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Abstract

This paper describes the results of a protocol study exploring problem–solution coevolution in a parametric design envi-
ronment (PDE). The study involved eight participants who completed a defined architectural design task using Rhino
and Grasshopper software: a typical PDE. The method of protocol analysis was employed to study the cognitive behaviors
that occurred while these designers were working in the PDE. By analyzing the way in which the designers shifted between
“problem” and “solution” spaces in the PDE, characteristics of the coevolutionary design process are identified and dis-
cussed. Results of this research include two potentially significant observations. First, the coevolution process occurs fre-
quently within the design knowledge level (i.e., when using Rhino) and within the rule algorithm level (i.e., when using
Grasshopper) of the parametric design process. Second, the designers’ coevolution process was focused on the design
knowledge level at the beginning of the design session, while they focused more on the rule algorithm level toward the
end of the design session. These results support an improved understanding of the design process that occurs in PDEs.

Keywords: Designers’ Cognitive Behavior; Parametric Design Environments; Problem–Solution Coevolution; Protocol
Analysis

1. INTRODUCTION

Architectural design is not a linear process; it involves the
stages of proposition, testing, refinement, analysis, and rejec-
tion, but not necessarily sequentially. For example, in a study
of Frank Gehry’s office, Boland et al. (2008) describe Geh-
ry’s design process as existing in a “liquid” state for a long
period before eventually becoming “frozen” into a proposi-
tion for a building. During the liquid state, drawings and mod-
els are made, tested, and rejected, being refined until a “final”
solution is crystalized. In this way, Gehry et al. explore and
respond to different aspects of the design problem, alterna-
tively shifting the focus from formal solutions to contextual
problems, technological challenges, and functional optimiza-
tion. For Gehry’s team, this shift from problem definition and
analysis to solution proposition and testing is often signaled
by the decision to digitize a physical model for further refine-
ment and development. While Gehry’s forms and buildings
may appear to be more challenging than those of many other
architects, his team follows a much more common cyclical

design process, which reflects architects’ thoughts, actions,
and behaviors as they shift their focus from considering de-
sign problems to testing design solutions. The parallel devel-
opment of problems and solutions in this “liquid state,” which
many architects follow, is called coevolution.

The concept of the coevolution of a design “problem
space” and “solution space” has been proposed by Maher
and Poon (1996). Design is a process that develops or formu-
lates a problem and ideas for a solution, in parallel (Dorst &
Cross, 2001). It has even been suggested that this coevolution
of design problem and solution spaces is an indicator of crea-
tivity in design (Maher & Tang, 2003). However, the medium
or environment in which the design process is undertaken (be
it physical and sketch based, or digital and CAD based) also
has a significant effect on designers’ cognitive processes
(Chen, 2001; Mitchell et al., 2003). One particular medium,
the parametric design environment (PDE), has become in-
creasingly prevalent in architectural design in recent years.
According to Kolarevic (2003), the change in designing asso-
ciated with parametricism is characterized by a rejection of
the static solutions offered in conventional design systems
and the adoption of intelligent systems. This change is
claimed to have rendered design processes both more flexible
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and more productive. Various studies support this view, arguing
that parametric tools can advance design processes in a variety
of ways (Qian et al., 2007; Schnabel, 2007; Abdelmohsen &
Do, 2009; Iordanova et al., 2009). However, there is a lack of
empirical evidence supporting an understanding of designers’
behavior in the PDE. This paper focuses on exploring the coe-
volution of design problem and solution spaces in PDEs.

In order to examine the way designers think and act in a
PDE, the designers’ cognitive activities while they are de-
signing in a PDE are studied. In the study reported here, eight
designers were asked to complete an architectural design task
in a PDE. Protocol analysis (Ericsson & Simon, 1993; Gero &
McNeill, 1998) was then employed to examine the designers’
behavior and identify the cognitive activities associated with
problem–solution coevolution in PDEs.

2. BACKGROUND

2.1. Parametric design

Parametric design is a digital design method that is character-
ized by rule algorithm design and multiple solution genera-
tion (Abdelsalam, 2009; Karle & Kelly, 2011). As Woodbury
(2010) argues, it supports the creation, management, and
organization of complex digital design models. The term
“parameters” is used to describe factors that determine a ser-
ies of variations leading to a potentially infinite range of pos-
sibilities being generated (Kolarevic, 2003). In the architec-
tural design industry, parametric design tools are mainly
used for complex form generation, multiple design solution
optimization, as well as structure and sustainability control.
Common parametric design software includes Generative
Component from Bentley Corporation, Digital Project from
Gehry Technology, and Grasshopper from McNeel. Scripting
tools, for authoring and defining parameters, include Process-
ing based on the Java language, Rhino script, and Python
script, based on VB language from McNeel. In this study,
we chose Grasshopper as the PDE because it is an advanced
environment for facilitating conceptual design and a rela-
tively popular tool in the architectural profession.

