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We investigate the dynamics of the near wake in turbulent flow past a circular cylinder
up to ten cylinder diameters downstream. The very near wake (up to three diameters)
is dominated by the shear layer dynamics and is very sensitive to disturbances and
cylinder aspect ratio. We perform systematic spectral direct (DNS) and large-eddy
simulations (LES) at Reynolds number (Re) between 500 and 5000 with resolution
ranging from 200 000 to 100 000 000 degrees of freedom. In this paper, we analyse in
detail results at Re = 3900 and compare them to several sets of experiments. Two
converged states emerge that correspond to a U-shape and a V-shape mean velocity
profile at about one diameter behind the cylinder. This finding is consistent with
the experimental data and other published LES. Farther downstream, the flow is
dominated by the vortex shedding dynamics and is not as sensitive to the aforemen-
tioned factors. We also examine the development of a turbulent state and the inertial
subrange of the corresponding energy spectrum in the near wake. We find that an
inertial range exists that spans more than half a decade of wavenumber, in agreement
with the experimental results. In contrast, very low-resolution spectral simulation as
well as other dissipative LES do not describe accurately the inertial range although
they predict low-order statistics relatively accurately. This finding is analysed in the
context of coherent structures using a phase averaging technique and a procedure to
extract the most energetic (on the average) eigenmodes of the flow. The results suggest
that a dynamical model would require of the order of twenty modes to describe the
vortex shedding dynamics with reasonable accuracy.

1. Introduction
1.1. Background

The near wake of incompressible flow past a circular cylinder is a very critical region as
it determines the dominant instability in the flow, i.e. the absolute instability that leads
to the vortex street formation, see Triantafyllou, Triantafyllou & Chryssostomidis
(1986), Unal & Rockwell (1988), Monkewitz (1988), Karniadakis & Triantafyllou
(1989), in both laminar and turbulent wakes. This was shown by Triantafyllou et al.
(1986), who demonstrated that such instability exists even in the turbulent regime by
analysing the experimental time-averaged velocity data of Cantwell & Coles (1983) for
Reynolds number Re = 140 000. The near wake is also responsible for the secondary
instability as well as subsequent bifurcations that lead to a turbulent state, as found
in experimental work, see Williamson (1996), Hammache & Gharib (1991), Eisenlohr
& Eckelmann (1989), and in numerical work, see Karniadakis & Triantafyllou (1992),
Barkley & Henderson (1996), Robichaux, Balachandar & Vanka (1999).

Of particular physical importance is the dynamics of the two shear layers developing
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on the two sides of the cylinder. Experimental evidence suggests that there is a rather
wide Reynolds number range within which a shear layer instability may occur, from
Rec ≈ 350 (due to Gerrard 1978) to Rec ≈ 3000 (due to Wu et al. 1996). The
prevailing hypothesis has been that background disturbances strongly influence the
critical Reynolds number value Rec (Unal & Rockwell 1988). However, other factors
such as the aspect ratio (cylinder diameter to spanwise length), the end conditions,
and even the shedding mode, e.g. parallel or oblique, can influence Rec (Prasad &
Williamson 1997). Unlike the classical shear layers of two co-flowing streams (Huang
& Ho 1990), the cylinder shear layers are restricted in the streamwise direction
by the formation of large-scale Kármán vortices. In particular, the cylinder shear
layers have an upstream effect due to the aforementioned absolute instability, and
such observations have been made by Unal & Rockwell (1988) who described it as an
‘upstream wave motion’. Therefore, downstream disturbances may affect the upstream
flow.

There is no established way of defining the near wake so here we define it as the
region up to about ten diameters downstream from the cylinder; up to fifty diameters
we have the intermediate wake, and beyond that we have the far or self-preserving
wake (Matsumura & Antonia 1993). In the current work we subdivide the near
wake into two regions: (a) the region just behind the cylinder up to three diameters
downstream which is dominated by the dynamics of the shear layer – we will refer to
it as the very near wake, and (b) the region between three and ten diameters, which
we will refer to as simply the near wake.

There are still many unresolved fundamental issues regarding our understanding
of the near wake. Some of these issues have been addressed for the far wake:
for example, the question of coherent structures and flow organization has been
addressed by Townsend (1979) who considered eddy structures in the far wake at
170D downstream, and by Hussain & Hayakawa (1987) who considered the region
for x/D > 10 (D is the cylinder diameter and x = 0 is at the cylinder centre).
Another fundamental question, considered by Matsumura & Antonia (1993) in the
intermediate wake region, is how efficiently momentum is transported in the wake.
However, the near wake is strongly three-dimensional, unlike the region downstream
where quasi-one-dimensional assumptions may be used and point measurements may
be sufficient. A third important issue relates to the question of existence of an
inertial range and its extent as a function of Reynolds number in the subcritical
regime, i.e. before the boundary layer becomes turbulent. From the modelling point
of view, these questions are ultimately related to the dimensionality of the near wake,
which measures the minimum number of degrees of freedom (or modes) required to
effectively describe the dynamics of the near wake and thereby the dynamics of the
vortex street downstream (Triantafyllou & Karniadakis 1990; Cao & Aubry 1993).

There are relatively few measurements available for the near wake owing to the
special experimental arrangements required to obtain accurate data, as in the the
experiments of Cantwell & Coles (1983) who provided measurements up to x = 8D
for Reynolds number Re = 140 000. More recently, Lourenco & Shih (1994, see
Beaudan & Moin 1994) have obtained mean and r.m.s. velocity profiles using PIV
within the recirculation zone at Re = 3900. Also, streamwise and cross-flow velocity
statistics were obtained in the near wake by Ong & Wallace (1996) at Re = 3900
using a multi-sensor hot-wire probe, but for x/D > 3. The aforementioned sensitivity
of the very near wake to different experimental conditions is clearly reflected in the
velocity measurements of such experiments. In figure 1 we plot the time-averaged
centreline velocity at Reynolds number Re = 3900 from the experiments of Lourenco
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Figure 1. Experimental data: centreline velocity normalized by the free-stream velocity at Re = 3900.
Squares are data of Lourenco & Shih, circles of Ong & Wallace, and crosses of Govardhan &
Williamson.

& Shih and Ong & Wallace. We also include some more recent data of R. Govardhan
& C. Williamson (private communications). The aspect ratio in the Lourenco &
Shih experiment was 20.5 while in the Govardhan & Williamson experiments it was
10, which may explain the large difference in the formation length.† However, as it
was pointed out by Noca, Park & Gharib (1998) in a recent systematic study, the
formation length depends not only on the cylinder aspect ratio but on the cylinder
diameter as well; the larger cylinder diameter could reduce the turbulence scales,
stabilize the shear layers and thus lengthen the formation region. In the figure, we
also see that the data of Ong & Wallace agree with the data of Lourenco & Shih
for x/D > 4 but disagree at x/d = 3D. At present, it is not clear what other sources
contribute to the discrepancy in these three experimental data sets.

As regards one-dimensional energy spectra of turbulent wakes behind circular
cylinders, previous measurements were mostly for high Reynolds number flows and
in the far wake. A systematic study of energy spectra 50–800 diameters downstream
was presented in Uberoi & Freymuth (1969). It included a low Reynolds number
range from about Re = 300 to 5000 and a higher one up to Re = 95 000. It was clearly
shown in that study that the inertial range in such flow regime depends strongly on
the Reynolds number; for Reynolds number Re > 1000 at least a quarter of a
wavenumber decade is present in the energy spectrum of the far wake. These results
are in agreement with recent measurements reported in Marasli & Wallace (1993) at
Re = 2000 for velocity and vorticity spectra obtained at 30 diameters (x/D = 30)
downstream. More recently, streamwise and cross-flow velocity spectra were obtained
in the near wake by Ong & Wallace (1996) at Re = 3900. Their data show that even in
the near wake the velocity spectra have a similar form to the spectra measured in the
far wake, and at this Reynolds number the inertial range extends to approximately
half a decade in wavenumber.

