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Linearized boundary conditions are a commonplace numerical tool in any flow
problems where the solid wall is nominally flat but the effects of small waviness
or roughness are being investigated. Typical examples are stability problems in the
presence of undulated walls or interfaces, and receptivity problems in aerodynamic
transition prediction or turbulent flow control. However, to pose such problems
properly, solutions in two mathematical distinguished limits have to be considered:
a shallow-roughness limit, where not only roughness height but also its aspect ratio
becomes smaller and smaller, and a small-roughness limit, where the size of the
roughness tends to zero but its aspect ratio need not. Here a connection between
the two solutions is established through an analysis of their far-field behaviour. As
a result, the effect of the surface in the small-roughness limit, obtained from a
numerical solution of the Stokes problem, can be recast as an equivalent shallow-
roughness linearized boundary condition corrected by a suitable protrusion coefficient
(related to the protrusion height used years ago in the study of riblets) and a proximity
coefficient, accounting for the interference between multiple protrusions in a periodic
array. Numerically computed plots and interpolation formulas of such correction
coefficients are provided.

Key words: boundary layers, receptivity, low-Reynolds-number flows

1. Introduction: shallow roughness versus small roughness
In any flow problem where small perturbations to a nearly flat solid wall are being

investigated, linearized boundary conditions are the first tool that comes to mind for
either analytical or numerical calculations. Examples of the use of such linearized
boundary conditions can be found for example in a large literature on interfacial
instabilities (e.g. Joseph et al. 1997) and in boundary layer receptivity calculations
aimed at aerodynamic transition prediction (e.g. Hill 1995).

Typically, if z = 0 represents the flat reference surface and z = εh(x, y) the actual
wall, the velocity field v= (u, v,w) is written as a perturbation expansion in ε:

v= v(0) + εv(1) + · · · . (1.1)

The exact zero-velocity boundary condition at a solid wall,

v[x, y, εh(x, y)] = 0, (1.2)
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FIGURE 1. Matched asymptotic expansion.

is replaced by its Taylor expansion in powers of ε, the first order of which reads

v[x, y, εh(x, y)] ' εv(1)(x, y, 0)+ εh(x, y)v(0)z (x, y, 0)= 0. (1.3)

Thus the presence of wall corrugations becomes equivalent to a non-zero boundary
condition for v(1) assigned at the unperturbed wall.

For definiteness we shall assume that the velocity field obeys the non-dimensional
incompressible Navier–Stokes equations

∇ ·v= 0, (1.4a)

vt + v ·∇v+∇p= 1
Re
∇2v, (1.4b)

although it should be clear that the boundary conditions (1.2) or (1.3) apply
equally well to other problem variations such as boundary layer or local-stability
approximations. Even compressibility does not change the picture much, because near
the wall the local Mach number will tend to zero with ε.

It can be remarked that this standard linearization approach produces no w(1) first-
order perturbation to the wall-normal velocity, because the continuity equation (1.4a)
entails that w(0)

z (x, y, 0) = 0. This is peculiar, as intuitively one might expect the
primary effect of the wall modification to be a normal-velocity perturbation, the only
one that occurs in inviscid flow. Just as counter-intuitively, if the unperturbed velocity
field v(0) is unidirectional (for instance, only has a non-zero u(0) component), no
v(1)(x, y, 0) cross-flow perturbation will ever be generated, even by apparently skewed
geometries. In addition, no estimate exists to date of the parameter range in which the
approximation (1.3) is reliable and these additional velocity components can really be
neglected. We shall endeavour in this paper to determine such a parameter range, and
also corrections that can be applied to recover accuracy when the range is exceeded to
a certain extent.

To this end we shall compare the above to a different approach to the problem,
one in which a matched asymptotic expansion is performed. The solution domain is
divided into three regions according to figure 1. A solution of the Navier–Stokes (or
boundary layer, stability, etc.) problem far from the wall is matched to a solution
of the Stokes problem near the wall through a common asymptotic behaviour.
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FIGURE 2. Shallow-roughness limit, z= εh(x, y), versus small-roughness limit,
z= εh(x/ε, y/ε).

Equivalently one could say that the asymptotic far-distance behaviour of the Stokes
problem becomes an effective boundary condition for the outer problem.

Examples of this second approach can be found in the calculation of the protrusion-
height difference of riblets, which measures their differential action on parallel flow
and cross-flow, by Luchini, Manzo & Pozzi (1991), and in Sarkar & Prosperetti
(1996), who introduced an effective boundary condition representative of a surface
with randomly distributed roughness. Intermediate between the two approaches is the
one by Kamrin, Bazant & Stone (2010), who computed the effective slip boundary
condition for a periodic surface through a perturbative expansion up to second order in
roughness height.

In order to connect and compare these different formulations of approximate wall
boundary conditions, we have to carefully consider two mathematical distinguished
limits (see figure 2). In the first limit, which we shall name the shallow-roughness
limit, a family of surfaces is involved, defined as z = εh(x, y), that become smoother
and smoother (of smaller and smaller slope) as ε→ 0. On the other hand the second
limit, which we shall name the small-roughness limit, is concerned with a family of
surfaces defined as z= εh(x/ε, y/ε), which remain geometrically similar to themselves
(in particular, retain their slope) when ε→ 0.

