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We study the formation of liquid plugs in a vertical heated tube in contact with a
reservoir filled with a binary liquid mixture. Various morphologies, such as liquid
films, rings and plugs, are observed. A key phenomenon is the transition between a
liquid ring and a plug, which is described using the concept of a quasi-static minimal
energy surface that becomes unstable when the liquid volume exceeds a specific value.
The critical diameter of the liquid ring and the volume and the position of the formed
plug are obtained from an analytical model. The inner diameter of the liquid ring
obeys a dl ∼ (t0 − t)0.57±0.02 scaling law shortly before forming a plug at time t0. The
height of the liquid column created develops according to X ∼ (t − t0)

0.5±0.01 in the
first moments. The subsequent time evolution is described by a damped harmonic
oscillator based on a scaling analysis. The discoveries presented in this work could be
of great importance for our understanding of thermally induced interfacial phenomena
in confined space.

Key words: capillary flows, thin films, condensation/evaporation

1. Introduction

The ‘tears of wine’ effect refers to a phenomenon occurring while a two-component
liquid evaporates in a container. Preferential evaporation of one component induces
a surface-tension gradient, which lets the liquid climb up the container walls
spontaneously. Eventually, gravity becomes dominant, resulting in the formation
of structures reminiscent of tears (Scriven & Sternling 1960; Schatz & Neitzel 2001).
This phenomenon is due to the solutal Marangoni effect. The study of the Marangoni
effect dates back to the year 1855. In his seminal article ‘On certain curious motions
observable at the surfaces of wine and other alcoholic liquors’ (Thomson 1855),
James Thomson (a British engineer and physicist and elder brother of Lord Kelvin)
was the first person who provided the correct explanation that the surface-tension
gradient resulting from the variation of the alcohol concentration is responsible for
the observed phenomena. However, the effect remains commonly associated with the
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name of the Italian physicist Carlo Marangoni of Paiva and Florence (1840–1925),
after his publication from 1871 (16 years after Thomson) (Marangoni 1871). From
then on, many researchers, including the leading scientists of the 19th century, such as
Plateau, Gibbs, Maxwell and Rayleigh, were dedicated to this phenomenon (Plateau
1873; Gibbs 1878; Maxwell 1878; Rayleigh 1890). The tears of wine effect is just
one example of the Marangoni effect in which the surface-tension gradient is created
by a local variation in composition. Apart from that, a surface-tension gradient can
also be created by a local variation in temperature, and, in this case, the resulting
motion of liquid is usually called Marangoni convection or thermocapillary flow
(Scriven & Sternling 1960; Schatz & Neitzel 2001).

Surface-tension-driven flow arising from the Marangoni effect is ubiquitous in nature.
A well-known example is the ‘soap boat’ (or ‘camphor boat’) experiment in which
the Marangoni effect converts chemical into mechanical energy (van der Mensbrugghe
1869; Rayleigh 1890; Nakata et al. 1997; Bush & Hu 2006). Similar to the soap boat,
some kinds of water-walking species can excrete a surfactant through a tongue-like
protrusion from the rostrum to create a gradient of surface tension, generating a
force that propels them forward to escape the predator (Bush & Hu 2006; Hu &
Bush 2010). The structural integrity of a tear film on the eye is maintained by
involuntary periodic blinking, during which the motion of the tear fluid is driven
by surface-tension gradients due to non-uniform surfactant concentration (Berger &
Corrsin 1974; Lin & Brenner 1982). The Marangoni flow in tears tends to resist
the local thinning and rupture of the tear film, thereby preventing dry spots on the
cornea.

Despite the fact that the Marangoni effect has been known for a long time, there
has been a renewed interest in it because of its great importance in biological function,
microfluidic devices and materials processing. The Marangoni effect was utilized to
realize spontaneous liquid/drop motion by a gradient of surface tension resulting from
either chemical (Bennett, Gallardo & Abbott 1996; Gallardo et al. 1999) or thermal
gradients (Sammarco & Burns 1999; Farahi et al. 2004; Basu & Gianchandani 2007).
Photoswitchable surfactants in solution can generate a surface-tension gradient to
realize droplet/particle transport and manipulation (Diguet et al. 2009; Varanakkottu
et al. 2013; Lv et al. 2018). In the biological field, interfacial phenomena arising
from Marangoni stress plays a role for pulmonary surfactant replacement therapy
(Grotberg 1994) and for treatment of alveolar instability of lungs (Clements et al.
1961; Halpern, Jensen & Grotbert 1998). Since it has been recognized that the
oscillatory thermocapillary flow resulting from the temperatue dependence of surface
tension can cause undesired dopant striations and concentration variations in crystals
grown from the melt (Schwabe & Scharmann 1979; Bohm, Lüdge & Schröder 1994),
the understanding and control of Marangoni flow is of particular importance for
methods of crystal growth, hydrometallurgy and crystal purification.

The Marangoni effect can often lead to several types of intriguing instabilities and
patterns (Bonn et al. 2009; Craster & Matar 2009). Extensive research work has
been conducted to understand the underlying mechanisms. Probably the most famous
instability arising from the Marangoni effect is the Bénard–Marangoni instability
(Bénard 1900; Pearson 1958). The characteristic Bénard–Marangoni convection cells
are caused by the temperature gradients at the top of a liquid layer heated from
below. Cazabat et al. (1990) reported a capillary fingering instability of a liquid
film on a chemically homogeneous surface with a temperature gradient driven by
thermal Marangoni stresses. They found that the fingers develop from a liquid
rim that builds up at the front. Hosoi & Bush (2001) studied flow in a thin film
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generated by partially submerging an inclined rigid plate in a reservoir filled with
a two-component liquid. They demonstrated that the observed longitudinal rolls are
driven by the combined influence of surface deformations and alcohol concentration
gradients. Gotkis et al. (2006) reported an instability characterized by the emission
of satellite droplets (nicknamed ‘octopo’), occurring when isopropyl alcohol is
deposited on a monocrystalline Si wafer. Yamamoto et al. (2015) reported the
formation of droplets when a thin layer of an immiscible fluorocarbon oil is spread
on a water surface. The droplets undergo a transformation from one-dimensional
arrays to two-dimensional hexagonal arrays. Wodlei et al. (2018) observed highly
ordered flower-like patterns consisting of small droplets that are formed when a
millimetre-sized drop of dichloromethane spreads on an aqueous substrate under
the influence of a surface-tension gradient. In the case of a two-component drop
(water and volatile alcohol) placed on an oil bath, concentration-gradient-induced
Marangoni stresses can become so significant that the drop breaks up into thousands
of tiny droplets (Keiser et al. 2017). Venerus & Simavilla (2015) re-examined the
tears of wine phenomenon. Different from previous studies in which it is generally
accepted that the flow leading to the wine tears is due to a composition gradient that
results from the evaporation of ethanol, they found that thermal effects resulting from
evaporation cooling contributes significantly.