Numerical simulation of turbulent wakes has been computationally prohibitive and
only preliminary results have been obtained in Tomboulides, Orszag & Karniadakis

† Here we define the formation length based on the location of zero average velocity.
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(1993) and Henderson & Karniadakis (1995) using direct numerical simulation (DNS).
A more systematic study of the cylinder turbulent wake at Re = 3900 was undertaken
by Beaudan & Moin (1994) who used large-eddy simulation (LES) with an upwind
discretization. A second LES study was performed by Mittal & Moin (1996), with
central differencing in order to control the numerical damping reported in the first
study, and more recently a high-order LES study was completed by Kravchenko &
Moin (1998). The results from the three studies are similar as far as the computed mean
and r.m.s. velocities are concerned, i.e. LES predicts relatively accurately, although not
uniformly, the experimental results in the region downstream of x/D > 3. However,
in the very near wake all simulations converge to a mean velocity profile of U-
shape (see figure 5; x/D = 1.06, dashed line) unlike the experiments of Lourenco
& Shih that show a V-shape (see figure 5; x/D = 1.06, solid line). In contrast, an
independent LES study by Rodi and co-workers (Frohlich et al. 1998) produced a
V-shape velocity profile. Also, despite the higher fluctuations sustained in the central-
differencing simulations by Mittal (1996), no clear inertial range was obtained in
either of the first two LES studies, in contrast with the experiments. It is interesting
to note that corresponding simulations with the subfilter model turned off produced
a velocity spectrum almost identical to the LES. A systematic grid-refinement study
performed in Beaudan & Moin (1994) also suggests that these results are resolution
independent for at least the first ten diameters in the near wake. The high-order
LES of Kravchenko & Moin, however, reproduced accurately the inertial range but
predicted the same mean velocity field (i.e. U-shape) as the previous two simulations.

1.2. Objectives

As the use of the eddy-viscosity-based subfilter models and corresponding LES of
such non-equilibrium flow may be questionable (Liu & Liu 1997), we have pursued
both direct and large-eddy numerical simulation in our studies. The study of Moin
and collaborators clearly shows that there is a stronger dependence of the results on
the discretization scheme than on the subfilter model employed. Given these numerical
uncertainties and the conflicting experimental results, we have decided to perform very
systematic DNS and LES for this flow based on spectral discretizations. In particular,
we have employed a numerical discretization based on a new class of hierarchical
spectral methods on unstructured grids (Karniadakis & Sherwin 1999). They allow
great flexibility in the discretization and dynamic refinement in modal space without
the costly overhead associated with re-meshing. In Ma & Karniadakis (1997) we
reported first results on comparisons between our DNS and LES of Beaudan &
Moin (1994) and Mittal & Moin (1996). In the current study we have performed
new and very detailed spectral DNS and LES from very low resolution using 200 000
degrees of freedom to very high resolution using 100 000 000 degrees of freedom.

The specific physical questions raised in the current work are:
What is the correct dynamics of the shear layer and how does it affect the very

near wake, i.e. differences between the U-shape and V-shape mean velocity states?
What is the effect of an eddy-viscosity subfilter model on the flow properties?
Is there an inertial range in the turbulent near wake at low Reynolds number, and

how close is the energy spectrum obtained from the spectral simulation to that of the
experiment?

What is the contribution of the coherent motion to the mean flow and the Reynolds
stresses?

How accurately are low-order statistics predicted, if the simulation cannot reproduce
the spectrum of the physical laboratory?
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Case K P M Lz/(πD) cs Cp St Bubble length/D Solution type

I 902 10 128 2.0 0.0 0.96 0.203 1.12 V-type
II 902 10 64 1.0 0.0 0.84 0.219 1.59 U-type
III 902 8 32 1.5 0.0 1.04 0.206 1.00 V-type
IV 902 8 32 1.5 0.032 0.898 0.213 1.28 V-type
V 902 8 32 1.5 0.196 0.765 0.208 1.76 U-type

Table 1. Summary of simulations. More cases for refinement studies are described in Appendix A.

What is the spatial structure of the most energetic modes and what is the dimen-
sionality of the near wake?

To address these questions we have performed simulations of the flow past a circular
cylinder at Re = 500, 1000, 3900 and 5000. The majority of the results presented here
are for Re = 3900 for which we have experimental data available in the near wake
for mean and r.m.s. velocities as well as spectra. We have implemented a modification
to the phase-averaging technique used in the experimental study of Matsumura &
Antonia (1993) in order to quantify the contribution of the organized motion to the
average momentum transport. We have also developed a decomposition procedure
based on the method of empirical eigenfunctions (Sirovich 1987) in order to also
quantify the dimensionality of the near wake.

In the following, we briefly summarize the simulation approach and include vali-
dation details in the Appendices. We then present velocity statistics and comparisons
with the experiments from the high-resolution simulation. Subsequently, we present
the results of a very low-resolution simulation, which, surprisingly, are in good agree-
ment with the experimental results. In the following section we discuss the spectrum
of the near wake and compare with experimental and LES results. We then analyse
this finding using phase averaging and a proper orthogonal decomposition of the
fields at Re = 3900. We conclude with a summary and discussion.

2. Simulation parameters
2.1. Unstructured grids and h and p refinement

We performed direct and large-eddy numerical simulations using spectral/hp meth-
ods implemented in the incompressible Navier–Stokes solver NεκTαr (Karniadakis
& Sherwin 1999; Warburton 1998; Sherwin & Karniadakis 1995, 1996). This code
is based on a new class of spectral algorithms on unstructured grids consisting of
arbitrary triangulizations for dynamic remeshing; a Fourier expansion was employed
along the homogeneous direction (cylinder-axis) with appropriate de-aliasing. Specif-
ically, triangular elements are used, filled with Jacobi polynomial modes of order P
corresponding to high-order mixed weights. The expansions are constructed so that
they retain the tensor-product property (and thus the efficiency) of spectral methods.
Unlike previous spectral element formulations which employed nodal expansions (Chu
& Karniadakis 1993), the new expansions are modal and the only nodes needed are
the vertices of the triangles. Moreover, the polynomial order can vary from element to
element, readily accommodating p-type refinement. For wake flows, regions of intense
vorticity can be captured and resolved dynamically using p-refinement.

We performed several simulations corresponding to h-refinement (i.e. with respect
to number of elements K) and p-refinement (with respect to polynomial order P ).
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Figure 2. Two-dimensional ‘z-slice’ of the entire domain (a) and detail around the cylinder of the
standard mesh (K = 902 elements, b); refined (K = 1622 elements, c); and coarse mesh (K = 412
elements, d) used in the NεκTαr simulations. The unstructured grid shown is the skeleton based
on which hierarchical spectral expansions are constructed.

A summary of the high-resolution DNS and LES runs is presented in table 1; more
cases are shown in table 3 (Appendix A). In figure 2 we show a ‘z-slice’ of the
computational domain in the (x, y)-plane with three different discretizations. Figure
2(b) shows a grid with K = 902 triangular prisms (elements), which has been the
standard grid we have used for most cases. We also show a grid with finer resolution
around the shear layers corresponding to K = 1622 elements (figure 2c), and also
a grid with coarser resolution corresponding to K = 412 elements (figure 2d). The
polynomial order per element varied from P = 4 to 10, and the number of Fourier
modes varied from M = 2 to 128 (the corresponding number of physical points is
twice the number of modes). Convergence in this method is obtained by either h-
or p-refinement, the latter being faster than the former. A summary of the results
from the resolution study is included in Appendix A. The finest resolution simulation
employed K = 902 elements of order P = 10 and 256 points (M = 128 Fourier
modes) in the spanwise direction. The lowest resolution employed K = 412 elements
with P = 6 and only M = 2, i.e. a severe truncation of Fourier modes in the spanwise
direction.

2.2. Computational domain

The domain extends from −15D at the inflow to 25D at the outflow, and from
−9D to 9D in the cross-flow direction. Neumann boundary conditions (i.e. zero flux)
were used at the outflow and on the sides of the domain to minimize the effect of
normal boundary layers at the truncated domain. The spanwise length was varied
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Figure 3. Autocorrelation function for the three velocity components and pressure. (a) Centreline
point; (b) off-centreline point. (Re = 3900;Lz/D = 1.5π.)

as Lz/D = π/2, π, 1.5π, 2π. For reference, the spanwise length used in all simulations
of Beaudan & Moin (1994), Mittal & Moin (1996) and Kravchenko & Moin (1998)
was Lz/D = π. The experimental results of Ong & Wallace (1996) suggest a value of
correlation length less than 1.5D at three diameters downstream; this was obtained
using the streamwise velocity only. Other meaurements by Mansy, Yang & Williams
(1994) have shown a dependence of the correlation length of the form 20Re−0.5D,
where Re = U0D/ν is the free-stream Reynolds number. This empirical formula,
which was constructed using data in the range 300 6 Re 6 1200, if extrapolated
to Re = 3900 predicts a very low spanwise length of 0.32D at three diameters
downstream. The experiment of Mansy et al. shows that this value increases to about
1D for x/D > 10. This discrepancy in length scales seem to correspond to two distinct
spanwise length scales associated with two different systems of streamwise vortices,
as documented by Williamson, Wu & Sheridan (1995).

