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On the Chow ring of some special
Calabi–Yau varieties
Robert Laterveer

Abstract. We consider Calabi–Yau n-folds X arising from certain hyperplane arrangements. Using
Fu–Vial’s theory of distinguished cycles for varieties with motive of abelian type, we show that the
subring of the Chow ring of X generated by divisors, Chern classes and intersections of subvarieties
of positive codimension injects into cohomology. We also prove Voisin’s conjecture for X, and
Voevodsky’s smash-nilpotence conjecture for odd-dimensional X.

1 Introduction

Given a smooth projective variety Y over C, let Ai(Y) ∶= CHi(Y)Q denote the Chow
groups of Y (i.e., the groups of codimension i algebraic cycles on Y withQ-coefficients,
modulo rational equivalence [17, 32, 42]). The intersection product defines a ring
structure on A∗(Y) = ⊕i Ai(Y), the Chow ring of Y. In the case of K3 surfaces, this
ring structure has a remarkable property:

Theorem 1.1 (Beauville–Voisin [4]) Let S be a projective K3 surface. TheQ-subalgebra

R∗(S) ∶= ⟨A1(S), c j(S)⟩ ⊂ A∗(S)
injects into cohomology under the cycle class map.

A fancy way of rephrasing this result is as follows: for any variety Y, let

Ni(Y) ∶= Ai(Y)/Ai
hom(Y)

denote the quotient, where Ai
hom(Y) ⊂ Ai(Y) denotes the homologically trivial

cycles. Then for K3 surfaces S (which have H1(S ,Q) = 0 and so A1(S) injects into
cohomology), Theorem 1.1 says that the Q-algebra epimorphism

A∗(S) ↠ N∗(S)
admits a section, whose image contains the Chern classes of S—that is, S has the
section property, in the language of [16].
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It is then natural to ask which other varieties have the section property. An interest-
ing partial answer is given in [16], by extending O’Sullivan’s theory of distinguished
cycles from abelian varieties to varieties with motive of abelian type: if a variety Y
verifies condition (⋆) of loc. cit., then all powers of Y have the section property (cf.
Section 2.3 below). One could say that varieties verifying the condition (⋆) form
a kind of “meilleur des mondes possibles,” a world in which Chow motives and
their multiplicative behaviour are well-understood. Unfortunately, inhabitants of this
meilleur des mondes are rather scarce; some examples of varieties verifying condition
(⋆) are given in [16, 28].

The main result of the present paper exhibits special Calabi–Yau varieties of any
dimension for which the Chow ring is just as well-behaved as that of K3 surfaces:

Theorem (=Theorem 3.1) Let X be a hyperelliptic Calabi–Yau variety of dimension
n ≥ 2. The Q-subalgebra

R∗(X) ∶= ⟨A1(X), Ai(X) ⋅A j(X), ck(X)⟩ ⊂ A∗(X) (i , j > 0)

generated by divisors, Chern classes and by cycles that are intersections of two cycles of
positive codimension injects into cohomology. In particular, the image of the intersection
product

Ai(X) ⊗A j(X) → Ai+ j(X) (i , j > 0)

injects into cohomology.

Here, a hyperelliptic Calabi–Yau variety is defined as follows: given 2n + 2 hyper-
planes in general position in Pn , the double cover of Pn branched along the union of
hyperplanes admits a crepant resolution that is Calabi–Yau. We say that the resulting
Calabi–Yau n-fold is hyperelliptic if the hyperplanes osculate a rational normal curve
(cf. Section 2.2 below). These Calabi–Yau varieties have been studied in [18, 30, 38].

The behavior exhibited by Theorem 3.1 is remarkable, in the sense that for general
Calabi–Yau varieties Y one does not expect that the image of the intersection product

Ai(Y) ⊗A j(Y) → Ai+ j(Y) (i , j > 0)

injects into cohomology; one only expects this for i + j = dim Y (and this last expec-
tation is known for complete intersection Calabi–Yau varieties [15], but wide open in
general).

In proving Theorem 3.1, we rely on the “meilleur des mondes” formalism of [16].
We actually prove that a certain blow-up of X verifies condition (⋆) of loc. cit.;
the result for X is then a consequence of the nice behavior of the formalism. This
reasoning is very similar to that of [28].

As a by-product of the argument, we also obtain some new cases where Voisin’s
conjecture [43] is verified:
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Theorem (=Theorem 4.2) Let X be a hyperelliptic Calabi–Yau n-fold. Any two zero-
cycles a, a′ ∈ An

hom(X) satisfy

a × a′ = (−1)n a′ × a in A2n(X × X).

(Here, a × a′ denotes the exterior product (p1)∗(a) ⋅ (p2)∗(a′) ∈ A2n(X × X), where
p j is projection to the jth factor.)

Another by-product concerns a conjecture of Voevodsky [40]:

Theorem (=Theorem 4.7) Let X be a hyperelliptic Calabi–Yau variety of odd dimen-
sion. Then homological equivalence and smash-equivalence coincide for all algebraic
cycles on X.

The aim of this paper is twofold: on the one hand, we want to promote the “meilleur
des mondes” formalism of [16] (and encourage others to find new instances where this
formalism can be applied); on the other hand, we want to raise interest for questions
concerning the multiplicative structure of the Chow ring of varieties (and to this end,
we have included some open questions concerning other Calabi–Yau varieties, cf.
section 5).

Conventions In this article, the word variety will refer to a reduced irreducible scheme
of finite type over C. A subvariety is a (possibly reducible) reduced subscheme which is
equidimensional.