Researchers have suggested that parametric tools support
the design process in various ways. For instance, Iordanova
et al. (2009) examined students’ behavior when using para-
metric design software and found that ideas were generated
more rapidly in PDEs, while more variations also emerged
simultaneously. Schnabel (2007) argues that PDEs are benefi-
cial for generating unpredicted events and for accommodating
changes. However, researchers have typically studied design
behavior in PDEs by using informal observation techniques
and interviews with students in a studio or workshop setting.
Such approaches typically lack empirical evidence and can
provide only a very limited understanding of designers’ be-
haviors. This empirical gap is addressed in the present study
by adopting the method of protocol analysis, a method used
for in-depth or detailed analysis of any number of cases or par-
ticipants. Lee et al. (2012) have demonstrated the use of pro-

tocol analysis to evaluate creativity in PDEs. Using the
same method, Chien and Yeh (2012) explore “unexpected
outcomes” in PDEs. Results of these studies both confirm
the viability of the method and also suggest that some condi-
tions in PDEs can potentially benefit the designers’ process.

2.2. Problem–solution coevolution in design

Design is not just a linear process of finding solutions to an
initial given task or requirement; it is also about redefining
and reframing the design problems that have been provided
(Asimov, 1962; Schön & Wiggins, 1992; Suwa et al.,
2000). During the design process, designers continue to rede-
fine their design intentions, searching for alternative resolu-
tions. This iterative process, which revisits both problems
and solutions during the design process, should not simply
be regarded as a cyclical series of events, because with each
recursion in the process, the parameters have evolved and
shifted. Previous studies show that the expert design process
also involves a close interaction between representations of
problems and solutions (Cross, 2011). The coevolution of de-
sign problem and solution spaces is one possible way to con-
ceptualize the design process. Instead of seeing design as a
process of progressive refinement (concept design, to sche-
matic design, to developed design), design could be analyzed
through the way the cognitive effort shifts between the con-
sideration of problems and solutions (Maher & Poon, 1996;
Dorst & Cross, 2001). Design is a process that uses analysis,
synthesis, and evaluation as it shifts between the design prob-
lem and possible solutions (Asimov, 1962; Lawson, 1997;
Cross, 2011). It is during this process that designers formulate
critical questions and explore answers, and thus the develop-
ing relationship between the “problem space” and the “solu-
tion space” is at the core of the coevolution model of design.
Maher and Poon (1996) and Dorst and Cross (2001) each use
this model to suggest that the coevolution of design problem
and solution spaces has a close correlation with the occur-
rence of design creativity.

The concept of problem–solution coevolution is described
by Maher and Poon (1996; Fig. 1). Although it was developed
for computational exploration (from an AI perspective), the
model also describes a common design process. In the coevo-
lution model, the problem space (P) and solution space (S ) in-

Fig. 1. The coevolution model based on Maher and Poon (1996).
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teract over time (t; Fig. 1). Designers start by analyzing the
initial design requirements and formulating the design prob-
lem, P(t). While exploring possible design solutions S(t)
for the problem P(t), new intentions are added into the prob-
lem space over time P(t þ 1). This is a core process for coe-
volution in design, and particularly so when the solution does
not satisfy a key requirement; by changing or adapting the re-
quirements and intentions, a satisfactory problem and solu-
tion pair could be generated (Maher & Poon, 1996; Dorst &
Cross, 2001).

In a development of Maher and Poon’s coevolution model,
Dorst and Cross (2001) propose a refined version that further
illustrates the creative process from a behavioral perspective.
Their study employed the method of protocol analysis, in
which nine industrial designers were observed. In their model
(Fig. 2), the designers start from a design problem space P(t),
and develop a partially structured problem [P(t þ 1)4],
which is then used to develop a partially structured solution
space [S(tþ 1)4] of S(t). This process is repeated throughout
the design progress, as Maher and Tang (2003) suggest, with
the transition between design problem and solution occurring
in cyclical iterations until a satisfactory solution is developed.
Dorst and Cross further argue that this coevolution process is
vital to support the highest level of creative design (Cross &
Cross, 1998; Dorst & Cross, 2001). While the focus of the
present paper is not explicitly on creativity in the design pro-
cess, there are, as this past research suggests, several indica-
tors of creative potential in the coevolutionary design process,

which the present research can consider in the context of
PDEs.

3. APPLYING THE FUNCTION–BEHAVIOR–
STRUCTURE (FBS) ONTOLOGY TO EXPLORE
THE COEVOLUTION PROCESS IN PDES

3.1. Protocol studies using the FBS ontology

Protocol studies record and convert qualitative verbal and ges-
tural utterances and actions into quantitative research data
(Ericsson & Simon, 1993; Gero & Mc Neill, 1998). They
have been used extensively in design research to develop an
understanding of design cognition (Suwa & Tversky, 1997;
Atman et al., 1999; Kan & Gero, 2008). In such studies a com-
mon coding scheme used for design analysis is based on the
FBS ontology (Gero, 1990; Gero & Kannengiesser, 2004),
which has since been applied to a variety of studies on design-
ers’ cognitive behavior (Gero & McNeill, 1998; Kan & Gero,
2009; Lammi, 2011; Tang et al., 2011; Kan & Gero, 2012).

The FBS ontology (Fig. 3) contains three classes of con-
cepts: function (F), behavior (B) and structure (S). Function
represents the intentions or purposes of the design; behavior
represents how the structure of a designed artifact achieves
its functions, either derived (Bs) or expected, from (Be) struc-
ture; and structure represents the components that make up an
artifact and their relationships. Figure 3 identifies and numbers
the eight design processes derived from this ontology: formu-
lation, analysis, evaluation, synthesis, documentation, and
three types of reformulation (–1, –2, and –3). Among the eight
design processes, the three types of reformulation are said to
be the dominant ones, potentially capturing innovative or crea-
tive aspects of designing by introducing new variables or di-
rections (Kan & Gero, 2008). The present study of coevolution
in PDEs adopts the FBS ontology as its central theoretical
framework because it clearly distinguishes the eight types of
design processes, which provides opportunities to examine de-
sign cognition in detail (Kan & Gero, 2009). Kan and Gero
(2012) apply the FBS ontology to a study of software design-
ers’ behavior, suggesting that the method was effective for en-
coding programming/rule-based activities across different de-

Fig. 2. The coevolution model based on Dorst and Cross (2001).

