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Turbulent two-phase flows are characterized by the presence of multiple time and
length scales. Of particular interest in flows with non-negligible interphase momentum
coupling are the time scales associated with interphase turbulent kinetic energy transfer
(TKE) and inertial particle dispersion. Point-particle direct numerical simulations
(DNS) of homogeneous turbulent flows laden with sub-Kolmogorov size particles
report that the time scale associated with the interphase TKE transfer behaves
differently with Stokes number than the time scale associated with particle dispersion.
Here, the Stokes number is defined as the ratio of the particle momentum response
time scale to the Kolmogorov time scale of turbulence. In this study, we propose a
two-way coupled stochastic model (CSM), which is a system of two coupled Langevin
equations for the fluctuating velocities in each phase. The basis for the model is the
Eulerian–Eulerian probability density function formalism for two-phase flows that was
established in Pai & Subramaniam (J. Fluid Mech., vol. 628, 2009, pp. 181–228). This
new model possesses the unique capability of simultaneously capturing the disparate
dependence of the time scales associated with interphase TKE transfer and particle
dispersion on Stokes number. This is ascertained by comparing predicted trends of
statistics of turbulent kinetic energy and particle dispersion in both phases from CSM,
for varying Stokes number and mass loading, with point-particle DNS datasets of
homogeneous particle-laden flows.

Key words: fluidized beds, gas/liquid flow, multiphase flow

1. Introduction
Particle dispersion and modulation of the ambient carrier-phase turbulence by the

dispersing particles have a strong influence on the evolution of a two-phase flow.
For instance, as coal particles traverse through an entrained coal gasifier, the rapidly
changing ambient gas turbulence disperses the particles. Dispersing coal particles in
turn amplify or suppress the turbulence in the ambient gas. The effects of turbulence
and coal particle dispersion are therefore intimately coupled. A similar phenomenon
occurs when a fuel spray is injected into the combustion chamber of an internal
combustion engine or a gas-turbine combustor.

Statistical models that seek to describe turbulent two-phase flows must be capable
of capturing the coupled effects of turbulence and particle dispersion. Moreover, the
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30 M. G. Pai and S. Subramaniam

interactions between the dispersed phase and the carrier phase are multiscale in nature,
with the dispersed particles interacting with a range of carrier-phase turbulence time
and length scales. Such interactions arise even in simple homogeneous flows, and
therefore it is imperative that models reproduce these phenomena and capture these
time and length scales in simple flows in order to be predictive in more complex
inhomogeneous flows.

An example of a multiscale interaction between the dispersed phase and the carrier
phase can be observed even in point-particle direct numerical simulations (DNS) of
canonical turbulent flows laden with sub-Kolmogorov size particles, which is the focus
of this study. Such interactions manifest in an interesting dependence of the time
scales governing interphase turbulent kinetic energy (TKE) transfer and Lagrangian
particle velocity autocorrelation, which is a measure of particle dispersion, on Stokes
number. It is observed that the time scale for interphase TKE transfer is different from
the time scale associated with particle dispersion, and that the trends of these time
scales are also different for varying Stokes numbers. Particles with high Stokes number
lose energy faster than particles with low Stokes number in freely decaying turbulence
(Sundaram & Collins 1999). On the other hand, particles with high Stokes number
lose correlation with their initial velocities slower than particles with low Stokes
number in stationary turbulence (Squires & Eaton 1991; Truesdell & Elghobashi 1994;
Mashayek et al. 1997). The physical explanation is that, with increasing Stokes
number, the fluid phase does more work to move the particles around, thereby
increasing the interphase transfer of TKE, which in turn results in the draining of
energy from the particles to the fluid. However, with increasing Stokes number, the
additional dissipation of fluid TKE due to the presence of the particles also increases
(and this effect dominates the interphase transfer of TKE), which explains the faster
decay of TKE in the fluid phase. Particles with higher Stokes number retain ‘memory’
of their initial velocities longer, thus explaining the slower decay of the Lagrangian
particle velocity autocorrelation.

Experiments also shed light on the multiscale interactions between the dispersed and
carrier phases (Snyder & Lumley 1971; Wells & Stock 1983; Groszmann & Rogers
2004). However, in experiments, unlike in the DNS studies, it is difficult to isolate
physical mechanisms that affect these multiscale interactions. Models for individual
terms in the governing equations for dispersed two-phase flows, such as the interphase
TKE, can be tested in isolation by comparing with corresponding terms quantified
from DNS. Hence a canonical DNS, such as the ones described earlier, provides
useful datasets for comparison with model predictions. Reproducing results from such
a canonical two-phase DNS therefore constitutes an important first step in validating
multiphase flow turbulence models.

It is noteworthy that two-phase models used in popular Lagrangian–Eulerian (LE)
implementations (see e.g. Amsden, O’Rourke & Butler 1989), which evolve the
dispersed-phase velocity according to a drag model of the form

dV p

dt
= U f − V p

τp
Cd(Rep)+ Fadd , (1.1)

and whose positions evolve according to

dXp

dt
= V p, (1.2)

are incapable of capturing the observed trends that were noted earlier in the decay
of TKE with Stokes number Stη = τp/τη, when tested in the canonical problem of
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Coupled stochastic model for particle dispersion in turbulence 31

particle-laden decaying homogeneous turbulence (Pai & Subramaniam 2006). In the
above equation, V p is the instantaneous particle velocity, U f is the instantaneous
gas-phase velocity (also sometimes referred to as the gas-phase velocity ‘seen’ by
the particles), τp = (ρdd2

p)/(ρf 18νf ) is the particle response time scale, Xp is the
particle position and Fadd represents additional terms that include lift and body forces.
The instantaneous gas-phase velocity U f is decomposed into a mean 〈U f 〉 and a
fluctuating component u′f . Here, ρd and ρf are the thermodynamic densities of the
dispersed phase and fluid phase, respectively, dp is the particle diameter and νf is
the kinematic viscosity of the fluid phase. A drag coefficient Cd that depends on the
particle Reynolds number Rep is generally included as shown. In the definition of
the Stokes number Stη, τη = (νf /εf )

1/2 is the time scale corresponding to the smallest
turbulent eddies, which are characterized by the Kolmogorov length scale η and
dissipation rate in the carrier phase εf .

The reason for the inability of such models to capture these trends observed in
two-phase DNS can be traced to the use of the particle response time scale τp

in (1.1). It was shown in Pai & Subramaniam (2006) that when τp is employed as
the time scale for interphase TKE transfer, it is incapable of capturing the multiple
time scale interactions of the dispersed phase with the carrier-phase turbulence. When
τp is replaced by a multiscale interaction time scale, predicted trends of TKE decay
from the LE model match DNS results (Pai & Subramaniam 2006), thereby validating
the choice of the multiscale interaction time scale as the appropriate time scale for
interphase TKE transfer in such statistical models.

The major research effort in modelling turbulent two-phase flows using the LE
representation has been directed towards arriving at a suitable model for U f (see
Lu 1995; Chen & Pereira 1997; Mashayek 1999; Pozorski & Minier 1999; Gao
& Mashayek 2004; Chagras, Oesterle & Boulet 2005). There is no evidence in
the literature of tests conducted with the aforementioned models in canonical two-
phase flows such as particle-laden decaying or stationary turbulence to ascertain their
capability to simultaneously capture the TKE and dispersion time scales that are
observed in DNS datasets. Furthermore, since these models are a prescription for U f

in (1.1), the implied interphase TKE transfer and velocity autocorrelation evolve on the
particle response time scale and are therefore incapable of capturing the disparate time
scale trends noted earlier.

The primary objective of this work is to propose a two-way coupled Lagrangian
model based on stochastic differential equations (SDEs) for dilute particle-laden
turbulent flows with non-negligible interphase momentum coupling that reproduces
the trend of TKE and particle dispersion statistics with varying Stokes number and
mass loading that are observed in DNS. Stochastic Lagrangian models have been
successfully employed in single-phase turbulent flows to model the velocity following
a fluid particle (Pope 1985). Models that are based on the Langevin equation have
the advantage that they are more amenable to analysis than existing LE models based
on stochastic white noise (Gosman & Ioannides 1983; Amsden et al. 1989). Although
Langevin models have been successful in predicting turbulent reactive flows (Pope
1985, 2000), extending such models to two-phase flows is not straightforward. This is
because single-phase Langevin models are based on a single time scale (namely the
integral time scale) and such models are clearly incapable of simultaneously capturing
the disparate time scales of TKE and particle dispersion observed in two-phase DNS.

The two-way coupled stochastic model (CSM) consists of a system of two coupled
Langevin equations for the fluctuating velocity in each phase. Unlike the models cited
earlier, we do not use (1.1) to evolve the particle velocities, nor do we model the
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32 M. G. Pai and S. Subramaniam

gas-phase velocity at the particle location U f as in (1.1). Instead, we propose a model
whose implied evolution of statistics models the exact statistics that are obtained from
the governing equations for the two-phase flow. This approach is reasonable because
this Lagrangian stochastic model does not directly represent fluid particles or dispersed
solid particles in a two-phase flow, but rather these are models of notional particles
that are consistent with a closure of the underlying probability density function
(p.d.f.) description of a two-phase flow – in the context of single-phase flows, see
the discussion on stochastic equivalence in Pope (1985). A distinguishing feature of
this model is its ability to capture simultaneously the disparate behaviour of TKE and
particle velocity autocorrelation evolution with Stokes number that is consistent with
DNS datasets. We further demonstrate the capability of the model to be predictive
in particle-laden homogeneous shear flows. Such a level of versatility has not been
demonstrated by two-phase models available in literature.

The paper begins with a brief review of the statistical representation of two-phase
flow that provides the theoretical basis for the proposed model. A general form of the
two-way CSM is presented in § 3. Section 4 presents a specific form of CSM as a
particular prescription of the drift and diffusion coefficients in the general form of the
coupled system. Evolution equations for the TKE and particle velocity autocorrelation
that are implied by CSM are then derived. CSM relies on a model for interphase
TKE transfer called the equilibrium of energy concept, which is described in § 5.
Model constants and the rationale for their choice in the drift and diffusion coefficients
are presented in § 6. A description of the DNS datasets that are used to compare
predictions from CSM is presented in § 7. This is followed by a detailed comparison
of the CSM predictions and DNS datasets in § 8. A detailed appraisal of CSM is then
presented in § 9. Section 10 presents a summary that includes important conclusions of
the work.

