginal stability. For gradient-driven fluctuations, linear normal mode
analysis of the interchange and resistive drift wave instabilities are reviewed, with
attention to the relative phase and amplitude of density and electrostatic potential
fluctuations. This reveals many characteristic features of drift-wave fluctuations
that are also observed in laboratory experiments and during ionospheric irregular-
ities. Finally, these results are used to investigate the nonlinearly conserved energy
functionals, discussing the effect of magnetic field curvature and particle collisions
on energy, enstrophy, and cross-correlation between density and vorticity fluctua-
tions. Implications for turbulent fluctuations and nonlinear transport in laboratory
and ionospheric plasmas are discussed.

1. Introduction
The cross-field plasma transport in many discharge experiments is observed to be
anomalously large, and the enhanced transport is often caused by turbulent density
and electrostatic potential fluctuations (see e.g. Endler et al. 1995; Nielsen et al.
1996; Carreras et al. 1996a; Øynes et al. 1998; Grulke et al. 1999; and references
therein). The nonlinear particle flux due to fluctuations is given by Γ = ñṽ, where ñ
and ṽ are the fluctuating plasma number density and fluid velocity respectively. For
electrostatic low-frequency fluctuations, we may approximate ṽ by the E×B drift
to get the radial (x-directed) fluctuation-induced transport

Γ = −n0Te
eB

n
∂ϕ

∂y
,

where ϕ ≡ eφ/Te is the electrostatic potential energy perturbation normalized by
the electron thermal energy Te and n ≡ ñ/n0 is the density fluctuation normal-
ized by the equilibrium density profile n0. By expanding the fluctuating fields in
trigonometric series, we get the non-dimensional volume-averaged radial plasma
flux due to fluctuations:

Γn ≡
∫
dx

Γ
n0cs

=
∑

k

iρskynkϕ
∗
k,
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where cs ≡ (Te/mi)1/2 is the ion acoustic velocity, ωci ≡ eB/mi is the ion cyclotron
frequency, and ρs ≡ cs/ωci is the gyration radius that ions would have with electron
temperature. We define the phase difference θk between ϕk and nk by the relation

ϕk =

∣∣∣∣ϕk

nk

∣∣∣∣nk exp(iθk). (1.1)

Using the above expression and normalizing spatial lengths by ρs, the flux reads

Γn =
∑
k>0

2ky |nk||ϕk| sin θk. (1.2)

This expression shows that the relative phase between density and potential fluctu-
ations is essential for the nonlinear transport. The flux vanishes for waves exactly
in phase, θk = 0, or in antiphase, θk = π. It is evidently maximum when the density
perturbations are in phase with the poloidal electric field, which implies a phase
difference between ϕk and nk of 1

2π. It is clear from the above discussion that two-
field models are in general the simplest possible to self-consistently describe the
qualitative features of nonlinear plasma transport.

The work presented in this paper is part of a group effort for experimental and
theoretical investigation of low-frequency fluctuations in toroidal magnetized plas-
mas without any poloidal field component (Rypdal et al. 1994). This configuration
could be called a simple magnetized torus (Rypdal et al. 1996) because of the sim-
ple field geometry as compared with other toroidal confinement schemes. Several
devices of this type have been constructed, and have proven to be very suitable for
experimental investigation of turbulent fluctuations. Here we investigate two-field
models for density and electrostatic potential fluctuations, and discuss the influence
of magnetic field curvature and collisions on the fluctuation characteristics and the
turbulent E× B transport.

This paper is organized as follows. In the next section, we derive nonlinear model
equations describing the essential dynamics in the experiments. Various well-known
limits of the models are pointed out in Secs 3 and 4. In Sec. 3, we consider the
special case of two-dimensional perturbations, and present the linear normal mode
analysis for the interchange instability. An analytic non-local analysis presented
in Sec. 3.2 shows that the wavelength for maximum growth rate is smaller than or
of the order of the density scale length. Models for three-dimensional fluctuations
are the subject of Sec. 4, where we review the linear normal mode analysis of
the resistive drift-wave instability, and briefly discuss the effect of magnetic field
curvature.