Fig. 3. The function–behavior–structure ontology based on Gero and Kannengiesser (2004).
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sign disciplines. Given that PDEs enable scripting/program-
ming activities, it is anticipated that the FBS scheme will be
able to encode both geometric modeling and rule-based algo-
rithmic activities effectively. For this study, one of the original
codes in the FBS ontology, description (D), has been excluded
because in PDEs this process rarely occurs. For example,
whereas in the sketching environment there is a regular need
to document or describe design decisions and actions (D),
parametric modeling tools automatically document and
describe a three-dimensional model directly from the actions
of programming and scripting and as part of the consideration
of structure (S). Therefore, the present study does not include a
consideration of the description (D) code.

3.2. Two levels of design activities in PDEs

The ways in which parametric design is used by architects are
not well understood, which is why some argue that parametric
design “requires a deeper understanding of how it can support
our intentions as architects” (Sanguinetti & Kraus, 2011,
p. 47). Compared to traditional design environments, in
PDEs architects not only design by applying specialist knowl-
edge but also define rules and their logical relationships using
parameters (Abdelsalam, 2009). Woodbury (2010) claims that
in the PDE, designers need a different kind of geometric
knowledge that can “predict persistent effects to understand
the diversity and structure of the mathematical toolbox, and
to shuttle between the intended effect and mathematical inven-
tion that models it.” This implies that designers need to know
how the mathematical tools will work in the design develop-
ment processes in addition to their base architectural knowl-
edge. As Aranda and Lasch (2008) observe, the parametric de-
sign process mediates between two worlds. The first is an
abstract and coded system from which complex spatial forms
emerge through rule-based mathematical expressions. The
second world is the space where the designers apply their de-
sign knowledge to address the needs of people, cultures, com-
munities, and cities. When an architect models a building
form using parameters, he must assess variations, design
data flow routes, and adjust the values of parameters, and re-
vise rules. At this time, the architect is thinking about not only
the particular building design but also the rule design. It is
through the control of logical relationships between forms
and functions that the possibilities for design solutions are
heightened (Hernandez, 2006; Karle & Kelly, 2011).

Therefore, in a typical parametric design process, there are
design activities on two levels: the design knowledge level
and the rule algorithm level. In the design knowledge level,
architects make use of their design knowledge, including,
for example, how to adapt a building to the site, how to shape
the way people use the building, and how to satisfy the re-
quirements of their clients. At the rule algorithm level, de-
signers apply design knowledge through the operations of
the parametric design tools, including defining the rules
and their logical relationships, choosing the parameters
suitable for a particular purpose, and importing external

data into the proposed rules. During the design process, de-
signers progress by applying specialist knowledge; in some
parts (viz., the rule algorithm level), they apply design knowl-
edge indirectly by defining rules and their logical relation-
ships, and this is known as parameterization. In order to cap-
ture the processes involved in designing in PDEs, the main
class of variables from the original FBS ontology that have
been used, which are also referred to as cognitive design is-
sues or just design issues, are R, F, Be, Bs, and S. Each vari-
able is then further decomposed into the two levels of design
activities: the design knowledge level, denoted by the super-
script K, and the rule algorithm level, denoted by the super-
script R (Fig. 4). This does not require an extension of the
ontological variables because each decomposition is an in-
stantiation of the base ontological variable.

3.3. Interpretation of FBS coding in a PDE
1. Requirement (RR) in the rule algorithm space: Require-

ment (R) variables include “all requirements and con-
straints that were explicitly provided to the designers
at the outset of the design task” (Gero et al., 2014,
p. 286). Within the context of the present study, require-
ment (R) codes refer to these moments when designers
considered or reviewed the content of the design brief
provided. Because there is only design related informa-
tion in the brief, all the requirement variables will be
coded as RK. Therefore, there will be no instances of
“requirement” variables at the rule algorithm level (RR).

2. Function (FR) in the rule algorithm space: In the FBS
ontology, function (F ) variables describe “the teleology
of the object, which means ‘what it is for’” (Gero &
Kannengiesser, 2004, p. 374). Function F is the purpose
or intention of a design, which shapes the idea in de-
signers’ cognitive thinking. The concept of F does
not vary between different design environments. The
claim is that design tools do not affect the “function”
of the design. In the PDE, the architect still needs to
consider design intention and decide which factors to
parameterize or constrain and where to assign the
weight for specific factors (Ottchen, 2009, p. 23).
Therefore, in PDEs F variables comply with the original
understanding of function in the FBS model. Thus, if
designers talk about the design intention or purpose,
the segments should be coded as “function” (FK).
When designers talk about function of the rule, it is
about the effect they want the rule to achieve. These
segments are coded as expected behavior of the rule
(BeR). Therefore, there will be no instances of “func-
tion” variables at the rule algorithm level (FR).