2. Theoretical basis for the coupled stochastic model
We first review salient aspects of the theoretical basis for a coupled stochastic model

that is proposed in the context of the Eulerian–Eulerian (EE) statistical formalism.
Only details pertinent to the current study are presented, while more details on the
theoretical description are provided in Pai & Subramaniam (2009).

The starting point for the EE description is the indicator function Iβ . Let the two-
phase flow be composed of a carrier phase (such as a gas) and a dispersed phase (such
as a solid or liquid). The indicator function Iβ(x, t) for the βth phase is defined as

Iβ(x, t)=
{

1 if x is in phase β at time t,
0 if x is not in phase β at time t,

(2.1)

where β = {f , d}, and f represents the carrier phase and d represents the dispersed
phase. The instantaneous two-phase velocity field U(x, t) and the instantaneous
thermodynamic mass density field ρ(x, t), which are defined in all phases, are vector
fields defined at every location x in the flow domain in physical space. One can define
a p.d.f. fU of U(x, t) at location x that can be in either phase β. By conditioning on
phase β, an associated phasic p.d.f. fU|Iβ can be defined as

fU|Iβ =
pβ fU(u)
αβ(x, t)

, (2.2)
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Coupled stochastic model for particle dispersion in turbulence 33

where pβ is the probability that the location x is in phase β conditional on U = u. An
analogous phasic mass density conditional on phase β can be defined as

FU|Iβ = 〈ρIβ | U = u〉fU(u). (2.3)

For the zero interphase mass transfer assumed in this study, the transport equation for
the phasic mass density (see Pai & Subramaniam 2009, equation (4.13)) is

∂FU|Iβ
∂t
+ uk

∂FU|Iβ
∂xk

=− ∂

∂uk
[〈Ak|u〉FU|Iβ ], (2.4)

where

〈Ãk|u〉 = 1
〈ρIβ | u〉

〈
ρIβ

DUk

Dt

∣∣∣∣u〉 (2.5)

is the density-weighted expected acceleration conditional on velocity u. Under the
assumption of constant density in either phase, FU|Iβ simplifies to

FU|Iβ = ρβpβ fU = ρβαβ fU|Iβ . (2.6)

Thus the evolution for the volume fraction-weighted conditional phasic p.d.f. can be
written as

∂(αβ fU|Iβ )

∂t
+ ui

∂(αβ fU|Iβ )

∂xi
=− ∂

∂uk
[〈Ak | u〉αβ fU|Iβ ], (2.7)

where the tilde has been removed from the acceleration term to remind us that the
unweighted (density-removed) acceleration is equal to the density-weighted counterpart
for constant-density two-phase flows. Equation (2.7) shows that the evolution of
the volume fraction-weighted Eulerian single-point phasic p.d.f. in velocity space is
determined by the conditional acceleration 〈Ak|u〉. Equation (2.7) governs the evolution
of the Eulerian phasic p.d.f. in either phase β = {f , d}. Later we draw the connection
between the evolution of fU|Iβ and the evolution of the p.d.f. corresponding to the
coupled stochastic model.

3. General form of a coupled stochastic model for two-phase flows
In its most general form, a coupled stochastic model for the fluctuating velocities

in the fluid phase and dispersed phase in a statistically homogeneous two-phase flow
system can be written as a matrix system of vector SDEs as

d

(
u
v

)
=
(

aff afd

adf add

)
︸ ︷︷ ︸

A

(
u
v

)
dt +

(
bff bfd

bdf bdd

)
︸ ︷︷ ︸

B

(
dW f

dW d

)
. (3.1)

We have the following in the above coupled system of SDEs.

(i) The velocities u and v are modelled fluctuating velocities in the fluid phase f and
dispersed phase d, respectively.

(ii) The matrix denoted A is the drift matrix whose elements aff , afd, adf and add

have dimension [T−1]. The physical significance of aff is that it represents the
‘friction’ coefficient that decays kf due to dissipation in the turbulent eddies and
also accounts for the production term from mean velocity gradients, whereas
the physical significance of add is that it represents the ‘friction’ coefficient that
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34 M. G. Pai and S. Subramaniam

decays the particle TKE through interaction with the range of eddies in fluid
turbulence, not just due to Stokes flow around each particle. The cross-coupling
terms afd and adf are zero in a single-point closure model (see discussion that
follows).

(iii) The matrix denoted B is the diffusion matrix whose elements bff , bfd, bdf and
bdd have dimension [LT−3/2]. The physical significance of bff is that it represents
the strength of random perturbations to the fluid phase velocity uf that determines
the level of fluid TKE in stationary homogeneous turbulence by the analogue of
the fluctuation–dissipation theorem, whereas bdd models the random perturbations
to the particle acceleration due to fluid turbulence that are not capable of being
represented in the one-point p.d.f. closure. The cross-coupling terms bfd and bdf

are zero in a single-point closure model (see discussion that follows).

(iv) Finally, dW f and dW d are independent isotropic Wiener processes. The usual
properties of the Wiener process 〈W 〉 = 0 and 〈W (t)W (s)〉 = min(t, s) hold;
furthermore, at any time t and time increment dt, the increment (W (t+dt)−W (t))
is a Gaussian random variable with zero mean and variance dt. Here, 〈 · 〉 denotes
the mathematical expectation.

A non-zero drift coefficient matrix afd or adf couples the evolution of u and v
and formally leads to particle–fluid velocity correlations such as 〈u · v〉. However,
the single-point limit of such correlations does not have any physical meaning in
two-phase flows with finite particle size because fluid particles and dispersed-particle
centres cannot coexist at the same physical location. Sundaram & Collins (1999)
have shown that the single-point limit of the two-point particle–fluid correlation is
identically zero. Owing to this physical constraint, the matrices afd, adf , bfd and bdf are
set to zero:

d

(
u
v

)
=
(

aff 0

0 add

)(
u
v

)
dt +

(
bff 0

0 bdd

)(
dW f

dW d

)
. (3.2)

In general, the drift and diffusion coefficients can be functions of the mean velocity
gradients in both phases, TKE and viscous dissipation in both phases, in addition
to non-dimensional quantities, such as particle Reynolds number, mass loading,
volume fraction and dispersed-phase to fluid-phase density ratio. A comparison of
the modelled p.d.f. equation or the Fokker–Planck (FP) equations implied by the SDEs
in (3.2) with (2.7) reveals the closure approximation in CSM; these FP equations are
presented next.

3.1. Fokker–Planck equation corresponding to the SDEs
Corresponding to the velocity variables u and v in the system of SDEs given by (3.2),
one can define conditional Lagrangian p.d.f.s f ∗L (u, t | u0, t0) and f ∗L (v, t | v0, t),
respectively, where the subscript 0 denotes the initial velocity and initial time.
Conditioning these Lagrangian p.d.f.s with the corresponding Eulerian velocity p.d.f.
at initial time provides the corresponding Eulerian velocity p.d.f. at later time t. The
FP equations for the modelled Eulerian p.d.f. of velocity in the carrier phase f ∗U(u, t)
and the dispersed phase f ∗V (v, t) corresponding to the system of stochastic differential
equations are (Gardiner 1983; Pope 2000)

∂

∂t
f ∗U +

∂

∂ui
(aff

ij ujf
∗
U)=

1
2

∂2

∂ui∂uj
[bff

ikb
ff
jk f ∗U ], (3.3)
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Coupled stochastic model for particle dispersion in turbulence 35

∂

∂t
f ∗V +

∂

∂vi
(add

ij vjf
∗
V )=

1
2

∂2

∂vi∂vj
[bdd

ik bdd
jk f ∗V ]. (3.4)

The asterisk (∗) reminds us that f ∗U is a model corresponding to the exact Eulerian p.d.f.
fU|Iβ . The FP equation models the evolution of the p.d.f. fU|Iβ that is given by (2.7).
Generally, the above equation is indirectly solved using a particle method solution. See
the Appendix for a description of the particle method solution that is adopted in this
study.

In the next section, we explore a form of the drift and diffusion coefficients that is
successful in reproducing the decay trends of TKE and velocity autocorrelation that
are observed in DNS of dilute particle-laden turbulent flows.

4. Two-way coupled stochastic model
The general form for the coupled stochastic model was presented earlier as a

system of SDEs given by (3.2). Since the primary goal of this study is to propose
a coupled stochastic model that can simultaneously capture the disparate time scale
trends associated with the evolution of TKE and particle velocity autocorrelation
observed in DNS of dilute particle-laden turbulent flows, we propose isotropic drift
and diffusion coefficients that reproduce these trends. This coupled stochastic model
reads

dui =−
(

A(t)δij + ∂〈Ui〉
∂xj

)
uj dt + B(t)δij dWf j, (4.1)

dvi =−
(

C(t)δij + ∂〈Vi〉
∂xj

)
vj dt + D(t)δij dWpj, (4.2)

where

A(t)=
[

1
2τ1
+
(

1
2
+ 3

4
C0

)
εf

kf

]
, (4.3)

B(t)=
[

C0εf + 2
3

kf

τ1
+ 2

3

(
ke

f − kf

τ2

)]1/2

, (4.4)

C(t)= 1
2τ3

, (4.5)

D(t)=
[

2
3

kd

τ3
+ 2

3

(
ke

d − kd

τ4

)]1/2

. (4.6)

For the homogeneous test cases studied in this work, and for the drift coefficients to
be isotropic, the mean velocity gradient in each phase must be constant. Thus, for
a mean shear in the 1–3 direction, ∂〈Ui〉/∂xj = ∂〈Vi〉/∂xj =S δi1δj3, where S is the
constant imposed mean shear and δij is the Kronecker delta. In the above equation,
τ1 and τ3 are time scales that appear in the drift coefficients, while τ2 and τ4 are
time scales that appear in the diffusion coefficients of each SDE; the importance of
these time scales will become clear shortly. The TKE in the dispersed phase is denoted
kd with a superscript ‘e’ to denote ‘equilibrium’ values (the same holds for the TKE
in the fluid phase kf ). The gas-phase dissipation enhanced by the presence of the
dispersed phase is denoted εf . The rationale behind this particular choice of the drift
and diffusion coefficients and the reason for the use of the term ‘equilibrium’ are
explained in the next section.
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The fluid-phase SDE can be viewed as an extension of the simplified Langevin
model (SLM) (Haworth & Pope 1986; Pope 2000) to two-phase flows, but with an
important difference being the introduction of drift and diffusion time scales that are
different from each other. Additional terms that represent interphase interactions have
been included. In this model, the coupling between the two phases is only through
mean fields like TKE (kf and kd) and εf , and not explicitly through ui and vi, for
reasons outlined earlier.