All Chow groups are with rational coefficients: we will denote by A j(Y) the Chow
group of j-dimensional cycles on Y with Q-coefficients; for Y smooth of dimension n the
notations A j(Y) and An− j(Y) are used interchangeably. The notations A j

hom(Y) and
A j

AJ(Y) will be used to indicate the subgroup of homologically trivial (resp. Abel–Jacobi
trivial) cycles. For a morphism f ∶X → Y, we will write � f ∈ A∗(X × Y) for the graph
of f.

The covariant category of Chow motives (i.e., pure motives with respect to rational
equivalence with Q-coefficients as in [2]) will be denoted Mrat.

2 Preliminaries

2.1 Intersection theory on quotient varieties

Lemma 2.1 Let M be a quotient variety, i.e., M = M′/G where M′ is a smooth quasi-
projective variety and G ⊂ Aut(M′) is a finite group. Then A∗(M) ∶= ⊕i Adim M−i(M)
is a commutative graded ring, with the usual functorial properties.

Proof According to [17, Example 17.4.10], the natural map

Ai(M) → Adim M−i(M)
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from operational Chow cohomology (with Q-coefficients) to the usual Chow groups
(with Q-coefficients) is an isomorphism. The lemma follows from the good formal
properties of operational Chow cohomology. ∎

Remark 2.2 In particular, Lemma 2.1 implies that the formalism of correspondences
and pure motives (with Q-coefficients) makes sense for projective quotient varieties.

2.2 Hyperelliptic Calabi–Yau varieties

It is a well-known fact that hyperplane arrangements give rise to Calabi–Yau varieties:

Proposition 2.3 Let H1 , . . . , H2n+2 be hyperplanes in Pn that are in general position
(i.e., dim H i1 ∩⋯∩H i j = n − j for each subset {i1 , . . . , i j} ⊂ {1, . . . , 2n + 2}). Let X̄ →
Pn be the double cover ramified along ∪2n+2

i=1 H i . Then X̄ is a quotient variety, and there
exists a resolution of singularities f ∶X → X̄ such that X is a Calabi–Yau variety. The
morphism f is a sequence of blow-ups with smooth centers Z i that have trivial Chow
groups (i.e., A∗hom(Z i) = 0).

Proof As explained in [18], the arrangement {H i} is determined by an (n + 1) ×
(2n + 2)-matrix (b i j), where b i j ∈ C. Let Y ⊂ P2n+1 be the complete intersection of
quadrics

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b00x2
0 + b01x2

1 +⋯ ⋯⋯+ b0,2n+1x2
2n+1 = 0,

⋮
⋮

bn0x2
0 + bn1x2

1 +⋯⋯⋯+ bn ,2n+1x2
2n+1 = 0.

The nonsingularity of Y is equivalent to the H i being in general position [37,
Proposition 3.1.2]. There is an isomorphism

X̄ ≅ Y/G

for some finite group G (this is proven for n = 3 in [18, Proposition 2.5]; the argument
works for general n), and so X̄ is a quotient variety.

A crepant resolution X → X̄ is constructed in [7, Section 5.1] (an alternative
construction is given in [30, Proposition 4.2]). For later use, we give a precise
description of the resolution algorithm. The resolution X → X̄ is constructed as a
cartesian diagram

X =∶ Xm �→ ⋯ ⋯ �→ X1 �→ X0 ∶= X̄

↓ πm ↓ π1 ↓ π0

Pm
rm−1��→ ⋯ ⋯ �→ P1

r0�→ P0 ∶= Pn ,

where r0 is a blow-up with center the codimension 2 intersection Q0 ∶= H1 ∩H2,
and each r j is a blow-up with center Q j ⊂ Pj , where Q j is the strict transform of an
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intersection H i1 ∩H i2 . (This description is perhaps not immediately apparent from
reading [7, Section 5.1], but this becomes crystal clear from the reinterpretation of [7]
given in [19]: the arrangement {H i} is splayed, in the sense of loc. cit. (cf. [19, Lemmas
3.24 and 3.25]), and hence the resolution algorithm [19, Algorithm 1.5] consists of
blowing-up all pairwise intersections H i1 ∩H i2 , in arbitrary order.) ∎

Remark 2.4 In case n = 2, X as in Proposition 2.3 is a K3 surface of the type studied
in [29, 34, 44]. In case n = 3, Calabi–Yau varieties X as in Proposition 2.3 are special
cases of so-called “double octics”; these special cases have been intensively studied,
particularly their modular properties [8–12, 18, 31, 38].

In order to define hyperelliptic Calabi–Yau varieties, we consider a special case of
the above construction:

Proposition 2.5 Let p1 , . . . , p2n+2 ∈ P1 be distinct points, and let

H i ∶= γ(p i × (P1)n−1) ⊂ Pn ,

where γ∶ (P1)n → Pn is the natural map

γ∶ (P1)n → Symn(P1) ≅ PH0(P1 ,OP1(n)) ≅ Pn .

Then H1 , . . . , H2n+2 is a hyperplane arrangement in general position, and hence gives
rise to a Calabi–Yau n-fold X.

The hyperplanes H1 , . . . , H2n+2 are tangent to a rational normal curve of degree n.
Conversely, any hyperplane arrangement osculating a rational normal curve of degree n
arises in this way.

Proof The hyperplane H i corresponds to degree n divisors on P1 containing the
point p i . The intersection of hyperplanes H i1 ∩⋯∩H ir then corresponds to degree n
divisors on P1 containing r distinct points; this has dimension equal to the expected
dimension n − r.