In the normal mode analysis the linear phase difference θk and amplitude ra-
tio |nk/ϕk| are presented and shown to be in good agreement with experimental
measurements. Energy integrals conserved by the nonlinear convective terms are
discussed in Sec. 5, and the sources and sinks are analysed from the viewpoint of
linear stability theory. This reveals several interesting properties of magnetic field
curvature and collisions. In particular, it is shown that magnetic field curvature
acts as a source for enstrophy, and tends to align density and vorticity fluctua-
tions. Conclusions are given in the last section, where it is argued that the two-field
interchange model may work as a paradigm for plasma transport near marginal
stability (Manheimer and Boris 1977).
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2. Model equations
Motivated by the simple torus experiments, we shall assume that the magnetic field
is purely toroidal. To describe a toroidal magnetized plasma, we use a cylindrical
coordinate system with the major torus axis in the z direction. The magnetic field
is then given by B = (B0R0/R)b, where b = B/B is a unit vector in the negative
azimuthal direction, R is the radial distance from the torus axis, and B0 is the field
strength at a radial position R0 in the plasma. The magnetic field has both a radial
gradient in field strength and curvature, expressed by the relations

b×∇ lnB =∇× b = − ẑ
R
.

2.1. Drift approximation

The momentum equation for an isothermal charged particle species α may be writ-
ten in the form

v⊥α = vE + vdα +
mα

qαB
b× Dvα

Dt
+
mαναn
qαB

b× vα,

where vE = b×∇φ/B is the E×B drift, vdα = Tαb×∇ lnnα/qαB is the diamagnetic
drift, Dt ≡ ∂t + vα · ∇ is the convective derivative, and ναn measures the rate
of momentum loss due to collisions between the α-species fluid and a stationary
neutral gas. For low-frequency variations, Dt ≈ ω� ωcα, and magnetized plasmas,
ναn � ωcα, we can solve this equation for v⊥α iteratively (Shukla et al. 1984).
Neglecting electron inertia, we readily obtain the lowest-order electron drift

ve = vE + vde +
νenTe
ωceeB

∇⊥
(
eφ

Te
− lnne

)
+
ωceTe
νeneB

∇q
(
eφ

Te
− lnne

)
.

It should be noted that in a toroidal magnetic field, the E × B and diamagnetic
drifts are compressible:

∇ · vE = − 2
BR

ẑ ·∇φ, ∇ · vde =
2Te
eBR

ẑ ·∇ lnne.

For the ion dynamics, we neglect diamagnetic effects and parallel drifts, but
retain finite inertia corrections. First-order iteration of the inertia term then yields
the ion velocity

vi = vE − 1
ωciB

d∇⊥φ
dt

− νin
ωciB
∇⊥φ,

where dt ≡ ∂t + vE ·∇. With these drifts, the ion continuity equation reads

d lnni
dt

− (∇ lnni +∇) ·
(

1
ωciB

d∇⊥φ
dt

+
νin
ωciB
∇⊥φ

)
− 2
BR

ẑ ·∇φ = 0.

If we further assume quasineutrality by setting ni ≈ ne = n, we have a closed two-
field model describing the evolution of the density n and potential φ. The two-field
model then comprises the electron continuity equation

d lnn
dt

+ (∇ lnn +∇) ·
[
νenTe
ωceeB

∇⊥ (ϕ− lnn) +
ωceTe
νeneB

∇q (ϕ− lnn)
]

− 2Te
eBR

ẑ ·∇(ϕ− lnn) = 0, (2.1a)

and the charge continuity equation, which is given by subtracting the electron and
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ion continuity equations,

(∇ lnn +∇) ·
[

Te
ωcieB

d∇⊥ϕ
dt

+
νinTe
ωcieB

∇⊥ϕ

+
νenTe
ωceeB

∇⊥(ϕ− lnn) +
ωceTe
νeneB

∇q(ϕ− lnn)
]

+
2Te
eBR

ẑ ·∇ lnn = 0. (2.1b)

Here we have introduced the non-dimensional potential fluctuations ϕ ≡ eφ/Te.
The flute mode reduction of (2.1) has been solved numerically by Rypdal and

co-workers (Rypdal et al. 1997, 1998; Paulsen et al. 2000) with realistic plasma
sources and sinks to investigate the global properties of simple torus experiments,
retaining all the effects of magnetic field curvature. Despite poor resolution this
code is now producing results in qualitative agreement with experiments on the
Bl̊amann device. In this paper, however, we shall make further simplifications, and
investigate the local properties of fluctuations in inhomogeneous plasmas.