The reason to choose SLM as a basis for CSM is manifold. SLM performs well
in the context of single-phase flows (Pope 2000), where for stationary turbulence
the Lagrangian integral time scale matches well with DNS results (Yeung & Pope
1989). The form of the second-order structure function as implied by SLM is linear
in time separation, which is consistent with Kolmogorov’s hypotheses. In single-phase
homogeneous shear flows, SLM is a reasonable model for the Lagrangian velocity of a
fluid particle (Pope 2002). However, in homogeneous shear flows, when the Reynolds
stresses and the Lagrangian integral time scale from DNS (Sawford & Yeung 2001)
are employed to arrive at the implied diffusion coefficient in SLM, Pope (2002) does
find that this coefficient is significantly anisotropic; although it is not clear if the
anisotropy is an effect of the low-Reynolds-number regime studied in the DNS. A
value of C0 = 3.4 has also been used by Pope in the same study, with better agreement
of model predictions with DNS results, than with C0 = 2.1.

In this study, the primary emphasis is to match trends of important two-phase
statistics in canonical two-phase flows for varying non-dimensional parameters, such as
Stokes number and mass loading, with those observed in DNS. For the purposes of
this study, we use the simplest form of the single-phase Langevin model as the single-
phase limit of CSM with C0 = 2.1. Recent model developments to such Langevin
models can be incorporated into the two-phase flow model proposed in this paper.

4.1. Implied evolution equation for the Reynolds stresses

The evolution equations of key statistics in a two-phase flow as implied by CSM
are now derived. Following a standard procedure (see e.g. Pope 2000), the evolution
equations for the phasic Reynolds stresses implied by CSM are obtained as

d
dt
〈uiuj〉 = −2A(t)〈uiuj〉 −

(〈ukuj〉S δ1iδk3 + 〈uiuk〉S δj1δk3

)+ B (t)2 δij, (4.7)

d
dt
〈vivj〉 = −2C(t)〈vivj〉 −

(〈vkvj〉S δ1iδk3 + 〈vivk〉S δj1δk3

)+ D (t)2 δij, (4.8)

where the second term enclosed in parentheses on the right-hand side of the above
equations represents the production due to mean velocity gradients.

4.2. Implied evolution equations for the TKE

Contracting like indices in (4.7) and (4.8) results in the evolution equations for the
TKE in the fluid phase, defined as kf = (1/2)〈uiui〉, and the TKE in the dispersed
phase, defined as kd = (1/2)〈vivi〉, respectively:

dkf

dt
=−2A(t)kf − 〈u3u1〉S + 3

2
B (t)2, (4.9)

dkd

dt
=−2C(t)kd − 〈v3v1〉S + 3

2
D (t)2 . (4.10)
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Simplifying the above equation using the prescribed form of the drift and diffusion
coefficients results in

dkf

dt
=−kf − ke

f

τ2
− 〈u3u1〉S − εf , (4.11)

dkd

dt
=−kd − ke

d

τ4
− 〈v3v1〉S . (4.12)

The first term on the right-hand side of the above equations represents the modelled
interphase TKE transfer term (Xu & Subramaniam 2006; Pai & Subramaniam
2007), while the second term represents the production due to the constant mean
velocity gradient. The effects of viscous dissipation on the fluid phase TKE manifest
themselves in the εf term of (4.11). We assume in this study that collisional dissipation
in the dispersed phase is negligible owing to the dilute two-phase flow, and hence
a dissipation term does not appear in (4.12) (see § 5 for further discussion on this
aspect). Note that τ2 and τ4 are the time scales governing the evolution of the
interphase TKE transfer. For zero mean velocity gradient (such as in the context
of homogeneous, isotropic particle-laden turbulence), the evolution equations for the
TKE in each phase given by (4.11) and (4.12) simplify to

dkf

dt
=−kf − ke

f

τ2
− εf , (4.13)

dkd

dt
=−kd − ke

d

τ4
. (4.14)

4.3. Implied Lagrangian velocity autocorrelation
The Lagrangian velocity autocorrelation in phase β, denoted ρβ ij(t, s), is defined (for
t > t0) as

ρβ ij(t, s)= 〈γi(t)γj(t + s)〉
(〈γi(t)γi(t)〉)1/2〈γj(t + s)γj (t + s)〉1/2 (4.15)

(no summation is implied over repeated indices), where γ stands for either u or v. The
Lagrangian autocorrelation is simply a normalized autocovariance, and gives a measure
of how quickly the phase velocity loses correlation with its value at some earlier time.
In stationary (weak stationarity in particle-laden flows can be ascertained by observing
the evolution of statistics such as TKE in either phase) particle-laden turbulence, ρβ ij
depends only on the separation time s, and not on t:

ρβ ij(s)=
〈γi(t0)γj(t0 + s)〉

(〈γi(t0)γi(t0)〉)1/2〈γj(t0 + s)γj (t0 + s)〉1/2 , (4.16)

where t0 can be any initial time after the system reaches stationarity. In statistically
non-stationary flows (such as particle-laden decaying turbulence), the velocity
autocorrelation also depends on the time t0. Evolution equations for the fluid-phase
velocity autocovariance and the dispersed-phase velocity autocovariance can be derived
as

d
dt
〈ui(t0)uj(t)〉 = −

[
1

2τ1
+
(

1
2
+ 3

4
C0

)
εf

kf

]
〈ui(t0)uj(t)〉 −S δj1δk3〈ui(t0)uk(t)〉

(4.17)
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and

d
dt
〈vi(t0)vj(t)〉 = − 1

2τ3
〈vi(t0)vj(t)〉 −S δj1δk3〈vi(t0)vk(t)〉, (4.18)

respectively.
For homogeneous particle-laden turbulent flows in the absence of mean velocity

gradients, the evolution equations for the velocity autocovariance in each phase given
by (4.17) and (4.18) simplify to

d
dt
〈ui(t0)uj(t)〉 = −

[
1

2τ1
+
(

1
2
+ 3

4
C0

)
εf

kf

]
〈ui(t0)uj(t)〉, (4.19)

d
dt
〈vi(t0)vj(t)〉 = − 1

2τ3
〈vi(t0)vj(t)〉, (4.20)

where, for stationary turbulence, the 1
2 in the parentheses in (4.19) is dropped.

A striking feature of CSM is revealed when observing (4.13), (4.14), (4.19) and
(4.20): only one of the four time scales τ1, τ2, τ3 and τ4 appears in each of the
four equations. Each of these time scales can potentially be modelled to behave
independently of the others. However, as we will see later, in order to represent the
correct physics of the two-phase flow, these time scales are not entirely independent.
Still, we find that using CSM, the evolution of TKE can be modelled to behave
differently from the evolution of the velocity autocovariance. It is therefore possible
to incorporate the capability of capturing the disparate time scale trends observed in
two-phase DNS into CSM.

The equilibrium energies ke
f and ke

d in (4.1) and (4.2) are related, as shown next,
and so the evolutions of kf and kd are coupled through these terms. The proposed
form of the TKE evolution equations (4.11) and (4.12) and the relation between
the equilibrium energies is based on the equilibration of energy (EoE) model for
interphase TKE transfer. We briefly review this model next.

5. Equilibration of energy concept
To explain the EoE concept, which was proposed by Xu & Subramaniam (2006),

the following model system of equations for the evolution of TKE in a dilute
homogeneous two-phase flow system are assumed to hold:

def

dt
=Πkf − ρfαf εf , (5.1)

ded

dt
=Πkd , (5.2)

where Πkf = (ee
f − ef )/τπ and Πkd = (ee

d− ed)/τπ are the interphase TKE transfer terms.
Here, τπ is the interphase TKE transfer time scale, ef = ρfαf kf and ed = ρdαdkd are
the specific carrier-phase and dispersed-phase energies, respectively, and ee

f = ρfαf ke
f

and ee
d = ρdαdke

d are the equilibrium specific TKEs in the carrier phase and dispersed
phase, respectively. Collisions among particles are assumed to be elastic and hence no
dissipation is considered in the dispersed phase. There is an implicit assumption of
sub-Kolmogorov size particles in the above equations. This is because large particles
can shed wakes that can in turn lead to an increase in TKE of the carrier phase.
Increase in carrier flow TKE due to particle wakes is considered negligible in this
study.
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The EoE concept states that, if

dem

dt
=−ρfαf εf +Ff = 0, (5.3)

where Ff is the external artificial forcing required to balance the dissipation in
order to maintain dem/dt = 0, then the specific dispersed-phase TKE and specific
fluid-phase TKE evolve to their respective equilibrium values. In the above equation,
em = ρmkm = ef + ed = ρfαf kf + ρdαdkd is the mixture energy in the two-phase flow
system and ρm is the mixture density defined as ρm = ρdαd + ρfαf . The dissipation in
the carrier phase εf is assumed to consist of (not necessarily a sum of contributions):
(i) a part due to the single-phase dissipation in the bulk fluid that is present even
in the absence of particles, and (ii) an energy loss due to the drag at the particle
surfaces (this contribution includes the energy loss due to the velocity gradients in
the boundary layers around the dispersed particles). Implicit in (5.3) is the assumption
that Πkf = −Πkd , which implies that the interphase TKE transfer is conservative. This
assumption has been shown to hold for rigid particle-laden turbulent flows (Xu &
Subramaniam 2007).

Equilibrium values of the specific fluid-phase TKE ee
f and specific dispersed-phase

TKE ee
d are determined by a model parameter Ck, which is defined as

ee
d

em
= Ck or

ee
f

em
= 1− Ck. (5.4)

Since Ck represents the fraction of the specific mixture energy present in the dispersed
phase at equilibrium, it must lie between zero and unity.

An implicit dependence of Ck on mass loading φ of the two-phase system can be
ascertained by rewriting (5.4) as

Ck = ρdαdke
d

ρmkm
= ρdαdke

d

ρfαf ke
f + ρdαdke

d

= φke
d/k

e
f

1+ φke
d/k

e
f

, (5.5)

where φ is the mass loading of the two-phase system. The model parameter Ck can
also depend on other non-dimensional quantities such as Stokes number Stη, particle
Reynolds number Red, initial kd/kf ratio, the ratio of the particle diameter dp to the
Kolmogorov length scale η, and the dispersed-phase volume fraction αd.