The second statement (which is observed in [18, Remark 2.10]) follows from the
fact that the image of the diagonal embedding of P1 under γ is a rational normal curve
tangent to the H i . ∎

Definition 2.6 Let {H i} be a hyperplane arrangement as in Proposition 2.5, and
let X̄ → Pn be the double cover branched along ∪i H i . The crepant resolution X → X̄
constructed via the algorithm of Proposition 2.3 is called a hyperelliptic Calabi–Yau
variety.

Remark 2.7 The appellation “hyperelliptic” comes from [18], where the moduli
space of these Calabi–Yau varieties of dimension n = 3 is called the “hyper-
elliptic locus.” As observed in [18, Remark 2.10], the Calabi–Yau n-folds of
Proposition 2.3 have moduli dimension n2, while the hyperelliptic Calabi–Yau n-
folds of Proposition 2.5 have moduli dimension 2n − 1.
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In case n = 2, this is the well-known fact that K3 surfaces coming from double
planes branched along six lines form a four-dimensional family, while imposing that
the six lines are tangent to a conic one obtains exactly the quartic Kummer K3
surfaces (which form a three-dimensional family). The moduli space of these surfaces
is studied in [29].

The next result provides justification for Definition 2.6:

Proposition 2.8 Let X̄ → Pn be a double cover branched along a hyperplane arrange-
ment as in Proposition 2.5, and let X → X̄ be the crepant resolution coming from
Proposition 2.3 (i.e., X is a hyperelliptic Calabi–Yau n-fold).

(i) There is an isomorphism X̄ ≅ Cn/G, where C is a hyperelliptic curve of genus n,
and G ⊂ Aut(Cn) is a finite group of automorphisms; in particular, X̄ has only quotient
singularities.

(ii) There exist a motive M ∈Mrat and isomorphisms of Chow motives

h(X̄) ≅ M ⊕⊕1(∗),
h(X) ≅ M ⊕⊕1(∗) in Mrat ,

where H j(M ,Q) = 0 for j /= n.

Proof (i) In case n = 3, this is contained in [18, Section 2.3]; the same argument
works for arbitrary n, as we now explain. Let q∶C → P1 be the hyperelliptic curve
branched along the points p1 , . . . , p2n+2 ∈ P1. The morphism

h∶ Cn qn

�→ (P1)n γ�→ Pn

is a Galois covering of degree 2n ⋅ n!, with Galois group G2 ≅ ⟨ι1 , . . . , ιn⟩ ⋊Sn (here
the ι j denotes the hyperelliptic involution of the jth copy of C). Let G ⊂ G2 be the
index 2 subgroup G ∶= N ⋊Sn , where N is the kernel of the sum homomorphism
(Z/2Z)n → Z/2Z. There is a cartesian diagram

Cn p�→ Cn/G

↓ qn ↓ π

(P1)n γ�→ Pn .

The Galois group of π is isomorphic to G2/G, and is generated by the image of ι1.
Hence, the ramification locus of π is the image of the fixed locus L1 ⊂ Cn of ι1 under
π ○ p. This is the same as the image of L1 under γ ○ qn . Since

qn(L1) =
2n+2
⋃
i=1

p i × (P1)n−1 ,

it follows that the ramification locus of π consists of the union of the hyperplanes

H i ∶= γ(p i × (P1)n−1) ⊂ Pn .
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As Cn/G and X̄ are double covers of Pn with the same ramification locus, this
proves (i).

As for (ii), note that X̄ (being a double cover of Pn branched along a degree
2n + 2 divisor) is isomorphic to an ample hypersurface in weighted projective space
P(1n+1 , n + 1). By weak Lefschetz, plus the fact that X̄ is a quotient variety and hence
satisfies Poincaré duality with Q-coefficients (cf. for instance [14, Section 4.2.2]), it
follows that

H j(X̄ ,Q) =
⎧⎪⎪⎨⎪⎪⎩

Q if j /= n even,
0 if j /= n odd.

Let M ⊂ h(X̄) be the submotive defined by the projector

ΔX̄ −
n
∑
j=0

1
d

h j × hn− j ∈ An(X̄ × X̄)

(where d is the degree of X̄). This gives a decomposition of h(X̄) as requested.
The resolution X → X̄ is done by blowing up subvarieties with trivial Chow groups,

and so the blow-up formula gives an isomorphism

h(X) ≅ h(X̄) ⊕⊕1(∗) in Mrat .

This gives the requested decomposition of h(X). ∎

Remark 2.9 It seems likely that in Proposition 2.8(ii), one actually has an
isomorphism

M ≅ Symn h1(C)
(this is stated for n = 3 in [38, Equation (1.3)] and [18, Proposition 2.9]1).

2.3 The section property and distinguished cycles

The following notion was introduced by O’Sullivan [33].

Definition 2.10 (Symmetrically distinguished cycles on abelian varieties [33]) Let
B be an abelian variety and α ∈ A∗(B). For each integer m ≥ 0, denote by Vm(α) the
Q-vector subspace of A∗(Bm) generated by elements of the form

p∗(αr1 × αr2 ×⋯× αrn),
where n ≤ m, r j ≥ 0 are integers, and p ∶ Bn → Bm is a closed immersion with each
component Bn → B being either a projection or the composite of a projection with

1More precisely, it is stated in [18, 38] that H3(X̄ ,Q) ≅ ∧3 H1(C ,Q) (from which the isomorphism
of motives would readily follow). However, the reference [38] contains no proof, and the proof of
[18, Proposition 2.9] contains a gap: it is asserted in loc. cit. that H3(Sym3(C),Q) ≅ H3(Jac(C),Q),
where C is a genus 3 curve and Jac(C) its Jacobian. However, dim H3(Sym3(C),Q) = 26, whereas
dim H3(Jac(C),Q) = 20.
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[−1] ∶ B → B. Then α is symmetrically distinguished if for every m the restriction of
the projection A∗(Bm) → N∗(Bm) to Vm(α) is injective.