2.2. Local approximation

The model (2.1) is highly nonlinear, and further simplifications are desirable. Usu-
ally the convective part v ·∇ lnn is neglected compared with the compressible part
∇ · v in the continuity equations. Dividing the fields into a profile and a fluctu-
ation, e.g. n = n0 + ñ, we find that the convective part can be neglected when
ñ/n0 ≈ 1/kLn� 1, where 1/Ln = |∇ lnn0| is the density profile scale length and k
is a characteristic wavenumber for the fluctuations. Thus, neglecting the convective
part as well as magnetic field curvature effects in the diffusive and inertia drifts,
the model (2.1) simplifies to

d lnn
dt

+
νenTe
ωceeB

∇2
⊥ (ϕ− lnn)+

ωceTe
νeneB

∇2
q (ϕ− lnn)− 2Te

eBR
ẑ·∇(ϕ−lnn) = 0, (2.2a)

1
ωci

d∇2
⊥ϕ
dt

+
νin
ωci
∇2
⊥ϕ+

νen
ωce
∇2
⊥(ϕ− lnn)+

ωce
νen
∇2
q (ϕ− lnn)+

2
R

ẑ ·∇ lnn = 0. (2.2b)

At this point, it is convenient to introduce dimensionless space and time variables
through the Bohm normalization, ∂t → ωci∂t and ρs∇→∇. Finally, we introduce
a local rectangular coordinate system with the magnetic field along the z axis and
x as the radial direction. In this local approximation, the dimensionless model for
a weakly ionized plasma reads

∂ lnn
∂t

+ {ϕ, lnn} + νe∇2
⊥ (ϕ− lnn) + ν−1

e ∇2
q (ϕ− lnn) + ζ

∂(lnn− ϕ)
∂y

= 0, (2.3a)

∂Ω
∂t

+ {ϕ,Ω} + νiΩ + νe∇2
⊥(ϕ− lnn) + ν−1

e ∇2
q (ϕ− lnn) + ζ

∂ lnn
∂y

= 0, (2.3b)

where we have defined the dimensionless parameters

ζ =
2ρs
R0

, νi =
νin
ωci

, νe =
νen
ωce

,

Ω ≡ ∇2
⊥ϕ is the dimensionless vorticity, and we have introduced the Poisson bracket

notation for the convective derivative with the E× B drift,

vE ·∇n = ẑ · (∇ϕ×∇n) ≡ {ϕ, n} .
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Equations (2.3) are well suited for numerical simulations, studying gradient-driven
fluctuations by fixing the fields to different values on some boundaries, or flux-
driven fluctuations by adding source terms.

In a fully ionized plasma, the diffusive drifts due to electron–ion collisions and
ion viscosity (Shukla et al. 1984) result in the model

∂ lnn
∂t

+ {ϕ, lnn} + ζ
∂(lnn− ϕ)

∂y
= ν−1

e ∇2
q (lnn− ϕ) + νe∇2

⊥ lnn, (2.4a)

∂Ω
∂t

+ {ϕ,Ω} + ζ
∂ lnn
∂y

= ν−1
e ∇2

q (lnn− ϕ) + νi∇2
⊥Ω, (2.4b)

where νe ≡ νei/ωce and νi ≡ 3Tiνii/10Teωci are now the small dimensionless
electron–ion and ion–ion collision frequencies respectively.

2.3. Exponential density profile

Dividing the density into a fluctuating part ñ and a profile n0(x), with the latter
assumed to be constant in the poloidal and B-parallel directions we may write

ln(n0 + ñ) = ln
[
n0

(
1 +

ñ

n0

)]
= lnn0 + ln

(
1 +

ñ

n0

)
.

In the following, we shall denote the last term on the right-hand side of the above
equation by n, i.e. n ≡ ln(1 + ñ/n0). For an exponential density profile n0(x) =
n00 exp(−x/Ln), the dimensionless model equations take the simple forms

∂n

∂t
+ {ϕ, n} + (κ− ζ)∂ϕ

∂y
+ ζ

∂n

∂y
= νe∇2

⊥(n− ϕ) + ν−1
e ∇2

q (n− ϕ), (2.5a)

∂Ω
∂t

+ {ϕ,Ω} + ζ
∂n

∂y
+ νiΩ = νe∇2

⊥(n− ϕ) + ν−1
e ∇2

q (n− ϕ), (2.5b)

where κ ≡ ρs/Ln. A brief derivation of this model has previously been presented
by Eickermann and Spatschek (1996). It should be noted that κ is equal to the
electron diamagnetic drift and ζ to the electron gradient-B and curvature drifts,
both normalized by the ion acoustic velocity cs. We observe that both magnetic
field curvature and collisions couple the equations linearly. In the following, we
investigate the fluctuation characteristics described by this model.