The differential equations (but not the boundary conditions) governing either
limit are linear. Once ε is small enough, flow around either a shallow or a
small protuberance will be governed by the Stokes equations

∇ ·v= 0, (1.5a)
∇P=∇2v (1.5b)

(where P = Re p). However, a proper solution of the small-roughness perturbation
problem requires actually integrating (1.5) with the exact boundary condition (1.2)
(which depends nonlinearly on h) and then extracting the behaviour at infinity of
this solution, to be matched to an outer velocity field in the form of an equivalent
boundary condition at the surface. Since, as will be seen, the leading behaviour at
infinity of the small-roughness problem turns out to bear the same form as the impulse
response of the shallow-roughness problem, the two results can be directly compared.
For example, it will be confirmed that no equivalent wall-normal w(1) is generated in
either case, whereas a small skewed fin can generate an equivalent sideways v(1) even
though a shallow one cannot.
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352 P. Luchini

In this paper numerical solutions will be exhibited for a number of shapes,
producing in particular the protrusion coefficient, which must be applied to the
shallow-roughness boundary condition in order to mimic the results of the small-
roughness limit. A plot of this coefficient as a function of the aspect ratio enables
us to judge whether the shallow-roughness linearized boundary condition is or is not
appropriate for a given application, and to correct it when it is not. In addition, a
proximity coefficient will be introduced to account for the mutual interference of
multiple wall perturbations placed in a periodic array.

2. Solution of the shallow-roughness problem
2.1. Impulse response

The linearized boundary condition (1.3) effectively transforms the geometrical
perturbation of the boundary into a velocity perturbation applied at the unperturbed
boundary. Since the problem formed by the Stokes equations (1.5) with such boundary
conditions is linear, its solution can be expressed as a superposition of impulse
responses.

The half-space velocity impulse response of the Stokes problem is by definition a
second-order tensor H such that

v(x)=
∫
ξ3=0

H(x− ξ) ·v(ξ) dξ1 dξ2 (2.1)

(notice that only velocity and no pressure appears in this formula).
Equation (2.1) is similar to the double-layer potential used in boundary element

methods (e.g. Pozrikidis 1992). The expression of H may be obtained in a number of
ways or just verified a posteriori, and is equal to twice the normal component of a
third-order tensor which Batchelor (1970), for a different application involving stress
in a suspension, named a stresslet. Namely

H = 3
2π

r r z

r5
, (2.2)

where r = x − ξ and the juxtaposition r r denotes a dyadic product (whereas a dot,
as in (2.1), denotes a contraction). In components (with i, j, k = 1 . . . 3; x1 = x, x2 = y,
x3 = z; and implied summation on the repeated index):

Hij = 3
2π

(xi − ξi)(xj − ξj)x3

[(xk − ξk)(xk − ξk)]
5/2 . (2.3)

That (2.3) is the impulse response of this problem is easily verified as follows: (i) it
is a solution of the Stokes equations; (ii) all three components of velocity vanish for
x3 = 0 and (r1, r2) 6= (0, 0); and (iii)

∫
Hij dr1 dr2 = δij ∀x3, which implies that Hij tends

to a Dirac δ function when x3→ 0. Equation (2.3) may also be seen as a limiting case
of the Stokes flow induced by a particle moving near a plane wall (Blake 1971), but
Blake’s formula involves additional terms and complications which do not appear in
the limit.

A stresslet is the symmetrized gradient of a Stokeslet S, the free-space Green’s
function of the Stokes problem, namely

S = 1
8π

r r+ r2 I

r3
, (2.4)

the latter providing the response to a unit impulsive force (as opposed to a velocity).
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Linearized no-slip boundary conditions at a rough surface 353

It is worth emphasizing that the Stokes flow generated by a protuberance sitting
on the boundary and the Stokes flow past an isolated obstacle in free space, the far
field of one being represented by (2.2) and the far field of the other by (2.4), have
substantially different behaviour. Indeed, S is O(r−1) at infinity and transports a finite
rate of momentum, whereas H is O(r−2) and its momentum transport at infinity is
zero. This mathematical difference reflects the physical difference that whereas in free
space the reaction to the force exerted on a particle cannot be borne other than by the
virtual boundary at infinity, in the presence of an infinite solid wall the reaction force
generated by an obstacle is discharged on the remainder of the wall itself.

Yet another difference between (2.2) and (2.4) is that whereas S produces a zero net
mass flow rate, some components of H have non-zero mass flow rate at infinity. This
fact will have important consequences in the following sections.

2.2. Asymptotic behaviour
The behaviour of the velocity field (2.1) at a large distance from its source can be
obtained, just as in the analogous problem for the Laplace equation, by expanding
H(x − ξ) in the form of a Taylor series in ξ and reinterpreting the result as a sum of
multipole fields. This Taylor series is

v(x)=
∞∑

m=0

m∑
n=0

(−1)m

(m− n)! n!
∂mH

∂xm−n
1 ∂xn

2

·

∫
ξ3=0

ξm−n
1 ξ n

2v(ξ) dξ1 dξ2. (2.5)

As H is a homogeneous function in accordance with the scale invariance of the Stokes
problem, in particular one proportional to r−2, every derivative of order m in (2.5) is in
turn a homogeneous function O(r−m−2). Therefore, the Taylor series (2.5) doubles up
as an ordered series of integer powers of r−1. Its leading term at infinity is simply

v(x)' H(x) ·
∫
ξ3=0

v(ξ) dξ1 dξ2, (2.6)

and is O(r−2) provided that the boundary velocity has non-zero integral.
For an unperturbed velocity field characterized by a unit velocity gradient directed in

the x direction, u(0) = z, the order-one boundary condition (1.3) reads

u(1)(x1, x2, 0)=−h(x1, x2), v(1)(x1, x2, 0)= 0, w(1)(x1, x2, 0)= 0, (2.7)

and therefore (2.6) further specializes to

v
(1)
i (x)'−Hi1(x)

∫
h(ξ1, ξ2) dξ1 dξ2 as r→∞. (2.8)

A three-dimensional rendering of the vector field Hi1(x) is provided in figure 3. As
may be easily deduced from (2.2), the velocity vector is everywhere in the radial
direction, and oriented towards the wall protuberance in one quadrant and outwards
from it in the other.