For a constant mass loading φ, decreasing Stokes number should drive the dispersed-
phase equilibrium TKE closer to the fluid-phase equilibrium TKE, and in the limit
of zero Stokes number, the two equilibrium energies should match. This observation
imposes a constraint on Ck in the limiting case of zero Stokes number, and from (5.5)
we get

Ck|Stη=0 =
φ

1+ φ . (5.6)

The EoE concept can be extended to the case where the turbulence decays in time
(no artificial forcing of the mixture energy in the two-phase flow system). However,
the system of equations (cf. (5.1)–(5.2)) needs to be augmented by an equation for
the dissipation rate evolution (details can be found in Xu & Subramaniam (2006),
where the extension of the EoE concept to inhomogeneous flows in the context of EE
statistical representation of two-phase flows is also presented):

dεf

dt
=−Cε2

ε2
f

kf
+ Cs

εf

kf

(
ke

f − kf

τπ

)
− Cε1〈uiuj〉∂〈Ui〉

∂xj

εf

kf
, (5.7)
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where εf is the fluid-phase dissipation evolving according to a modified single-phase
ε equation with the production term due to mean velocity gradients. This dissipation
rate equation is similar to that proposed by Simonin (1996a,b), except for the term
due to interphase TKE transfer, which arises from the EoE model. Note that the
mean velocity gradient in the third term on the right-hand side of (5.7) is assumed to
be a constant as noted earlier on account of homogeneity. The model constants Cε1

and Cε2 are to be 1.44 and 1.92, respectively. These model constants are identical
to those employed in EE models that are described in Simonin (1996a,b) and Xu
& Subramaniam (2006). The constant C3 is equal to 3, as this value provided the
best agreement with DNS datasets in our tests. As more DNS datasets that quantify
the interphase momentum transfer term and the time scale of its evolution in the
dissipation evolution become available, this constant could change.

Note that, in non-stationary particle-laden turbulent flows, Ck can be expected to be
a function of time. Furthermore, in such flows, the equilibrium energies in (5.4) have
to be interpreted as notional target values rather than as a stationary equilibrium state
of the two-phase flow, since the equilibrium energies are a function of the mixture
mean energy, which is itself a function of time in non-stationary particle-laden flows.

6. Model constants in CSM
6.1. Specification of Ck

The EoE model parameter Ck defined in (5.5) represents the ratio of specific TKE in
the dispersed phase to that in the two-phase mixture. As noted in § 5, Ck can depend
on mass loading φ, Stokes number Stη, particle Reynolds number Red, initial kd/kf

ratio and the dispersed-phase volume fraction αd corresponding to a two-phase flow.
The particle Reynolds numbers considered in this study are of O(1), dispersed-phase
volume fractions are of O(10−3) and the initial kd/kf ratio is of O(1). Hence, the
dependence of Ck on these parameters is neglected in this study. However, if the
above non-dimensional parameters vary by an order of magnitude, we expect that the
dependence of Ck on these parameters will need to be taken into account.

The dependence of Ck on mass loading and Stokes number Stη is accounted for
in this study. Hereafter, ‘Stokes number’ refers to Stη, the Stokes number based on
the Kolmogorov time scale, unless noted otherwise. Since the ratio of the equilibrium
TKEs ke

d/k
e
f (cf. (5.5)) is not known a priori, a model for Ck is required. The following

model for Ck is proposed:

Ck = φ

1+ φ + Stη
. (6.1)

Note that this specification obeys the correct limiting behaviour of Ck as Stη→ 0 (cf.
(5.6).) There could be other forms of Ck that are more elegant, such as a separable
form, Ck = f (φ)g(Stη). In order to improve the model for Ck, datasets from carefully
controlled DNS of particle-laden turbulent flows that report the fraction of the mixture
energy in each phase are required. Also, the DNS should quantify the effect of non-
dimensional parameters in a two-phase flow system, as noted earlier, on the fraction of
specific TKE in each phase. To the knowledge of the authors, no such DNS datasets
are as yet available in the literature.

6.2. Drift time scales in CSM
The form of the drift time scales τ1 and τ3 in (4.1) and (4.2), respectively, is now
developed based on how we expect the system of SDEs to behave in limiting cases.
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6.2.1. Zero Stokes number limit
As noted in the introduction, in the limit of zero Stokes number, the dispersed

particles respond immediately to the surrounding fluid. In this limit, the fluid-phase
velocity autocovariance and the dispersed-phase velocity autocovariance must match.
Therefore, we require that, in the limit of vanishing Stokes number, the time scale
τ3 in (4.18) should tend to τ1, the characteristic time scale of the fluid velocity
autocovariance decay in (4.17).

A simple specification that satisfies this requirement for τ3 is

1
τ3
= 2

[
1

2τ1
+
(

1
2
+ 3

4
C0

)
1
τ

]
1

1+ StηC3
, (6.2)

where C3 = 0.1 is a model constant whose value is chosen to achieve the best
agreement with DNS datasets described in § 7. Although there is no explicit
dependence of the time scale τ3 on mass loading φ, we show next that the dependence
on φ does appear through the time scale τ1. The time scale τ3 obeys the limiting
behaviour as Stη→ 0, viz.

lim
Stη→0

{[
1

2τ1
+
(

1
2
+ 3

4
C0

)
1
τ

]
1

1+ StηC3

}
= 1

2τ1
+
(

1
2
+ 3

4
C0

)
1
τ
. (6.3)

Currently, particle velocity autocorrelation data for large Stokes number (say, Stη > 10)
are not available from DNS or experiments that can help to determine the behaviour
of τ3 in the large Stη limit. Furthermore, there is a limit to which datasets from DNS
that use the point-particle approximation can be used for model validation. It can be
shown that, if the density ratio ρd/ρf is of O(1000), then the maximum value of Stη
for which the point-particle approximation is valid is around 10 (see the analysis in
L’vov, Ooms & Pomyalov 2003). It is surmised that this upper limit of Stη is also the
upper limit for the validity of CSM, although this needs to be validated by comparison
with DNS. Nevertheless, we do assess the behaviour of CSM in the limit Stη→∞ in
§ 9.

6.2.2. Zero mass loading limit
In the limit of zero mass loading, the effect of the dispersed phase on the fluid-

phase momentum is negligible, and this corresponds to the limit of one-way coupling.
Regardless of the Stokes number, the fluid time scales remain unaffected by the
presence of the dispersed phase and are identical to those seen in a single-phase flow.
In this limit, the time scale τ1, which essentially represents the modification to the
fluid velocity autocorrelation time scale due to the presence of dispersed phase, should
tend to zero. Therefore, we require that the drift time scale in (4.1) should approach
the specification for the single-phase SLM (Pope 2000).

Using available data from DNS of particle-laden flows (Truesdell & Elghobashi
1994; Ahmed & Elghobashi 2001), we propose the following form of τ1:

1
τ1
= C1φStη

τ
, (6.4)

where C1 is a model constant (C1 = 2.5). This specification obeys the correct limiting
behaviour as φ→ 0, viz.

lim
φ→0

[
1

2τ1
+
(

1
2
+ 3

4
C0

)
1
τ

]
=
(

1
2
+ 3

4
C0

)
1
τ
. (6.5)
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For constant mass loading, and in the limit Stη → 0, the dispersed-phase velocity
autocorrelation behaviour is identical to that of the fluid phase. In this limit, the
time scale for the decay of velocity autocorrelation is the single-phase velocity
autocorrelation decay time scale. Hence, the above specification of τ1 ensures that,
as Stη→ 0, the time scale 1/τ1→ 0.

6.3. Diffusion time scales in CSM

The time scales τ2 and τ4 govern the evolution of TKE in each phase (cf. (4.13)
and (4.14)). In accordance with the EoE concept, and to introduce the capability
of capturing the multiscale nature of a turbulent two-phase mixture into CSM, the
time scales τ2 and τ4 are chosen to be equal to τπ = 〈τint〉/Cπ , where 〈τint〉 is
a multiscale interaction time scale for interphase TKE transfer proposed by Pai &
Subramaniam (2006). It was shown in that study that the new time scale accurately
captures the dependence of the interphase TKE transfer on Stη. This time scale has
been successfully employed in the context of EE two-phase turbulence modelling by
Xu & Subramaniam (2006). The constant Cπ is chosen to be 1.0 in this study. Details
on the development of the time scale are given in Pai & Subramaniam (2006) and
Xu & Subramaniam (2006). Only important results are reviewed here for the sake of
completeness.

In the spectral description of particle–turbulence interaction, a dispersed particle
interacts with a range of eddies, which in turn corresponds to a range of wavenumbers
in the fluid-phase TKE spectrum. One may define a Stokes number Stκ as the ratio
of the particle response time scale τp to the time scale τκ corresponding to the eddies
of wavenumber κ . Some eddies (say, type A) in this range have a time scale such
that Stκ > 1, while the others (say, type B) in this range have a time scale such that
Stκ < 1. The hypothesis behind the multiscale interaction time scale is that the time
scale of interphase energy transfer is not the same when the particle interacts with the
two types of eddies. Let us suppose that the particle is interacting with eddies of type
A. Since Stκ > 1 for these eddies, the time scale τκ over which the eddy loses energy
is smaller than the time scale τp over which the particle loses energy. In other words,
the larger particle response time scale limits the transfer of energy between the particle
and the eddy. Consequently, the time scale for interphase energy transfer at this scale
is determined more by the particle response time scale. Now let us consider the case
where the same particle interacts with an eddy of type B. Since Stκ < 1, the time scale
τκ over which the eddy loses energy is greater than the time scale τp over which the
particle loses energy. In other words, the larger eddy time scale limits the transfer of
energy between the particle and the eddy. Consequently, the energy transfer between
the particle and the eddy at this scale is determined more by the eddy time scale
τκ . Thus, the effective time scale for particle–turbulence interaction is obtained by
integrating the effects of the two wavenumber ranges identified above over the energy
spectrum of fluid-phase turbulence in the two-phase flow. The multiscale interaction
time scale 〈τint〉 presented here is a single-point analogue of the above spectral model.