The definition of the correlation length in Mansy et al. (1994) is different from the
standard definition used in most experimental studies and was based on instantaneous
autocorrelation functions. Specifically, the location of the first maximum of the
oscillatory autocorrelation function was taken as the spanwise correlation length.
Here, we have also computed the correlation length based on the autocorrelation
function of each velocity component but defined as in the experimental studies of
Ramberg & Griffin (1976)

Ruu(l; x, y) =
u′(x, y, z, t)u′(x, y, z − l, t)

u′2(x, y, z, t)
, (2.1)

where the bar denotes averaging over time and over z-planes. Also, u′(x, y, z, t) is
the fluctuation obtained after we subtract the mean quantity, i.e. averaged in time
and span (z) at the point (x, y). We have computed the correlation length based on
equation (2.1) by both averaging in time or averaging in span first, and subsequently
averaging in span or in time, respectively. For sufficient fine resolution in span and
temporal sampling, as in our simulations, there is no difference in the results. We
include in the plots the autocorrelation function for all three velocity components and
the pressure. A typical result is shown in figure 3 for Lz/D = 1.5π where we see that
at a centreline point Ruu drops to zero at about 1.5D but that, in general, at points
off-centreline Rvv and Ruu do not decay as fast. In figure 4 we plot the autocorrelation
function for the larger span Lz/D = 2π corresponding to the highest resolution DNS
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Figure 4. Autocorrelation function at the centreline: (a) three velocity components at x/D = 3;
(b) Cross-flow velocity at different x/D = 3, 5, 7, 9, 10 locations. (Re = 3900; Lz/D = 2π.)

we performed in this work (Case I). We see that in the larger domain the correlation
is in general higher, especially in the cross-flow component.

These results indicate that values of Ruu obtained in experiments at centreline points
may underpredict the spanwise correlation length. Therefore, it may be inadequate to
use Ruu as the only criterion in deciding on the domain size. Indeed, we will see in
the following that the span length is very important in determining the r.m.s. values
in the very near wake and correspondingly the mean velocity profiles. In general, our
results at Re = 3900 are consistent with computed results at Re = 1000 where the
spanwise correlation length is about 6D (Evangelinos 1999). They are also consistent
with experimental results by Ramberg & Griffin (1976), regarding the trend of the
value of correlation length as function of Reynolds number. They have measured
a correlation length of about 10D in the Reynolds number range 500–600. Clearly,
as the Reynolds number increases the spanwise correlation length decreases in this
subcritical regime.

2.3. Subfilter model

The equations of motion for a large-eddy simulation are

∂(ũi)

∂xi
= 0,

∂(ũi)

∂t
+
∂(ũiũj)

∂xj
= − ∂p̃

∂xi
+

∂

∂xi

{
(ν + νs)

[
∂ũi

∂xj
+
∂ũj

∂xi

]}
, (2.2)

where the term νs represents the Smagorinsky eddy-viscosity model, defined as νs =

l2s |S̃ |, with |S̃ | = (2S̃ij S̃ij)
1/2 the magnitude of the filtered strain-rate tensor. Here, ls

is the Smagorinsky length scale or subfilter length scale. It is equal to ls = cs∆, where
cs is the Smagorinsky constant, and ∆ is the filter width. In structured grids typically

∆ =
(
∆x∆y∆z

)1/3
, where ∆x,∆y,∆z are the filter widths in each direction. For the

spectral/hp element method on triangles, the filter width ∆ has to be defined properly
in order to account for the sub-cell resolution. Following the heuristic argument in
Gottlieb & Orszag (1977), the polynomial order, P , and resolved half-wavenumber,
k, are related by P = kπ. A new definition of ∆ is thus proposed, based on the area
of the triangle, A, and the grid spacing, ∆z, in the Fourier direction, of the form

∆ =

(
A
( π
P

)2

∆z

)1/3

. (2.3)
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Figure 5. DNS mean streamwise velocity predictions at x/D = 1.06, 1.54, 2.02 (from top to bottom,
respectively). Case I (wide domain – solid line) and Case II (narrow domain – dashed line). Squares
are data of Lourenco & Shih.

Numerical experiments with decaying homogeneous turbulence and turbulent chan-
nel flow have justified this choice (see Karamanos 1999).

In the current work, we perform two LES for the standard grid of K = 902
elements at Re = 3900. The first case (Case IV) corresponds to cs = 0.032, employed
in the channel simulation of Moin & Kim (1982), and the second case (Case V) to
cs = 0.196, based on the value of Lilly’s (1967) theory. These values have been adjusted
from the classical values to take into account the sub-cell resolution employed in the
spectral/hp element discretization. In the near-wall region, the Panton (1997) wall
damping function is used which follows the correct y3 behaviour.

3. High-resolution simulations
In this section we present results from the two highest resolution DNS runs, one

with span length Lz/D = 2π (Case I) and the other one with Lz/D = π (Case II); see
table 1. We also compare two LES runs (Cases IV, V) at a slightly lower resolution
and a DNS run (Case III) at the same resolution. We will show that depending on
the spanwise extent of the domain and the dissipation of the LES subfilter model,
there exist two converged states which are distinctly different in the very near wake.

3.1. The very near wake: U-shape versus V-shape

We first present comparisons of DNS predictions with experimental data for x/D 6 3
at Re = 3900. We concentrate on mean and r.m.s. streamwise velocity profiles. Similar
PIV experimental data have been obtained by Lourenco & Shih and were published
in Beaudan & Moin (1994); streamwise data are significantly more reliable than the
cross-flow velocity measurements. For example, the experimental uncertainty in the
measurements of the streamwise velocity is about 5% while for the cross-flow velocity
is more than 50% according to Beaudan & Moin (1994). In figure 5 we see that very
good agreement is obtained for Case I, unlike Case II. In particular, a pronounced
feature of Case I is the V-shape velocity profile at x/D = 1.06 in contrast with the
U-shape (flat) profile of Case II. However, as documented in Appendix A, both DNS
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Figure 6. DNS r.m.s. streamwise velocity predictions at x/D = 1.06, 1.54, 2.02 (from top to
bottom, respectively). Symbols as figure 5.
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Figure 7. LES mean streamwise velocity predictions at x/D = 1.06, 1.54, 2.02. Case III (no subfilter
– solid line), Case IV (low subfilter – dash-dot line), and Case V (high subfilter – dashed line).
Squares are data of Lourenco & Shih.

predictions are converged solutions of the Navier–Stokes equations for Case I (wide
domain) and Case II (narrow domain). In order to examine these quantitative and
also qualitative differences, we plot in figure 6 the r.m.s. values of the streamwise
velocity at the same locations. We see that at x/D = 1.06 the velocity fluctuations of
Case I match the experimental values, which are at a much higher magnitude than
those of Case II. The higher fluctuations lead to better flow mixing locally, which
justifies the corresponding shape of the mean velocity profile. Also, at the other two
locations the Case I predictions are in closer agreement with the experimental results
than Case II.

Next we examine the predictions of two LES runs, one with a low value of the
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Figure 8. LES r.m.s. streamwise velocity predictions at x/D = 1.06, 1.54, 2.02. Symbols as figure 7.

Smagorinsky constant cs (Case IV) and the other one with a high value of cs (Case
V). Case III represents a DNS run at the same resolution (i.e. no subfilter model).
All three runs have exactly the same resolution; here the spanwise length was kept
constant at Lz/D = 1.5π. We see in figure 7 that again both U-shape and V-shape
mean flow states emerge. In particular, the stronger the subfilter model dissipation
the flatter the profile, with a U-shape profile clearly obtained in Case V. In contrast,
a V-shape profile is obtained with the model off. The predictions of low-dissipation
LES (Case IV) resemble more closely the DNS and the experimental results. The
predictions for the r.m.s. values are also consistent with these mean velocities profiles
as shown in figure 8. The U-shape profile corresponds to small fluctuations in the
near wake, and overall the low-coefficient LES (Case IV) is closer to the V-shape
state.