The main result of [33] is:

Theorem 2.11 (O’Sullivan [33]) Let B be an abelian variety. Then DA∗(B), the
symmetrically distinguished cycles in A∗(B), form a gradedQ-subalgebra that contains
symmetric divisors and that is stable under pull-backs and push-forwards along homo-
morphisms of abelian varieties. Moreover the composition

DA∗(B) ↪ A∗(B) ↠ N∗(B)

is an isomorphism of Q-algebras.

Let X be a smooth projective variety such that its Chow motive h(X) belongs to
the strictly full and thick subcategory of Chow motives generated by the motives of
abelian varieties. We say that X has motive of abelian type. A marking for X is an
isomorphism of Chow motives

ϕ∶ h(X) ≅�→ M in Mrat

with M a direct summand of a Chow motive of the form ⊕i h(B i)(n i) cut out
by an idempotent matrix P ∈ End(⊕i h(B i)(n i)) whose entries are symmetrically
distinguished cycles, where B i is an abelian variety and n i is an integer (the Tate twist).
We refer to [16, Definition 3.1] for the precise definition.

Given a marking ϕ ∶ h(X) ≃�→ M, we define the subgroup of distinguished cycles
of X, denoted DA∗ϕ(X), to be the pre-image of DA∗(M) ∶= P∗⊕i DA∗−n i (B i) via the
induced isomorphism ϕ∗ ∶ A∗(X)

≃�→ A∗(M).
Given another smooth projective variety Y with a marking ψ ∶ h(Y) → N , the

tensor product ϕ ⊗ ψ ∶ h(X × Y) → M ⊗ N naturally defines a marking for X × Y .
A morphism f ∶ X → Y is said to be a distinguished morphism if its graph is distin-
guished with respect to the product marking ϕ ⊗ ψ.

The composition

DA∗ϕ(X) ↪ A∗(X) ↠ N∗(X)

is clearly bijective. In other words, ϕ provides a section (as graded vector spaces) of the
natural projection A∗(X) ↠ N∗(X). In [16], sufficient conditions on the marking ϕ
are given such that DA∗ϕ(X) defines a Q-subalgebra of A∗(X):

Definition 2.12 (Definition 3.7 in [16]) We say that the marking ϕ ∶ h(X) ≃�→ M
satisfies the condition (⋆) if the following two conditions are satisfied:
(⋆Mult) the small diagonal δX belongs to DA∗ϕ⊗3(X3); that is, under the induced

isomorphism ϕ⊗3
∗ ∶ A∗(X3) ≃�→ A∗(M⊗3), the image of δX is symmetri-

cally distinguished, i.e., in DA∗(M⊗3).
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(⋆Chern) all Chern classes c i(X) belong to DA∗ϕ(X).
If in addition X is equipped with the action of a finite group G, we say that the marking
ϕ ∶ h(X) ≃�→ M satisfies (⋆G) if:
(⋆G) the graph gX of g ∶ X → X belongs to DA∗ϕ⊗2(X2) for all g ∈ G.

The raison d’être for condition (⋆) is its relation to the section property, as
mentioned in the introduction:

Proposition 2.13 (Proposition 3.12 in [16]) If the marking ϕ ∶ h(X) ≃�→ M satisfies
the condition (⋆), then there is a section, as gradedQ -algebras, for the natural surjective
morphism A∗(X) → N∗(X) such that all Chern classes of X are in the image of this
section.

In other words, assuming (⋆) we have a graded Q-subalgebra DA∗ϕ(X) of the Chow
ring A∗(X), which contains all the Chern classes of X and is mapped isomorphically to
N∗(X). Elements of DA∗ϕ(X) are called distinguished cycles.

The raison d’être for condition (⋆G) is that it allows to easily treat quotients:

Proposition 2.14 Let Y be a smooth projective variety verifying (⋆) and (⋆G), for
some finite group G ⊂ Aut(Y). Then X/G has a marking such that X/G verifies
condition (⋆Mult), and the quotient morphism p∶X → X/G is distinguished. If p is étale
then X/G verifies condition (⋆).

Proof This is [16, Proposition 4.12]. ∎

We refer to [16] for examples of varieties satisfying (⋆); for our purposes here, let
us mention that these include abelian varieties, varieties with trivial Chow groups,2
and hyperelliptic curves:

Proposition 2.15 Let C be a hyperelliptic curve equipped with the action of the group
H ≅ Z/2Z generated by the hyperelliptic involution. Then C has a marking that satisfies
the conditions (⋆) and (⋆H), with the additional property that if P is a fixed point of H,
then the embedding P ↪ C is distinguished.