Let u be a model for the Eulerian gas-phase velocity (such as the one
given by (4.1)). If z is the sample-space variable corresponding to the random
variable Z = |u|, the multiscale interaction time scale 〈τint〉 is given as

〈τint〉 =
∫ ∞
|u |∗
〈τint | Z = z〉fZ(z) dz+

∫ |u |∗
0

τpfZ(z) dz, (6.6)
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where fZ(z) the p.d.f. of Z. The conditional mean 〈τint | z〉 is given as

〈τint | z〉 = St l(τp − τ)+ τ (6.7)

for |u |∗ 6 |u|6∞, while 〈τint | z〉 = τp for 0 6 |u|6 |u |∗. Here, a Stokes number valid
in the inertial range is given as

St l = τp

τl
, (6.8)

where τl is computed as

τl = |u |
2

εf
. (6.9)

In order to complete the specification of the multiscale interaction time scale, the
p.d.f. of |u| is required. Using (4.1) the p.d.f. of u can be computed directly from the
solution. However, if u is assumed to obey a joint normal distribution with zero mean
and covariance σ 2

f δij, where σ 2
f = (2/3)kf and δij is the Kronecker delta, as is done in

recent studies (Pai & Subramaniam 2006; Xu & Subramaniam 2006), then the p.d.f. of
Z = |u| is

fZ(z)=
√

2
π

1
σ 3

f

z2e−z2/2σ2
f . (6.10)

As noted above, (6.9) is based on an inertial sub-range scaling where eddies have
a characteristic length scale l. The Stokes number St l defined in (6.8) using the
characteristic length scale is the single-point analogue of Stκ . For a value of St l > 1,
the particle responds slowly to the eddies and the time scale of energy transfer is
influenced more by the particle response time τp. On the other hand, if St l < 1, the
particle responds immediately to the flow, and the time scale of energy transfer is
influenced more by the eddy turnover time scale τ . Thus, the p.d.f. of |u| (see figure 1
for a Gaussian u) can be divided into two regions – one that represents St l > 1 and
the other that represents St l < 1, with |u |∗ representing the transition between the two
regions at St l = 1. Thus, |u |∗ is uniquely determined by the relation (|u |∗)2 = τpεf .

It is interesting to note that (6.6) has the correct behaviour for limiting values of
St l and |u |∗. In the limit |u |∗→ 0, there are no eddies in the system with St l > 1.
The dispersed particles are simply convected by the flow and the correct time scale for
interphase TKE transfer in this limit is τ . In the limit |u |∗→∞, practically all the
eddies in the system satisfy St l > 1, which implies that there are no eddies energetic
enough to convect the particles. The correct time scale for interphase TKE transfer in
this limit is the particle response time scale τp.

7. DNS datasets for model validation
Several researchers (Mashayek et al. 1997; Boivin, Simonin & Squires 1998;

Sundaram & Collins 1999) have performed point-particle DNS of particle-laden
homogeneous turbulent flows for density ratios in the range ρd/ρf ∼ O(1000) and
particle size ratios in the range d/η < 1, which is the parameter range explored
in this study. For this density and particle size ratio, the point-particle assumption
is generally invoked in such DNS, which implies that the dispersed particles are
represented as point sources in the fluid-phase momentum equation. In this parameter
range, the only significant contribution to the particle acceleration is through particle
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FIGURE 1. A schematic probability density function of |u| that is used in the derivation of
the multiscale interaction time scale 〈τint〉. The sample space variable corresponding to |u| is z.

drag. Such DNS directly calculate the contribution to the fluid-phase dissipation εf

due to viscous dissipation in the bulk. The dissipation of fluid-phase TKE due to
the presence of particles is modelled. However, this contribution does not include the
additional dissipation due to the velocity gradients in the boundary layer around the
dispersed particles. (See Xu & Subramaniam (2007), where the dissipation rate in
a point-particle DNS is contrasted with the dissipation rate in particle-resolved two-
phase DNS.) Particle-resolved DNS of particle-laden flows are becoming commonplace
with advances in numerical techniques and access to increasing computational power,
but it is still prohibitively expensive to simulate realistic turbulence Reynolds numbers
(Xu & Subramaniam 2010). Recent advances in numerical techniques for particle-
laden flows, such as the immersed boundary methods (Yusof 1996; Fadlun et al. 2000),
arbitrary LE method (Hu, Zhu & Patankar 2001) and lattice-Boltzmann methods (Ten
Cate et al. 2004), possess the capability of quantifying the increased dissipation in the
carrier phase due to the boundary layers surrounding the particles, in addition to the
modulation of the carrier-phase TKE by the dispersed particles. No such DNS datasets
are as yet available to validate CSM in the parameter range explored in this study.
Nevertheless, we do expect that the point-particle DNS qualitatively capture the correct
trends in key statistics, such as TKE and particle velocity autocorrelation, with varying
Stokes number and mass loading.

In this study, two important test cases are considered. The first is particle-laden
freely decaying turbulence, which is an important canonical two-phase problem and
a necessary test for two-phase models. This test problem is especially important
since models based on the momentum response time scale fail to capture accurate
trends of TKE decay with varying Stokes number that are observed in DNS (Pai
& Subramaniam 2006). In this study, we ascertain if CSM can capture these trends.
Since dispersion and dynamics (interphase TKE transfer) are two coupled phenomena
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DNS
dataset

Characteristics Purpose of comparison

SC Two-way coupled, homogeneous
decaying isotropic turbulence

Evolution of kf and kd

TE Two-way coupled, homogeneous
decaying isotropic turbulence

Evolution of dispersed-phase velocity
autocorrelation

AE-1 Two-way coupled, homogeneously
sheared non-stationary and

non-isotropic turbulence

Evolution of kf and kd

AE-2 One-way coupled, homogeneously
sheared non-stationary and

non-isotropic turbulence

Evolution of fluid-phase and
dispersed-phase velocity

autocorrelation

TABLE 1. Summary of the DNS datasets used in this study.

in any two-phase flow, we also investigate if CSM can capture the trends of velocity
autocorrelation (which characterizes dispersion) with varying particle inertia. Another
important test case is particle-laden homogeneous shear, where there is an interplay of
production due to mean velocity gradients, interphase TKE transfer and carrier-phase
dissipation. We compare CSM predictions for the evolution of TKE and particle
dispersion in the homogeneous shear test case with DNS results. Particle-laden
stationary turbulence is also an important canonical problem, and it is noteworthy
that CSM has been validated against DNS datasets of evaporating and non-evaporating
droplet-laden flow in stationary turbulence in Pai & Subramaniam (2007). In that
study CSM was shown to capture accurate trends of TKE and Lagrangian particle
velocity autocorrelation with varying Stη as observed in DNS. We next review the
DNS datasets used in this study, a summary of which is provided in table 1.

7.1. Decaying turbulence: turbulence modification and dispersion statistics
Sundaram & Collins (1999) have performed DNS of particle-laden freely decaying
turbulence in the absence of gravity for several Stokes numbers. The system is
volumetrically dilute, with particles in the sub-Kolmogorov size range, and collisions
among particles, if any, are assumed to be elastic. Two-way coupling is assumed,
i.e. the effect of the dispersed phase on fluid-phase momentum conservation is
accounted for. Parameters of the homogeneous model problem are given in tables 2
and 3. In table 2, u′ is the initial turbulence intensity in the fluid phase and v′ is
the initial turbulence intensity in the dispersed phase. These intensities are related
to the respective TKE in each phase at initial time through u′ 2 = (2/3)kf (0) and
v′ 2 = (2/3)kd(0). Initial conditions for the dispersed phase are given in table 3 and are
taken from the DNS dataset at T = 0.8. This test case is hereafter referred to as SC.

Truesdell & Elghobashi (1994, hereafter TE) have performed DNS of particle
dispersion in freely decaying turbulence with two-way coupling effects included. The
dispersed-phase volume fraction is 2.5 × 10−4, while the particle diameter scaled by
the Kolmogorov length scale is 0.158. Initial conditions for the model comparison
are taken from the DNS dataset at the time when the particles are introduced into
the simulation. Parameters of the DNS dataset are given in table 4. TE report the
evolution of the velocity autocorrelation of the dispersed phase, and that of the
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Dispersed-phase volume fraction αd 1.8× 10−4

Fluid-phase thermodynamic density ρf (kg m−3) 1.16

Dispersed-phase thermodynamic
density

ρd (kg m−3) 1045.44

Kinematic viscosity of fluid νf (m2 s−1) 6.761× 10−3

TABLE 2. Unscaled parameters of the test case corresponding to particle-laden decaying
turbulence used in this study – the DNS of Sundaram & Collins (1999) specifies the
parameters to be in ‘arbitrary’ units, but we use SI units for this case. Acceleration due to
gravity and initial mean slip between phases is zero for all cases.

Stη = τp/τη u′ (m s−1) v′ (m s−1) εf (m2 s−3)

1.6 0.802 0.773 0.363
3.2 0.794 0.738 0.403
6.4 0.793 0.744 0.438

TABLE 3. Particle–laden decaying turbulence test case (Sundaram & Collins 1999): initial
values (unscaled) of the turbulence intensities u′ and v′ in the fluid phase and dispersed
phase, respectively, and dissipation rate in the fluid phase, for different Stokes numbers.

Stη ρd/ρf φ

1.27 909 0.23
2.54 1818 0.45
5.09 3636 0.91

TABLE 4. Particle–laden decaying turbulence test case to investigate particle dispersion
(Truesdell & Elghobashi 1994). For this test case, the following scaled parameter
values are chosen: initial dissipation, εf = 1.309 × 10−3; initial TKE in both phases,
kf = kd = 2.85×10−3; and kinematic viscosity, νf = 5.05×10−5. In the DNS, all parameters
are scaled by a reference length scale, Lref = 0.1859 m, and a reference time scale,
Tref = 0.11 s.

gas-phase velocity ‘seen’ by the particles, which they refer to as the fluid velocity
in the vicinity of the dispersed phase. This fluid velocity autocorrelation reported
by TE is conditioned by the fact that it is measured along the trajectory of the
dispersed particle. Since CSM is built on the concept of notional particles, proximity
of the notional particles in physical space does not necessarily imply that a fluid
particle and the dispersed particle are physically close to each other. Therefore, (4.17)
provides an unconditioned estimate of the fluid–particle velocity autocorrelation, which
is different from that reported by TE. We therefore do not compare this result with
model predictions.