3. The small-roughness limit
3.1. Position of the problem

We now move on to examining the small-roughness limit, the one in which the wall
shape is assumed to belong to a family of surfaces of the form z = εh(x/ε, y/ε).
If the coordinates are rescaled as x′ = x/ε, y′ = y/ε and z′ = z/ε, and at the same
time velocity is also rescaled by a factor of ε so as to keep the velocity gradient
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FIGURE 3. (Colour online) Three-dimensional plot of the response to an impulsive
boundary velocity.

unchanged, the Navier–Stokes equations (1.4) retain exactly the same form except that
the Reynolds number becomes Re′ = ε2Re. In this distinguished limit, the leading
term of their perturbative expansion in ε is represented by the solution of the
Stokes equations (1.5) about the fixed geometry z′ = h(x′, y′), which can be obtained
independently of ε by numerical means.

The boundary conditions for this Stokes problem are v = 0 at the wall and an
imposed velocity gradient at infinity (to be matched to the velocity gradient at the
wall of the outer region of figure 1). Since the problem is linear in this velocity
gradient (even though not in h), we may assume that the velocity gradient is unitary
and oriented in the x direction.

In order to make our results directly comparable to those of the shallow-
roughness limit, we may also subtract the unperturbed velocity field u = z (itself
an exact solution of the Stokes equations), and introduce the induced velocity v′ such
that

u′ = u− z, v′ = v, w′ = w. (3.1)

In this equivalent problem, homogeneous conditions are imposed at infinity and the u′

component of velocity at the physical boundary equals −z′. In components:

u′[x′, y′, h(x′, y′)] = −h(x′, y′), v′[x′, y′, h(x′, y′)] = 0, w′[x′, y′, h(x′, y′)] = 0. (3.2)

It may be noticed that these boundary conditions for v′ closely resemble the
boundary conditions (2.7) for v(1), except that all three are imposed at the height
h rather than at the height 0.
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Linearized no-slip boundary conditions at a rough surface 355

3.2. Asymptotic behaviour

The asymptotic behaviour at infinity of the induced velocity field can classically be
established through an analysis of separable solutions in spherical coordinates. Owing
to the scale invariance of the Stokes problem, these solutions may be expected to be
of the form r−αF(θ, φ), where θ and φ are spherical angles, for suitable eigenvalues
of the exponent α such that a non-trivial F exists satisfying homogeneous boundary
conditions at the equatorial plane. In the analogous derivation for the Laplace equation,
similarly defined eigenfunctions are known as spherical harmonics. The eigenfunctions
we need are the equivalent of spherical harmonics for the Stokes problem.

In fact we can avoid a somewhat cumbersome calculation, and in the process
recognize that the eigenvalues of α must be integer numbers, if we observe that
the exact same eigenfunctions govern the asymptotic behaviour of the solution of
the shallow-roughness problem. The non-homogeneous boundary conditions at the
modified bounded portion of the surface, whether they are of the form (2.7) or of
the form (3.2), determine only the coefficients of the eigenfunctions and not their
expression. Since we already know the asymptotic expansion (2.5) for the shallow-
roughness problem, we can expect the far-field behaviour in the small-roughness limit
to be represented by a similar series, namely

v′(x′)=
∞∑

m=0

m∑
n=0

(−1)m

(m− n)! n!
∂mH

∂x′m−n
1 ∂x′n2

· qmn, (3.3)

the only difference being that qmn are now unknown vector coefficients.
The leading term of (3.3) is

v′(x′)' H(x′) · s as r→∞, (3.4)

where the coefficient s ≡ q00 is a constant vector. Again, the only difference between
(2.8) and (3.4) is that for a shallow perturbation s has a closed-form explicit
expression whereas for a small one it does not. It follows that the s2 and s3

components are no longer bound to be zero when the unperturbed flow is aligned
with the x1 direction; in general the s vector is no longer obliged to be parallel to
the unperturbed flow. Nonetheless its wall-normal component, s3, can be immediately
obtained from mass conservation, because H33 is the only component of H to produce
a non-zero total mass flow rate at infinity, which must equal the total mass flow rate
at the wall. It thus follows that for an impermeable solid boundary of any shape s3 is
zero, and the Hi3 components do not participate in the far-field velocity.

It was observed in connection with the shallow-roughness problem (1.3) that no
normal velocity w(1) is produced, and therefore Hi3 does not participate in its
asymptotic solution. We now see that this remains true in general, and only s1 and
s2 are left to be determined in the next sections.