Proof This is [28, Proposition 3.3(i)]. ∎

The property (⋆) has great flexibility: as shown in [16, Section 4], this property is
stable under product, projectivization of vector bundles, and (under certain condi-
tions) blow-ups. The relevant result for blow-ups is as follows:

Proposition 2.16 [16] Let X be a smooth projective variety and let i ∶ Y ↪ X be a
closed smooth subvariety. Let X̃ be the blow-up of X along Y and let E be the exceptional

2A smooth projective variety X is said to have trivial Chow groups if A∗hom(X) = 0, cf. [41, 42].
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divisor, so that we have a cartesian diagram

E �
� j ��

p
��

X̃

τ
��

Y � � i �� X .

If we have markings satisfying the condition (⋆) for X and Y such that i ∶ Y ↪ X is
distinguished, then E and X̃ have natural markings that satisfy (⋆) and are such that
the morphisms i , j, τ and p are all distinguished.

If, in addition, X is equipped with the action of a finite group G such that G ⋅ Y = Y
and such that the markings of X and Y satisfy (⋆G), then the natural markings of E and
X̃ also satisfy (⋆G).

Proof This is the content of [16, Propositions 4.5 and 4.8]. ∎

Let us also recall the following, which will come in useful in the proof of our main
result (Theorem 3.1):

Proposition 2.17 Let X be a smooth projective variety of dimension n ≥ 2 with a
marking ϕ satisfying the condition (⋆) of Definition 2.12. Assume that the cohomology of
X is spanned by algebraic classes in degree ≠ n. Then the gradedQ-subalgebra R∗(X) ⊂
A∗(X) generated by divisors, Chern classes and by cycles that are the intersection of
two cycles in X of positive codimension (is contained in DA∗ϕ(X) and hence) injects into
N∗(X).

Proof This is [28, Proposition 2.10]. ∎

3 Main result

This section contains the proof of the main result, which is as follows:

Theorem 3.1 Let X be a hyperelliptic Calabi–Yau n-fold.
(i) There exists a sequence of blow-ups X̃ → X such that X̃ verifies condition (⋆),

and hence for each m ∈ N the Q-algebra epimorphism A∗(X̃m) → N∗(X̃m) admits a
section, whose image contains the Chern classes of X̃m .

(ii) Let n ≥ 2. The Q-subalgebra R∗(X) ⊂ A∗(X) generated by divisors, Chern
classes and by cycles that are intersections of two cycles of positive codimension injects
into cohomology. In particular, the image of the intersection product

Ai(X) ⊗A j(X) → Ai+ j(X) (i , j > 0)

injects into cohomology.

Proof To construct X̃, we proceed as follows: starting from the singular double
cover π∶ X̄ → Pn , we first blow-up all 0-dimensional loci π−1(H j1 ∩⋯∩H jn) (where
the j i are pairwise distinct), then we blow-up all strict transforms of one-dimensional
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loci π−1(H j1 ∩⋯∩H jn−1) (where the j i are pairwise distinct), and so on (ending with
codimension 2 loci).

This resolution process can be encoded in a cartesian diagram

Yn−1
tn−2��→ ⋯ ⋯ �→ Y1

t0�→ Y0 ∶= Cn

↓ pn−1 ↓ p1 ↓ p0

X̃ =∶ Xn−1
sn−2��→ ⋯ ⋯ �→ X1

s0�→ X0 ∶= X̄

↓ πn−1 ↓ π1 ↓ π0

Pn−1
rn−2��→ ⋯ ⋯ �→ P1

r0�→ P0 ∶= Pn .

(1)

Here, r0 is the blow-up with center ∪H j1 ∩⋯∩H jn , and each r i is the blow-up with
center Q i being the union of strict transforms of i-dimensional intersections H j1 ∩
⋯∩H jn−i (by construction, these strict transforms form a disjoint union). The arrows
s i and t i are induced by r i . Concretely, this means that t0 is the blow-up with center

Z0 ∶= ⋃
σ∈Sn

⋃
1≤ j1 , . . . , jn≤2n+2

σ(q j1 ×⋯× q jn) ⊂ Cn ,

(where q1 , . . . , q2n+2 ∈ C are the Weierstrass points). Likewise, each t i is a blow-up
with center

Z i ∶= ⋃
σ∈Sn

⋃
1≤ j1 , . . . , jn−i≤2n+2

σ(q j1 ×⋯× q jn−i) ⊂ Yi

(where a means strict transform of a). By construction, Z i is a disjoint union of
smooth irreducible components of dimension i.

The arrows π i are double covers. The arrow p0 is the quotient morphism for the
action of G0 ∶= N ⋊Sn , and the composition π0 ○ p0 is the quotient morphism for
the action of H0 ≅ (Z/2Z)n ⋊Sn . Each arrow p i (resp. each composition π i ○ p i ) is
the quotient morphism for the action of the finite group G i (resp. H i ) on Yi obtained
by lifting the action of G i−1 (resp. H i−1).

The idea is to prove property (⋆) for X̃ inductively, moving from right to left in
diagram (1). The induction base is Y0:

Lemma 3.2 Let G0 ⊂ H0 ⊂ Aut(Cn) be as above. The variety Y0 ∶= Cn verifies condi-
tions (⋆) and (⋆G0) and (⋆H0).

Proof (of Lemma 3.2.) The self-product Cn verifies condition (⋆) because hyper-
elliptic curves verify (⋆) (Proposition 2.15), and (⋆) is stable under products [16,
Proposition 4.1]. To check condition (⋆H0) (which implies condition (⋆H0)), it
suffices to check that the graph of g is distinguished for any g ∈ (Z/2Z)n and for
any g ∈Sn . For g ∈ N this follows from the fact that the graph of the hyperelliptic
involution is distinguished (Proposition 2.15), plus the compatibility of group actions
and products [16, Proposition 4.1]. For g ∈Sn , this follows from [16, Remark 4.2]. ∎
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The induction step is as follows:

Lemma 3.3 Assume Yi verifies conditions (⋆) and (⋆G i ) and (⋆H i ). Then Yi+1 verifies
conditions (⋆). and (⋆G i+1) and (⋆H i+1).