The systematic LES of Moin and collaborators (Beaudan & Moin 1994; Mittal
& Moin 1997; Kravchenko & Moin 1998) are for span Lz/D = π and they all
converge to a U-shape profile. Another LES study for the same conditions has been
performed by Frohlich et al. but only partial results have been published in Frohlich
et al. (1998). They have used both a structured and an unstructured grid. In figure
9 we plot again the experimental results with DNS (Case I) and the aforementioned
LES. We also include our results from a very low-resolution DNS (see § 4). We
see that the high-resolution DNS as well as the structured mesh LES (with the
standard Smagorinsky model) of Frohlich et al. agree with the experimental data. In
contrast, the dynamic Smagorinsky model of Beaudan & Moin predict a large velocity
defect at this location whereas the low-resolution DNS as well as the unstructured
mesh LES of Frohlich et al. predict a smaller velocity defect at this location. The
asymmetry in the profile obtained from the unstructured mesh LES of Frohlich et
al. is probably due to insufficient time averaging. The structured LES of Frohlich et
al. was performed with a large number of points corresponding to 166 × 166 × 48
points in the radial, azimuthial, and spanwise directions, respectively, higher than the
simulation of Beudan & Moin (116 × 136 × 48) but lower than the simulation of
Mittal & Moin (401× 120× 48).
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Figure 9. Streamwise mean velocity profile at x/D = 1.54. Squares denote experimental data of
Lourenco & Shih, solid line DNS (Case I) high-resolution, dark dots DNS low-resolution, dashed
line dynamic model of Beaudan & Moin, dash-dot line structured mesh/Smagorinsky of Frohlich
et al., and light dots unstructured mesh/Smagorinsky of Frohlich et al.
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Figure 10. Time-averaged vorticity distribution on the cylinder surface at Re = 3900. Circles denote
experimental data of Son & Hanratty at Re = 5000. (a) DNS comparison for Case I (solid line)
and Case II (dashed line). (b) LES comparison for Case III (solid line), Case IV (dash-dot line),
and Case V (dashed line).

3.2. Cylinder surface

The two different mean states in the very near wake correspond to different sizes of the
mean separation region as shown in table 1, with the U-shape profile corresponding
to a longer formation length than the V-shape. These two distinct solutions also
correspond to different distributions of the average vorticity on the cylinder surface
as well as the pressure coefficient.

In figure 10 we plot the mean spanwise vorticity (averaged in the span and in time)
along with experimental data obtained by Son & Hanratty (1969) at Re = 5000.
We non-dimensionalize with the factor 1

2

√
Re, consistent with the boundary layer

theory for the non-separated part of the flow. Both DNS and LES underpredict the
experimental data which were obtained using electrochemical techniques. Note that
the bounday layer predictions are also below the experimental data, as documented
by Son & Hanratty (see their figure 15). Results from a two-dimensional simulation
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Figure 11. Time-averaged pressure coefficient distribution on the cylinder surface at Re = 3900.
Circles denote experimental data of Norberg (1987) at Re = 3000. (a) DNS comparison for Case
I (solid line) and Case II (dashed line). (b) LES comparison for Case III (solid line), Case IV
(dash-dot line), and Case V (dashed line).
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Figure 12. Mean streamwise velocity profiles at x/D = 4, 7, 10 (from top to bottom, respectively).
Circles denote experimental data of Ong & Wallace at Re = 3900. (a) DNS comparison for Case
I (solid line) and Case II (dashed line). (b) LES comparison for Case III (solid line), Case IV
(dash-dot line), and Case V (dashed line).

Ma (2000) reveal a similar distribution except in the wake region, where a much
smaller separation bubble is obtained than in the three-dimensional simulation. In
figure 11 we plot the pressure coefficient from the DNS and LES predictions along
with the experimental data of Norberg (1994) at Re = 3000. We see that the DNS
U-shape solution (Case II) is closer to the experimental results than all other cases;
the sensitivity of the base pressure coefficient to various conditions has been studied
systematically by Norberg who showed a very significant variation depending on the
aspect ratio of the cylinder in this range of Reynolds number.

3.3. Statistics for x/D > 3

To evaluate the accuracy of DNS and LES in the region downstream we use the
experimental data of Ong & Wallace (1996) who obtained mean velocities and
turbulence intensities at locations x/D > 3. In figure 12 we plot mean velocity profiles
at x/D = 4, 7 and 10 and we see that the comparison is also good for all predictions.
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Figure 13. Root-mean-square streamwise velocity profiles at x/D = 4, 7, 10. Circles denote
experimental data of Ong & Wallace at Re = 3900. (a) DNS comparison for Case I (solid line) and
Case II (dashed line). (b) LES comparison for Case III (solid line), Case IV (dash-dot line), and
Case V (dashed line).

The same is true for the r.m.s. values as shown in figure 13 and also for the cross-flow
velocity as shown in Appendix B. These results show that the region beyond x/D > 3,
which is dominated by the vortex shedding is less sensitive to the aforementioned
factors, unlike the very near wake which is very sensitive to turbulence intensity. In
this flow, turbulence fluctuations are influenced primarily by the background noise
and the cylinder aspect ratio.

4. Low-resolution simulations
We examine next how the results presented in § 3 are affected by substantially

reducing the grid resolution and without using any subfilter model. In particular,
we will present here results obtained on the grids shown in figure 2(d) consisting
of K = 412 triangular elements and only P = 6 and the equivalent K = 902 and
P = 4, both cases corresponding to approximately the same number of degrees of
freedom. More comparisons with the subfilter model on the same grid can be found
in Karamanos (1999). We will first use only two Fourier modes in the span, i.e. the
mean mode and one perturbation (M = 2 or four points). We also choose a small
value for the spanwise length Lz/D = π/2.

A similar effort was undertaken in the work of Zores (1989) for simulating turbu-
lent flow in a channel. He showed that even severely truncated spectral expansions
(corresponding to resolution of 4 × 4 × 16) give very good predictions of the mean
velocities and less so for the turbulence intensities, though still comparable to LES
results of Moin & Kim (1982). For the low-resolution simulations, it is important
to integrate for a very long time to obtain reasonable results. This was found in the
study of Zores (1989) and confirmed here in our study; the results we present next
have been integrated for at least 100 shedding cycles.

We compare first with the experiments of Lourenco & Shih in the very near wake
and subsequently with the experiments of Ong & Wallace farther downstream. In
figure 14 we plot the mean streamwise velocity profile at locations x/D = 1.06, 1.54
and 2.02. We also include the experimental data of Lourenco & Shih taken from
Beaudan & Moin (1994), and the LES data of Beaudan & Moin. We see that the
predictions from both low-resolution simulations without subfiltering are comparable
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Figure 14. Streamwise mean velocity profile at x/D = 1.06, 1.54, 2.02 (top to bottom). Squares
denote experimental data of Lourenco & Shih, solid line DNS (K = 412, P = 6), dash-dot line
DNS (K = 902, P = 4) and dashed line LES of Beaudan & Moin.
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Figure 15. Mean velocity profiles at x/D = 4, 7, 10 (top to bottom). Circles denote experimental
data of Ong & Wallace, solid line DNS (K = 412, P = 6), dash-dot line DNS (K = 902, P = 4)
and dashed line LES of Beaudan & Moin.

to the LES predictions. In figures 15, 16 we plot the mean streamwise velocity and
turbulent fluctuations, respectively, at locations x/D = 4, 7, 10 and compare with
the experimental data of Ong & Wallace. The predictions for the mean velocities
are good but the streamwise turbulence intensity shows some wiggles, which is an
indication of insufficient resolution. However, the low-resolution spectral simulations
obtain an overall better agreement with the experimental data than the dissipative
LES predictions reported in Beaudan & Moin (1994).

The results presented so far were obtained with only M = 2 Fourier modes
employed along the cylinder span. Of interest is to examine the influence of the
number of Fourier modes M on the mean velocity profiles presented above while
retaining the same resolution in the (x, y)-planes. We performed additional simulations
with M = 8 and 32 and also a two-dimensional simulation. As we see in figure 17
there is essentially no difference in the predicted mean streamwise velocity profile from

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

79
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099007934


44 X. Ma, G.-S. Karamanos and G. E. Karniadakis

0.05

0

(a)

–4 –2 0 2 4
y/D

U2
rms

0.025

0

0.025

0

0.025

0

(b)

–4 –2 0 2 4
y/D

0

0
–0.1
0.02

0.1
0

0

0
–0.1

Vrms

Figure 16. (a) Turbulent intensity of the streamwise velocity (u2
r.m.s.) at x/D = 4, 7, 10. (b) Turbulent

intensity of the cross-flow velocity (v2
r.m.s.) at x/D = 4, 7, 10. Circles denote experimental data of

Ong & Wallace, solid line DNS (K = 412, P = 6), dash-dot line DNS (K = 902, P = 4) and dashed
line LES of Beaudan & Moin.
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Figure 17. Streamwise mean velocity profile at x/D = 1.06 for different Fourier modes employed
along the span. Squares denote experimental data of Lourenco & Shih, dash-dot line 2D simulation,
dashed line M = 2, dot-solid line M = 8 and solid line M = 32 (coincides with M = 8).

M = 2 to M = 32 but the two-dimensional prediction deviates substantially. The
cases with M = 8 and M = 32 correspond to almost identical predictions suggesting
convergence in the z-direction. The M = 2 case is closer to the questionable (for the
cross-flow component) experimental results, as shown in Appendix B.