All the above investigations were restricted to the case when the scale of the
pattern is much smaller than the scale of the domain in which pattern formation
occurs. However, in small domains, boundary effects play a role. For example, for
a droplet on a curved surface, in addition to interfacial tension gradients, capillary
pressure gradients due to curvature may become important. The transport of emulsion
droplets, colloids and foam bubbles in confined geometries is extensively studied
because of its ubiquity in nature and its industrial relevance (Squires & Quake 2005;
Darhuber & Troian 2005). With respect to the Marangoni effect in confinement, the
focus of previous work was on thermocapillary convection in a liquid column in a
capillary tube (Buffone, Sefiane & Christy 2005; Cecere, Buffone & Savino 2014) or
in a liquid in a wedge (Markos & Ajaev 2006; Yang & Homsy 2006), the flow in
heat pipes (Kundan, Plawsky & Wayner 2015), and on the flow patterns either at the
interface between two liquid layers or in a thin liquid film bounded by two liquid
layers (Chraïbi & Delville 2012).

In this work, we will report, among others, the formation of a liquid film at the
interior wall of a cylindrical capillary tube. When such a system becomes sufficiently
small, i.e. the inner diameter becomes significantly smaller than the capillary length
lc, the effects of gravity can often be ignored. Then the liquid–vapour interface
tends to minimize its free energy by assuming the shape of an unduloidal surface
– a surface with constant mean curvature. Corresponding analytical solutions can be
found in the work carried out by Langbein (2002). There is extensive literature on
the stability of cylindrical liquid–vapour interfaces and the configurations they can
transform into (Everett & Haynes 1972; Lin & Liu 1975; Gauglitz & Radke 1988;
Teng, Cheng & Zhao 1999; Jensen 2000; Langbein 2002; Duclaux, Clanet & Quéré
2006; Bostwick & Steen 2015). Under small perturbations, a cylindrical liquid layer
is only stable for situations where λ< 2πrl (Everett & Haynes 1972), and the most
unstable wavelength is λ = 2

√
2πrl with a moderate or low viscosity (Teng et al.

1999; Duclaux et al. 2006; Zhang et al. 2016), where λ and rl are the perturbation
wavelength and the radius of the liquid–vapour interface, respectively. Everett &
Haynes (1972) computed unduloidal surfaces along with the volume and surface
energy of a liquid in a cylindrical capillary tube for complete wetting (contact angle
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θ = 0◦), and they obtained the liquid volume corresponding to closure of the tube, i.e.
1.7414πr3

≈ 5.471r3, denoting r the inner radius of the capillary tube. Moreover, they
also obtained the axial length of the liquid plug immediately following closure, i.e.
1.0747r. Gauglitz & Radke (1988) investigated the dynamics of a viscous liquid film
forming in straight cylindrical capillaries and found that when rl/r≈ 0.4, liquid collars
become unstable and evolve into lenses with a critical volume 1.80πr3

≈ 5.65r3. By
employing asymptotic methods, Jensen (2000) quantified the gravitational effects on
the quasi-steady evolution of a wetting liquid lining the interior of a vertical tube.
Based on the finite-element method, Collicott, Lindsley & Frazer (2006) studied the
possible topologies (e.g. wall-bound droplets, axisymmetric annuli and axisymmetric
plugs) of a liquid in a circular tube at zero-gravity for contact angles ranging from
0◦ to 180◦. In our work, we will demonstrate the scenarios of the evolution of the
liquid morphology associated with the Marangoni effect.

In our case, the liquid film inside the capillary tube is formed by Marangoni
stresses. Despite all of these efforts described above, the ‘tears of wine’ effect in
confined space seems to have been largely unexplored. To close the gap, we have
investigated a heated binary mixture in a vertical capillary tube, covering a broad
range of parameters, such as the tube diameter and the temperature.

The paper is organized as follows: we report the experimental procedure and the
main observations in § 2. In § 3, we analytically compute the profile of the liquid
surface, from which we infer the stability of the emerging tears of wine, appearing
in the form of liquid rings. In § 4, we particularly focus on the dynamic evolution of
the liquid surface after the rings have collapsed. The paper is concluded in § 5.

2. Experimental study of the two-phase flow morphologies
2.1. Experimental set-up and procedure

The experimental set-up is shown in figure 1(a). A hydrophilic capillary tube with
an inner diameter d ∈ [0.7, 1.5] mm (see appendix A, table 2) is clamped in vertical
orientation between two aluminum (Al) cuboids. The temperature of the Al blocks is
controlled by employing two attached thermo mats on the surface of each block and
a temperature control unit (JUMO LR 316). That way a good temperature uniformity
of the Al block is achieved, with deviations of the order of ±0.5 ◦C. The lower end
of the capillary tube is immersed in a glass Petri dish containing an ethanol/water
mixture [40 % (v/v)]. All tubes are rigorously cleaned prior to the experiments using
piranha solution to remove potential contaminants and to render the inner surfaces
hydrophilic. All the experiments have been carried out under laboratory conditions.
The control temperature (Tcon) is set to values ranging from room temperature to ∼
107.5 ◦C. Correspondingly, the measured temperature (Tin) of the ethanol/water mixture
varies between room temperature and ∼ 95 ◦C (see appendix B, figure 15). Literature
indicates that the boiling point of the mixture is ∼ 84 ◦C (Reddy & Lienhard 1989).
However, we did not observe any nucleate boiling within the considered temperature
range. This is presumably due to the smooth walls of the capillary tubes and the small
contact angle of the liquid mixture at the surface, leaving no nucleation sites for the
onset of nucleate boiling. Further details concerning the experimental set-up are given
in appendix A.

2.2. Experimental observations
For all of the capillary tubes considered in this study (d = 0.7 mm to d = 1.5 mm),
upon increasing Tcon, we observe three different liquid morphologies: films, rings and
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FIGURE 1. Solutal Marangoni effect in capillary tubes. (a) Schematic of the experimental
set-up. The temperature of the Al blocks is controlled by employing two thermo mats,
a sensor and a control unit (see appendix A). (b) Flow morphologies obtained with
an ethanol/water mixture [40 % (v/v)]: at a comparatively low temperature, we first
observe thin climbing films inside the tube (see supplementary movie 1, available online
at https://doi.org/10.1017/jfm.2020.80, Tcon = 85 ◦C). After a while, liquid accumulates,
producing a thicker film with perturbations, a part of which has the shape of rings (see
supplementary movie 2, Tcon = 85 ◦C). Upon further increase of the temperature (see
supplementary movie 3, Tcon = 87.5 ◦C), a liquid plug is formed from a ring-shaped
perturbation. The diameter of the capillary tube is d = 1.0 mm. (c) For a capillary tube
with a diameter d= 0.7 mm and at a temperature Tcon= 96 ◦C, we observe multiple liquid
rings and plugs (see supplementary movies 4 and 5).