3. Flute modes
Two-dimensional plasma turbulence has been the subject of much investigation be-
cause of its relevance to scrape-off layer physics in confinement devices (Benkadda
et al. 1994; Sarazin and Ghendrih 1998), basic laboratory experiments (Nielsen
et al. 1996; Rypdal et al. 1997) and equatorial irregularities (Hassam et al. 1986;
LaBelle et al. 1986). The flute mode reduction of the model (2.5),

∂n

∂t
+ {ϕ, n} + (κ− ζ)∂ϕ

∂y
+ ζ

∂n

∂y
= νe∇2

⊥(n− ϕ), (3.1a)

∂Ω
∂t

+ {ϕ,Ω} + ζ
∂n

∂y
+ νiΩ = νe∇2

⊥(n− ϕ), (3.1b)

has been studied by Eickermann and Spatschek (1996) and Spatschek and Eicker-
mann (1996), with emphasis on transport close to the onset of instability. The fully
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ionized analogue of (3.1) has been solved numerically by Das et al. (1997), with
periodic boundary conditions, showing an asymptotic formation of a sheared zonal
flow.

Magnetic field curvature is frequently modelled as an effective gravity. Pavlenko
and Weiland (1980) have derived the relevant two-field model for a collisionless
plasma in a uniform magnetic field, but this model misses the ζ∂yϕ term in the
electron continuity equation (3.1a), which is due to the compressible E×B drift. It
should also be noted that many investigations of the interchange instability have
used a simplified model where the ζ∂yn term in (3.1a) is also neglected (LaBelle et al.
1986; Hassam et al. 1986; Biskamp and Schwarz 1997; Sarazin and Ghendrih 1998).
The latter approximation, however, is consistent with the MHD ordering. In the
following, it will be seen that these simplifications change the linear characteristics,
the parameter space, and the energy integrals of the model.

Finally, we argue that characteristic of stable flute perturbations is the relation
n = Ω, analogous to the adiabatic electron response n = ϕ for stable drift waves. The
Pavlenko–Weiland model implies that n = Ω for a homogeneous plasma, while, in
the absence of dissipation, the model (3.1) gives n = Ω for the threshold profile κ = ζ.
Thus, characteristic of stable flute modes are density and potential fluctuations in
antiphase and relatively larger potential fluctuations at large scales, nk = −k2

⊥ϕk.
Fluctuation characteristics will be discussed further below.

Neglecting cross-field dissipative effects and assuming a plane-wave solution to
(2.5) of the form exp(ik · x− iωt), the linearized equations are

(iωfm − iω + ν−1
e k2

q )nk = (iωfm − iκky + ν−1
e k2

q )ϕk, (3.2a)

(iωfm + ν−1
e k2

q )nk = (−iωk2
⊥ + ν−1

e k2
q )ϕk, (3.2b)

and the dispersion relation can be written as

ω2 + iω2
dwΨ

(
ω

ωdw
− 1
)

= ω2
fm

(
ω

ωfm
− 1

Φ
− iωdw

ωfm

Ψ
1 + k2

⊥

)
, (3.3)

where we have introduced the linear drift wave (dw) and flute mode (fm) frequencies

ωdw ≡ κky
1 + k2

⊥
, ωfm ≡ ζky,

and the parameters

Ψ ≡ ν−1
e k2

q
(1 + k2

⊥)2

κkyk2
⊥

, Φ ≡ ζk2
⊥

κ− ζ .

We now investigate the linear stability as well as the phase and amplitude relation
between the density and potential fluctuations of flute perturbations in a toroidal
magnetic field. Some properties of non-local fluctuations are also discussed.

3.1. Normal mode analysis

The solution of the dispersion relation for the flute mode reduction (Ψ = 0) of (3.3)
reads

ω

ωfm
=

1
2
±
(

Φ − 4
4Φ

)1/2

. (3.4)

The unstable branch is presented in Fig. 1. The waves are unstable for 0 < Φ < 4,
or k2

⊥ < 4(κ − ζ)/ζ. For ζ > κ, or equivalently 2Ln < R0, there are no unstable
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Figure 1. Dispersion diagram for unstable flute perturbations in a toroidal magnetic field.
We see that the waves are unstable for Φ < 4, and the phase velocity approaches the electron
gradient-B and curvature drift for large Φ.

waves. This defines a threshold profile for the interchange instability. It should be
noted that the linear analysis given here is the same for the gravitational instability
as described by the Pavlenko–Weiland model when Φ is set equal to γk2

⊥/κ, where
γ ≡ g/ωcics. However, there is no stabilization for κ 6 ζ in this case, which makes
equatorial spread F phenomena fundamentally different from toroidal laboratory
experiments from a marginal stability point of view. For 0 < Φ � 4, the real
frequency ωr and growth rate ωi read

ωr =
ρs
R0

ky, ωi =
(

2ρ2
s

LnR0

)1/2(
1− 2Ln

R0

)1/2
ky
k⊥

. (3.5)

Writing the spectral relation between density and potential fluctuations as in (1.1),
we find from the linearized charge continuity equation (3.2b) that the density and
potential fluctuations are related by

nk

ϕk
= −k2

⊥

[
1
2

+
(

Φ − 4
4Φ

)1/2 ]
. (3.6)