4. Protrusion coefficients and effective boundary condition
Once it has been established that a small wall perturbation produces the same effect,

insofar as its asymptotic velocity field is concerned, as a shallow one characterized
by a suitable wall velocity, it becomes natural to normalize the coefficients s1 and
s2, which can be extracted from a numerical solution of the Stokes equations, to the
value of s1 that would be obtained in the shallow-roughness case. The latter, for a unit
velocity gradient u(0)z = 1 oriented in the x direction, is simply the negative volume of
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356 P. Luchini

the wall perturbation:

s1 =−
∫

h(x, y) dx dy≡−V. (4.1)

We are thus led to define non-dimensional protrusion coefficients c11 ≡ −s1/V and
c21 ≡ −s2/V , expected to be such that c11→ 1 and c21→ 0 as the protrusion’s aspect
ratio tends to zero. If the protrusion coefficients of a given geometry are known, the
matching depicted in figure 1 can be carried out by simply multiplying h with the
corresponding protrusion coefficients in the linearized boundary condition (1.3):

u(1)(x, y, 0)=−c11h(x, y)u(0)z , v(1)(x, y, 0)=−c21h(x, y)u(0)z , w(1)(x, y, 0)= 0. (4.2)

Conversely, the adequacy of the standard linearized boundary condition (1.3) can be
judged by looking at the difference between the numerically computed protrusion
coefficients and (1, 0).

Since the dependence of the solution of the Stokes equations on the external velocity
gradient is linear (although its dependence on h(x, y) is not), (4.2) can be completed
to account for an arbitrary direction of the external velocity gradient once protrusion
coefficients are computed in two orthogonal directions. Equation (4.2) then becomes

v
(1)
i (x1, x2, 0)=−cijh(x1, x2)v

(0)
j,z , v

(1)
3 (x1, x2, 0)= 0 (4.3)

where i, j = 1 . . . 2 (subscript , z instead representing a derivative) and the four
protrusion coefficients cij transform geometrically like a two-dimensional tensor.

5. Relation to past studies of periodic arrangements
Past studies of Stokes flow near perturbed boundaries have mostly dealt with

periodic arrays or statistically homogeneous random arrangements of protuberances.
In order to relate to such studies, we must first connect the protrusion coefficients of
an isolated protuberance to those of a periodic array.

For an isolated protrusion, the velocity far field is proportional to H and, according
to (3.3), approaches its behaviour at infinity rather slowly with a relative error O(1/r).
For a periodic array of equal shapes, instead, the behaviour at infinity of the Stokes
solution is expressed by a Fourier series, all of whose terms except the first decay
exponentially with z. More precisely, the zero-wavenumber Fourier component of the
solution of the Stokes equations (1.5) is constant with z (everywhere, and thus also
asymptotically), implying that the induced velocity u′ tends to a constant u′∞ and that

u′∞ =
1
A

∫
u(x, y, 0) dx dy=− 1

A

∫
h(x, y) dx dy=−h̄ (5.1)

in the shallow-roughness limit, or u′∞ = −c11h̄ in the small-roughness limit, where A
denotes the area of a fundamental cell of the periodic arrangement (or average area per
protuberance of the random arrangement) and therefore h̄ denotes its mean height.

Periodic arrangements of protrusions were studied in the past by Bechert &
Bartenwerfer (1989) (for the longitudinal two-dimensional viscous flow, governed by
the Laplace equation), Luchini et al. (1991) (for the transverse two-dimensional Stokes
flow), Sarkar & Prosperetti (1995) (for the Laplace equation in a three-dimensional
setting), Sarkar & Prosperetti (1996) (who formulated the general problem of Stokes
flow past a periodic or random array of protuberances, and solved it analytically for
sparse hemispherical bosses) and Kamrin et al. (2010) (who calculated the second
order of the shallow-roughness perturbative expansion in ε). Bechert & Bartenwerfer
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(1989) and Luchini et al. (1991) used the name longitudinal and transverse protrusion
heights for what are here the quantities c11h̄ and c22h̄ (c21 and c12 being zero in the
two-dimensional problem), because the asymptotic velocity profiles vi ' (z − ciih̄)v

(0)
i,z

appear each to originate at the height ciih̄ (no summation implied). Kamrin et al.
(2010) adopted the name of mobility tensor for the protrusion-height tensor cijh̄, and
provided an explicitly symmetric second-order approximation of this tensor in terms
of the Fourier components of h(x, y), a numerical example of which will be given in
§ 8. In fact Sarkar & Prosperetti (1996) had already proved that, as a consequence of
the Stokes problem’s reciprocity properties, the exact cij tensor must also be symmetric.
An alternative proof of this symmetry is given in the Appendix.

Sarkar & Prosperetti (1996) used the symbol 1+ k for the coefficient that is c11 here,
and calculated a value of 1.3156 for it in the example of sparse hemispherical bosses.
However, according to Sarkar & Prosperetti (private communication), a missing factor
of π was later found in these calculations by Mauro Sbragaglia, while working with
Prosperetti on a related problem. With this error corrected the coefficient 1 + k
becomes 4.1331, perfectly reproduced by the present computations as reported in
figure 5 below. This protrusion coefficient is larger than the corresponding coefficient
for the Laplace equation, calculated to be 3 by Sarkar & Prosperetti (1995); it is
proved in the Appendix that a similar inequality must hold in general.