Fig. 4. Applying the function–behavior–structure ontology in the parametric
design environment.
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3. Behavior (B) in the rule algorithm space: In the FBS
ontology, behavior (B) variables “describe the attributes
that are derived or expected to be derived from the struc-
ture variables of the object, which means ‘what it does’”
(Gero & Kannengiesser, 2004, p. 374). There are two
types of B: expected behavior (Be) and behavior derived
from structure (Bs). In PDEs, B variables express differ-
ent meanings at the rule algorithm level.

† Be: A Be is one where “designers use theory or expe-
rience to speculate what effect could fulfill a purpose
before a specific structure is proposed” (Jiang, 2012,
pp. 36–37). This interpretation has been well under-
stood at the design knowledge level. When it comes
to the rule algorithm level, expected behavior of the
rule (BeR) means that designers set up algorithm
goals or think about the way to achieve those goals
in the rule algorithm space (Table 1).

† Bs: A Bs is an actual behavior. At the design knowl-
edge level, Bs represents an evaluation of existing
geometry/structure, while at the rule algorithm level,
Bs signifies an evaluation of the structure of the rule
algorithm. When designers examine the current rule,
the segments will be coded as “BsR” (Table 2).

4. Structure (S) in the rule algorithm space: In the FBS on-
tology, structure (S) variables describe “the components
of the object and their relationships, which mean ‘what
it is’” (Gero & Kannengiesser, 2004, p. 374). In the design
knowledge space, structure (S) variables refer to the ele-
ments or relationships of the geometries, whereas in the
rule algorithm space, it is defined as the structure of the
rule algorithm: the components of rules and their relation-
ships for parameterization. In PDEs, designers also pro-
duce form as geometry, that is, structure in the design
knowledge space. This can be modeled by directly apply-
ing design knowledge, or through the rule algorithm. In
the latter case, a set of parameters and parametric com-
mands will be used. Designers define relationships to con-
nect these elements to form the rule algorithm. When de-
signers organize the structure of rules or make parametric
commands, the segments will be coded as SR (Table 3).

3.4. Problem–solution division in the PDE

This paper adopts the problem and solution division iden-
tified in the FBS model (Jiang et al., 2014) to distinguish
problem-related and solution-related design issues. In the
FBS ontology, problem-related issues include design consid-
eration about requirements (R), function (F ), and expected
behaviour (Be). Solution-related issues involve design con-
siderations about structure (S ) and behaviour derived from
the structure (Bs).

Based on Jiang et al.’s problem and solution division,
Table 4, and the understanding of the two levels of activities
in the PDE (Fig. 4), design problem-related issues and design
solution-related issues are further divided into: problem-re-
lated issues at knowlege level (PK, including RK, FK, and
BeK), problem-related issues at the rule algorithm level (PR,
including BeR); solution-related design issues at the know-
lege level (SK, including BsK and SK) and solution-related de-
sign issues at the rule algorithm level (SR, including BsR and
SR), as shown in Table 5. This division is consistent with the

Table 1. Expected behavior interpretation in the rule
algorithm space (BeR)

Description Typical Activities

Set up rule algorithm goals “The points will be generated
randomly.”

Ways to achieve certain rule
algorithm goals or related
actions

“The façade is divided up into
the panels.”

“I will try to get these inter-
medium points and create a
line.”

Utilizing mathematically
related commands for
parameterization

Set Grasshopper components
such as domain, function,
graft, and flatten.

Table 2. Structure behavior interpretation in the rule
algorithm space (BsR)

Description Typical Activities

Checking data flow routes Set “panel” or other Grasshopper
components for checking.

Evaluating existing rules Make a judgment about the rule: “it
has some problem” etc. or check
the rule definition from the
scripting interface.

Table 3. Structure interpretation in rule algorithm space (SR)

Description Typical Activities

Talking about or making the
structure of rules

Connect/organize rule components

Applying geometry-making
commands with features
for parameterization

Set/change parameters, set/change
relationships, etc.

Table 4. Mapping function–behavior–structure design issues
and processes onto problem and solution spaces (Jiang et al.,
2014)

Problem/Solution Space Design Issue

Problem space ¼ problem-
focused design issues

Requirement (R)
Function (F )
Expected behavior (Be)

Solution space ¼ solution-
focused design issues

Behavior derived from structure (Bs)
Structure (S )

Coevolution process in parametric design 37
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characteristics of parametric design in that designers not only
think about problems from the design perspective but also
have to formulate problems using rule design, which is essen-
tial in the PDE.

4. EXPERIMENT SETTING

The study reported in this paper is based on the work of eight
designers, who are all professional architects with an average
of 8 years of experience, and with no less than 2 years of ex-
perience using parametric design. In the experiment, each de-
signer was required to complete a defined architectural design
task in a PDE. During the experiment, both designers’ activ-
ities and their verbalizations (“thinking aloud”) were video-
recorded including a screen capture program and the recorded
data subsequently used for the protocol analysis. The design
environment was Rhino and Grasshopper, a typical PDE. De-
signers were given 40 min for the design session, along with
time to allow for familiarization with the particular systems
being used. The design task was a conceptual design for a
commercial building containing specific functions and lo-
cated on a premodeled site (Fig. 5), which was provided to
each designer. Because this study focused on exploring de-
signers’ behavior at the conceptual design stage, participants
were required to only consider concept generation, simple site
planning, and general functional zones. No detailed plan lay-
out was required. The tasks were both open and general

enough to provide designers with the freedom to enable var-
ious possible strategies to be applied during the parametric
design process. As a result, designers exhibited their own typ-
ical ways of approaching parametric design so that some of
our findings may begin to be generalized. During the experi-
ment, designers were not allowed to sketch manually, so al-
most all their actions occurred on the computer to ensure
that the design environment was purely within the PDE. All
of these controls were put in place to limit any variables
that could potentially bias the study.