Proof (of Lemma 3.3.) This is an application of the general blow-up result Proposi-
tion 2.16. Let us check that all hypotheses of Proposition 2.16 are met with. The variety
Yi and the center Z i of the blow-up verify (⋆): for Yi this is by assumption; for Z i this
is true by induction, because Z i is C i blown-up along certain explicit centers (i.e., Z i
is of the form Yi with a smaller value of n). To see that the embedding ι i ∶ Z i ↪ Yi is
distinguished, we note that its graph �ι i is the pullback of the graph of the embedding
τ i ∶Q i ↪ Pi (here Q i and Pi are as in the proof of Proposition 2.3). The embedding
τ i is distinguished (indeed, one sees inductively that Pi and Q i have trivial Chow
groups, and so A∗(Q i × Pi) = DA∗(Q i × Pi)), and the assumption (⋆H i ) implies that
the quotient morphism π i ○ p i is distinguished [16, Proposition 4.12]. It follows that

�ι i = (π i ○ p i × π i ○ p i)∗�τ i ∈ DA∗(Z i × Yi).

All hypotheses of Proposition 2.16 being verified, this proves that Yi+1 verifies condi-
tion (⋆).

As for the group action, this follows from the second part of Proposition 2.16. Both
Yi and the center Z i verify condition (⋆H i ) (and a fortiori (⋆G i )): for Yi this is by
assumption, for Z i this is true by induction, because Z i is C i blown-up along certain
explicit centers. The second part of Proposition 2.16 then guarantees that condition
(⋆H i ) (and a fortiori (⋆G i )) carries over to Yi+1. ∎

The induction set up by Lemmas 3.2 and 3.3 yields that Yn−1 verifies conditions (⋆)
and (⋆Gn−1). Using Proposition 2.14, this implies that X̃ = Yn−1/Gn−1 verifies condition
(⋆Mult). Let us now check condition (⋆Chern) for X̃. For this, we view X̃ as the double
cover

π∶ X̃ → P̃ ∶= Pn−1

branched along the smooth divisor D ⊂ P̃ (obtained as strict transform of the hyper-
plane arrangement ∪2n+2

j=1 H j ⊂ Pn under the blow-ups r i ). The Chern classes of X̃ can
be expressed in terms of the Chern classes of P̃ and the Chern classes of OX̃(E) and
OX̃(2E), where we write E ⊂ X̃ for the isomorphic pre-image of D in X̃ (cf. [16, Proof
of Proposition 4.12]). But there is equality

E = d (pn−1)∗(pn−1)∗π∗(D) in A1(X̃) (d ∈ Q),

and so (since D ∈ A∗(P̃) = DA∗(P̃) and π and pn−1 are distinguished) one has E ∈
DA∗(X̃). Likewise, one has

π∗c j(P̃) = d (pn−1)∗(pn−1)∗π∗c j(P̃) in A∗(X̃) (d ∈ Q),

and so also π∗c j(P̃) ∈ DA∗(X̃). We conclude that c j(X̃) ∈ DA∗(X̃), i.e., X̃ verifies
condition (⋆Chern).
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Since the Calabi–Yau variety X was obtained from X̄ by only blowing-up the
codimension 2 loci H i1 ∩H i2 , there is a factorization

X̃
f�→ X �→ X̄ ,

where both arrows are sequences of blow-ups with smooth centers. This proves (i).
We record the following:

Lemma 3.4 Let ϕ i denote the marking for X i constructed above. Let S i ⊂ X i denote
the center of the blow-up morphism s i ∶X i+1 → X i , and let ξ i ∶ S i → X i denote the
inclusion morphism. The graphs of s i and ξ i are distinguished (with respect to the
markings ϕ i ).

Proof (of Lemma 3.4.) There is a cartesian diagram

Yi+1
t i�→ Yi

↓ p i+1 ↓ p i

X i+1
s i�→ X i .

The graph of s i ○ p i+1 equals the graph of p i ○ t i , which is distinguished by the
construction above. Since the graph of p i+1 is also distinguished (this is property
(∗G i+1)), it follows that

�s i =
1

deg p i+1

t�p i+1 ○ �p i+1 ○ �s i

is distinguished.
The argument for ξ i is similar, using the cartesian diagram

Z i
ι i�→ Yi

↓ ↓ p i

S i
ξ i�→ X i . ∎

(ii) Let us observe that f ∶ X̃ → X is a sequence of blow-ups with smooth centers
having trivial Chow groups, and so

h(X̃) ≅ h(X) ⊕⊕1(∗) in Mrat .(2)

Using Proposition 2.8(ii), we find that there is a decomposition

h(X̃) ≅ M ⊕⊕1(∗) in Mrat ,(3)

where M has cohomology concentrated in degree n. It then follows from Proposition
2.17 that the Q-subalgebra

R∗(X̃) ∶= ⟨A1(X̃), Ai(X̃) ⋅A j(X̃), ck(X̃)⟩ ⊂ A∗(X̃) (i , j > 0)
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is contained in DA∗(X̃) and hence injects into cohomology. Using pullback along the
morphism f ∶ X̃ → X, this implies at once that the Q-subalgebra