7.2. Homogeneous shear: turbulence modification and dispersion statistics
Ahmed & Elghobashi (2000) have performed two-way coupled DNS of
homogeneously sheared turbulence laden with rigid particles (see figure 2). Of the
several test cases analysed in that study, only the test cases involving varying mass
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x2
x1

x3

FIGURE 2. Schematic of the DNS of turbulent homogeneous shear laden with particles
(Ahmed & Elghobashi 2000).

Stη d ρd/ρf d/η αd

0.233 (C) 6.0× 10−4 525 0.0887 1.9× 10−4

0.583 (I) 1.0× 10−3 472.5 0.1479 2.1× 10−4

1.165 (H) 1.0× 10−3 945 0.1479 1.0× 10−4

2.33 (F) 1.0× 10−3 1890 0.1479 5.0× 10−5

TABLE 5. Scaled parameters for the particle-laden homogeneous shear test case: varying
particle inertia (Ahmed & Elghobashi 2000) for a constant mass loading ratio φ = 0.1.
In the DNS, all parameters are scaled by a reference length scale, Lref = 0.39 m, and
reference time, Tref = 1 s.

loading and varying particle inertia, in the absence of gravity, are considered here.
A constant shear rate given by ∂〈U1〉/∂x3 = ∂〈V1〉/∂x3 =S is imposed on the fluid
phase and the dispersed phases, respectively. The point particles are evolved according
to the equation due to Maxey & Riley (1983), with an additional contribution arising
from the mean shear. Parameters for the varying particle inertia test case are given in
table 5. Parameters for the varying mass loading test case are given in table 6. This
test case is hereafter referred to as AE-1.

Ahmed & Elghobashi (2001) have also performed solid particle dispersion studies
in homogeneously sheared turbulence. The particle-laden system is dilute and one-way
coupling is assumed. Parameters of the DNS dataset taken at the point of injection
are presented in table 7. Simulations are performed for two shear numbers (shear
number =S l/urms), which in their DNS is the shear rate scaled by the large-eddy
turnover time scale obtained from the eddy length scale l and the root mean square
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φ d ρd/ρf d/η αd

1 (B) 1.0× 10−3 1890 0.1479 5.0× 10−4

0.5 (G) 1.0× 10−3 1890 0.1479 2.5× 10−4

0.1 (F) 1.0× 10−3 1890 0.1479 5.0× 10−5

TABLE 6. Scaled parameters for the particle-laden homogeneous shear test case: varying
mass loading (Ahmed & Elghobashi 2000) for a constant Stokes number Stη = 2.33. In the
DNS, all parameters are scaled by a reference length scale, Lref = 0.39 m, and reference
time, Tref = 1 s.

Shear number (Case) d Stη ρd/ρf d/η αd

2 (A) 1.02× 10−4 0.233 19000 0.0153 2.9938×10−9

2 (B) 3.19× 10−4 2.33 19000 0.0477 9.0721×10−8

4 (C) 7.25× 10−5 0.126 19000 0.0122 1.0626× 10−9

TABLE 7. Scaled parameters for the solid particle dispersion test case in homogeneous
shear (Ahmed & Elghobashi 2001) for varying shear number in the absence of gravity. In
the DNS, all parameters are scaled by a reference length scale, Lref = 1 m, and reference
time, Tref = 1 s.

velocity urms. We compare CSM predictions of particle velocity autocorrelation with
these DNS results. This test case is hereafter referred to as AE-2.

8. Model predictions
This section summarizes model predictions from CSM for the canonical test cases

described earlier. Prior to assessing the predictions from CSM, we present the details
of the integration of stochastic differential equations given by (4.1) and (4.2). Since
in this study we are interested only in statistics of the two-phase flow, such as TKE
and velocity autocorrelation, there are two approaches by which these statistics can
be obtained from CSM. One approach (method 1) is to initialize a large number
of computational particles according to a single-point velocity distribution with a
prescribed Reynolds stress tensor, if required, and integrate their velocities in time
according to the system of SDEs (4.1) and (4.2). Since we focus on homogeneous
systems in this study, there is no need to track particle positions in time. A numerical
scheme suitable for such systems, for example an Euler–Maruyama scheme (Kloeden
& Platen 1992), can be employed, and the implied TKE and velocity autocorrelation
can be computed from the computational ensemble. The second approach (method 2)
is to integrate the ordinary differential equations (ODEs) given by (4.7) and (4.8) for
the evolution of the Reynolds stresses and by (4.17) and (4.18) for the evolution of
the velocity autocorrelation in time. From the Reynolds stresses for each phase, the
TKE in each phase can be obtained by computing half the trace of the Reynolds
stress tensor. At the end of each ODE time step, the time scales (τ1, τ2, τ3, τ4 and
τ ) are recomputed from the statistics obtained at the penultimate step. Since none of
the statistics or time scales depend on the fluctuating velocities u and v, this second
method is very useful for our study. Another reason that makes this second approach
attractive is that, since we are integrating only the ODEs, there is zero statistical
error and there is no need to track a large number of computational particles in time.
Note, however, that this latter method is legitimate only for the homogeneous system
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0 1 2 3 4 5
0.4

0.6

0.8

1.0

Method 1 – Δt1
Method 2 – Δt1
Method 2 – Δt2

ref

FIGURE 3. Comparison between method 1 shown with dashed lines (integration of SDEs
given by (4.1) and (4.2) and computing the TKE from the computational ensemble) and
method 2 shown with solid lines (integrating the ODEs given by (4.7) and (4.8)) and
computing the trace of the Reynolds stress tensor for case B of particle-laden homogeneous
shear from AE-1. Two time steps 1t1 and 1t2 are employed for method 2 to illustrate
convergence with the Euler time stepping. Also shown are 95 % confidence intervals
corresponding to method 1 obtained by averaging over 20 multiple independent simulations.

employed in this study; inhomogeneity will dictate that the computational particle
positions and velocities be evolved in time.

A comparison between methods 1 and 2 for case B of particle-laden homogeneous
shear is presented in figure 3. For method 1, the Euler–Maruyama scheme is
employed to track an ensemble of 10 000 computational particles and statistics
are averaged over 20 multiple independent simulations. The time step size chosen
is 1t1 = 0.0005 min(τp, τ ). For method 2, an explicit Euler time stepping scheme
is employed, with two time step sizes 1t1 and 1t2 = 0.002 min(τp, τ ). Figure 3
illustrates that the results obtained from the Euler time stepping of the ODEs is
almost indistinguishable for the time steps chosen, thereby illustrating convergence
of the integration scheme with respect to time step. Results obtained from the
Euler–Maruyama scheme for the integration of the SDEs are close to those obtained
by method 2. Since it is computationally less expensive to integrate the ODEs in time,
we adopt method 2, with a time step size equal to 1t2, to obtain the evolution of the
statistics for all cases in the rest of this study.

8.1. Case I

8.1.1. Prediction of TKE in particle-laden decaying turbulence
For the case of homogeneous decaying turbulence in the absence of mean velocity

gradients, the implied evolution equations for the TKE in the fluid phase and dispersed
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FIGURE 4. Evolution of TKE in the fluid phase for varying Stokes number in particle-
laden homogeneous decaying turbulence (Case I), alongside results from DNS (Sundaram &
Collins 1999). The arrow indicates the direction of increasing Stokes number.

phases are given by (4.13) and (4.14), respectively. The only two terms that govern the
evolution of the TKE in the fluid phase are the interphase TKE transfer term Πkf and
the fluid-phase dissipation εf .

Figure 4 shows the predicted evolution of the fluid-phase TKE by CSM for varying
initial Stokes numbers Stη. Shown alongside are corresponding results from DNS data
SC. For a system with sub-Kolmogorov particles with no production due to particle
wakes, the higher the particle inertia, faster is the decay of energy in the carrier and
dispersed phases. This implies that the time scale of decay of TKE decreases with
increasing Stokes number. Increasing particle inertia results in an increased interphase
TKE transfer (as the fluid phase has to do more work in dispersing the particles).
However, the increased dissipation due to the presence of the particles and bulk
viscous dissipation offsets the increased interphase TKE, thereby leading to a faster
decay in fluid-phase TKE. This behaviour is clearly seen in the DNS results. CSM
accurately reproduces the trend of TKE evolution observed in DNS for varying Stokes
number. Since the interphase TKE is equal and opposite in the dispersed phase,
the evolution of dispersed-phase TKE also depicts an identical trend as in the fluid
phase. The evolution of the dispersed-phase TKE is shown in figure 5 alongside DNS
results, which again illustrates that CSM accurately captures the trend of TKE decay
with increasing Stokes number. The reason why CSM successfully captures this trend
correctly is due to the use of the multiscale interaction time scale 〈τint〉 as the time
scale for interphase TKE transfer. As noted earlier, drag models based on the particle
response time scale fail to capture this trend of TKE decay with increasing Stokes
number (Pai & Subramaniam 2006).
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FIGURE 5. Evolution of TKE in the dispersed phase for varying Stokes number in particle-
laden homogeneous decaying turbulence (Case I), alongside results from DNS (Sundaram &
Collins 1999). The arrow indicates the direction of increasing Stokes number.

8.1.2. Prediction of particle velocity autocorrelation in particle-laden decaying turbulence
Figure 6 shows the predicted evolution of the particle velocity autocorrelation in

decaying turbulence given by (4.16) for a range of Stokes numbers for the test case
TE. Also shown on the same plot are corresponding results from DNS (Truesdell
& Elghobashi 1994). With increasing particle Stokes number, the decay in particle
velocity autocorrelation is slower, since particles with larger inertia lose correlation
with their earlier velocities more slowly. This implies that the time scale of decay
of particle velocity autocorrelation increases with increasing Stokes number. CSM
accurately captures this trend of decay of particle velocity autocorrelation with varying
Stokes numbers, although CSM is less sensitive to Stokes number for increasing
particle inertia. Interestingly, the particle velocity autocorrelation behaves in an
identical manner in stationary turbulence (Pai & Subramaniam 2007), where CSM
is again successful in reproducing trends observed in DNS. Since the rate at which a
particle loses correlation with its earlier velocity is primarily determined by its inertia,
the behaviour of a heavy particle is essentially the same in decaying and stationary
turbulence.