The results presented in this section indicate that the first Fourier mode (M = 1)
carries most of the spanwise energy for the chosen span Lz/D = π/2, as it is
evident by comparing with the two-dimensional results in figure 17. This has been
independently verified by computing the averaged plane-modal energy Exy(m) =∫
xy

[u2
m + v2

m + w2
m] dx dy and observe its decay with respect to the mode number Ma

(2000).
Given the surprisingly good results with this low resolution at Re = 3900, we

performed another set of simulations with the same low resolution and with only
M = 2 Fourier modes at Re = 5000 for which we had available experimental data
from the work of Zhou & Antonia (1993). In figure 18 we plot the mean velocity
profile and the streamwise turbulent intensity u′2 at station x/D = 10. Again, we see
that despite some wiggles in the numerical results the agreement with the experimental
results is good.
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Figure 18. Streamwise mean velocity profile (b) and turbulent fluctuation (a) at x/D = 10 and
Re = 5000. The experimental data (circles) are from Zhou & Antonia (1993).
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Figure 19. One-dimensional streamwise velocity spectrum (energy versus normalized frequency) in
the near wake of flow past a cylinder at Re = 500 (curve 1), 1000 (curve 2), and 3900 (curve 3).

5. The spectrum of the near wake
We now turn to the question of the extent of inertial range in this relatively

low Reynolds number regime. First, we plot in figure 19 spectra from our DNS at
Re = 500, 1000 and 3900. The standard non-dimensionalization with the free-stream
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Figure 20. Streamwise velocity spectrum at the centreline point x/D = 3.0 and Re = 3900.
(a) DNS (Case I – thin line) versus experiment of Ong & Wallace (thick line); (b) LES (Case IV,
low subfilter), (Case V, high subfilter) and (Case III, no subfilter). The dashed line indicates the − 5
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Figure 21. As figure 20 but for cross-flow velocity spectrum.

velocity and the cylinder diameter is used here. The point recorded for Re = 500 and
1000 is at (x/D = 3, y/D = 1) and at (x/D = 2.57, y/D = 0.52) for Re = 3900. We
see that a substantial inertial range exists only for the Re = 3900 flow.

In figure 20 we plot the one-dimensional k1 wavenumber spectrum of the streamwise
velocity at x/D = 3 (centreline) normalized with Kolmogorov scaling at Re = 3900
and compare DNS and LES with experimental results. On figure 20(a) we include
data from the high-resolution simulation with the wide domain (Case I) and the
experimental data of Ong & Wallace, and on figure 20(b) we plot our two LES
runs (Cases IV, V) against the same experimental data, and the corresponding DNS
(Case III, subfilter model off). This is a frequency spectrum converted to wavenumber
spectrum with the use of Taylor’s hypothesis following Ong & Wallace (1996). Note
that the experimental data erroneously show a peak at the Strouhal frequency, which
is evidence that the spectrum was not measured exactly at the centreline. Due to
symmetry conditions only a pronounced peak at twice the Strouhal frequency should
be present at the centreline. Overall, very good agreement is obtained with the
experiment for all cases except the LES Case V corresponding to strong subfiltering.
The effect of excessive dissipation leads to fast decay and thus the inertial range is
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Figure 22. As figure 21 but at the centreline point x/D = 7.0.
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Figure 23. One-dimensional streamwise velocity spectrum (Kolmogorov scaling) at the centreline
point x/D = 5. (a) Beaudan & Moin; (b) Mittal & Moin. (c) Kravchenko & Moin. (d) experiment
Ong & Wallace; (IV) spectral LES, Case IV; the dashed lines are explained in figure 24. The LES
spectrum (c) oscillates above a cutoff wavenumber unlike the spectral LES (Case IV).

not captured. All other results confirm that an inertial range exists in the very near
wake. This is also evident in the spectra of the cross-flow velocity at the same location
as shown in figure 21. The same picture emerges in all other locations downstream,
where spectra have been obtained. We plot in figure 22 spectra of the cross-flow
velocity at x/D = 7 which again show very good agreement with the experiment
except the over-dissipative LES case (Case V). Note that the Strouhal peaks are
predicted correctly in the cross-flow spectra.

Next, we compare results of our spectral LES with other published LES predictions.
In figure 23 we plot the one-dimensional k1 wavenumber spectrum of the streamwise
velocity normalized with Kolmogorov scaling at a centreline point x/D = 5. It is
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clear that the LES studies of Beaudan & Moin (1994) and Mittal & Moin (1997) do
not predict accurately the inertial range, in accord with our high-cs LES run (Case
V). However, the high-order LES of Kravchenko & Moin agrees very well with the
experiment and with our LES (case IV) up to the point where there is an onset of
high-frequency fluctuations due to the grid size limitation. Also, at low frequencies
there are some oscillations which are due to relatively short time averaging. For exam-
ple, the length of the time record of Beaudan & Moin (1994) was 30 convective units
or equivalently approximately 6 shedding cycles and it was enhanced by forming an
average over 48 records at different points in the homogeneous (cylinder-axis) direc-
tion. The low-pass filter cut-off frequency in the experiments was at k1η ≈ 0.7, which
may explain the upwards direction of the high-wavenumber end of the spectrum.
Also shown in the plot is a curve that describes von Kármán’s interpolation formula
to connect the inertial subrange with the low-wavenumber end of the spectrum

Eu/(εν)
1/2η = A(1 + Bk1η)−5/3, (5.1)

which usually applies to high Reynolds number, with A,B empirical constants and
η the Kolmogorov length scale. In addition, we included the low Reynolds number
limit for the spectrum which has the form

Eu/(εν)
1/2η = A∗ exp (−π(Ck1η)2/4), (5.2)

where A∗, C are empirical constants. More specifically, this form corresponds to the
limit where the inertial terms can be neglected in isotropic turbulence. It is shown in
figure 23 that appropriate constants A∗ and C can be chosen so that this curve fits
the spectrum obtained by Beaudan & Moin. The fact that this spectrum (equation
(5.2)) corresponds to the zero Reynolds number limit is consistent with the findings
of Beaudan & Moin that excessive numerical dissipation in their simulation damps
small-scale turbulence. The results of Mittal & Moin (1997) obtained with signifi-
cantly higher resolution are somewhat improved (curve (6) in figure 24). Also, both
our spectral LES and the high-order LES of Kravchenko & Moin predict accurately
the inertial range (see figure 23).

The energy spectra presented so far were obtained from the high-resolution simu-
lation. The low-resolution simulation with only M = 2 modes predicts an erroneous
spectrum, but we wanted to examine what happens as we increase the number of
modes in the spanwise direction to M = 8 and M = 32. The results for these two
cases are similar, and here we present in figure 24 the one-dimensional k1 wavenumber
spectrum of the streamwise velocity for the case M = 8. This is a frequency spec-
trum recorded at the point (x/D = 2.55, y/D = 0.45) and converted to wavenumber
spectrum with the use of Taylor’s hypothesis as before. The time series extends over
624.89 convective time units (tD/U∞), which is approximately 131 shedding cycles.
This corresponds to two runs, the first run for 300.25 convective units with a time step
∆t = 0.002 and with velocity history recorded every 10 time steps, and the second run
with ∆t = 0.003 and velocity data recorded every 20 time steps. No other processing
of the data was used except pre-processing with a Hanning window to correct for end
effects. As seen in figure 24, the low-resolution spectral simulation is in agreement
with the experimental results including the inertial range.

6. Low-dimensionality in the wake
The results so far have shown that while the shear layer in the very near wake

(x/D < 3) is sensitive to resolution and aspect ratio, the region downstream which
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Figure 24. One-dimensional streamwise velocity spectrum (Kolmogorov scaling) in the near wake
of flow past a cylinder at Re = 3900 (normalized energy versus k1η): (1) experiment Ong & Wallace;
(2) low-resolution DNS; (3) Beaudan & Moin; (4) equation (5.1); (5) equation (5.2); (6) Mittal &
Moin.

is dominated by vortex shedding is not. The surprising good agreement between
the low-resolution predictions and the experimental results suggest that most of
the contribution to Reynolds stress and momentum fluxes comes from the larger
structures of the flow. This statement is also supported by the LES studies presented
here. Both our spectral LES and the LES runs of Moin and collaborators obtained
good statistics, although the small-scale activity and the associated inertial range was
not captured in the over-dissipative simulations. From the dynamical systems point
of view, we could argue that there is a finite, relatively small number of degrees of
freedom that governs the dynamics of the near wake in the vortex-shedding-dominated
regions.

To investigate this hypothesis rigorously, in the following we quantify the contribu-
tion from the coherent structures using first a phase-averaging technique, and second
a decomposition of the flow into its most energetic components.