6. Numerical computation
Numerical protrusion coefficients for a few common shapes have been obtained

from a multigrid finite-difference Stokes solver on a staggered square grid, with the
wall represented as an immersed boundary, and periodic boundary conditions in the
homogeneous directions. From a computational viewpoint a periodic array, in addition
to being convenient to implement through periodic boundary conditions, allows the
height of the computational domain to be not very large owing to exponential
convergence of the induced velocity field. On the other hand, because of the nonlinear
dependence of (3.2) on h, a periodic arrangement of equal shapes will not have exactly
the same protrusion coefficient as an isolated one; the period has to be chosen by
trial and error to be large enough that the behaviour of an isolated roughness element
is approximated with sufficient accuracy. Conversely, if a square lattice is considered
with both periods equal to 1, as will be assumed in what follows, the volume of the
chosen protrusion has to be sufficiently small. As long as the array is sparse enough
that the numerical computation on a periodic domain approximates the behaviour of an
isolated protuberance, s1 and s2 in (3.4) are approximated by u′∞ and v′∞ respectively,
and the protrusion coefficients can be calculated as

c11 =−u′∞/V, c21 =−v′∞/V. (6.1)

A number of different geometrical shapes have been studied numerically, each one
for a range of aspect ratios. Assuming a period of 1 in both the x and y directions,
numerical parameters are the grid size, the height of the discretization domain and
the size (diameter) of the protuberance. A grid-convergence study of our immersed-
boundary discretization is reported in figure 4 for two typical shapes. Convergence
with respect to the height of the domain is exponentially fast: a height of z= 1 proved
sufficient to obtain a less than 10−4 error in most cases. The effect of roughness size
on accuracy will be discussed in § 9.
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FIGURE 4. Error in the protrusion coefficient versus number of discretization steps in a
period.

Cylinder if x2 + y2 < R2 then z< a else z< 0

Smoothed
cylinder

z<
a

1+ exp
[
10
(√

x2 + y2/R− 1
)]

Square cylinder if |x|< R and |y|< R then z< a else z< 0

Cone if x2 + y2 < R2 then z< a(1−√x2 + y2/R) else z< 0

Gaussian z< a exp[−(x2 + y2)/(4R2)]
Spheroid if x2 + y2 < R2 then z< a

√
1− (x2 + y2)/R2 else z< 0

3:1 ellipsoid if (3x/R)2 + (y/R)2 < 1 then z< a
√

1− (3x/R)2 − (y/R)2 else z< 0

TABLE 1. List of wall shapes used in the computation, parametrized by their (positive or
negative) height a and radius R, each one specified through the logical expression used by
the computer program to test whether a point of coordinates x, y, z falls in its interior.

7. Numerical results
7.1. Axisymmetric bumps

Figure 5 shows the computed protrusion coefficient as a function of the aspect ratio for
a number of axisymmetric geometrical shapes as described in table 1.

The square cylinder is included here because, as will be seen in § 7.3, it also
behaves like an axisymmetric shape in that it produces the same asymptotic velocity
field independently of its orientation.

The quantitative definition of the aspect ratio is to some extent arbitrary, but it
affects whether the curves in figure 5 fall more or less near to each other. After
defining the aspect ratio of the cylinder as the ratio of its height to diameter, a
reasonably good collapse of other shapes’ data on the cylinder’s curve has been
obtained by defining their aspect ratio as the aspect ratio of the cylinder that would
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0 0.1 0.2 0.3 0.4 0.5
1.0

1.5

2.0
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3.5
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4.5

5.0

Square cylinder
Circular cylinder

Smoothed circ. cyl.
Half spheroid

Half sphere
Gaussian bump

Circular cone

FIGURE 5. Protrusion coefficient for axisymmetric bumps. For the circular cylinder, ra =
height/diameter. Other shapes have the aspect ratio of the circular cylinder with the same
barycentre and volume.

have the same barycentre and volume. As can be seen, with this definition the different
curves fall fairly close to each other up to an aspect ratio of 0.2, and for the bluffer
shapes (i.e. with the exception of the cone and Gaussian) up to 0.5, so that a common
trend can be recognized for all the shapes involved. In fact this trend is not far from
a straight line, a fact which makes the protrusion coefficient fairly simple to predict in
this range of aspect ratios, where it is nonetheless non-trivially larger than unity.

7.2. Cavities
Nothing in the previous analysis prevents the height of the protrusion from becoming
negative, i.e. the protrusion from transforming into a cavity. A plot of the protrusion
coefficient for cavities is reported in figure 6.

It may be observed that in the case of cavities the linearized boundary condition
(2.7) overestimates the induced velocity, i.e. the protrusion coefficient is smaller than
unity. An interesting trend is observed if its reciprocal 1/c11 is plotted (see figure 7):
all the curves tend to straight lines at large negative aspect ratios, but this time
with visibly different slopes. A simple interpretation of this behaviour emerges if
one observes that the volume of the cavity divided by its aspect ratio tends to be
proportional to the area of the cavity planform; therefore a protrusion coefficient
inversely proportional to the aspect ratio is a sign that the induced velocity of the
cavity tends to a constant for large depth and in this limit depends on its area only.

7.3. Skewed shapes
As noted in § 1, the induced velocity field is always aligned with the inducing velocity
in the shallow-roughness limit, even when a skewed geometry (such as a slanted
winglet) would let us predict the presence of a sideways component. Therefore we
expect the c21 protrusion coefficient, which is allowed to be non-null in the small-
roughness limit, to tend to zero with decreasing aspect ratio. This is indeed the case,
as shown in figure 8 for the example of an ellipsoidal shape.
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Gaussian trough
Circular cone

FIGURE 6. Protrusion coefficient for axisymmetric cavities.
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FIGURE 7. Protrusion coefficient of cavities on a reciprocal scale.