It is noteworthy to recapitulate at this point that two-phase turbulence models in
which the interphase TKE transfer evolves on the particle response time scale τp (see
Pai & Subramaniam 2006) do not possess the capability to capture simultaneously
the decay trend in the TKE and the decay trend in particle velocity autocorrelation
with varying Stokes number. Models employed in LE statistical implementations of
two-phase flows fall in this category (see e.g. Amsden et al. 1989).
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FIGURE 6. Evolution of dispersed-phase velocity autocorrelation for varying Stokes number
in particle-laden decaying turbulence (Case I), alongside results from DNS (Truesdell &
Elghobashi 1994). The arrow indicates the direction of increasing Stokes number.

8.2. Case II
8.2.1. Prediction of TKE in particle-laden homogeneous shear

For a uniform mean shear (say in the 1–3 direction as ∂〈Ui〉/xj = ∂〈Vi〉/xj =
S δi1δj3), the implied evolution equations for the Reynolds stresses are (4.7) and (4.8),
and those for the TKE are (4.9) and (4.10). The evolution equation for the dissipation
rate εf is given by (5.7), which includes the effect of mean velocity gradient. The
computations are initialized at time S t = 1 when the carrier-phase turbulence in the
DNS (Ahmed & Elghobashi 2000) is fully developed. At this time, the stochastic
particles that represent the fluid and the dispersed phases are initialized with zero
mean and covariance given by 〈uiuj〉 = 2kf [bij+ (1/3)δij] and 〈vivj〉 = 2kd[bij+ (1/3)δij],
respectively. The components of the initial anisotropy tensor bij, which is the same
for both the phases, are b11 = 3.62× 10−2, b22 =−4.41× 10−2, b33 = 0.79× 10−2 and
b13 = b31 =−1.22×10−1 at S t = 1. The scaled fluid-phase dissipation εf at this scaled
time is 5.77 × 10−4, and the scaled fluid kinematic viscosity νf is 1.05 × 10−4. The
test cases investigated in this study are denoted B, G, F, C, I, H and F (identical to
that in the DNS) and parameters corresponding to these test cases are given in tables 6
and 7 (see table captions for the reference length and time scales employed to scale all
dimensional parameters).

Figure 7 shows the predicted evolution of the fluid-phase TKE by CSM for varying
Stokes numbers (particle inertia) and constant mass loading of φ = 0.1. These test
cases correspond to cases C, I, H and F in the DNS AE-1. It is difficult to predict
the evolution of the TKE based on simple physical arguments as was possible in
Case I for particle-laden homogeneous decaying turbulence. This is primarily because
there are competing effects of fluid-phase dissipation and production due to the mean
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FIGURE 7. Evolution of fluid-phase TKE for varying particle inertia and constant mass
loading φ = 0.1 (Case II), alongside results from DNS (Ahmed & Elghobashi 2000). The
arrows indicate the direction of increasing particle inertia.

shear coupled with the interphase TKE transfer. Relative magnitudes of these terms
are difficult to estimate based on scaling arguments in this case. Figure 7 shows that
the DNS predicts a fluid-phase TKE that increases at a slower rate for increasing
particle inertia (or Stokes number) at constant mass loading, a trend that is accurately
captured by CSM. Interestingly, this trend with increasing particle inertia is identical
to that observed in Case I for homogeneous decaying turbulence. As shown in Xu
& Subramaniam (2006), EE models for interphase TKE transfer based on the particle
response time scale τp are incapable of capturing this trend.

Figure 8 shows the predicted evolution of the fluid-phase TKE by CSM for varying
mass loading and constant particle response time τp = 1.0. These test cases correspond
to the cases B, G and F in the DNS AE-1. For increasing mass loading, the DNS
shows a slower rate of increase in kf . CSM predicts the trends accurately after scaled
time t/Tref = 1.2, but predicts a cross-over at initial time. Close inspection of the
DNS results (see figure 46 in Ahmed & Elghobashi (2000)) in fact reveals a similar
cross-over, although not as conspicuous as predicted by CSM.

8.2.2. Prediction of particle velocity autocorrelation in particle-laden homogeneous shear
The evolution for velocity autocovariance in the fluid phase in the presence of

a constant mean shear as implied by CSM is given by (4.17), while that for the
dispersed phase is given by (4.18). Note that, just as in SLM for single-phase
homogeneous shear flows (Pope 2002), the autocovariance tensor is not symmetric.
This is due to an additional mean shear term in the evolution of 〈u3(t0)u1(t)〉 that does
not appear in the evolution of the 〈u1(t0)u3(t)〉 component.

Figure 9 shows the results from the DNS of AE-2. Cases A and C have the same
particle response time τp = 0.236, but different shear numbers. The DNS results show
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FIGURE 8. Evolution of fluid-phase TKE for varying mass loading and constant particle
inertia τp = 1.0 (Case II), alongside results from DNS (Ahmed & Elghobashi 2000). The
arrow indicates the direction of increasing mass loading.

that the dispersed particles retain a stronger correlation with their earlier velocities for
a shear number equal to 4 than for a shear number equal to 2 (see figure 9a). The
same behaviour is observed in the DNS for the fluid points as well. As explained in
Ahmed & Elghobashi (2001), the reason for the higher velocity autocorrelation for
case C compared to case A is that the gas-phase turbulent kinetic energy in case
C is less than that in case A. Consequently, the ability of the gas-phase fluctuating
velocity to disperse the particles is smaller for case C than for case A, thereby
leading to a higher velocity autocorrelation in case C. Predictions from CSM for the
dispersed-phase and fluid-phase velocity autocorrelation ρ11 for cases A and C are
shown in figure 9(b). CSM is able to capture the trend with increasing shear number
for both the fluid-phase and dispersed-phase velocity autocorrelation, as indicated by
the direction of the arrow in the figure.

The DNS predicts that, for the particle response time scale employed for the
cases A and C, the dispersed-phase velocity autocorrelation and the fluid-phase
velocity autocorrelation match (more so for case C). It appears that the DNS
results predict a match of fluid-phase and dispersed-phase velocity autocorrelations
for Stokes numbers 0 < Stη � 1. This behaviour is not quantitatively captured by
CSM, although the trend with increasing shear number is captured accurately. The
reason why the predictions for the dispersed-phase and fluid-phase velocity correlation
from CSM do not match exactly can be explained by noting that the time scales
for the evolution of the dispersed-phase and fluid-phase velocity autocorrelation are
identical only in the limit Stη→ 0 (see (6.4) and (6.2) and the subsequent discussion),
which is the physically correct limit at which the dispersed particles behave as fluid
tracers.
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FIGURE 9. Predicted evolution of velocity autocorrelation in fluid phase (FP) and dispersed
phase (DP) corresponding to cases A and C for particle-laden homogeneous shear turbulence:
(a) DNS results (Ahmed & Elghobashi 2001); and (b) CSM predictions. The arrows indicate
the direction of increasing shear number.
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FIGURE 10. Predicted evolution of velocity autocorrelation of fluid phase (FP) and dispersed
phase (DP) from CSM corresponding to case B for particle-laden homogeneous shear
turbulence. Results from DNS (Ahmed & Elghobashi 2001) are shown alongside.

In figure 10, dispersed-phase and fluid-phase velocity autocorrelations are shown
for the case with higher particle inertia (case B). In this case, the DNS predicts
that the two velocity autocorrelations are not identical to each other; CSM captures
this behaviour for this case. The observation from the DNS that the dispersed-phase
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velocity autocorrelation is slightly higher than the fluid-phase velocity autocorrelation
due to particle inertia is also captured by CSM.

Ahmed & Elghobashi (2001) have also performed particle dispersion studies in the
presence of particle drift. They note that the velocity autocorrelation in the 2 direction
is affected by the particles crossing oblique vortices as they traverse in the direction of
gravity. Also, they observe that the particle velocity autocorrelation exhibits negative
loops to account for the continuity effect (Csanady 1963) in the presence of particle
drift.

The ability of two-phase flow models to capture the negative loops in the particle
velocity autocorrelation, in the presence of particle drift, has received widespread
interest. Gouesbet, Berlemont & Picart (1984) derive an expression that relates the
spectral tensor corresponding to the Lagrangian particle velocity to that corresponding
to the fluid-phase velocity autocorrelation. They use a Frenkiel form for the fluid-
phase velocity autocorrelation and, under further simplifications (absence of Basset
forces), show the presence of negative loops in the particle velocity autocorrelation.
Mei, Adrian & Hanratty (1991) employ a Fourier representation of the particle
equation of motion for small Reynolds number and large density ratio (Maxey & Riley
1983) and, under assumptions of Gaussian particle velocity field, Corrsin’s conjecture
(Corrsin 1959) and an isotropic turbulent velocity field, analytically derive a set of
integral equations for calculating the autocorrelation of fluid-phase velocity at the
location of the dispersed particles. They further calculate the particle diffusivities from
the knowledge of the fluid-phase velocity autocorrelation at the location of the particle.
With increasing drift velocity, they show that the fluid-phase velocity autocorrelation
exhibits negative loops that account for the rapid particle motion from a region of
positive (or negative) velocity into a region of negative (or positive) velocity.

In the foregoing studies, the capability of capturing continuity effects is built in to
the dispersed-phase velocity autocorrelation. Lagrangian particle-based methods such
as the one explored in this work do not directly solve for the velocity autocorrelation.
On the other hand, an evolution equation for the particle velocity (cf. (4.1) and (4.2))
implies an evolution of the Lagrangian velocity autocorrelation. Thus the capability
of capturing continuity effects in Lagrangian particle-based methods needs to be
built in to the particle evolution equations. Several studies have been devoted to
employing two-phase models based on the Langevin equation for particle dispersion.
Pozorski & Minier (1999) use Csanady’s expressions for the Lagrangian integral time
scale of the fluid along and transverse to the gravity directions in their Langevin
equation to capture the crossing trajectories effect, while Pascal & Oesterlé (2000)
propose a model for the drift term that incorporates an exponentially decaying velocity
autocorrelation. Such models that are based on the Langevin equation do not possess
the capability to capture the manifestation of the continuity effect in the velocity
autocorrelation, since the velocity autocorrelation can never become negative when
such models are employed (the evolution of the velocity autocovariance based on
a Langevin equation is essentially exponential with no negative loops). Since CSM
is also based on the Langevin equation, the evolution of velocity autocorrelation is
exponential with no negative loops as well (cf. (4.17) and (4.18)) and hence the model
does not currently possess the capability to capture crossing trajectory effects.