plugs, as shown in figure 1(b). We illustrate these morphologies with experiments
conducted with a tube of diameter d = 1.0 mm. After the Al blocks arrive at a
stable temperature, Tcon = 85 ◦C, we wait another 5 min, after which ethanol/water
mixture is filled into the Petri dish up to a level where it touches the bottom of the
capillary tube. Immediately, a liquid column with a concave meniscus is created in the
capillary tube and rises to a certain height (compatible with Jurin’s law (de Gennes,
Brochard-Wyart & Quéré 2004)), with vapour above the meniscus. Then, a thin film
climbing the tube walls forms (see supplementary movie 1). Considering the uniform
temperature distribution in the Al blocks (see appendix B, figure 13), we mainly
attribute the spreading of the film to the solutal Marangoni effect due to the faster
evaporation of ethanol from the mixture (Bekki et al. 1990). This is corroborated by
control experiments with pure water or ethanol in which neither film spreading nor
liquid ring formation is observed. The film spreading continues until gravity starts to
become dominant, which results in the formation of an annular liquid ring with an
inner diameter dl inside the capillary (see supplementary movie 2). Upon increasing
the temperature to Tcon=87.5 ◦C, the rings become so pronounced that they collapse to
form plugs (see supplementary movie 3). The continuous increase of the ring volume
is possible only when the liquid supply from the column overcomes the evaporation
of liquid. After a plug has been formed, it is pushed upwards by the enclosed vapour,
while the bottom meniscus is pushed downwards. In figure 15 of appendix B, the
temperature ranges in which plug formation occurs are displayed. Film formation
starts at temperatures approximately 2.5–5 ◦C below the lower boundary of these
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FIGURE 2. Dependence of the instantaneous dl on the time variable (t0 − t), denoting t0
the moment when dl = 0. The inner diameter of the capillary tube is d = 0.7 mm, and
the experiment was carried out at Tcon = 92.5 ◦C. The frames at the top show the time
evolution of the liquid ring. The arrow (top right corner) indicates the direction in which
time increases.

regions. When the temperature is too high (i.e. typically Tcon > 107.5 ◦C), none of
these three liquid morphologies is observed. At such high temperatures, the liquid
evaporates faster than the time needed for film formation. Studying/explaining these
complex flow phenomena in their entirety is a challenging and extensive task going
beyond the scope of this paper. Instead, we limit our focus to the study of liquid
plug formation from liquid rings.

3. Modelling the quasi-static behaviour
The growth of the liquid ring is modelled as a quasi-static process based on

the following statements: (1) small Weber and capillary numbers; (2) negligible
Marangoni stresses compared to normal stresses along the surface of the liquid ring;
(3) a negligible influence of gravity, which is characterized based on the capillary
length lc= (σ/ρg)1/2≈ 2.72 mm, in which the density ρ = 997.1 kg m−3 and surface
tension σ = 72.15 mN m−1 of water at 25 ◦C were used. Here, g= 9.81 m s−2 is the
gravitational acceleration.

Before presenting the theoretical analysis, as an example, we first show the time
evolution of dl on a comparatively long time scale (∼1 s) in the capillary tube
with d = 0.7 mm at 92.5 ◦C (see figure 2). This time span is much longer than
the capillary time t∗ = [ρ(d/2)3/σ ]1/2 ≈ 0.77 ms. The typical values of the Weber
number and the capillary number in our experiments are estimated, respectively,
as We = ρu2d/σ ≈ 1.19 × 10−6

� 1 and Ca = ηu/σ ≈ 4.32 × 10−6
� 1, in which

u= d(d/2)/dt≈ 0.35 mm s−1 is the velocity with which the radius of the liquid ring
changes, η = 0.891 mPa s is the viscosity of water at 25 ◦C. This analysis suggests
that during the growth of the liquid ring up to the point where it becomes unstable,
the roles of the inertia and viscosity of the liquid can be ignored, and the surface
tension is dominant. Therefore, the liquid ring can be characterized by a static wetting
state.

It has to be mentioned that statement 2 above is an assumption rather than an
established fact. Based on the temperature uniformity at the surface of the capillary
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FIGURE 3. (a) Example of a liquid ring observed in the experiments. (b) Schematic
map for the modelling of the liquid in a capillary tube using an axisymmetric coordinate
system. Here r = d/2 and rl = dl/2 denote the inner radii of the capillary tube and the
liquid ring, respectively; hl denotes the height of the solid–liquid contact region with a
contact angle θ = 0◦; s represents the arc length of the surface profile, starting from an
arbitrary point (x, z) of the surface; and φ is the angle of the normal vector of the surface
at (x, z) with the axis of revolution (i.e. the z-axis).

tube it can be shown that the thermal Marangoni stress can be neglected compared
to the normal stress, but the significance of the solutal Marangoni stress cannot be
excluded a priori.

Under these assumptions, the profile of the liquid surface is controlled by the
Young–Laplace equation 1P = −2Hσ , denoting 1P the pressure difference between
the liquid and the vapour phase and 2H the total surface curvature. Based on that,
we determined an exact analytical solution for the profile of the liquid surface.

3.1. Static profile of the liquid surface
Inspired by the pioneering work of Carroll (1976), we will derive analytical solutions
for the liquid surface profile in the capillary tube. Here, we ignore gravity and set
the value of the contact angle θ = 0◦, corresponding to the experimental value. On
the basis of differential geometry (Struik 1961), the curvature 2H of the liquid–vapour
interface can be expressed as

2H =
sin φ

x
+

dφ
ds
, (3.1)

where the required geometrical parameters are defined in figure 3(b). We obtain the
following relationships:

dz
dx
=

x2
+ r · rl

[(x2 − x2
l )(r2 − x2)]1/2

, (3.2)

2H =
2

r+ rl
. (3.3)

Obviously, for a specific liquid profile (or rl), H is constant globally. We employ the
following transformation (Carroll 1976):

x2
= r2(1− k2 sin2 ϕ), (3.4)
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in which k2
= 1− (rl/r)2. We write the boundary conditions as: (i) x1 = r, z1 = hl/2,

φ1 = π/2, ϕ1 = 0; (ii) x2 = rl, z2 = 0, φ2 = π/2, ϕ2 = π/2. Inserting (3.4) into (3.2)
and carrying out the integrals, we finally obtain

z=±[r · E(ϕ, k)+ rl · F(ϕ, k)], ϕ ∈ [0,π/2], (3.5)

and

hl = 2[r · E(k)+ rl ·K(k)], (3.6)
Asl = 4πr[r · E(k)+ rl ·K(k)], (3.7)

Alv = 4πr(r+ rl)E(k), (3.8)
U

4πσ
= r · rl[E(k)−K(k)], (3.9)

Vl = 2πr2
[r · E(k)+ rl ·K(k)] −

2π

3
r3

l

(
r
rl

)
×

{[
2
(

r
rl

)2

+ 3
(

r
rl

)
+ 2

]
E(k)−K(k)

}
, (3.10)

in which Asl and Alv are the solid–liquid and liquid–vapour interfacial areas; hl is the
vertical height of Asl; U is a surface energy and defined by U= σ(Alv −Asl cos θ); Vl

is the volume of the liquid enclosed by the solid–liquid and liquid–vapour interfaces;
F(ϕ, k) and E(ϕ, k) are the incomplete elliptic integrals of the first and the second
kind, and K(k) and E(k) are the complete elliptic integrals of the first and the second
kind (Magnus, Oberhettinger & Soni 1966), respectively. Based on the above results,
we can not only derive the relationships between dl and Vl as well as between dl

and U (see figure 4), we can also compute the surface profile of the liquid ring for
different values of dl (as presented in figure 5 in dimensionless form).