More specifically, one can remark that since the cij protrusion coefficients form
a symmetric 2 × 2 tensor, this tensor becomes diagonal in two orthogonal principal
directions: its cross-flow component c21 (=c12) is zero when the main velocity comes
from one of these directions, and always attains its maximum at 45◦ with respect
to the principal directions. In the example of the ellipsoid these are obviously the
directions of its symmetry axes, but they remain orthogonal even for arbitrary and less
symmetrical shapes. The two principal values have the same role as the longitudinal
and transverse protrusion heights, as defined for drag-reducing riblets by Bechert
& Bartenwerfer (1989) and Luchini et al. (1991). The principal values coincide,
and c21 becomes identically zero in any orientation, if the geometrical shape of the
protuberance has higher than C2 rotational symmetry (transforms into itself under a
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FIGURE 8. Longitudinal and cross-flow protrusion coefficients for a 45◦-slanted 3:1 ellipsoid.

rotation of less than 180◦). For a square or an equilateral triangle, for instance, the
orientation of the main stream is totally irrelevant and the induced velocity remains
parallel to the base flow velocity just as though they were axisymmetric shapes.

8. Approximations of the protrusion coefficient and their applicability limits
Although the reported values of the protrusion coefficient are a numerical result

and do not have an analytic expression, their relatively smooth behaviour makes a
fit possible by simple interpolation formulas. As an example, one simple function
of the aspect ratio ra that behaves linearly for ra→+∞, proportionally to 1/ra for
ra → −∞, and equals 1 for ra = 0 can be obtained from the solution formula of
quadratic equations:

cp = 5.2 ra +
√

1+ (5.2 ra)
2. (8.1)

Figure 9 reproposes the protrusion coefficient of a smoothed circular cylinder, over
a range encompassing positive and negative values of the aspect ratio, in comparison
with (8.1). As may be seen, the fit is satisfactory for all practical purposes. The
same figure also reports the prediction of the shallow-roughness limit, which is a
protrusion coefficient constantly equal to 1, and the prediction for the same geometry
of the second-order approximation of Kamrin et al. (2010), which is a straight line
tangent to the exact curve at the origin (with a slope of 5.568 calculated from their
equation (3.4)). The application range of the standard shallow-roughness boundary
condition (1.3), the estimation of which was one of the purposes of this paper, is
clearly the one where the protrusion coefficient departs from 1 less than the allowed
error. For instance, for a maximum error of the order of 10–11 % the aspect ratio must
be contained within ±0.02 (or ±0.002 for 1 %), and this range can be expected to be
qualitatively valid for other wall shapes as well. By a similar argument, the Kamrin
et al. (2010) approximation may be estimated to be valid (within a 10 % error) for an
aspect ratio in the [−0.07,+0.10] interval.
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0
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Interpolation formula (8.1)

First-order (shallow-roughness) approx.
Second-order (Kamrin et al. 2010) approx.

FIGURE 9. Comparison of the numerical result with its various approximations.

9. Proximity interaction
Let us now return to the relationship between the effects of an isolated wall

irregularity and of a periodic arrangement of them. In the shallow-roughness limit
there is no difference, because the effects of multiple wall irregularities superpose
linearly. For a periodic arrangement of equal shapes, (2.1) may be rewritten as

v(x)=
∞∑

i=−∞

∞∑
j=−∞

∫
e1⊗e2

H(x− ξ − ie1 − je2) ·v(ξ) dS, (9.1)

where e1 and e1 are the two fundamental periods and e1 ⊗ e2 is the elementary
parallelogram of the periodic arrangement. For the square pattern used in the present
numerical computations, where e1 and e2 are unitary and mutually orthogonal and
coincide with the x and y unit vectors of the reference frame, and with v(ξ) given
in the shallow-roughness limit by (2.7), the induced velocity u′ calculated from (9.1)
turns out to be

u′(x, y, z)=−
∞∑

i=−∞

∞∑
j=−∞

∫ 1

0

∫ 1

0
h(ξ, η)

× 3
2π

(x− ξ − i)2 z

[(x− ξ − i)2 + (y− η − j)2 + z2]5/2
dξ dη. (9.2)

Its limit when h tends to be proportional to a δ function (i.e. when the diameter of the
protuberance becomes negligible compared to the period, in the present normalization
where the period is the reference length) is given by

u′(x, y, z)'−V
∞∑

i=−∞

∞∑
j=−∞

3
2π

(x− i)2 z

[(x− i)2 + (y− j)2 + z2]5/2
, (9.3)
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with volume V = ∫ h(ξ, η) dξ dη. By comparison with (5.1) we may deduce that

lim
z→∞

∞∑
i=−∞

∞∑
j=−∞

3
2π

i2 z

(i2 + j2 + z2)
5/2 = 1, (9.4)

and indeed this non-trivial equality is numerically verified.
Let us now see how the picture changes in the small-roughness limit. The relevant

boundary condition (3.2) is nonlinear in h and the different protuberances interact; the
compound u′∞ may differ from the sum of their individual contributions. For a general
unperturbed velocity gradient u(0)z the latter would be