9. Discussion
Turbulent particle-laden flows are characterized by the presence of a multitude of

time and length scales. The capability of a two-phase flow model to capture the
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time scales associated with interphase turbulent kinetic energy transfer and inertial
particle dispersion in canonical particle-laden turbulent flows determines its predictive
capability in more complex flows. We now assess the new model by summarizing
its principal features that make it suitable to model two-phase flows, and also its
behaviour in limiting cases.

(a) The formulation of CSM, and the EoE concept, together contain important non-
dimensional quantities that can be derived purely based on a dimensional analysis
of a two-phase flow, which are Stη, mass loading φ and volume fraction αd.
Although it is desirable that a two-phase flow model be a function of these
non-dimensional quantities, it is clearly not sufficient, as there are time and length
scales corresponding to important interphase processes encountered in two-phase
flows that a two-phase model must be able to capture.

(b) CSM possesses the capability of capturing the disparate time scale trends of
TKE and velocity autocorrelation decay with Stη that are observed in DNS of
particle-laden turbulence. This is achieved through the multiscale interaction time
scale 〈τint〉, and the form of the drift and diffusion terms.

(c) CSM has the correct limiting behaviour as Stη→ 0 and φ→ 0 (see discussion in
§ 6.2).

(d) In order to assess the behaviour of CSM in the limit Stη→∞ at constant mass
loading, we consider for the sake of simplicity the case with no production due to
mean shear.
(i) Effect of large Stη on kd. In the limit Stη→∞, we expect the dispersed phase

to remain unaffected by the presence of the fluid phase due the large inertia in
the former. Such a two-phase flow is characterized by a highly collisional
dispersed phase much like a granular flow. In such a flow with elastic
collisions and in the absence of any form of dissipation in the dispersed
phase, the dispersed-phase TKE should remain constant in time.

Consider (6.1) in the limit of large Stokes number. As Stη →∞, the
EoE constant Ck→ 0, which implies that ρdαdke

d→ 0. Then τ4 is essentially
equal to τp (see discussion in § 6.3). However, Stη →∞ also implies that
τp →∞, which in turn implies that dkd/dt→ 0 (cf. (4.12)). Thus in the
limit Stη→∞ at constant mass loading and for elastically colliding dispersed-
phase elements, CSM predicts that the dispersed-phase TKE does not evolve
(or decays very slowly) in time.

(ii) Effect of large Stη on kf . Since Ck → 0, the specific TKE energy in the
fluid phase ρfαf kf → ρmkm (cf. (5.4)). From (4.13) and using the relation
ρmkm = ρfαf kf + ρdαdkd, one may write

d
dt
(ρfαf kf )∼−ρdαdkd

τp
− ρfαf εf =−ρfαf εf , (9.1)

where the fact that kd remains constant and τp →∞ has been employed.
Interestingly, CSM predicts that the TKE in the fluid phase decays much like
in a single-phase flow; if the dissipation rate εf is a constant, then a linear
decay of kf is predicted in the fluid phase.

(iii) Effect of large Stη on τ3. As Stη→∞, one can show that 1/τ3→ C1φ/(τC3)

(cf. (6.2)). This implies that the dispersed-phase velocity autocorrelation given
by (4.20) decays exponentially, provided the time scale τ remains a constant.
An exponential decay of velocity autocorrelation is also observed in elastic
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hard-sphere event-driven molecular dynamics (MD) simulations (Alder &
Wainwright 1970). Clearly, one cannot expect the t−3/2 decay observed in
these MD simulations at long time from the Langevin equation that is used as
a basis of CSM.

(iv) Effect of large Stη on τ1. As Stη →∞, one may expect that 1/(2τ1)�
[1/2 + (3/4)C0]1/τ (cf. A(t) in (4.2)). Thus from (4.19), CSM predicts an
exponential decay for the fluid-phase velocity autocorrelation in the limit
Stη→∞ as well. It remains to be verified from DNS of high-Stokes-number
particle-laden flows if this is indeed true.

(e) In order to assess the behaviour of CSM in the limit φ→∞ at constant Stη, we
again consider the case with no production due to mean shear.
(i) Effect of large φ on kd. In the limit φ→∞, the EoE concept predicts that

Ck → 1 (cf. (6.1)). This implies that ρdαdke
d → ρmkm and ρfαf ke

f → 0. It is
easy to show then that

d(αdρdkd)

dt
= ρfαf kf

τπ
. (9.2)

For a constant Stη, the multiscale interaction time scale τπ is a constant.
Dividing both sides of (9.2) by ρdαd (both ρd and αd are constant for the
homogeneous particle-laden turbulent flow in this study, and αd 6= 0), and
observing that in the limit φ→∞, the right-hand side approaches zero, one
may conclude that CSM predicts kd to be a constant in this limit. Interestingly,
this behaviour of kd is identical to that predicted in the limit Stη→∞.

(ii) Effect of large φ on kf . It is easy to show also in the limit φ→∞ that

d(αfρf kf )

dt
=−ρfαf kf

τπ
− ρfαf εf . (9.3)

In this strongly two-way coupled limit, the decay of fluid-phase TKE is
due to two sources, as observed from (9.3): one due to the interphase TKE
transfer kf /τπ (note that kf /τπ is positive) and the other due the dissipation εf .
For a constant εf , kf decays exponentially to zero over the time scale τπ . A
physical problem in this limit is a nearly close-packed particle-laden flow in
which the carrier phase does work in making its way through the interstices
between particles, and thus loses energy at a higher rate compared to the case
with lower mass loading.

(iii) Effect of large φ on τ3. As φ→∞, the time scale 1/τ1→∞. In this limit,
one may expect that the most significant contribution to 1/τ3 is from 1/τ1

(since 1/τ1 appears in (6.2)). This implies that the dispersed-phase velocity
autocorrelation given by (4.20) decays exponentially over a time scale τ3→ 0.

(iv) Effect of large φ on τ1. The same observation holds for (4.19) where 1/τ1→
∞ and an exponential decay of the fluid-phase velocity autocorrelation is
observed. It remains to be verified from DNS with high mass loading if this
behaviour of the fluid-phase and dispersed-phase velocity autocorrelation is
indeed true.

It is remarkable that the new CSM, coupled with the EoE concept, possesses several
desirable limiting behaviours of two-phase flow models. However, additional datasets
from DNS of two-phase flows in the limit Stη →∞ and φ →∞ are needed to
confirm the behaviour of CSM in these limits.
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10. Conclusion
The ability of a two-phase flow model to capture the correct interphase transfer of

turbulent kinetic energy and particle dispersion characteristics in a two-way coupled
particle-laden flow is important for engineering applications but is a challenging
modelling problem. Furthermore, DNS datasets show that these processes evolve on
different time scales that have a disparate behaviour with Stokes number. With this
perspective, the principal conclusions and achievements of this study are summarized
below.

(a) Combining multiscale modelling ideas from the equilibration of energy concept,
we have proposed a new coupled stochastic model that possesses the unique
capability of capturing the disparate time scales corresponding to interphase TKE
transfer and velocity autocorrelation, in addition to the behaviour of these time
scales with varying Stokes numbers and mass loading.

(b) CSM is shown to possess the correct behaviour in the limit Stη→ 0 and φ→ 0.
CSM is therefore an excellent candidate to be employed for a particle-laden flow,
such as in a coal gasifier that contains regions of high mass loading and regions of
low mass loading in the same two-phase flow.

(c) CSM is tested in a range of homogeneous particle-laden flows, from two-way
coupled particle-laden decaying turbulence and homogeneous shear to one-way
coupled particle dispersion. CSM is shown to capture the evolution trends of
important two-phase flow statistics such as TKE, velocity autocorrelation and
fluid-phase dissipation for varying Stokes number and mass loading in all the
two-phase flows studied in this work. Such a level of versatility of a two-
phase flow model, especially the ability to capture simultaneously the correct
trends of TKE decay with Stokes number in particle-laden decaying turbulence
and the dependence of the stationary TKE on Stokes number in statistically
stationary turbulence (see Pai & Subramaniam 2007, for more details) has not
been demonstrated in the literature.

(d) CSM possesses several of the desirable limiting behaviours of two-phase flow
models. In the limit Stη→∞ and φ→∞, although the predicted behaviour of
CSM appears reasonable, it would still need to be ascertained by performing DNS
of particle-laden turbulent flows in this limit.

It will be interesting to assess the behaviour of CSM in inhomogeneous flows such
as particle-laden jets, channel flows and mixing layers. For this, CSM will need to be
extended to incorporate effects of mean pressure gradient and arbitrary mean velocity
gradients into its formulation.
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Appendix. Particle method solution of the p.d.f. evolution equation
In this section, we review a popular particle method solution to the two-phase phasic

p.d.f. transport equation (2.7). An ensemble of Nf notional particles represents the
fluid phase, while an ensemble of Np notional particles represents the dispersed phase.
The ith notional particle is assigned a statistical weight W f

(i) corresponding to the fluid
phase, and Wp

(j) corresponding to the dispersed phase. The statistical weights satisfy the
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following constraints:

〈Np〉 =
Np∑
j=1

Wp
(j), (A 1)

α∗d =
vd

V

Np∑
j=1

Wp
(j) =

vd

V
〈Np〉, (A 2)

α∗f = 1− vd

V

Np∑
j=1

Wp
(j) =

Nf∑
i=1

W f
(i), (A 3)

where 〈Np〉 is the mean number of real (physical) particles in the cell or measurement
volume, vd is the mean volume per dispersed particle, and V is the cell or
measurement volume. The modelled volume fractions αf and αd are shown with
asterisks. Together, the statistical weight W f

(i) and the p.d.f. f ∗U , and Wp
(j) and the

p.d.f. f ∗V , model the evolution of αβ fU|Iβ (for β = {f , d}) given by (2.7). In practice,
the FP equations (3.3) and (3.4) are not solved directly, but the SDEs given by the
system in (3.2) are advanced in time using computational particles. The time evolution
of these particles indirectly solves the FP equation. The above implementation for
notional particles and statistical weights corresponds to a computational ensemble
with equal statistical weights assigned to each notional particle. Since we focus on
homogeneous flows in this study, we assume equal statistical weights corresponding
to each notional particle and therefore do not track the weights in time. One can
also conceive of an implementation where the statistical weight associated with each
notional particle evolves in time as is done in Garg, Narayanan & Subramaniam (2009)
for inhomogeneous two-phase flows.
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