6.1. Phase-averaged contributions

We have implemented a modified version of the phase-averaging technique used in the
experiments of Matsumura & Antonia (1993) in order to quantify the contribution
from the coherent structures. In the experiment they used the local cross-flow (filtered)
velocity at the centreline as criterion for detecting the generally variable Strouhal
period. However, it is more accurate and computationally more convenient to use
the lift as criterion for the Strouhal period detection, so that there is a common
reference for all points in the domain unlike the method of Matsumura & Antonia
(1993). We found in our numerical experiments that if a fixed Strouhal period is used,
corresponding to the measured value St = 0.21, then the phase-averaged contribution
tends to zero for a long time averaging over 100 shedding cycles. If short time
averaging is used instead, the distributions look reasonable but are not correct as
they are not converged. This is why we need to perform phase averaging with the
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Figure 25. Global and coherent streamwise normal Reynolds stresses at x/D = 1.06 (a), 2.02 (b),
3.0 (c), 10.0 (d). Squares denote experimental data of Lourenco & Shih, circles denote experimental
data of Ong & Wallace, solid line global component, and dashed line coherent component.

actual variable Strouhal frequency. To this end, the phase φ in our simulations is then
calculated from the time history of the lift coefficient CL(t), which is fairly smooth, as

φ = π
t− t1,i
t2,i − t1,i for t1,i 6 t 6 t2,i,

φ = π
t− t2,i

t1,i+1 − t2,i + π for t2,i 6 t 6 t1,i+1,

where t1,i and t2,i correspond to times when CL = 0, dCL/dt > 0 and CL = 0,
dCL/dt < 0, respectively. Also, the interval 2(t2 − t1) = St−1 (in non-dimensional
units), where St represents an averaged Strouhal number value. The entire interval
was divided into 60 equal intervals, exactly as in the experiments, and a total of
more than 33 periods was used for the averaging. This is lower than the 900 periods
used in the experiments, but still sufficient to obtain converged results. Indeed, we
found via numerical experiments that using relatively short phase averaging (less than
10 shedding cycles), the phase-averaged quantities are largely over-predicted. In the
following, we decompose an instantaneous quantity

q(x, y, z, t) = q + q̃ + qr

following the triple decomposition of Reynolds & Hussain (1972) into global, coherent,
and random contributions, respectively.

For this analysis we use data from the DNS of Case III. In figure 25 we plot the
normal (streamwise) Reynolds stress using both the conventional or global averaging

quantity q′s′ as well as the phase-averaged quantity q̃′s̃′, as outlined above. We note
that the phase-averaged normal streamwise stress is zero at the centreline with maxima
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Figure 26. As figure 25 but for cross-flow normal Reynolds stresses.

on each side, in agreement with the experiments of Matsumura & Antonia (1993)
at Re = 5830. We also see that as we move downstream the overall contribution of

ũ′2 to total Reynolds stress is decreasing monotonically for x/D > 2. In contrast, the
coherent contribution to the normal cross-flow Reynolds stress increases as we move
downstream. This is shown in figure 26 where we plot the global Reynolds stress

and the coherent component ṽ′2. A conclusion reached in the experimental work of
Matsumura & Antonia (1993) was that at locations x/D = 10 and farther downstream

where they obtained measurements, the coherent contribution to the transport of v′2
is higher than that of u′2. This has been verified in our simulations, e.g. by comparing
figures 25 and 26 at x/D = 10 (plots at x/D = 7 are very similar). However, this
conclusion is not valid in the very near wake, where the relative coherent contribution
is higher for the streamwise component. Detailed percentages at various locations for
both normal stresses are shown in table 2. Here we have adopted the metric used by
Matsumura & Antonia to quantify this contribution defined by

Sc =

∫
|q̃′s̃′| dy, Sg =

∫
|q′s′| dy,

and the ratio Sc/Sg of coherent to global contributions.
We have also included in table 2 the percentage of the coherent contribution to the

global Reynolds stress u′v′ and have plotted corresponding profiles at representative
locations in figure 27. First, for the locations downstream at x/D = 10 (and similarly
for x/D = 7) the Reynolds stress distribution looks very similar to the one obtained
experimentally by Matsumura & Antonia (1993). In particular, at y/D ≈ 1.5 there
is a tendency for the coherent contribution to reduce the level of global Reynolds
stress. This behaviour is location-dependent as first noted by Matsumura & Antonia
(1993) and confirmed in our DNS. In the very near wake, for example at x/D = 1.06,
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x/D q s Sc Sg %(Sc/Sg)

1.06 u′ u′ 0.121 0.207 58.6
v′ v′ 0.084 0.178 47.1
u′ v′ 0.037 0.044 84.0

1.54 u′ u′ 0.142 0.238 59.2
v′ v′ 0.271 0.404 67.2
u′ v′ 0.078 0.0117 68.0

2.02 u′ u′ 0.107 0.181 59.0
v′ v′ 0.303 0.446 67.9
u′ v′ 0.069 0.105 66.0

5.0 u′ u′ 0.059 0.125 47.2
v′ v′ 0.211 0.302 72.3
u′ v′ 0.008 0.026 33.0

7.0 u′ u′ 0.041 0.114 35.7
v′ v′ 0.171 0.260 65.7
u′ v′ 0.006 0.020 30

10.0 u′ u′ 0.022 0.098 22.5
v′ v′ 0.106 0.209 50.9
u′ v′ 0.004 0.015 28.0

Table 2. Contribution of the coherent structure Sc compared to the global quantity Sg at different
locations.
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Figure 27. Global and coherent Reynolds stresses at x/D = 1.06 (a), 2.02 (b), 3.0 (c), 10.0 (d).
Circles denote experimental data of Ong & Wallace, solid line global component, and dashed line
coherent component.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

79
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099007934


Dynamics and low-dimensionality of a turbulent near wake 53

we see in figure 27 that the coherent contribution seems to be larger than the value
of the conventional global Reynolds stress. This occurs at the locations y/D = ±0.5
which correspond to the approximate location of the shear layers developing on the
two sides of the cylinder. In general, the coherent contribution constitutes a large
percentage of the total Reynolds stress with the same sign.

6.2. Proper orthogonal decomposition

In addition to the analysis presented above, we can also employ the method of proper
orthogonal decomposition (POD) (Lumley 1981; Aubry, Guyonnet & Stone 1991)
or the computationally more convenient method of empirical eigenfunction (Sirovich
1987). A rigorous presentation of the method can be found in Bekooz, Holmes &
Lumley (1993), so here we briefly review the main concept as applied to the cylinder
turbulent wake.

The POD procedure identifies the most energetic contributions and obtains the
spatial structure of the corresponding modes. Application of this method requires a
priori storage of velocity fields (snapshots) of the time-dependent flow – they constitute
the data ensemble. The modes obtained are simply the eigenfunctions of the velocity
autocorrelation operator and form an orthogonal set. Specifically, in order to obtain
the eigenfunctions, ψi, corresponding to a spatio–temporal velocity field u, we seek to
maximize the mean-square fluctuation of the function ψi, i.e.

〈(u, ψi)(u, ψi)〉
(ψi, ψi)

= λi (6.1)

where 〈 〉 is the ensemble averaging operation which is taken to be the time average
for spatio–temporal data, and (, ) is the standard inner product. Maximization of the
above quantity in equation (6.1) is a classical problem of variational calculus and
leads to ∫

〈u(x)u(x′)〉φi(x′) dx′ = λiφi(x)

where φi = ψi is the solution (eigenfunction) with corresponding eigenvalue λi. These
empirical eigenfunctions are ordered according to their decreasing energy content,
which with the appropriate normalization is represented by λi. Any member of the
ensemble can then be expanded as

u(x, t) =

M∑
i=1

ai(t)φi(x),

where M is the number of snapshots. The following orthogonality relations thus
holds:

〈ai(t), aj(t)〉 = δijλi,

where δij is the Kronecker delta. Note that this procedure can be performed based
on the instantaneous velocity or vorticity vector fields obtained from DNS or on
the corresponding fluctuations after we subtract the ensemble-averaged field; similar
results are obtained in either case, as has shown by Bangia et al. (1997).