5. EXPLORING THE IMPACT OF RULE
ALGORITHMS ON THE COEVOLUTION
PROCESS IN THE PDE

5.1. General results

In order to produce robustness of the protocol coding results,
two rounds of segmentation and coding were conducted with
an interval of 2 weeks between them. Following the two seg-
mentation and coding rounds, an arbitration session was car-
ried out to produce the final protocol from the combination of
the two rounds. The percentage of agreement between the two
rounds was 83.4%, (SD ¼ 5.7%) and between the individual
rounds and the final arbitrated results, 91.5% (SD ¼ 3.1%).
These percentages are indicative of the methodological reli-
ability of the coding process and results. Analysis of the eight

Fig. 5. Site model provided to the designers during the experiments.

Table 5. Mapping function–behavior–structure design issues onto problem and
solution spaces in the parametric design environment

Problem/Solution Space Design Issue

Reasoning about problem at design knowledge level (PK) Requirement (RK)
Function (FK)
Expected behavior (BeK)

Reasoning about problem at rule algorithm level (PR) Expected behavior (BeR)
Reasoning about solution at design knowledge level (SK) Behavior derived from structure (BsK)

Structure (SK)
Reasoning about solution at rule algorithm level (SR) Behavior derived from structure (BsR)

Structure (SR)
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protocols revealed the mean total numbers of segments was
244 (SD¼ 29.7, where a segment is the division of protocols
into individual units; in the current research, the division was
based on the FBS ontology and coresponded to design is-
sues). The mean time spent on the design sessions was 48.4
min (SD ¼ 7.4), and over 92.2% of all segments were coded
using the FBS model. Noncoded segments include those con-
cerned with communication and software management.

The distributions of “design issues” in the protocols, both
at the knowledge and the rule algorithm levels in the PDE, are
shown in Figure 6. From Figure 6 it can be seen that solution-
related design issues (Bs and S ) have the highest frequency,
and there are fewer problem-related issues (R, F, and Be).
Qualitatively, the rule algorithm plays an important part in
both Be and S. Particularly from the Be result, we can infer
that designers set rule algorithm goals/requirements and con-
sider the way to achieve the rule algorithm goals frequently in
the PDE. The quantitative anlysis of FBS design issue occur-
rences are shown in Table 6. The occurrence of design issues
was normalized by dividing them by the total number of
coded design issues. The results indicate that designers spent
most cognitve effort on the structure-related design issues,
which consist of SK (21.56%) and SR (20.49%). These are fol-
lowed by BsK (23.55%) and BsR (5.18%). Considerably less
effort was spent on RK (1.52%) and FK (5.09%).

5.2. Transition patterns between the design problem
and solution spaces in the PDE

The nature of the transitions between problem space and so-
lution space, which is critical to the concept of coevolution
(Dorst & Cross, 2001), can be examined by calculating the
discontinuity ratio of the designers’ design process, a value
which can indicate the frequency of interactions between de-
sign problem and solution spaces. The discontinuity ratio is
the ratio of the number of transitions to the overall number
of segments [Eq. (1)]. This ratio represents the frequency of
transitions between the problem and solution spaces in a
given period. The higher values of this ratio indicate that in-
teractions between design problem space and solution space
occur more frequently, which suggests a productive coevolu-
tion process.

discontinuity ratio ¼
P

transition number
P

overall segments number
� 100%: (1)

The discontinutiy ratios of transition between the design
problem and solution spaces in the PDE are shown in
Figure 7. The numbers on the arrows represent the average
(of eight participants) discontinuity ratio of each transition
during the entire design process. For instance, for designer

Fig. 6. Design issue distribution at both the design knowledge and rule algorithm levels in the parametric design environment.

Table 6. Design issue analysis

RK

(%)
FK

(%)
BeK

(%)
BeR

(%)
BsK

(%)
BsR

(%)
SK

(%)
SR

(%)

Mean 1.52 5.09 11.08 11.59 23.55 5.18 21.56 20.49
SD 0.72 2.81 7.96 6.12 5.09 2.80 9.37 10.18
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E, the number of transitions from PR to SK is 11, the overall
coded segment number is 243, thus the discontinuity ratio of
PR to SK is 11/243 ¼ 4.53%. Table 7 shows the quantitative
analysis of the transitions between design problem space and
design solution space.

As shown in Figure 7 and Table 7, the discontinuity ratios
of transition from design problem space to solution space
(18.29%) and from design solution to problem space
(18.39%) are similar. Within this the dominant ones are be-
tween PR and SK (with discontinuity ratios of 8.65% and
8.09%), and between PR and SR (with discontinuity ratios
of 5.80% and 5.05%). From this we can infer that the transi-
tions tend to remain within the design knowledge level or the
rule algorithm level and less frequently occurs across differ-
ent levels. Although the transition across different levels oc-
curs less frequently, among the transitions across different
levels, there are relatively more between PR and SK (with dis-
continuity ratios of 2.74% and 3.49%), which might mean
that designers sometimes reframe the design problem space
or requirements at the rule-algorithm level based on design-
knowledge-related considerations. One example of SK to PR

that occurs frequently in the PDE is that designers set new
rule-related design goals based on the evaluation of the geom-
etry model at the design knowledge level. The pattern that
most infrequently appears is the transition between PK and
SR (with discontinuity ratios of 1.66% and 1.20%). In particu-
lar, there is only a very small percentage for the occurrence of
the transition from SR to PK (with discontinuity ratio of
1.20%), which suggests that designers rarely reframe design
problems at the design knowledge level based on the rule al-
gorithm solution.