Figure 4 shows the dependence of the volume of the liquid ring and its total surface
energy derived from the Young–Laplace equation on dl/d. Interestingly, figure 4
represents a multiple solution map of the surface profile. As an example, a given
liquid volume Vl/(d/2)3 ≈ 3.85 corresponds to two different surface profiles which
are plotted in the inset of figure 4 (left-hand side). These two profiles correspond
to dlA/d ≈ 0.74 (point A) and dlB/d ≈ 0.1 (point B), respectively. However, the
right-hand side of figure 4 suggests that the dimensionless surface energy of the
profile corresponding to A (UA/[(d/2)2σ ] ≈ −4.09) is lower than that of the other
one (UB/[(d/2)2σ ] ≈ −3.37). This means that under a perturbation, configuration B
can transform into A, which is the only one found in the experiments. Figure 4 also
shows that a liquid ring has a maximum volume, Vlc, corresponding to a minimum
throat diameter, dlc. Based on the minimum-volume theorem formulated by Langbein
(2002), the point (Vlc, dlc) corresponds to a point of instability. This means that
upon further increase of the volume, a liquid ring does not exist as an equilibrium
solution. The growth of a ring starts at zero volume, which means that we obtain
the configuration indicated by the red line in figure 4. The ring continues to grow
until the maximum volume is reached. This marks the transition to a liquid plug (see
supplementary movie 3). The critical parameters related to this morphology transition
can be determined rigorously based on the analytical model below.
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FIGURE 4. Dependence of the volume Vl (left-hand side) and the surface energy U (right-
hand side) on the diameter of the liquid throat dl, displayed in a dimensionless manner.
The red solid and blue dashed lines represent the stable and unstable regimes, respectively.
Points A and B are configurations with the same Vl but different dl and U. The profiles in
the inset on the left-hand side are the model results corresponding to the configurations A
(red solid curve) and B (blue dashed curve). The inset on the right-hand side corresponds
to dl/d≈ dlc/d= 0.417. The contact angle is θ = 0◦.

3.2. Critical parameters for the morphology transition
Next, we determine the maximum volume of the liquid ring as shown in figure 4. This
value is found by solving ∂Vl/∂rl = 0. For the sake of simplicity, we redefine

V̄l =
Vl

2πr3
= E(k)+ r̄lK(k)−

1
3
[(2+ 3r̄l + 2r̄2

l )E(k)− r̄2
l K(k)], (3.11)

in which r̄l = rl/r= dl/d, k= (1− r̄2
l )

1/2. Finally, we obtain

∂V̄l

∂ r̄l
= (1+ r̄l)K(k)− 2(1+ r̄l)E(k). (3.12)

The maximum volume of the liquid ring is then obtained from

2E(k)−K(k)= 0. (3.13)

The redefinition

Ū =
U

4πr2σ
= r̄l[E(k)−K(k)] (3.14)

yields
∂Ū
∂ r̄l
= 2E(k)−K(k). (3.15)
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t

0.76 0.68 0.62 0.57 0.50 0.45

FIGURE 5. Comparison between theoretical (red solid lines) and experimental surface
shapes for different values of dl/d. The arrow represents the lapse of time. A tube with
an inner diameter d= 1.5 mm was chosen, at Tcon = 92.5 ◦C.

Therefore, ∂Ū/∂ r̄l = 0 also leads to (3.13). These analyses indicate that a maximum
volume of the liquid corresponds to a minimum surface energy (see figure 4). Equation
(3.13) is solved numerically to yield

k= 0.909,
dlc

d
= 0.417. (3.16a,b)

A combination of (3.16) and (3.3), (3.6), (3.9) and (3.10) finally leads to

2Hc ·

(
d
2

)
= 1.411,

hlc

(d/2)
= 4.257,

Uc

(d/2)2σ
=−6.081,

Vlc

(d/2)3
= 5.471,

 (3.17)

denoting dlc, hlc, Hc, Uc, Vlc the values of dl, hl, H, U, Vl at the transition point.
The critical volume obtained in (3.17) is exactly equal to the value obtained by
Everett & Haynes (1972). Moreover, the critical diameter and the critical volume in
(3.16) and (3.17), respectively, are consistent with the values obtained by Gauglitz &
Radke (1988) who solved an approximate form of the Young–Laplace equation using
numerical methods. Extending the above analysis to contact angles different from
zero (Lv & Hardt 2019) means that as long as the liquid surface exhibits a spatially
uniform surface tension, the dimensionless values of these critical parameters are
solely functions of the contact angle θ .

3.3. Comparison between experimental and model results
Figure 5 shows a comparison between the experimentally observed surface profiles
of the liquid rings and the analytical solution for different values of dl/d. The two
data sets agree reasonably well. Strictly, when comparing experimental images of the
interior of the tube with theoretical predictions, light refraction at the glass–air and
glass–liquid interfaces needs to be taken into account. In other words, due to the
curved interfaces, objects inside the tube usually appear distorted. However, based on
a ray-tracing calculation, it can be shown that the distortion vanishes when imaging
the gas–liquid interface itself. Therefore, it is justified to use the raw experimental
data in figure 5. For even smaller values of dl/d (i.e. dl/d < 0.417), the liquid rings
become unstable, and a quasi-static configuration can no longer be found. Instead, the
hole closes rapidly.

In order to verify the model predictions in § 3.2, we carried out systematic tests
using capillary tubes with four different inner diameters at different temperatures
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FIGURE 6. Dependence of h/d on Tcon for the transition from a liquid ring to a plug.
For each d, the corresponding symbols cover the temperature range in which plugs are
produced (see appendix B, figure 15). Each point is the average value of five individual
measurements with the standard deviation shown as error bars. The inset illustrates the
two different liquid morphologies. The red dashed line is the prediction of (3.18).

(see appendix A, table 2). We note that after dl has reached dlc, the growth of the
liquid ring and the corresponding morphology transition to a plug happens very fast
(characterized by the capillary time, i.e. ∼1 ms, see supplementary movie 3). In this
case, it is reasonable to assume that the volume of the liquid ring remains constant
during the transition event. This volume conservation provides an effective way to
verify (3.16) using the simple relationship π(d/2)2(h+ d)−πd3/6= Vlc, which leads
to

h
d
= 0.537, (3.18)

in which h denotes the final thickness of the liquid plug. Its value can be
accurately measured from high-speed images immediately after plug formation (see
supplementary movie 3). The axial length (i.e. along z-axis, see figure 3) of the
liquid plug immediately following closure predicted in (3.18) is exactly equal to the
value obtained by Everett & Haynes (1972). In figure 6, we see that the prediction
of (3.18) is very close to the experimental results.