From this expression, we may find the phase difference and amplitude ratio of the
fluctuations. The phase θk as function of Φ is shown in Fig. 2. We observe that stable
waves are characterized by density and potential fluctuations in antiphase. Indeed,
(3.6) shows that for Φ � 4, nk = −k2

⊥ϕk, i.e. density and vorticity fluctuations
are aligned as argued previously. For the most unstable waves, Φ � 1, the phase
difference decreases towards 1

2π, indicating large fluctuation-induced transport.
Moreover, in this limit, (3.6) implies that |nk/ϕk| ∼ k⊥. The fluctuation character-
istics derived here from linear theory agree well with experimental measurements
of turbulent plasma fluctuations driven by unstable flute modes (Huld et al. 1991;
Prasad et al. 1994; Riccardi et al. 1997; Øynes et al. 1998), equatorial spread F
irregularities at intermediate scales (LaBelle et al. 1986; Hysell et al. 1994), and
numerical simulations (Benkadda et al. 1994; Spatschek and Eickermann 1996;
Rypdal et al. 1997; Sarazin and Ghendrih 1998).
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Figure 2. Linear phase difference between density and potential fluctuations for flute per-
turbations in a toroidal magnetic field. The stable waves are in antiphase, while for the most
unstable waves, the potential lags the density by 1

2π.

3.2. Non-local fluctuations

The local normal mode analysis shows that the largest possible wavelength for the
system has the largest growth rate. Therefore we finally discuss the non-local prop-
erties for the interchange instability with an exponential density profile. Assuming
a wave solution of the form exp(ikyy − iωt), we readily find the linear eigenmode
equation for the electrostatic potential from (2.1):

d2ϕ

dx2 − κ
dϕ

dx
− k2

y

[
1 +

ζ(κ− ζ)
ω(ω − ζky)

]
ϕ = 0.

In the absence of any radial structure, dxϕ = 0, d2
xϕ = 0, this reduces to the local

dispersion relation. The above equation has a known analytical solution when the
homogeneous boundary conditions ϕ(x = 0) = ϕ(x = Lx) = 0 are imposed,

ϕ(x) = ϕ̂ exp
(

1
2κx

)
sin
(
lπρs
Lx

x

)
.

Here we identify the radial wavenumber kx = lπρs/Lx, where l ∈ N. The frequency
is given by

1
4κ

2 + k2
x + k2

y

[
1 +

ζ(κ− ζ)
ω(ω − ζky)

]
= 0.

The dispersion relation can be written in the same form as in the local case, with
the parameter Φ now being given by

Φ =
ζk2
⊥

κ− ζ
(

1 +
κ2

4k2
⊥

)
.

Clearly, we recover the local dispersion relation in the limit κ/k⊥ � 1. In the
strongly non-local limit κ/k⊥ � 1, we get Φ = κζ/4(κ − ζ), and (3.4) shows that
the growth rate is inversely proportional to the wavelength. Thus it is clear that
the growth rate is maximum for some finite k⊥ when non-local effects are taken
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into account. This is consistent with previous non-local studies of the gravitational
interchange instability (Satyanarayana et al. 1984; Huba 1996).

4. Resistive drift waves
For a fully ionized plasma, the analogue of the model (2.5) is

∂n

∂t
+ {ϕ, n} + (κ− ζ)∂ϕ

∂y
+ ζ

∂n

∂y
= ν−1

e ∇2
q (n− ϕ) + νe∇2

⊥n, (4.1a)

∂Ω
∂t

+ {ϕ,Ω} + ζ
∂n

∂y
= ν−1

e ∇2
q (n− ϕ) + νi∇2

⊥Ω. (4.1b)

This model including magnetic shear in a cylindrical geometry has been exten-
sively studied by Wakatani and co-workers, with emphasis on stellarator geometry
(Wakatani et al. 1992). Closely related two-field models for edge and scrape off
layer fluctuations in tokamaks and stellarators have been studied by Carreras et
al. (1987), Pogutse et al. (1994), and Beyer and co-workers (Beyer and Spatschek
1996; Beyer et al. 1999). In the absence of magnetic field curvature and cross-field
dissipation, (4.1) reduce to the well-known Hasegawa–Wakatani model for resistive
drift waves (Hasegawa and Wakatani 1983):

∂n

∂t
+ {ϕ, n} + κ

∂ϕ

∂y
= ν−1

e ∇2
q (n− ϕ), (4.2a)

∂Ω
∂t

+ {ϕ,Ω} = ν−1
e ∇2

q (n− ϕ). (4.2b)

In the limit of adiabatic electron response to B-parallel electric fields, n = ϕ, this
reduces to the Hasegawa–Mima equation (Hasegawa and Mima 1977).