5.3. Transition patterns across the whole design
session

In order to further articulate the eight types of transitions (as
outlined in Fig. 7 and Table 7) between the problem space and
solution space across the design session, the distribution of
the discontinuity ratio of each transition in the PDE is pre-
sented in Figure 8. The horizontal axis in Figure 8 is the de-
sign session divided into ten subsessions, deciles, each with
an equal number of segments, while the vertical axis repre-
sents the average discontinuity ratio (of the eight participants)
of the transition patterns in each decile of the design session.

In the following description, we define the “early design
stage” as the period 1–3.3 on the horizontal axis, the “mid-de-
sign stage” as 3.4–6.7, and the “end design stage” as 6.7–10.
The descriptors are thus time based, rather than a direct indi-
cator of the degree to which a design has been completed.

The eight types of transitions between the design problem
space and design solution space are shown by the eight lines
in Figure 8, respectively, representing PR to SR, PK to SK, PR

to SK, PK to SR, SR to PR, SK to PR, SK to PR, and SR to PR. At
the early design stage the dominant transition is between PK

and SK. At the mid-design session, the dominant transition is
between PR and SR, although the transition from SK to PK is
still active. There are more transitions between PR and SR to-
ward the end of the design session. We can infer from this
that, at the beginning of the design session, the coevolution
process is focused on the design knowledge level; at the
mid-design session, the coevolution process is active at
both design knowledge and rule algorithm levels; and at the
end of the design session, it is more focused on the rule algo-
rithm level. The reason for this pattern may be that at the be-
ginning designers considered the brief from the design
knowledge perspective, which is similar to common architec-
tural practice. Later, designers started using the rule algorithm
process to implement their goals or concepts. During this pro-
cess, designers continued to redefine the design problem
while they were searching for solutions at a design knowledge
level. This is supported by observations of the experiment,
which noted that designers tended to start from the brief, then
analyze the site, and then develop basic concepts. In the next
stage, designers started considering the form or structure of
their design, and the rules to implement them. That is, they
set rule algorithm goals and explored different ways to achieve
them. Meanwhile, designers constantly returned to the design
knowledge level to evaluate the current design, and in this

Fig. 7. Discontinuity ratios between the design problem and solution spaces.

Table 7. Transition occurrences between design problem space and design solution space

Transition From Problem to Solution Transition From Solution to Problem

PR–SR

(%)
PK–SK

(%)
PR–SK

(%)
PK–SR

(%)
SR–PR

(%)
SK–PK

(%)
SK–PR

(%)
SR–PK

(%)

Mean 5.80 8.09 2.74 1.66 5.05 8.65 3.49 1.20
SD 3.17 1.28 0.46 0.21 1.20 1.29 0.61 0.19
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way, the initial concept was developed and evolved gradually.
At the end of the session, designers concentrated on the rule al-
gorithm design and tried to finalize the model using rules.

5.4. A model of coevolution process in the PDE

The transition processes between design problem and solution
spaces at both the design knowledge level and rule algorithm

level are shown in Figure 9. The horizontal moves indicate
the problem space (P) evolving from time t to time t þ 1. The
vertical moves are processes where “the problem leads to the so-
lution” or “the solution refocuses the problem” (Maher & Poon,
1996). These moves comply with Maher and Kundu’s (1993)
finding that design requirements would change with the design
solution: the solution space S(t) is not only a space where a de-
sign solution can be explored but also prompts new require-

Fig. 8. Distribution of the discontinuity ratios in the parametric design environment across time.

Fig. 9. A model of the coevolution process in the parametric design environment.
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ments in P(t þ 1) that were not in the original problem space
P(t). Figure 9 illustrates a model of the coevolution process in
the PDE as identified from this study. The details of this model
are further articulated in Figures 10, 11, and 12.

1. Figure 10 presents the coevolution of the problem and
solution spaces at the rule algorithm level (indicated as
dashed arrows). This coevolution process frequently oc-
cured in the PDE. Designers explored solutions for the
rule algorithm goals/requirements, PR(t), from the solu-
tion space SR(t); they refined or added new requirements
to reformulate the rule algorithm problem PR(t þ 1).

2. Figure 11 presents the coevolution of the problem and
solution spaces at the design knowledge level (indicated
as solid dashed arrows). This is the most frequently oc-
curring coevolution process in the PDE. This behavior
is similar to that in traditional design environments
(Maher & Poon, 1996; Dorst & Cross, 2001).

3. Figure 12 presents the coevolution process across the
design knowledge level and the rule algorithm level
(indicated as solid arrows). In this coevolution process,
designers started from the problem space at the design
knowledge level, PK(t). During the exploration in the
solution space SK(t), there were new requiremements
emerging at the rule algorithm level. The design
problem space at the rule algorithm level PR(t) was re-
fined. Then the exploration of a design problem and so-
lution changed the direction to the rule algorithm level.
This is a process in the PDE, in which designers explore
the design solution and reformulate the problem across
the design knowledge level and the rule algorithm level.