We have also analysed the vertical distance L between the position where the plug
forms and the liquid meniscus at the bottom. Experiments were carried out using the
same four capillary tubes within the same temperature range as in figure 6. Figure 7
shows that the value L/d tends to increase with Tcon. This makes sense intuitively:
a higher temperature gives rise to a higher evaporation rate, and we hypothesize that
the gas flow may lift the liquid rings. However, at present we are not able to measure
or compute the gas flow rate to confirm this hypothesis. Even though the data points
are quite scattered, it is striking that the diagram suggests that a minimum value of
L/d exists. This minimum value can be explained along the following line of thought:
if we assume that the lower boundary of the annular liquid ring touches the liquid–
vapour meniscus at the bottom (see supplementary movie 3), we obtain a quantitative
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FIGURE 7. Dependence of L/d on Tcon for the transition from a liquid ring to a plug.
For each d, the corresponding symbols cover the temperature range in which plugs are
produced (see appendix B, figure 15). There are at least five individual measurements
reported for each tube at each temperature. The red dashed lines are the prediction
of (3.19).

prediction of the minimum value of L, i.e. Lc = hlc/2 + d/2. Since hlc/d is known
from (3.17), we obtain

Lc

d
= 1.564, (3.19)

which reproduces the lower bound of the experimental data of figure 7 quite well.

4. Dynamic evolution of the liquid surface
4.1. Dynamics of liquid ring collapse

To explore the dynamics of the transition from liquid rings to plugs, a high-speed
camera at 100 000 frames per second (f.p.s) with a resolution of 4 µm pixel−1 was
employed. Experiments were carried out at Tcon = 92.5 ◦C, and the corresponding
images are shown in the inset of figure 8. An analysis of the high-speed videos
reveals the relationship dl/d ≈ (0.77± 0.05)[(t0 − t)/t∗]0.57±0.02 for the final stages of
liquid ring collapse, in which t0 is the moment when dl = 0, t∗ = [ρ(d/2)3/σ ]1/2 is
the characteristic time, and the prefactor was determined through fitting to the data
points. Since it is very challenging to measure the values of the relevant material
properties locally inside the capillary tube, for convenience we use the properties of
pure water at 25 ◦C (i.e. σ = 72.15 mN m−1 and ρ = 997.1 kg m−3) to determine t∗.
We point out that the use of different liquid properties (for example, those of the 40 %
(v/v) ethanol/water mixture) would result in different values of t∗ and the following
scaling relationships of this section. However, the maximum property variation that
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d = 1.38 mm
d = 1.5 mm

FIGURE 8. Normalized instantaneous inner diameter of a collapsing liquid ring as a
function of the normalized time (t0 − t)/t∗. Each data point is the average value of
five individual measurements with the standard deviation shown as error bars. The black
solid line represents dl ∼ (t0 − t)0.57±0.02. The frames in the inset (the black region with
white reflections indicates vapour, the grey region liquid) corresponds to times (t0 − t)≈
3.7 ms, 3.5 ms, 2.5 ms, 0 ms, and the scale bar represents 200 µm.

may occur in the experiments limits the variation of the coefficients in all scaling
relationships to less than a factor of 2, with one exception to be discussed later.

In fact, the collapse of the liquid ring in our experiments is reminiscent of the
final stages of the pinch-off of air bubbles in an inviscid liquid, which has been
investigated extensively in the past. Longuet-Higgins, Kerman & Lunde (1991)
demonstrated that the evolution approximately follows a power law dl∼ t0.5, which is
supported by similar works (Oguz & Prosperetti 1993; Burton, Waldrep & Taborek
2005). Thoroddsen, Etoh & Takehara (2007) investigated the pinch-off of a bubble
in water and found that the shrinking of the neck of the bubbles obeys dl ∼ t0.57±0.03,
which is in good agreement with the numerical work carried out by Leppinen
& Lister (2005) who studied the breakup of a bubble in an inviscid liquid and
obtained dl∼ t0.55±0.01. From a theoretical and numerical point of view, Gordillo et al.
(2005) and Eggers et al. (2007) studied the collapse of an axisymmetric cavity in
a low-viscosity fluid. By ignoring the influences of surface tension, gas density and
viscosity, they obtained the relationship d∼ tα, with time-dependent scaling exponents
α ≈ 1/2 + 1/[−4 ln(t0 − t)] and α ≈ 1/2 + 1/[4

√
− ln(t0 − t)], respectively. The

scaling relation put forward by Eggers et al. (2007) was further verified by Gekle
et al. (2009) who studied the pinch-off of air bubbles surrounded by an inviscid
fluid in four different systems. Eggers et al. (2007) further obtained a small decrease
of the scaling exponent from 0.57 to 0.55 (corresponding to the pinch-off) during
the collapse, which indicates that the dynamics of inviscid bubble pinch-off is not
universal. Our results are consistent with the theoretical prediction by Eggers et al.
(2007), indicating that viscosity and the presence of air inside the liquid ring can be
neglected, and that capillary forces only trigger the instability.
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FIGURE 9. Dependence of the normalized instantaneous liquid column height X/d on
the normalized time (t − t0)/t∗ in log–log plot. Each point is the average value of five
individual measurements with the standard deviation indicated as error bars. The black
solid line is computed from (4.1). The schematic illustrates the geometry used for the
scaling analysis. The high-speed image shows the liquid surface profile shortly before
closure (the black region is vapour and the grey region is liquid), the scale bar represents
50 µm (see supplementary movies 6 and 7).

4.2. Dynamics of liquid plug formation

After the hole of the liquid ring has closed, a growing liquid column is formed that
finally evolves into a plug, as shown in figure 9 and the inset of figure 12. This
closing process bears some similarities to the coalescence of liquid drops or air
bubbles (Ristenpart et al. 2006; Paulsen et al. 2014; Eddi, Winkels & Snoeijer 2013;
Thoroddsen et al. 2005; Bird et al. 2009; de Maleprade, Clanet & Quéré 2016),
which has been studied quite intensely. Previous results (Eggers, Lister & Stone
1999) suggest that a one-dimensional model can already capture the essential physics.
As shown in the inset of figure 9, we denote δ the characteristic width of the liquid
column, κ the curvature computed from the minor radius of the liquid ring, and X
the time-dependent height of the liquid column. In an order-of-magnitude sense, we
have 1/κ ∼ d/2. From the geometric configuration depicted in the inset of figure 9,
we obtain the scaling relationship X2

∼ δd/2 if δ� d. Hence, the balance between the
capillary and the inertial force leads to σ/δ ∼ ρ[X/(t − t0)]

2, which finally produces
a scaling relationship X ∼ [σ(d/2)/ρ]1/4(t − t0)

1/2. Determining the prefactor in this
relationship by fitting the experimental data gives

X
d
≈ (1.0± 0.03)

(
t− t0

t∗

)0.5±0.01

. (4.1)
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4.3. Oscillation of the liquid plug
After the formation of a plug, shape oscillations can be observed (see supplementary
movie 7). These oscillations can be described by combining the concept of a damped
harmonic oscillator with a scaling analysis, which we will present in this section.