Here we have performed the POD analysis for the instantaneous vorticity fields
at Re = 3900. In particular, we first analyse the time-dependent two-dimensional
Fourier coefficients and here we present results for the zero (mean) as well as the first
mode. As discussed in Bekooz et al. (1993), in the homogeneous direction the POD
eigenfunction reduces to a Fourier mode. We can then perform the POD analysis

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

79
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099007934


54 X. Ma, G.-S. Karamanos and G. E. Karniadakis

100

10–1

10–2

10–3

10–4

10–5

10–6

10–7

0 10 20 30 40 50

E
ig

en
 m

od
e 

en
er

gy
 (

ei
ge

nv
al

ue
s)

Mode

Re =100
Re =3900, 2D
Re =3900, 3D, M = 0
Re =3900, 3D, M = 1, real
Re =3900, 3D, M = 1, imag
Re =3900, full 3D

Figure 28. Eigenvalues from the POD analysis for vorticity fields corresponding to Re = 100, 3900
(two dimensions) and Re = 3900 (three dimensions). All 3D data are from Case III.

for the corresponding Fourier coefficients, which in our case are vector fields in the
(x, y)-plane. For reference, we also performed POD analysis for a corresponding two-
dimensional flow at Re = 100 and Re = 3900, and also POD analysis for the entire
three-dimensional field without the homogeneous assumption invoked along the span.
However, we doubled the number of snapshots by employing symmetry conditions
along the cross-flow direction.

In figure 28 we plot the eigenvalues obtained from the POD analysis for the
spanwise vorticity fields from two- and three-dimensional simulations. For the two-
dimensional case at Re = 3900 we used 79 snapshots extending over two shedding
cycles, whereas for the three-dimensional case with the Fourier decomposition in the
span we used 84 snapshots over 7 shedding cycles. For the full three-dimensional
analysis we used 55 snapshots over more than 2 shedding cycles. The main conclusion
from this plot is that even for the turbulent wake, an initial rapid convergence is
obtained with most of the energy captured with less than 20 modes. In fact, the
energy decay of the mean vorticity field for M = 0 mode and the two-dimensional
field are quite similar up to 20 modes whereas the decay of the M = 1 mode, which
has been separated into real and imaginary parts, is slightly slower. We also note
that, unlike the eigenvalues at Re = 100, which appear in pairs, this is not the case at
higher Reynolds number.

Next, we examine the structure of the first few eigenmodes of the spanwise vorticity
for the zeroth mode (M = 0). In figure 29 we plot the first and second mode
corresponding to U-shape (Case II) and V-shape (Case III) solutions. We only plot
the very near wake where differences are pronounced as has already been discussed.
It is clear from these plots that the time-averaged shear layers are longer for the
U-shape solution and that the formation length is longer. Farther downstream such
differences are not noticable so we only present results for the V-shape solution in
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Figure 29. Vorticity eigenfunctions corresponding to first (a) and second (b) modes. The data show
the very near wake corresponding to a U-shape (top; long formation length, Case II) and a V-shape
(bottom; short formation length, Case III) for each mode.
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Figure 30. Eigenmodes ((a) first, (b) second, (c) third, (d) fourth) from the POD analysis for
spanwise vorticity at Re = 3900 for the mean flow M = 0 (V-shape solution).

figure 30. The first pair is very similar to the first pair of empirical eigenfunctions
of a laminar wake first computed in Deane et al. (1991), but the next pair contains
small scales unlike the laminar wakes. This first pair is very different, however, from
the first pair of the corresponding two-dimensional flow at Re = 3900.

Finally, in figure 31 we plot the reconstruction of the vorticity contour; the contour
of the full simulation is plotted in figure 31(a). We first use only two eigenmodes and
we see that the vortex street is correctly captured, and that with 11 or 13 eigenmodes
the majority of small scales are also captured.

7. Summary and discussion
We have performed systematic direct and large-eddy simulations of turbulent flow

past a circular cylinder at Re = 3900 in order to resolve conflicting experimental
and numerical results available in the literature. A new finding is that two converged
states, distinctly different, were obtained in the very near wake (up to about three
cylinder diameters) but then converge downstream. This reflects the dynamics of
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Figure 31. Reconstruction of instantaneous span-averaged vorticity from 2 (b) and 11–13 (c, d)
eigenmodes. (a) The contour obtained from the full simulation which is used in the projection.
(Case II).

the flow, which is governed by the shear layers in the very near wake which are
quite sensitive to allowable disturbances, and of the vortex shedding in the region
downstream which is more robust.

The first state corresponds to the mean streamwise velocity profile having a U-
shape at about one diameter downstream, whereas the second state corresponds to a
V-shape. The U-shape solution emerges if the background fluctuations are relatively
low or the spanwise extent of the domain is small, e.g. Lz/D = π. This solution was
obtained in the LES studies of Moin and co-workers (Beaudan & Moin 1994; Mittal
& Moin 1997; Kravchenko & Moin 1998) who employed the aforementioned value of
cylinder span in all their simulations. The spectral DNS presented here, also converge
to a U-shape state for the same domain, but they converge to a V-shape state for
wider computational domains. These findings explain the great uncertainty regarding
the value of the formation length, especially in this Reynolds number regime (see
Noca et al. 1998).

We have also implemented an LES formulation appropriate for high-order methods
with sub-cell resolution. In order to study the effect of subfilter dissipation on the
solution type we varied the Smagorinsky constant from a low to a larger value.
Figure 32 shows the effect of the subfilter viscosity on the streamwise turbulence
intensity at x/D = 1.06 for −1.5 < y/D < 1.5. The streamwise turbulence intensities
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Figure 32. Effect of subfilter scale model on r.m.s. streamwise velocity predictions at x/D = 1.06:
the solid thick line represents the ratio of subfilter viscosity to kinematic viscosity for Case IV; the
solid thin line represents Case III (no subfilter); the thin dash-dot line corresponds to Case IV (low
subfilter).

are superimposed on the ratio of subfilter scale viscosity to the kinematic viscosity.
Cases III and IV (see table 1) are presented, which have the same resolution and
computational domain. The difference in r.m.s. is solely due to the subfilter-scale
model. Apart from an overall reduction in turbulence intensities from Case III to
Case IV, a correlation is evident between the peaks of the subfilter viscosity and the
‘valleys’ on the turbulence intensities of Case IV. Also, given that the two highest
peaks are indicative of the shear layer, then the subfilter model is reducing the width
of these shear layers.

On the question of the turbulence state in the near wake, we have found that the
energy spectrum has a substantial inertial subrange at Re = 3900, in agreement with
the experiments. All spectral DNS performed captured that inertia range quite accu-
rately. However, only the LES with the smaller subfilter dissipation also reproduced
the inertial range. The higher-dissipation LES gave a result very close to an earlier
LES by Mittal & Moin (1997). This result is consistent with the more recent results of
Kravchenko & Moin (1998) who obtained the correct inertial range using high-order
discretization. It appears that excessive dissipation due to either the subfilter model
or the discretization can suppress significantly the small-scale fluctuations, altering
greatly the inertial range. This does not necessarily imply that the prediction of the ve-
locity field is erroneous, as the cylinder flow is dominated by the robust vortex shedding
process. However, there are subtle differences in the very near wake as discussed above.

The surprising result is that a simulation employing only two modes in the span
without a subfilter model was able to predict both mean and r.m.s. velocities with
reasonable accuracy. For example, the drag coefficient predicted with M = 2 modes
is CD = 0.981 in agreement with the experimental value 0.98 ± 0.05 (Norberg 1987).
For reference, the CD value obtained in the LES of Beaudan & Moin (1994) is 1.0
and the corresponding two-dimensional value reported in Beaudan & Moin (1994) is
CD = 1.74. In fact, the results from the LES study of Beaudan & Moin (1994) are
comparable in quality with the low-resolution DNS results. Both simulations provide
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Case K P M Lz/(πD) cs Cp St Bubble length/D Solution type

VI 1622 8 32 1.5 0.0 1.06 0.212 0.96 V-type
VII 902 10 32 1.0 0.0 0.85 0.202 1.45 U-type
VIII 902 9 32 1.0 0.0 0.90 0.211 1.3 V-type
IX 902 8 32 2.0 0.0 1.01 0.211 1.01 V-type
X 902 8 8 2.0 0.0 1.08 0.18 1.03 V-type
XI 902 8 8 1.0 0.0 1.11 0.192 0.91 V-type
XII 902 8 16 1.0 0.0 1.02 0.21 1.01 V-type
XIII 902 6 16 1.0 0.0 1.08 0.202 0.93 V-type
XIV 902 10 8 0.5 0.0 1.2 0.206 0.77 V-type
XV 902 8 8 0.5 0.0 1.15 0.208 0.84 V-type
XVI 902 6 4 1.0 0.0 1.14 0.17 0.99 V-type
XVII 902 7 8 1.0 0.0 1.1 0.19 0.94 V-type
XVIII 902 4 2 0.5 0.0 1.03 0.213 0.78 V-type
XIX 902 7 2 0.5 0.0 1.65 0.177 0.48 V-type
XX 902 6 2 0.5 0.0 0.93 0.215 1.01 V-type
XXI 902 9 — — 0.0 2.07 0.268 0.0 V-type

Table 3. Summary of simulations for resolution studies. Cases I–V can be found in table 1 in the
main text.

reasonably accurate velocity profiles despite the erroneous prediction of the energy
spectrum.