4.1. Normal mode analysis

The solution of the dispersion relation for resistive drift waves in a uniform magnetic
field may be written as

ω

ωdw
=
iΨ
2

[
−1±

(
1− i4

Ψ

)1/2
]
. (4.3)

The dispersion curves for the unstable branch are shown in Fig. 3.
In the weakly collisional or small-parallel-wavelength regime where ν−1

e k2
q �

ωdw, the linear coupling is very strong, and potential and density fluctuations are
nearly in phase. This is called the adiabatic limit, since electrons are near thermal
equilibrium and respond adiabatically to the potential fluctuations. Expanding the
square root in (4.3) to second order in the small parameter 1/Ψ gives the dispersion
relation for the unstable wave:

ω

ωdw
= 1 +

i

Ψ
= 1 + i

κkyk
2
⊥

ν−1
e k2

q
(
1 + k2

⊥
)2 .

Thus the growth rate decreases rapidly with increasing ν−1
e k2

q and is much smaller
than the real frequency. We also note that the growth rate is largest for kx = 0 and
ky ≈ 1.

In the opposite limit, we have ν−1
e k2

q � ωdw, and the parallel wavelength is very
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Figure 3. Dispersion diagram for resistive drift waves in a uniform magnetic field. We see
that the maximum growth rate occurs at Ψ ≈ 1 and is about one-quarter of the linear
drift-wave frequency.

long or collisions are very frequent, so electrons are not able to flow along the mag-
netic field lines to cancel build-up of space charges. This is called the hydrodynamic
regime, and the dynamics of the drift-wave turbulence is fundamentally different
from that described by the Hasegawa–Mima equation. The unstable branch of the
dispersion relation in this limit reduces to

ω

ωdw
= (1 + i)( 1

2 Ψ)1/2 = (1 + i)(1 + k2
⊥)
(
ν−1
e k2

q
2κkyk2

⊥

)1/2

.

In this regime, the growth rate is of the same magnitude as the real frequency, and
increases with the parallel diffusion rate ν−1

e k2
q .

The charge continuity equation (3.2b) gives the linear relation between density
and potential fluctuations as

nk

ϕk
= 1− iω k2

⊥
ν−1
e k2

q
= 1 +

1 + k2
⊥

Ψ

(
ωi
ωdw
− i ωr

ωdw

)
. (4.4)

The linear phase difference between density and potential fluctuations for k2
⊥� 1 is

presented in Fig. 4. In the adiabatic regime, the fluctuations are in phase and have
the same amplitudes. In the hydrodynamic limit, the density perturbations exceed
the potential perturbations, while the phase difference increases to 1

4π. These fluc-
tuation characteristics are in excellent agreement with experimental observations
(Hendel et al. 1968; Riccardi et al. 1997) and numerical simulations (Wakatani et
al. 1992; Camargo et al. 1995).

4.2. Effect of magnetic field curvature

We now briefly discuss the effect of magnetic field curvature on the linear charac-
teristics of resistive drift waves. As is clear from Sec. 3.1, the flute mode kq = 0 will
now also be unstable; however, field line curvature also effects the modes with finite

https://doi.org/10.1017/S0022377801008972 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377801008972


Two-field transport models for magnetized plasmas 91

0 2 4 6 8 10

hk
ð

W = me
–1k2(1 + k2

⊥)2/jkyk2
⊥

3
16

1
8

1
16

0

1
4

Figure 4. Linear phase relation θk between density and potential fluctuations for resistive
drift waves in a uniform magnetic field for wavenumbers k2

⊥ � 1. We observe that the
fluctuations are in phase in the adiabatic regime, while the phase angle increases towards 1

4π
in the hydrodynamic limit.

kq. The solution of the dispersion relation (3.3) can be shown to have the form

2
ω

ωdw
=
ωfm

ωdw
− iΨ±

(
i4Ψ−Ψ2 − 4− Φ

Φ
ω2

fm

ω2
dw

)1/2

, (4.5)

For Ψ = 0, we get (3.4) and for ωfm = 0, we get (4.3). Consider now Φ so small
that the last term in the parentheses in (4.5) dominates. This yields the dispersion
relation for the unstable branch:

2
ω

ωdw
=
ωfm

ωdw
+2Ψ

(
Φ

4− Φ

)1/2
ωdw

ωfm
−iΨ+i

(
4− Φ

Φ

)1/2
ωfm

ωdw
+
i

2
Ψ2
(

Φ
4− Φ

)1/2
ωdw

ωfm
.