The differential equation of a damped harmonic oscillator is given by

mẌ + bẊ + kX = 0, (4.2)

in which X = X(t) is the instantaneous thickness of the liquid plug, m is its mass, b
is the damping coefficient, and k is the spring constant. The general solution of (4.2)
is

X(t) = X0 + X1 exp(−ξωnt) sin(ωd + ϕ)

= X0 + X1 exp(−βt) sin
(

2π
t
T
+ ϕ

)
, (4.3)

in which X0 denotes the thickness of the liquid plug after the oscillation has disappeared,
i.e. X0 = X|t→∞ = h. The amplitude X1 and phase ϕ have to be determined from the
initial conditions. Furthermore, we use the following abbreviations/relationships:

β = ξωn, ωn =

√
k
m
, ξ =

(
b
m

)
1

2ωn
, (4.4a−c)

ωd =
2π

T
=

√
1− ξ 2 ·ωn =

√
ω2

n − β
2 =

√
1−

1
4

b2

mk
·

√
k
m
, (4.5)

T =
2π√

1−
1
4

b2

mk
·

√
k
m

. (4.6)

We can identify the orders of magnitude of the unknown parameters (i.e. m, b and k)
by a scaling analysis:

m∼ ρ
(

d
2

)3

, b∼ η
(

d
2

)
, k∼ σ . (4.7a−c)

Based on that, the influence of the damping coefficient on the oscillation period can
be expressed by the Ohnesorge number Oh:

b2

mk
∼

η2

ρσ(d/2)
=Oh2, (4.8)

which relates the viscous forces to inertial and surface-tension forces, can be estimated
as Oh ≈ 4.70 × 10−3 (d = 1.0 mm is used). This indicates that the influence of
viscous force on the oscillation period is weak. For the sake of simplicity, we assume
T = 2π/ωd ≈ 2π/ωn.

4.4. Model parameter identification from experiments
In this section, we describe how the parameters of the harmonic oscillator model have
been determined from the experimental data.
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Finding X0
In the limit t → ∞, the thickness of the liquid plug reaches a constant value

(i.e. X|t→∞ = 0.5374d), which suggests

X0 = 0.5374 d. (4.9)

Equation (4.9) is based on a theoretical analysis. X0 can also be determined
experimentally. We obtain X0/d= 0.52± 0.01, 0.51± 0.01, 0.51± 0.01 and 0.50± 0.02
for capillary tubes with d = 0.7 mm, 1.0 mm, 1.38 mm and 1.5 mm, respectively
(see table 1), which is reasonably close to the theoretical results. The somewhat lower
experimental values are probably due to evaporation of liquid.

Finding T
Considering that the oscillation of the liquid results from the competition between

inertia and surface tension, the oscillation period should scale as T ∼ [ρ(d/2)3/σ ]1/2.
Let us define

T = c1t∗ = c1

[
ρ

σ

(
d
2

)3
]1/2

, (4.10)

in which t∗ = [ρ(d/2)3/σ ]1/2 is the characteristic time, and c1 is a dimensionless
coefficient. Since T can be measured directly, c1 can be determined.

Finding β
Based on the above analysis (i.e. (4.3), (4.4) and (4.7)) we have

β = ξωn =
b

2m
∼

η

ρ(d/2)2
. (4.11)

For convenience, using (4.8), we can rewrite β as

β = c2
η

ρ(d/2)2
= c2

1
t∗
·Oh, (4.12)

in which c2 is a dimensionless coefficient. On the other hand,

β = ξωn, ξ =
Γ /2π√

1+ (Γ /2π)2
, Γ = ln A1 − ln A2 = ln

(
A1

A2

)
, (4.13a−c)

in which A1 and A2 are the values of X(t) at any two successive maxima. We choose
A1=X|t=T/2−X0 and A2=X|t=3T/2−X0 (see figure 10a). Here ωn is measured through
ωn= 2π/T , in which the first period T is used. Combining (4.12) and (4.13) gives c2.

Based on the above analysis, we can rewrite (4.3) as

X(t)= X0 + X1 exp
(
−c2 ·Oh ·

t
t∗

)
· sin

(
2π

c1
·

t
t∗
+ ϕ

)
, (4.14)

or, in dimensionless form,

X̄(t)= X̄0 + X̄1 exp(−c2 ·Oh · t̄) · sin
(

2π

c1
· t̄+ ϕ

)
, (4.15)

in which X̄(t)= X(t)/d, X̄0 = X0/d, X̄1 = X1/d and t̄= (t− t0)/t∗.
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d t∗ Oh X0/d X1/d c1 β c2

(mm) (mm) (s−1)

0.7 0.77 5.62× 10−3 0.52± 0.01 0.16 2.18± 0.08 822.56± 113.49 112.76± 15.56
1.0 1.31 4.70× 10−3 0.51± 0.01 0.16 2.24± 0.07 467.82± 68.20 130.89± 19.08
1.38 2.13 4.00× 10−3 0.51± 0.01 0.14 2.08± 0.03 217.91± 59.34 116.10± 31.61
1.5 2.41 3.84× 10−3 0.50± 0.02 0.15 2.01± 0.04 217.17± 46.24 136.71± 29.11

TABLE 1. Coefficients of the harmonic oscillator model obtained from experiments with
four different tubes. Here we use ϕ =−π/2 for each capillary tube.

Finding X1 and ϕ

Up to now, X1 and ϕ are the last two unknown parameters to be determined. From
(4.9), we know sin[2πt/(c1t∗)] = sin(2πt/T + ϕ). Checking the first period of the
experimental data, we find approximately X(t = T/2) = Xmax and X(t = T) = Xmin

(see the inset of figure 10a), which suggests that ϕ ≈ −π/2, resulting in X1 > 0
(alternatively, ϕ ≈π/2, resulting in X1 < 0). Finally, we assume that the experimental
value (X|t=T/2−X|t=T) (e.g. figure 10a) is equal to the corresponding theoretical value,
i.e. X(t=T/2)−X(t=T) in (4.9). By this method, we can determine X1 for each tube.

In table 1, the resulting coefficients related to experiments with four different tubes
are listed. The results in table 1 have been obtained from individual experiments. Each
value represents the average of five independent measurements, from which standard
errors have been computed.

The comparisons shown in figure 10 suggest that our model (solid black lines)
reproduces the experimental data (red dots) reasonably well. However, all the graphs
show a deviation, especially in the first period. For a damped oscillator (see the
inset of figure 10a), we should have (X|t=T/2 − X0) > (X0 − X|t=T); however, in the
experiments we obtain (X|t=T/2 − X0) < (X0 − X|t=T) for all capillary tubes. One
possible reason is that after the liquid plug has been formed, gas is enclosed between
the plug and the bottom meniscus, whereas the other side of the plug is open. This
has the following consequences for the oscillation: (i) for t∈ [0, T/2], X is increasing,
meanwhile the gas is being compressed, which creates a force resisting the increase
of X; (ii) on the contrary, for t ∈ [T/2, T], X is decreasing, meanwhile the gas is
expanding, which promotes the increase of X. We have to emphasize that during
the oscillation, we did not observe any appreciable downward motion of the bottom
meniscus, which means the gas is indeed compressed.

The above analyses are for individual tubes only. Given that the physics represented
by (4.14) is correct, it should be possible to formulate a uniformly valid model
which allows the prediction of the plug oscillation in all different tubes. According
to the model assumptions, the oscillation period should be proportional to t∗ =
[ρ(d/2)3/σ ]1/2, while the damping coefficient should be proportional to η/[ρ(d/2)2].
Figure 11 compares the experimentally determined oscillation periods and damping
coefficients for four different tubes with these scales. To a very good approximation,
a direct proportionality between the experimentally determined values and the scales
in the model holds true.