6. Conclusion

Design may be conceptualized as a special class of problem-
solving processes (Simon, 1969) where the problems are ei-
ther not clearly defined (Maher et al., 1996; Chi, 1997) or

Fig. 10. The coevolution process at the rule algorithm level.

Fig. 11. The coevolution process at the design knowledge level.

Fig. 12. The coevolution process across the design knowledge level and the rule algorithm level.
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ill defined (Simon, 1973; Corne et al., 1994). This is why, in a
design process, designers constantly return to the design
problem space to reformulate the challenge they are facing
(Simon, 1973). Through the interaction between cognitive ac-
tivities in the design problem and solution spaces, the design
is progressed until a “satisfactory” outcome is identified (Ma-
her & Tang, 2003). As Cross (2011) and Schön (1983) have
suggested, creative design is a process of exploration; during
the process, problem and solution spaces are evolving and un-
stable until fixed by an “emergent” bridge, or a satisfactory
problem–solution pair. This coevolution process is signifi-
cant for understanding the design process.

Parametric design differs from design that uses traditional
geometrical modeling because it is reliant on rule algorithms
that must operate in parallel with other traditional design be-
haviors (Yu et al., 2012). In this paper, we have studied the
coevolution process in the PDE by examining empirical
data derived from experiments with professional designers.
The data was generated by employing the protocol analysis
method. Through this study the parametric design process
has been categorized by a two-level model of design activ-
ities: design knowledge and rule algorithm. From the results
of the experiment, this division is capable of capturing para-
metric design behaviors in a sufficiently comprehensive man-
ner that they can help us to understand the design process in
this environment.

Based on the division of design activities into two levels,
and by calculating the frequency of transitions between the de-
sign problem and solution spaces, three particular characteris-
tics of the coevolution process in the PDE have been identified.
The first of these is that the coevolution process typically oc-
curs at the individual design knowledge level or rule algorithm
level, and only relatively infrequently do transitions occur
across the two levels. Second, the designers’ coevolution pro-
cess is focused on the design knowledge level at the early de-
sign stage, while they use more cognitive effort at the rule al-
gorithm level toward the end of the design session. Those
activities that are, therefore, most representative of operations
in the PDE (activities on the rule algorithm level) play a
more important role in the later stages of the session than in
its earlier stages. Third, a model that illustrates the main coevo-
lution process in the PDE has been proposed. In this model,
three main coevolution subprocesses are identified: coevolu-
tion at rule algorithm level, coevolution at the design knowl-
edge level, and coevolution across the rule algorithm and de-
sign knowledge levels. The proposed model assists in
formally understanding designers’ behavior in terms of interac-
tion between problems and solutions when designing in PDEs.
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Jiang, H. (2012). Understanding senior design students’ product conceptual
design activities —a comparison between industrial and engineering de-
sign students. PhD Thesis. Singapore: National University of Singapore.

Jiang, H., Gero, J.S., & Yen, C.C. (2014). Exploring designing styles using a
problem–solution index. Proc. Design Computing and Cognition ‘12
(Gero, J.S., Ed.), pp. 85–101. Berlin: Springer.

Kan, J.W.T., & Gero, J.S. (2008). Acquiring information from linkography in
protocol studies of designing. Design Studies 29(4), 315–337.

Kan, J.W.T., & Gero, J.S. (2009). Using the FBS ontology to capture seman-
tic design information in design protocol studies. In About Designing:
Analysing Design Meetings (McDonnell, J., & Lloyd, P., Eds.), pp.
213–229. New York: Taylor & Francis.

Kan, J.W.T., & Gero, J.S. (2012). Studying software design cognition. In Soft-
ware Designers in Action: A Human-Centric Look at Design Work (Petre,
M., & van der Hoek, A., Eds.), p. 61–77. Abingdon: Chapman & Hall/CRC.

Karle, D., & Kelly, B. (2011). Parametric thinking. Proc. Int. Conf. Para-
metricism (SPC) ACADIA Regional 2011, Paper No. 109, Lincoln, NE,
March 11–12.

Coevolution process in parametric design 43

https://doi.org/10.1017/S0890060414000316 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000316


Kolarevic, B. (2003). Architecture in the Digital Age: Design and Manufac-
turing. New York: Spon Press.

Lammi, M. (2011). Characterizing high school students’ systems thinking in
engineering design through the function–behavior–structure (FBS)
framework. PhD Thesis. Logan, UT: Utah State University.

Lawson, B. (1997). How Designers Think: The Design Process Demystified.
Oxford: Architectural Press.

Lee, J.H., Gu, N., Jupp, J., & Sherratt, S. (2012). Evaluating creativity in
parametric design processes and products: a pilot study. Proc. Int.
Conf. Design Computing and Cognition, DCC’12. College Station,
TX: Springer .

Maher, M.L., & Kundu, S. (1993). Adaptive design using a genetic algo-
rithm. In Formal Design Methods for Computer-Aided Design (Gero,
J.S., & Sudweeks, F., Eds.), pp. 240–248. Sydney: University of Sydney,
Key Centre of Design Computing.

Maher, M.L., & Poon, J. (1996). Modelling design exploration as coevolu-
tion. Microcomputers in Civil Engineering 11(3), 195–210.