⟨A1(X), Ai(X) ⋅A j(X)⟩ ⊂ A∗(X) (i , j > 0)

also injects into cohomology. However, to get a statement that includes the Chern
classes of X some extra care is needed. Remark that one has

ck(X̃) = f ∗ck(X) + Rk in Ak(X̃),
where Rk is in the second part of the decomposition

Ak(X̃) ≅ Ak(X) ⊕Qs(4)

induced by (2). Lemma 3.4 implies that the marking for X̃ constructed above is
induced (via the blow-up result Proposition 2.16) from a marking for X̄, and so
each trivial motive 1(∗) in (3) is marked by a trivial motive 1(∗). A fortiori, the
same is true for (2). This implies that the summand Qs in (4) is in DA∗(X̃), and so
Rk ∈ DA∗(X̃).3 But then one also has

f ∗ck(X) = ck(X̃) − Rk ∈ DA∗(X̃),
and hence

f ∗⟨A1(X), Ai(X) ⋅A j(X), ck(X)⟩ ⊂ DA∗(X̃) (i , j > 0).

Since DA∗(X̃) injects into cohomology (under the cycle class map), we conclude that
the Q-algebra

R∗(X) ∶= ⟨A1(X), Ai(X) ⋅A j(X), ck(X)⟩ (i , j > 0)

also injects into cohomology (under the cycle class map). ∎

Remark 3.5 To prove our main result (Theorem 3.1(ii), we show that for any
hyperelliptic Calabi–Yau n-fold X there exists a surjection X̃ → X such that X̃ verifies
condition (⋆). This leaves open the question whether X itself verifies condition (⋆)
(which would provide an easier proof of the injectivity of Theorem 3.1(ii)).

Note that the hyperelliptic Calabi–Yau variety X is a group quotient of some blow-
up of Cn , with centers having trivial Chow groups. However, these centers do not
behave well with respect to the group action (an irreducible codimension 2 center is
not invariant under the action of Sn), making it problematic to pass from the level
of Yj to the level of the quotient X j . For this reason we prove our main result in a
slightly “round-about” way, blowing up some more in order to make the irreducible
codimension 2 centers disjoint.

3Alternatively, to see that Rk ∈ DA∗(X̃) one could argue using Porteous’ formula as in [28, Proof of
Proposition 4.4].
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4 Further consequences

4.1 Voisin’s conjecture

Voisin [43] has formulated the following intriguing conjecture, which is a particular
instance of the Bloch–Beilinson conjectures.

Conjecture 4.1 (Voisin [43]) Let X be a smooth projective variety of dimension n, with
hn ,0(X) = 1 and h j,0(X) = 0 for 0 < j < n. Then any two zero-cycles a, a′ ∈ An

hom(X)
satisfy

a × a′ = (−1)n a′ × a in A2n(X × X).

(Here, a × a′ is the exterior product (p1)∗(a) ⋅ (p2)∗(a′) ∈ A2n(X × X), where p j is
projection to the jth factor.)

For background and motivation for Conjecture 4.1, cf. [42, Section 4.3.5.2]. Con-
jecture 4.1 has been proven in some scattered special cases [5, 6, 23–28, 43], but is still
wide open for a general K3 surface.

We now prove Voisin’s conjecture for the Calabi–Yau varieties under consideration
in the present paper:

Proposition 4.2 Let X be a hyperelliptic Calabi–Yau variety of dimension n. Then
Conjecture 4.1 is true for X: any a, a′ ∈ An

hom(X) satisfy

a × a′ = (−1)n a′ × a in A2n(X × X).

Proof According to Proposition 2.8, we have a decomposition

h(X) = M ⊕⊕1(∗) in Mrat ,

with H j(M) = 0 for j /= n, and M isomorphic to a direct summand of h(Cn/G),
where C is a hyperelliptic curve. Since the symmetric group Sn is contained in G,
the motive M is actually isomorphic to a direct summand of h(C(n)). By Kimura
finite-dimensionality [22], M is then isomorphic to a direct summand of the motive

hn(C(n)) ∶= (C(n), πn
C(n) , 0) ∈ Mrat ,

where πn
C(n) is the Chow–Künneth projector defined by the choice of a point on C,

i.e., πn
C(n) corresponds to

∑
i1+⋯+in=n

∑
σ∈Sn

σ(π i1
C ×⋯× π in

C ) ∈ An(Cn × Cn)Sn

under the natural isomorphism A∗(C(n)) ≅ A∗(Cn)Sn , and the π i j
C are Chow–

Künneth projectors of C.
Let M○ denote the category of birational motives [21]. There is a functor

Bir∶ Meff
rat → M○ ,
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sending an effective motive (X , p, 0) to (X , p∣An(XC(X))). This functor has the property
that A0(M) = A0(Bir(M)) for any M ∈Meff

rat. Looking at the image of hn(C(n))
under Bir, one sees that all summands of πn

C(n) where some i j is 0 restrict to zero,
i.e., one has

Bir(hn(C(n))) = Bir(Symn h1(C)) in M○.