u′(x)'−c11u(0)z V
∞∑

i=−∞

∞∑
j=−∞

3
2π

(x− i)2 z

[(x− i)2 + (y− j)2 + z2]5/2
, (9.5)

which reduces to u′∞ =−c11u(0)z V for z→∞ in accordance with (9.4).
Equation (9.5) in fact becomes valid when c11V is small (but notice that c11 itself

need not be small); more generally it represents the first term of an expansion of the
velocity perturbation in powers of c11V . This type of problem belongs in the theory
of multiple scattering, as observed by Sarkar & Prosperetti (1996). The next term
of the series may be determined in a general way if one observes that when, with
growing h, the interaction begins to be significant, the periodic protuberances can still
be considered to sit in the far field of one another. Therefore it appears that a better
approximation of u′(x) than (9.5) is

u′(x)'−c11[u(0)z + u′z(0)]V
∞∑

i=−∞

∞∑
j=−∞

3
2π

(x− i)2 z

[(x− i)2 + (y− j)2 + z2]5/2
, (9.6)

where u′z(0) is the velocity gradient induced at the position of a single protuberance by
all the others except itself. Differentiating (9.6) and then letting x= 0 gives

u′z(0)=−c11V [u(0)z + u′z(0)]S, (9.7)

where the interaction constant S is given by

S=
∑

(i,j)6=(0,0)

3
2π

i2

(i2 + j2)
5/2 ' 2.1566. (9.8)

At the same time the far-field induced velocity becomes

u′∞ =−c11V [u(0)z + u′z(0)]. (9.9)

Eliminating u′z(0) between (9.7) and (9.9) yields

u′∞ =−u(0)z c11V/(1+ S c11V) (9.10)

and its inverse

c11V =−u′∞/(u
(0)
z + S u′∞). (9.11)

Equation (9.10) is the result we are after: it provides the nonlinear proximity
correction to the expression (9.5) of the far-field velocity, and may be rewritten as
u′∞ =−cpc11u(0)z V, where

cp = (1+ S c11V)−1 (9.12)
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Equation (9.12)

Half sphere
Cylinder

Half 1:2 spheroid

FIGURE 10. Proximity coefficient of (9.12) compared to numerical results for a cylinder of
aspect ratio 0.5, a half sphere (aspect ratio 0.398) and a half 1:2 prolate spheroid (aspect ratio
0.199).

is a proximity coefficient. (In a dimensional setting, V in this formula must be read
as the volume of the protuberance divided by the period cubed.) The dependence of
cp on c11V is universal within the limits of this approximation, and only contains the
interaction constant S which depends on the periodic lattice (e.g. it equals 2.1566 for
a square array, or 2.2813 for a closely packed hexagonal arrangement) but not on
the shape of the protuberance. This is brought out in figure 10, which compares the
universal approximation (9.12) with the exact cp obtained from numerical solutions
with three protrusions of different shape and size. It must be noted that the horizontal
range of each plot extends up to a diameter such that the protuberances nearly
touch each other; the different curves, in addition to having the same tangent at
0 as expected, remain in fairly good agreement over the whole range. (A similar,
numerically computed, curve for the Laplace equation is in figure 6 of Sarkar &
Prosperetti (1995).)

The inverse relation (9.11) is useful in order to extrapolate the values of c11

numerically obtained for non-zero V to their limit for V → 0, something which was
actually done for the purpose of producing figures 5–8 and verifying their accuracy.

10. Conclusions
The flow perturbation induced by the linearized boundary condition for a shallow

wall corrugation, and the full Stokes solution for a small one, share a common
asymptotic behaviour at large distance. Investigation of this behaviour has enabled us
to both establish the operational limits of the linearized boundary condition, i.e. the
range of aspect ratio in which it is expected to yield a reasonably good approximation
(for instance, for an error of 10 % the aspect ratio must stay within ±0.02), and extend
this range with the aid of correction coefficients.

A peculiarity of the solution obtained from the linearized boundary condition (1.3),
as noted in § 1, is that only perturbations aligned with the base flow are produced.
This means that no wall-normal velocity component arises, contrary to what would be
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expected if the flow were inviscid, and no cross-flow is produced either, even when
the wall perturbation has a skewed shape. Nonetheless, both of these features are
confirmed by the analysis in the small-roughness limit. In fact, the far field that would
be induced by the normal velocity is never produced for any aspect ratio, because its
presence is forbidden by mass conservation. Cross-flow exists and can be quantified
for a skewed object, but its ratio to the longitudinal velocity tends to zero with
decreasing aspect ratio and becomes negligible in the range where linearized boundary
conditions apply.

Non-dimensional numerical results for a selection of protuberances and cavities
have been plotted in terms of two correction coefficients: a protrusion coefficient,
accounting for the effect of the aspect ratio, and a proximity coefficient, accounting
for the interference between equal objects in a periodic array when they are placed at
finite distance from each other. The protrusion coefficient for several axisymmetric
shapes is fairly close to that of a smoothed cylinder, well approximated by the
interpolation formula (8.1). The proximity coefficient is independent of the shape
of the object at leading order, and can be determined as a universal function of its
non-dimensional volume (volume divided by the period cubed), given by (9.12).