In the hydrodynamic regime, the drift modes with finite but small Ψ clearly have
smaller growth rate than the flute modes.

In the adiabatic limit, Ψ is large and the second term in the parentheses in (4.5)
dominates. The dispersion relation for the unstable branch in this case reads

ω = ωdw + 1
2ωfm +

i

ΦΨ
ω2

fm

ωdw
.

Thus the imaginary frequency is given by

ωi =
2ρ2
s

LnR0

(
1− 2Ln

R0

)
k2
y(

1 + k2
⊥
)
ν−1
e k2

q
.

Again we observe the stabilizing effect of the compressible E × B drift, defining
a profile for marginal stability at 2Ln/R0 = 1. The three-dimensional numerical
simulations by Wakatani et al. (1992) show that this model possesses the linear
characteristics of flute modes in the hydrodynamic regime. In general, experiments
as well as direct numerical simulations show that the linear fluctuation character-
istics are preserved in the nonlinear regime. Hence we finally use the above results
to discuss the energy integrals of the local models.
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5. Nonlinearly conserved energy functionals
In this section, we shall neglect the cross-field electron dissipation in the local
model (2.5):

∂n

∂t
+ {ϕ, n} + (κ− ζ)∂ϕ

∂y
+ ζ

∂n

∂y
= ν−1

e ∇2
q (n− ϕ), (5.1a)

∂Ω
∂t

+ {ϕ,Ω} + ζ
∂n

∂y
+ νiΩ = ν−1

e ∇2
q (n− ϕ). (5.1b)

There are four integral quantities that are conserved by the convective nonlin-
earities: the kinetic energy K, the potential energy P , the enstrophy U , and the
cross-correlation V between density and vorticity fluctuations, defined by

K ≡ 1
2

∫
dx (∇⊥ϕ)2, P ≡ 1

2

∫
dxn2,

U ≡ 1
2

∫
dx Ω2, V ≡ −

∫
dxnΩ.

Using the trigonometric series representation for the fields n and ϕ, we find

V =
∑

k

k2
⊥nkϕ

∗
k =

∑
k>0

2k2
⊥ |nkϕk| cos θk.

Thus the cross-correlation is positive when nk and ϕk are nearly in phase, char-
acteristic of resistive drift waves, and negative when nk and ϕk are in antiphase,
characteristic of flute modes. In the following, we shall analyse the evolution of
these integrated quantities as determined by the linear terms in the model (5.1).

5.1. Energy conservation laws

Multiplying (5.1a) by the density n and integrating over space, assuming periodic
or homogeneous boundary conditions so that all surface integrals vanish, we get
the evolution equation for the potential energy:

dP

dt
= (κ− ζ)Γn + ν−1

e

∫
dxn∇2

q (n− ϕ), (5.2)

where Γn is just the integrated turbulent E×B plasma flux down the density gra-
dient, given by (1.2). From the characteristic phase relations from linear theory, Γn
will be positive, and hence the plasma inhomogeneity is a source for density fluctua-
tions. Similarly, magnetic field curvature appears as a sink for density fluctuations.
Considering the parallel dissipation term, we have

Γnq ≡ ν−1
e

∫
dxn∇2

q (n− ϕ)

=
∑
k>0

−2ν−1
e k2

q |nk|2
(

1−
∣∣∣∣ϕk

nk

∣∣∣∣ cos θk

)
.

For phase differences θk between 1
2π and π, characteristic of unstable flute modes,

Γnq is always negative. The linear phase relation for drift waves in a uniform mag-
netic field implies 0 < cos θk 6 1; however, |ϕk/nk| < 1 in this case, and we should
expect collisions to generally be a sink for the potential energy; see also Fig. 5.

Multiplying (5.1b) by the potential ϕ and integrating gives the evolution equation
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Figure 5. Linear phase and amplitude relations indicating sinks and sources for energy in-
tegrals for resistive drift waves in a uniform magnetic field in the long-wavelength limit
k2
⊥� 1.

for the kinetic energy,

dK

dt
= ζΓn − 2νiK − ν−1

e

∫
dxϕ∇2

q (n− ϕ).

We note that the compressible diamagnetic drift in a curved magnetic field in-
troduces a source term for the kinetic energy. We also observe that ion–neutral
collisions yield exponential decay of electric field fluctuations. To investigate the
effect of electron–neutral collisions, we note that

Γϕq ≡ −ν−1
e

∫
dxϕ∇2

q (n− ϕ)

=
∑
k>0

−2ν−1
e k2

q |ϕk|2
(

1−
∣∣∣∣nk

ϕk

∣∣∣∣ cos θk

)
.