Writing J ∶= Jac(C) for the Jacobian of C and recalling that there is an isomorphism
h1(C) ≅ h1(J), it follows that there are isomorphisms of birational motives

Bir(hn(C(n))) ≅ Bir(Symn h1(C)) ≅ Bir(Symn h1(J)) ≅ Bir(hn(J)) in M○ ,

where h∗(J) refers to the Deninger–Murre Chow–Künneth decomposition for
abelian schemes [13] (for the properties of Chow motives of abelian varieties that
we use here, cf. [35, Section 5]). In particular, taking Chow groups we find a split
injection

�∗∶ A0(M) ↪ A0(hn(C(n)) = A0(Bir(hn(C(n))))
= A0(Bir(hn(J))) = A0(hn(J)) = An

(n)(J),

where A∗(∗)(J) refers to Beauville’s eigenspace decomposition [3]. By the same argu-
ment, there is also a split injection

(� × �)∗∶ A0(M ⊗M) ↪ A0(J × J).

This fits into a commutative diagram

An(M) ⊗An(M) (�∗ ,�∗)����→ An
(n)(J) ⊗An

(n)(J)

↓ Φ ↓ Φ

A2n(M ⊗M) (�×�)∗����→ A2n(J × J),

where Φ sends (a, a′) to a × a′ − (−1)n a′ × a. We are thus reduced to a general
statement about zero-cycles on abelian varieties:

Proposition 4.3 (Voisin [42]) Let B be an abelian variety of dimension n, and a, a′ ∈
An
(n)(B). Then

a × a′ = (−1)n a′ × a in A2n(B × B).

Proof This is [42, Example 4.40]. A generalization (and an alternative proof) is
given in [39, Theorem 4.1]. ∎

This concludes the proof of the theorem. ∎
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4.2 Voevodsky’s conjecture

This subsection contains an application of our results to Voevodsky’s conjecture on
smash-equivalence.

Definition 4.4 (Voevodsky [40]) Let X be a smooth projective variety. A cycle a ∈
Ai(X) is called smash-nilpotent if there exists m ∈ N such that

am ∶= a ×⋯× a
23333333333333333433333333333333335
(m times)

= 0 in Ami(X ×⋯× X).

Two cycles a, a′ are called smash-equivalent if their difference a − a′ is smash-
nilpotent. We will write Ai

⊗(X) ⊆ Ai(X) for the subgroup of smash-nilpotent cycles.

Conjecture 4.5 (Voevodsky [40]) Let X be a smooth projective variety. Then

Ai
hom(X) ⊆ Ai

⊗(X) for all i.

Remark 4.6 It is known [1, Théorème 3.33] that Conjecture 4.5 for all smooth
projective varieties implies (and is strictly stronger than) Kimura’s conjecture “all
smooth projective varieties have finite-dimensional motive” [22].

Let us now verify Voevodsky’s conjecture for hyperelliptic Calabi–Yau varieties of
odd dimension:

Theorem 4.7 Let X be a hyperelliptic Calabi–Yau variety. Assume that n ∶= dim X is
odd. Then

Ai
hom(X) ⊆ Ai

⊗(X) for all i.

Proof According to Proposition 2.8, we have a decomposition

h(X) = M ⊕⊕1(∗) in Mrat ,

with H j(M) = 0 for j /= n, and M isomorphic to a direct summand of h(Cn). By
Kimura finite-dimensionality, M is isomorphic to a direct summand of the motive
(Cn , πn , 0), where πn is any Chow–Künneth projector on the degree-n cohomology.
But the Chow motive (Cn , πn , 0) is oddly finite-dimensional (in the sense of [22]).
Hence, together with the fact that Ai

hom(X) = Ai
hom(M), the theorem is implied by

the fact that

A∗(M) ⊆ A∗⊗(M)
for any oddly finite-dimensional Chow motive M (this is due to Kimura [22, Propo-
sition 6.1], and is also used in [20]). ∎

5 Some open questions

Question 5.1 Easy examples of Calabi–Yau varieties Y are given by smooth complete
intersections of n + 1 quadrics in P2n+1. An interesting special case is when Y is defined
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by equations of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
0 + x2

1 +⋯ ⋯⋯+ x2
2n+1 = 0,

λ0x2
0 + λ1x2

1 +⋯+ λ2n+1x2
2n+1 = 0,

λ2
0x2

0 + λ2
1 x2

1 +⋯+ λ2
2n+1x2

2n+1 = 0,

⋮
⋮

λn
0 x2

0 + λn
1 x2

1 +⋯+ λn
2n+1x2

2n+1 = 0,

where λ0 , . . . , λ2n+1 ∈ C are distinct numbers. Such varieties Y are isomorphic to a
quotient Dn/G, where D is a curve and G ⊂ Aut(Dn) a finite group [37, Theorem 2.4.2].
Moreover, Y is related to the double cover X̄ of Theorem 3.1: one has X̄ ≅ Y/H for some
finite group H [37, Proposition 2.4.4], [18, Section 2.2].

Can one prove condition (⋆) for Y ? The problem is that the curve D is not
hyperelliptic; D is a finite étale cover of a hyperelliptic curve, and it is not clear whether
D verifies condition (⋆) (this is closely related to the fact that as far as I am aware the
only curves known to have a multiplicative Chow–Künneth decomposition, in the sense
of [36], are hyperelliptic curves).

Question 5.2 Let Y be a Calabi–Yau variety as in Proposition 2.3, i.e., arising from a
general arrangement of hyperplanes (without the condition that the hyperplanes osculate
a rational normal curve). Is it still true that the image of intersection product

Ai(Y) ⊗A j(Y) → Ai+ j(Y) (i , j > 0)

injects into cohomology? The problem is that for these Y, it is not even known that they
have motive of abelian type, so that one cannot benefit from the formalism of [16].

Acknowledgment Thanks to the referee for very helpful comments. Thanks to Kai
and Len for enjoying Buurman en Buurman as much as I do.
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