By performing linear fits, we find c1 ≈ 2.07 and c2 ≈ 117.50 based on (4.10) and
(4.12). X0/d and X1/d are determined from table 1 by taking the average of the values
corresponding to the four individual tubes. We obtain X0/d ≈ 0.512 (∼5 % deviation
from the theory X0/d= 0.537) and X1/d≈ 0.15. Therefore, on the basis of (4.15) the
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FIGURE 10. Time evolution of the liquid plug thickness as obtained from the experiments
(symbols) and the model (lines). The inner diameters of the capillary tubes are: (a) d =
0.7 mm; (b) d = 1.0 mm; (c) d = 1.38 mm; and (d) d = 1.5 mm. Each red dot is the
average of five experiments, with error bars representing the standard deviation. The black
solid lines are model results according to (4.14). All parameters are listed in table 2 in
appendix A. The schematic in the inset of (b) depicts the geometrical parameters A1, A2
and X0.
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FIGURE 11. Relationship between (a) T and t∗; (b) β and η/[ρ(d/2)2]. Here T and β
are the measured values of the oscillation period and the damping factor. The red dashed
lines are linear fits using the method of least squares. Each symbol is the average value
of five experiments with standard errors.

uniformly valid model is given as

X̄(t)= 0.512+ 0.15 exp(−117.50 ·Oh · t̄) · sin
(

3.04 · t̄−
π

2

)
. (4.16)
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X

FIGURE 12. Dependence of the normalized instantaneous liquid column height x/d
on the normalized time (t − t0)/t∗ in linear plot. Each point is the average value of
five individual measurements with the standard deviation indicated as error bars. The
solid lines are theoretical predictions of (4.16), with four colours corresponding to the
experimental results in different tubes. The frames in the inset correspond to (t − t0) ≈
0 ms, 0.1 ms, 0.25 ms, 0.6 ms, 1.3 ms, 2.8 ms, and the scale bar represents 200 µm.

Comparisons between experimental data and (4.16) for four different capillary tubes
are given in figure 12.

The solid lines in figure 12 represent theoretical predictions for capillary tubes with
different diameters. Equation (4.16) reproduces the experimental results reasonably
well, but some deviations are visible. The only coefficient in all of the derived scaling
relationships that strongly depends on the reference properties of the liquid is c2. It
may vary by one order of magnitude if a different reference temperature of reference
composition (within the scope of the experiments) is chosen. However, we wish to
emphasize that the agreement between the experimental data points and the curves in
figure 12 is unaffected by that.

5. Conclusions

In summary, we studied the evolution of the liquid surface in heated capillary tubes
dipped into a bath filled with a binary mixture. Various morphologies, such as liquid
films, rings and plugs, have been observed, as well as the transitions between them.
Rings are formed in a similar way as the famous tears of wine by pulling up liquid
through a thin film driven by solutal Marangoni stresses. A key phenomenon is the
transition between a liquid ring and a plug. Based on the Young–Laplace equation,
this can be understood as the collapse of a minimal surface beyond its stability
threshold. Experimental and theoretical results for the stability threshold are in good
agreement. Scaling laws describing the dynamics of the transition between liquid ring
and plug as well as the oscillations of the plug after its formation have been identified.
The observed phenomena could be relevant for a broad class of processes/phenomena
in fields such as chemical engineering, microfluidics and geophysics. Future studies
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No. d (mm) dout (mm) ∆ (mm) l (mm)

1 1.5 1.8 0.15 100
2 1.38 1.92 0.27 120
3 1.0 1.2 0.1 100
4 0.7 0.87 0.085 100

TABLE 2. Geometrical parameters of the capillary tubes used in the experiments, denoting
d, dout, ∆ and l the inner and outer diameters, wall thickness and length, respectively.

should be devoted to examining the complex dynamics occurring inside the tubes
after the formation of single and especially multiple plugs.
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Appendix A. Materials and experimental methods
A.1. Sample preparation

Glass capillary tubes with different inner diameters are used in our experiments.
First, the tubes are washed using ethanol and Milli-Q water, and then dried by clean
compressed air. The key step is to treat the tubes with ‘piranha’ solution, which
is composed of 70 % sulfuric acid solution (H2SO4, 96 % in concentration) and
30 % hydrogen peroxide solution (H2O2, 30 % in concentration). On the one hand,
the piranha solution removes potential contaminants; on the other hand, the strong
oxidizing property of the solution renders the glass wall sufficiently hydrophilic,
which is crucial for the experiments. The tubes are immersed in a glass container
filled with piranha solution and heated to 90 ◦C for 30 min employing a hot plate.
After that, they are cleaned using Milli-Q water and dried.

The relevant geometrical parameters (i.e. the inner and outer diameters d and dout,
wall thickness ∆ and length l) of the four types of capillary tubes are listed in table 2.

A.2. Experimental set-up
The experimental set-up consists of a linear three-axis translation stage, two aluminum
(Al) cuboids with dimensions of 20× 4× 3 cm3 each, a high-speed camera (Photron
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Fastcam SA1.1 Model 675K-M1) attached to a long distance microscope, a strong
light source (ZHONGFA, item no. 0203), two thermo mats (Silicon Rubber Heater,
Rs-8607214), an insulation block (i.e. a wood block of 18× 9× 2 cm3), a temperature
control unit (JUMO, LR 316), a temperature sensor (platinum resistance temperature
sensor, Pt100) and a glass Petri dish (18.5 mm in diameter and 2.5 mm in height).
Some key components of the experimental set-up are sketched in figure 1(a). The
temperature sensor is attached to one Al block close to the capillary tube and linked
to the control unit. The Petri dish contains the ethanol/water mixture [40 % (v/v)].
To provide a uniform illumination, a light diffuser panel arranged between the light
source and the capillary tube is used. When neglecting the rays entering the capillary
tube that are reflected from one of the metal surfaces, the corresponding illumination
etendue is 33◦. Ray-tracing calculations were performed showing that the imaging of
the gas–liquid interface is not limited by the illumination etendue. The experiments
were carried out on an optical table.

During the experiments, different recording speeds are employed. Low recording
speeds guarantee a long time recording and a relatively large field of view (FOV),
while high recording speeds are employed to capture the details of the dynamics
during liquid plug formation. The highest recording speed used was 100 000 f.p.s
with a resolution of 4 µm pixel−1.

Appendix B. Temperature measurements
The principle of temperature control in our system is as follows. The sensor (the

black square as shown in figure 1a) fixed on the Al block is directly connected to the
control unit, and the control unit and the two thermo mats are connected to each other.
After a temperature has been set (Tcon, i.e. the target temperature) and the heating has
started, the control unit monitors instantaneous temperature values (Tb) of the Al block.
Via feedback control, the control unit not only lets Tb approach Tcon in a sufficiently
smooth process, but also restricts the fluctuations of Tb to a very narrow band. Typical
fluctuations are of the order of ±0.2 ◦C.