From an application viewpoint, for instance in receptivity calculations like those
that are the objective of the European FP7 project ‘RECEPT’, these results imply that
the classical linearized boundary condition (1.3) employed in either already developed
or to-be-developed simulation codes can be (i) trusted ‘as is’ if the aspect ratio of
protuberances (or cavities) is within the acceptable range (e.g. ±0.02 for an error of
10 %), or (ii) replaced by (4.3) if the aspect ratio is larger but irregularities are sparse,
or (iii) further multiplied by the proximity coefficient of (9.12) if interaction between
irregularities becomes important.
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Appendix. Variational properties of the asymptotic Stokes problem
In a compact domain Ω , the solution of the Stokes problem minimizes the

dissipation

D= 1
4

∫
Ω

(
∂vi

∂xj
+ ∂vj

∂xi

)(
∂vi

∂xj
+ ∂vj

∂xi

)
dΩ (A 1)

under the constraints of the continuity equation (1.5a) and velocity boundary
conditions. Indeed, taking the first variation of (A 1) and integrating by parts gives

δD= 1
2

∫
Ω

(
∂vi

∂xj
+ ∂vj

∂xi

)(
∂δvi

∂xj
+ ∂δvj

∂xi

)
dΩ

=
∮

∂Ω

δvi

(
∂vi

∂xj
+ ∂vj

∂xi

)
nj d∂Ω −

∫
Ω

δvi
∂

∂xj

(
∂vi

∂xj
+ ∂vj

∂xi

)
dΩ. (A 2)

Inserting the Stokes momentum equation (1.5b) in the second integral and integrating
by parts again reduces this expression to

δD=
∮

∂Ω

δvi

[(
∂vi

∂xj
+ ∂vj

∂xi

)
nj − Pni

]
d∂Ω +

∫
Ω

P
∂δvi

∂xi
dΩ, (A 3)
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where the second integral is null because of the continuity equation. Thus

δD=−
∮

∂Ω

fiδvi d∂Ω, (A 4)

where fi = Pni − (∂vi/∂xj + ∂vj/∂xi)nj is the surface force applied on the boundary
of the domain. The standard conclusion of this way of reasoning is that if δvi = 0
(because velocity is imposed) on the boundary, D is an extremum. However, just as
in the classical application of variational principles to other fields of mechanics, there
are a number of additional consequences. One is that if D is seen as a function
of velocity boundary conditions, fi can be identified with the variational derivative
−δD/δvi. Another one is that if the integrations by parts leading to (A 4) are repeated
on (A 1) itself rather than on its variation, one finds

D=−1
2

∮
∂Ω

fivi d∂Ω (A 5)

(which may also be seen as an application of Euler’s formula for homogeneous
functions). A third consequence is that if, more generally, velocity boundary conditions
are applied on a part ∂Ωv of the boundary and force boundary conditions on another
part ∂Ωf ,

δD=−
∫
∂Ωv

fiδvi d∂Ω −
∫
∂Ωf

viδfi d∂Ω. (A 6)

Let us now particularize the above relationships to the case of Stokes flow between
an arbitrarily shaped solid wall at x3 = h(x1, x2) (with h(x1, x2) a periodic function for
definiteness, although this assumption could be relaxed) and a plane boundary located
at x3 = H where a constant surface force fi(x1, x2) = Fi is imposed. The zero-velocity
boundary condition at the solid wall and the periodic lateral conditions contribute zero
to either (A 5) or (A 6); therefore, on taking the constant force out of the integral,

D=−1
2

Fi

∫
x3=H

vi dx1 dx2, (A 7a)

δD=−δFi

∫
x3=H

vi dx1 dx2. (A 7b)

If we now let H→∞, the asymptotic behaviour of velocity at this boundary is such
that vi→−Fix3 + v′i,∞ (for i = 1 . . . 2), where v′1,∞ and v′2,∞ are the same constants
that were named u′∞ and v′∞ in § 5. It follows that the quantity D′ = D − AF2H/2
(A being the area of an elemental periodic cell) has a finite limit for H→∞, and

Av′i,∞ =−
∂D′

∂Fi
. (A 8)

But v′i,∞ is in turn a linear function of Fj, and the matrix connecting them is

∂v′i,∞
∂Fj
=− 1

A

∂2D′

∂Fi ∂Fj
, (A 9)

a symmetric matrix. This proves that the protrusion-height tensor is always symmetric,
as was mentioned in § 5.
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A second useful variational result can be derived if we recall that the solution of the
Stokes problem also minimizes the integral of the squared velocity gradient

G= 1
2

∫
Ω

∂vi

∂xj

∂vi

∂xj
dΩ, (A 10)

just as it minimizes the integral of its squared symmetric part (A 1). The derivation
goes through as above, the only difference being that the velocity gradient appears in
the boundary integral in place of the deformation rate. Although on a solid boundary
this quantity would not be the true stress, for the behaviour at infinity of the solution
the difference is irrelevant. In particular, formulas similar to (A 7) are also valid with
G in place of D.

However, with reference to the square of the velocity gradient, one can observe
that whereas the solution of the Stokes equations provides the constrained minimum
of G using the continuity equation as a constraint, minimizing (A 10) without this
constraint yields three independent Laplace equations for v1, v2 and v3, two of which
have the trivial solution v2 = v3 = 0 when the only inhomogeneous boundary condition
is imposed on v1 (at infinity). Since the constrained minimum of some quantity cannot
be lower than its unconstrained minimum, it follows that the protrusion height of the
Stokes problem cannot be lower than the protrusion height of the Laplace equation for
the same geometry.
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