Maher, M.L., Poon, J., & Boulanger, S. (1996). Formalising design explora-
tion as coevolution: a combined gene approach. In Advances in Formal
Design Methods for CAD (Gero, J.S., & Sudweeks, F., Eds.), pp. 3–30.
London: Chapman & Hall.

Maher, M.L., & Tang, H.H. (2003). Coevolution as a computational and cog-
nitive model of design. Research in Engineering Design 14(1), 47–63.

Mitchell, W.J., Inouye, A.S., & Blumenthal, M.S. (2003). Beyond Productiv-
ity: Information Technology, Innovation, and Creativity. Washington,
DC: National Academies Press.

Ottchen, C. (2009). The future of information modelling and the end of the-
ory: less is limited, more is different. Architectural Design 79, 22–27.

Qian, C.Z., Chen, V.Y., & Woodbury, R.F. (2007). Participant observation
can discover design patterns in parametric modeling. Proc. Int. Conf. As-
sociation for Computer Aided Design in Architecture, ACADIA2007,
pp. 230–241. Halifax, NS: Riverside Architectural Press and Tuns Press.

Sanguinetti, P., & Kraus, C. (2011). Thinking in parametric phenomenology.
Proc. Int. Conf. Parametricism (SPC) ACADIA Regional 2011, Paper No.
39, Lincoln, NE, March 11–12.

Schnabel, M.A. (2007). Parametric designing in architecture. Proc. Int. Conf.
Computer Aided Architectural Design Futures, CAADFutures 2007,
pp. 237–250. Sydney: Springer.

Schön, D.A., & Wiggins, G. (1992). Kinds of seeing and their functions in
designing. Design Studies 13(2), 135–156.

Schön, D.A. (1983). The Reflective Practitioner: How Professionals Think in
Action. New York: Basic Books.

Simon, H.A. (1969). The Sciences of the Artificial. Cambridge, MA: MIT Press.
Simon, H.A. (1973). The structure of ill-structured problems. Artificial Intel-

ligence 4(3–4), 181–204.
Suwa, M., Gero, J.S., & Purcell, T. (2000). Unexpected discoveries and S-in-

vention of design requirements: important vehicles for a design process.
Design Studies 21(6), 539–567.

Suwa, M., & Tversky, B. (1997). What do architects and students perceive in
their design sketches? A protocol analysis. Design Studies 18(4), 385–403.

Tang, H.H., Lee, Y.Y., & Gero, J.S. (2011). Comparing collaborative co-lo-
cated and distributed design processes in digital and traditional sketching
environments: a protocol study using the function–behaviour–structure
coding scheme. Design Studies 32(1), 1–29.

Woodbury, R. (2010). Elements of Parametric Design. New York: Routledge.

Yu, R., Gu, N., & Ostwald, M.J. (2012). Using situated FBS ontology to ex-
plore designers’ patterns of behavior in parametric envrionments. Jour-
nal of Information Technology in Construction 17, 271–282.

Rongrong Yu is a PhD candidate in the School of Architec-
ture and Built Environment at the University of Newcastle.
Her PhD study is currently focused on exploring designers’
behavior in parametric design. Her research interests include
computer-aided design, architecture design theory, design
cognition. She has published journal and conference papers
related to the topic.

Ning Gu is a Senior Lecturer at the School of Architecture
and Built Environment at the University of Newcastle. He
currently supervises four PhD students and a number of Hon-
ours research students. His research has been in the broad area
of design computing and cognition since 1999. His career
highlights include leading and participating in various Aus-
tralian Research Council (ARC) Discovery and Co-operative
Research Centre for Construction Innovation projects. The
outcomes of his research have been documented in over
130 peer-reviewed journal and conference publications.

Michael J. Ostwald is an ARC Future Fellow and Dean of
the School of Architecture and Built Environment at the Uni-
versity of Newcastle. He is a Visiting Professor at RMIT and
was previously a Professorial Research Fellow at Victoria
University Wellington. Michael is Co-Editor in Chief of the
Nexus Network Journal: Architecture and Mathematics,
and he is on the editorial boards of ARQ and Architectural
Theory Review.

John S. Gero is a Research Professor in architecture and
computer science at the University of North Carolina, Char-
lotte, and a Research Professor in the Krasnow Institute for
Advanced Study in Computational Social Science at George
Mason University. Previously he was Professor of Design
Science and Co-Director of the Key Centre for Design Com-
puting and Cognition at the University of Sydney. He has
published over 50 books and 600 research papers. His re-
search has been cited over 4,500 times in the last 5 years.

R. Yu et al.44

https://doi.org/10.1017/S0890060414000316 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000316

	Empirical support for problem-solution coevolution in a parametric design environment
	Abstract
	INTRODUCTION
	BACKGROUND
	Parametric design
	Problem-solution coevolution in design

	APPLYING THE FUNCTION-BEHAVIOR-STRUCTURE (FBS) ONTOLOGY TO EXPLORE THE COEVOLUTION PROCESS IN PDES
	Protocol studies using the FBS ontology
	Two levels of design activities in PDEs
	Interpretation of FBS coding in a PDE
	Problem-solution division in the PDE

	EXPERIMENT SETTING
	EXPLORING THE IMPACT OF RULE ALGORITHMS ON THE COEVOLUTION PROCESS IN THE PDE
	General results
	Transition patterns between the design problem and solution spaces in the PDE
	Transition patterns across the whole design session
	A model of coevolution process in the PDE

	Conclusion
	REFERENCES