For θk between 1
2π and π, Γϕq is negative. For phase differences smaller than 1

2π
and |nk/ϕk| > 1, characteristic of resistive drift waves in a uniform magnetic field,
Γϕq can become positive, as is clear from Fig. 5.

The evolution of the total energy E ≡ K + P is given by

dE

dt
= κΓn + Γq − 2νiK, (5.3)

where Γq ≡ Γnq + Γϕq is the Ohmic heat loss due to electron–neutral collisions,

Γq = −1
2
ν−1
e

∫
dx [∇q(n− ϕ)]2 .

Electron collisions dissipate total energy, but may also transfer energy from poten-
tial to kinetic form. We observe from (5.3) that magnetic field curvature does not
enter the total energy conservation – it only transfers energy between potential
and kinetic forms. Note, however, that this is not the case for the gravitational
instability, where it appears as a source γΓn for kinetic and total energy.
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5.2. Enstrophy and cross-correlation conservation laws

Multiplying (5.1b) by the vorticity Ω and integrating, we get the evolution equation
for enstrophy:

dU

dt
= −ζ

∫
dx Ω

∂n

∂y
− 2νiU + ν−1

e

∫
dx Ω∇2

q (n− ϕ). (5.4)

Again, ion–neutral collisions yield exponential damping. We now analyse the effects
of curvature and electron–neutral collisions. By expanding the fields in trigonomet-
ric series, we get

ζ

∫
dx Ω

∂n

∂y
=
∑

k

iζkyk
2
⊥n
∗
kϕk = −

∑
k>0

2ζkyk2
⊥ |nk||ϕk| sin θk. (5.5)

For unstable waves, sin θk is positive, and magnetic field curvature hence gives rise
to a source term for enstrophy. The last term on the right-hand side of (5.4) yields

ν−1
e

∫
dx Ω∇2

q (n− ϕ) =
∑
k>0

−2ν−1
e k2

q k
2
⊥ |ϕk|2

(
1−

∣∣∣∣nk

ϕk

∣∣∣∣ cos θk

)
. (5.6)

For phase differences between 1
2π and π, this term is negative and represents a

sink for enstrophy. However, for drift waves in a uniform magnetic field, we expect
cos θk > 0 and |nk/ϕk| > 1, making this term positive.

Multiplying (5.1a) by Ω, (5.1b) by n, integrating over space, and adding the
resulting equations gives the conservation law for the cross-correlation V :

dV

dt
= ζ

∫
dx Ω

∂n

∂y
− νiV − ν−1

e

∫
dx (n + Ω)∇2

q (n− ϕ). (5.7)

The curvature term is the same as that given in (5.5), and hence is a sink for cross-
correlation, i.e. curvature will tend to bring density and vorticity fluctuations in
phase. This is consistent with our previous results. The effect of electron–neutral
collisions depends on the relative phase and amplitude of density and potential
fluctuations, and can act both as a source and as a sink for V . In a weakly ionized
plasma, ion–neutral collisions will exponentially dampen any finite value of the
cross-correlation. Since the cross-correlation depends on the relative phase between
density and potential fluctuations, a change in νi may change the phase and thus
implicitly affect the fluctuation-induced transport.

6. Conclusions
We have discussed two-field transport models describing low-frequency drift waves
in low-β toroidally magnetized plasmas. The flute mode reduction of the most
general form (2.1) describing global fluctuations has been investigated numerically
by Rypdal and co-workers (Rypdal et al. 1997, 1998; Paulsen et al. 2000). The
simulation results are in qualitative agreement with experimental measurements
on the Bl̊amann device, and display all the fluctuation characteristics presented in
Sec. 3.

In the case of an exponential density profile, a complete normal mode analysis
has revealed fluctuation characteristics such as the relative phase and amplitude of
density and electrostatic potential fluctuations. These are in good agreement with
those observed in experimental measurements and numerical simulations.
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One particular feature of two-dimensional fluctuations in a curved magnetic field
is their stability for Ln < 1

2R0, where Ln and R0 are the density profile scale
length and magnetic field radius of curvature respectively. Thus the compressible
E × B drift provides a profile for marginal stability. For this reason, we believe
that models such as (2.3) are well suited for investigating flux- and gradient-driven
fluctuations and nonlinear transport close to marginal stability, and may work as a
paradigm for describing the plasma as a self-organized critical system. It should be
emphasized that the models under discussion are formulated for a considerably sim-
pler geometry than those previously used for investigating self-organized criticality
(see e.g. Carreras et al. 1996b). Moreover, the profile of marginal stability is robust
to inclusion of B-parallel dynamics, temperature fluctuations, etc. Results from
numerical simulations, along with comparisons with experimental measurements,
will be presented in forthcoming contributions.
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