To investigate this result, which has also been realized in turbulent channel flow
(Zores 1989) but has remained largely unnoticed, we performed a systematic study
to quantify the contribution from the coherent motion to the mean flow and the
Reynolds stresses. We first employed a modification of a phase-averaging technique
used in the experimental studies of Matsumura & Antonia (1993) for the intermediate
wake, and then we analysed the most energetic modes using the proper orthogonal
decomposition approach. The results from both approaches suggest that the turbu-
lent near wake behaves as a dynamical system of relatively low dimensionality. In
particular, a dynamical model that employs 10 to 20 most energetic modes in the
(x, y)-plane and 2 to 4 Fourier modes along the span could be a reasonably accurate
model for the flow past a cylinder in the Reynolds number range below 5000 as
studied here. Similar conclusions were reached in Deane et al. (1991), where only 4
POD modes were sufficient to construct Galerkin models for the unsteady laminar
wake. Future work will rigorously address the validity of such a hypothesis.
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Appendix A. Resolution studies
A summary of 21 simulations is presented in tables 1 and 3, using different

polynomial order P , different Fourier modes M, different meshes K , and different
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Figure 33. DNS r.m.s. streamwise velocity predictions at x/D = 1.06, 1.54, 2.02. Case XII (solid
line), Case XV (dash-dot line) and Case IX (dashed line). Squares are data of Lourenco & Shih.
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Figure 34. DNS mean streamwise velocity predictions at x/D = 1.06, 1.54, 2.02. Case VIII (solid
line) and Case VII (dashed line). Squares are data of Lourenco & Shih.

computational domains (Lz). In all the high-resolution DNS, the far wake was rather
insensitive to resolution changes, while the very near wake was quite sensitive to
spanwise length, spanwise resolution, and p-refinement. In the following we summarize
the main effects we observed in these resolution studies:

Effect of span: We increase the spanwise length scale Lz , with P and effective spanwise
resolution (M/Lz) remaining constant. The cases we consider are denoted in table
3 by IX, XII and XV. At x/D = 1.06, the velocity profile becomes wider (i.e. more
U-shaped), and the bubble length increases, in the order of Lz/D = π/2, 2π, π.
Concerning the r.m.s. streamwise velocities (figure 33), at x/D = 1.06, the Lz/D = 2π
and Lz/D = π cases have similar profiles, with sharp peaks, with the former having
higher values than the latter. The Lz/D = π/2 case has turbulence intensities in
between the other two cases, with a ‘thicker’ profile. At x/D = 1.54, 2.02, the
Lz/D = 2π case is higher than the Lz/D = π, π/2 cases, which are similar.
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Figure 35. DNS r.m.s. streamwise velocity predictions at x/D = 1.06, 1.54, 2.02. Case I (solid line)
and Case IX (dashed line). Squares are data of Lourenco & Shih.
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Figure 36. DNS r.m.s. streamwise velocity predictions at x/D = 1.06, 1.54, 2.02. Case III (solid
line) and Case VI (dashed line). Squares are data of Lourenco & Shih.

Effect of p-refinement: We increase the spectral order P , with the computational
domain and spanwise resolution constant (Cases VII, VIII). The U-shape profile is
accentuated with increasing P , with the bubble length also increasing (figure 34). The
cross-flow velocities are rather insensitive to increases in P .

Effect of total refinement: We increase P and spanwise resolution M for Lz = 2π
(Cases I, IX). For the mean streamwise velocities, the increase in resolution increases
the width of the profile at x/D = 1.06, while the streamwise turbulence intensities
(figure 35) drop with increasing resolution at x/D = 1.06.

Effect of h-refinement: We performed an h-refinement in the shear layer region from
k = 902 to 1622 elements, with constant computational domain (Cases III, VI). The
velocity profiles are insensitive to the increase in resolution, maintaining a V-shape
profile, while the r.m.s. streamwise predictions (figure 36) increase in magnitude.
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Figure 37. DNS mean cross-flow velocity predictions at (a) x/D = 3.0, (b) x/D = 1.06, 1.54, 2.02;
and (c) DNS r.m.s. cross-flow velocity predictions at x/D = 1.06, 1.54, 2.02. Case I (wide domain
– solid line) and Case II (narrow domain – dashed line). Squares are data of Lourenco & Shih;
circles are data of Ong & Wallace.

Appendix B. Comparison of cross-flow velocity
We present here comparison of cross-flow velocity profiles and cross-flow turbulence

intensities. DNS simulations (Cases I, II; see table 1) show the effect of spanwise
length, while LES simulations (Cases III, IV, V; see table 1) show the effect of subfilter
dissipation on cross-flow profiles. The simulations are compared to the experimental
data of Lourenco & Shih and Ong & Wallace. For the former experiment, according
to Beaudan & Moin, symmetry errors in Reynolds stresses, streamwise and vertical
velocities indicate that the errors in the cross-flow mean velocity are comparable to
the cross-flow velocities themselves over the entire domain of measurement. For the
streamwise velocity past one cylinder diameter symmetry errors stand at 5% of the
maximum local velocity, while Reynolds shear stresses have a 20% error for x/D < 2
and for 2.5 < x/D < 4 the error is around 30%. For the latter experiment, Ong
& Wallace provided experimental uncertainties of 2% for mean velocities and 3%
on Reynolds stresses, with the symmetry errors being negligible compared to these
experimental uncertainties. However, we have already mentioned that their streamwise
velocity taken at centreline points has an erroneous pronounced peak at the Strouhal
frequency.
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Figure 38. LES mean cross-flow velocity predictions at (a) x/D = 3, (b) x/D = 1.06, 1.54, 2.02 (c)
LES r.m.s. cross-flow velocity predictions at x/D = 1.06, 1.54, 2.02. Case III (no subfilter – solid
line), Case IV (low subfilter – dash-dot line), and Case V (high subfilter – dashed line). Squares are
data of Lourenco & Shih; circles are data of Ong & Wallace; crosses are LES of Mittal & Moin.
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Figure 39. Profiles of r.m.s. cross-flow velocity at x/D = 4, 7, 10. (a) DNS comparison for Case
1 (solid line) and Case II (dashed line). (b) LES comparison for Case III (solid line), Case IV
(dash-dot line), and Case V (dashed line). Circles denote experimental data of Ong & Wallace at
Re = 3900.
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The very near wake: U-shape versus V-shape

Comparisons of DNS predictions with experimental data for x/D 6 3 at Re = 3900
are first presented, concentrating on mean velocities and turbulence intensities. It
is note worthy that the experiments of Lourenco & Shih, and Ong & Wallace do
not match each other, as shown for x/D = 3 in figure 37(a): Cases I and II are
also plotted. Apart from a difference in the maximum magnitude of velocity, the
spread of the Ong & Wallace profile is larger, with asymmetries evident in both
sets of experimental data. The DNS calculations follow a similar pattern to the Ong
& Wallace experiment, with the magnitude of velocity decreasing with decreasing
spanwise length (Case I versus Case II).

In the very near wake, only the experimental data of Lourenco & Shih are available,
and figure 37(b) compares Cases I and II. Although there is a distinct difference in
profile (U-shape versus V-shape) in the streamwise velocities at x/D = 1.06, the cross-
flow velocity profiles exhibit similar behaviour, with different magnitudes. Similar
behaviour is noted for the cross-flow turbulence intensities at the same positions
(figure 37c). The lack of symmetry in the experimental data extends to this quantity,
with the mean cross-flow velocity reaching a non-zero value away from the cylinder
centreline.

Comparison of the effect of subfilter dissipation (Cases III, IV, and V) is also
presented, first at x/D = 3.0 (figure 38a). The increase in subfilter dissipation leads to
an increase in cross-flow velocity magnitude. Similar behaviour is noted at x/D = 2.02
(figure 38b). At x/D = 1.06, the mean velocity profiles are different, depending on the
degree of U-shape profile of the streamwise velocity profiles (figure 7). The velocity
changes from a profile similar to the experimental result, to an inverted-shape profile,
with increasing dissipation. This is directly related to the U- or V-shape profiles,
and the decreasing magnitude of cross-flow turbulence intensity (figure 38c). At
x/D = 1.54, the difference is less pronounced, yet still distinct.

Statistics for x/D > 3

Above x/D > 3.0, an insensitivity of the mean cross-flow velocities to spanwise length
and subfilter dissipation was noted, with the velocities tending to zero. A similar
insensitivity is also evident in the turbulence intensities, with the DNS simulations
(Cases I and II) closely matching the experimental data of Ong & Wallace (1996)
(figure 39). This is also the case for the LES simulations, as shown in figure 39.
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