Since temperature gradients give rise to Marangoni stresses, a spatially uniform
temperature in the Al blocks is very important. We measured the temperature
at different points on the blocks. In this test, Tcon was set to 95 ◦C. As shown
in figure 13, the ten corresponding points are close (∼3 mm) to the edges of
the Al blocks. At each point, the temperature sensor is attached using thermal
paste, and the measurements started 10 min after the target temperature has been
reached. The maximum (Tmax) and minimum (Tmin) values of Tb during this 10 min
period are tabulated in figure 13 (the right-hand side), which shows a fluctuation
(1T = Tmax − Tmin) of ∼ 1 ◦C. Moreover, the average value of the temperature of
each point during this 10 min period, i.e. Taver = (Tmax + Tmin)/2, is given as well,
which indicates temperature values 94.60 ± 0.18 ◦C and 94.85 ± 0.31 ◦C of the left
and right blocks, respectively. Based on this, we conclude that a sufficiently uniform
temperature distribution exists inside the blocks.

While a uniform temperature distribution in the Al blocks is important, the
thermal resistances due to the capillary give rise to unavoidable non-uniformities.
To quantify these non-uniformities, temperature values were taken with another
three thermocouples (K type, 0.075 mm diameter of the probe tip) connected to a
thermometer (Lutron TM-947SD), as shown in figure 14:

(i) Tin (red circle): this thermocouple was put inside of the capillary tube, at a
position slightly below the liquid–vapour meniscus;
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20
 c

m

1

2

3

4

5

6

7

8

9

10

1 95.1 94.1 94.6 1.0 
2 94.7 94.2 94.45 0.5 
3 95.2 94.4 94.8 0.8 
4 94.6 94.2 94.4 0.4 
5 95.0 94.5 94.75 0.5 

94.60 ± 0.18 
6 95.7 95.0 95.35 0.7 
7 95.1 94.7 94.9 0.4 
8 95.0 94.4 94.7 0.6 
9 95.0 94.5 94.75 0.5 
10 94.8 94.3 94.55 0.5 

94.85 ± 0.31 

Block 1

4 cm 3 mm

Capillary tube

Block 2
No. Tmax (°C) Tmin (°C) Ta√g (°C) ÎT (°C)

(a) (b)

FIGURE 13. (a) Schematic diagram showing the points where the temperature has been
measured after the target value Tcon = 95 ◦C has been reached. Ten points distributed
uniformly along the Al block are chosen (∼3 mm from the inner boundary of each
Al block). The Al blocks and the capillary tube are not to scale. (b) Table of
measured temperatures. Here Tmax and Tmin are the maximum and minimum values of the
temperature during a time span of 10 min, Taver = (Tmax + Tmin)/2 and 1T = Tmax − Tmin.

Tb

Tgw

Tin
Tmix

FIGURE 14. Schematic showing the four temperature measurement points, represented
by a black square (Tb), red circle (Tin), green upward pointing triangle (Tgw) and blue
downward pointing triangle (Tmix).

(ii) Tgw (green upward pointing triangle): this thermocouple was mounted in such a
way that it touches the outside wall of the tube;

(iii) Tmix (blue downward pointing triangle): this thermocouple was placed in the bulk
of the mixture in the container, ∼7.5 mm away from the bottom of the capillary
tube.

This test starts from room temperature and ends at a temperature of ∼ 107.5 ◦C
(i.e. up to the point where liquid films can no longer be observed), based on the
following protocol. First, a stable state is reached, meaning that Tb reaches Tcon. After
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Tin: capillary (inner)
Tgw: glass wall
Tmix: mixture (bulk)

(a) (b)

(c) (d)

FIGURE 15. Dependence of the temperature at four different positions (Tb, Tin, Tgw, Tmix)
on the target value (Tcon) for four different capillary tubes. The black squares, red circles,
green and blue triangles represent the values measured at the four different positions
indicated in figure 14. Error bars are attached to all data points, but are too small to
be visible in most cases. The tube diameters are: (a) d = 0.7 mm; (b) d = 1.0 mm;
(c) d = 1.38 mm; and (d) d = 1.5 mm. The solid line (i.e. Tm = Tcon) in each figure is
used to guide the eye. The grey region in each figure indicates the range of Tcon in which
liquid plugs are formed.

a waiting time of 5 min, fresh mixture is filled into the Petri dish to a level where
the liquid touches the capillary tube. Then, the recording of the temperature values
at the four positions over a time span of 5 min starts. The corresponding maximum
and minimum values over that time span are denoted by Tmax and Tmin, respectively.
In figure 15, the individual points represent the average values of Tmax and Tmin, i.e.
(Tmax + Tmin)/2. Correspondingly, the error bar is defined as 1T = (Tmax − Tmin)/2.
Here Tm denotes the measured values of Tb, Tin, Tgw and Tmix, respectively. After this
test, the Petri dish is removed, and the same procedure is performed again. Literature
indicates that the boiling point of the mixture is approximately 83–84 ◦C (Reddy
& Lienhard 1989). However, we did not observe any nucleate boiling within the
considered temperature range.

When Tcon 6 85 ◦C, climbing liquid films are hardly visible. As a consequence,
no liquid rings or plugs are found. In this temperature regime, Tcon was increased
in steps of 5 ◦C. However, when Tcon > 85 ◦C, the formation of films and other
configurations sets in, so the step size was reduced to 2.5 ◦C to capture more details.
Considering that evaporation always happens in the experiments, the composition
of the ethanol/water mixture varies due to the different evaporation rates of water
and ethanol. By employing a syringe, the mixture in the Petri dish was renewed
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frequently during these 5 min tests to guarantee a well-defined composition in the
liquid reservoir.

Figure 15 shows that Tb always follows very well the target value; Tmix is close to
room temperature, but it slightly increases with Tcon; Tin is the key readout, because
it indicates the temperature of the liquid mixture inside the tube. The grey region in
each graph indicates in which range of Tcon liquid plugs are formed. Typically the grey
regions range from 87.5 ◦C to 105 ◦C with an uncertainty of ±1.25 ◦C, corresponding
to the left-hand and right-hand boundaries. The reasons for the uncertainty may be
due to variations of the contact area with the Al block.

We aim at presenting a theoretical analysis of the profile of the liquid ring and the
oscillation of the plug. In order to quantitatively analyse these phenomena, knowledge
of the local liquid properties is required. It is very difficult to measure the relevant
parameters, i.e. pressure, density, viscosity and surface tension, directly in the capillary
tube. Although one could perform measurements in the bulk mixture, the boiling point
of the mixture (83–84 ◦C) (Reddy & Lienhard 1989) is lower than the upper limit
of the temperature range (∼95 ◦C, see figure 15) inside the capillary tube. Moreover,
the relevant values of the material parameters vary due to dynamic temperature
fluctuations. Therefore, in the theoretical analysis, for convenience we use the material
properties of pure water at ∼25 ◦C (i.e. σ = 72.15 mN m−1, ρ = 997.1 kg m−3 and
η= 0.891 mPa s (Khattab et al. 2012)).
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