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SUMMARY
This paper presents a robust adaptive impedance controller for robot manipulators using function
approximation techniques (FAT). Recently, FAT-based robust impedance controllers have been pre-
sented using Fourier series expansion for uncertainty estimation. In fact, sinusoidal functions can
approximate nonlinear functions with arbitrary small approximation error based on the orthogonal
functions theorem. The novelty of this paper in comparison with previous related works is that the
number of required regressor matrices in this paper has been reduced. This superiority becomes
more dominant when the manipulator degrees of freedom (DOFs) are increased. First, the desired
signals for motor currents are calculated, and then the desired voltages are obtained. In the proposed
approach, only a simple model of the actuator and manipulator dynamics is used in the controller
design and all the rest dynamics are treated as external disturbance. The external disturbances can
then be approximated by Fourier series expansion. The adaptation laws for Fourier series coeffi-
cients are derived from a Lyapunov-based stability analysis. Simulation results on a 2-DOF planar
robot manipulator including the actuator dynamics indicate the efficiency of proposed method.

KEYWORDS: Impedance control; Robot manipulator; Function approximation technique; Robust
adaptive control.

1. Introduction
We have witnessed widespread industrial applications of robotic systems in which the interaction
between the manipulator and environment should be managed automatically, such as assembly, pol-
ishing, grinding, mechanical part mating, and also medical surgery. One of the recent and high
technological examples in this field is the exoskeleton robot.1 Simultaneous control of both motion
and force is the main challenge in these applications.2, 3 Many control laws have been developed
to address this problem. However, it seems that impedance control4, 5 and hybrid position/force
control6, 7 are the most important strategies.8–11 In hybrid position/force control, one controller is
responsible for position tracking in the free space and another controller is designed with the aim of
force control along the directions in which position is constrained.12 However, in impedance control,
regulation of the dynamic performance of the system by careful selection of impedance parameters
is considered.
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Since impedance control requires the dynamical model of the manipulator, development of adap-
tive control algorithms is recommended to compensate for uncertainties. Many dynamical parameters
of the manipulator such as mass and inertia of the links and the positions of the mass centers can be
calculated using powerful softwares. Nevertheless, there may exist small errors, and consequently,
the calculated or measured quantities are just nominal values. As a result, if the structure of the sys-
tem dynamics is known, then adaptive control is a suitable option to compensate for the parametric
uncertainties such as the differences between the obtained nominal values and their unknown correct
values.13

Various adaptive impedance controllers have been developed in the last decades.14–16 In ref. [14],
adaptive free motion control has been applied to constrained robots. A direct adaptive impedance
control scheme without the knowledge of the structure or the parameters of the robot dynamics
has been presented in ref. [15]. To eliminate the need for acceleration signals, another adaptive
impedance controller has been also designed in ref. [16]. The considerable point is that most of
these controllers require the regressor matrix, since they are based on the linear parameterization of
the manipulator dynamic model. Moreover, they are unable to handle unstructured uncertainty and
external disturbance adequately, which is a missing link in almost all the addressed approach.17

Recently, adaptive control strategies have been developed which are based on function approxima-
tion techniques (FAT).18–23 The main idea is representing the system uncertainties using orthogonal
basis functions such as the Fourier series expansion, Bessel functions, Legendre polynomials, and
so on. Differential equation has also been utilized as universal approximator.24–26 In these strate-
gies, the regressor matrices are not required which consequently simplifies the controller design
procedure. Moreover, acceleration signals are not needed in this strategy.27 These signals are usually
contaminated by noise and will degrade the controller performance.

It should be noted that considering actuator dynamics can improve the controller performance
in applications that high speeds are required or the load torque has a wide range of variations.28

However, many previous approaches on impedance control of robot manipulators have excluded
actuator dynamics from their controller design.29–31 In other words, their control laws compute the
applied torques to the robot joints. In practical implementations, these controllers should be modi-
fied by converting the torque signals to motor voltage signals. Thus, some voltage-based impedance
controllers for robot manipulators have been presented in the literature.32, 33 However, their stability
analysis is not complete due to excluding the current dynamics from the Lyapunov function. The
voltage-based controller presented in ref. [33] is a model-based controller and requires exact values
of the motor parameters and motor current derivatives. To solve these problems, this paper presents
a robust voltage-based impedance controller considering motor current dynamics.

In this paper, an FAT-based robust impedance controller is designed for electrically driven robot
manipulators. The MIMO structure of electrically driven robot is firstly considered as a simple uncer-
tain nonlinear system maintaining the coverage of interaction among joints and treating the coupling
effect as uncertainty. The lumped uncertainty, including parameter uncertainties, and modeling error
can then be approximated by Fourier series expansion. According to ref. [34], robot dynamics are
described by some sinusoidal and constant terms. Thus, Fourier series is a more suitable candi-
date for approximation of these functions. The adaptation laws for the Fourier series coefficients
will be obtained based on the stability analysis. The superiority of proposed method over standard
FAT-based adaptive impedance controllers is simplicity and reducing the number of regressor matri-
ces. Consider an n-degree of freedom (n-DOF) robot manipulator. Suppose that for approximation
of the inertia matrix, centrifugal/Coriolis matrix, gravitational vector, and the external voltage vec-
tors, βD , βC , βg, and β f terms of Fourier series as the basis functions have been utilized. As a
result, the weighting matrices (the Fourier series coefficients) in the standard FAT-based adaptive
impedance controllers are of the dimensions n2βD × n, n2βC × n, nβg × n, and, nβ f × n, respec-
tively.28 If n is increased, it is obvious that these dimensions will become greater. However, the
proposed approach in this paper requires two weighting matrices with dimensions of nβ� × n and
nβ f × n, where β� and β f denote the number of basis functions utilized for approximation of lumped
uncertainties.

This paper is organized as follows: Following the introduction, in Section 2, a task space dynamic
model of electrically driven robot interacting with environment is presented. Section 3 presents the
standard FAT-based adaptive impedance control scheme. The proposed control strategy and stability
analysis are given in Section 4. Section 5 illustrates the simulation results using a 2-DOF planar
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robot manipulator including the actuator dynamics and finally, conclusions are drawn in Section 6.
In what follows, we use the notation λmin(•) and λmax(•) to indicate the minimum and maximum
eigenvalues, respectively, of a positive-definite bounded matrix. The norm of vector y ∈ �n is defined

as ‖y‖ = √
yT y and that of matrix ‖A(y)‖ = √

λmax(A(y)T A(y)).

2. Dynamic Equation of Electrically Driven Robot
The mathematical dynamics model of a rigid-link electrically driven robot having n-DOf in contact
with the environment is described by [35, 36]

D(q)q̈ + C(q, q̇)q̇ + g(q) = HI − J T (q)Fext (1)

Lİ + RI + Kbq̇ = u(t) (2)

where q, q̇, and q̈ denote the n × 1 vectors of generalized link position, velocity, and acceleration,
respectively; D(q) ∈ �n×n is a symmetric positive-definite matrix, C(q, q̇)q̇ ∈ �n is the vector of
Coriolis/centrifugal forces, g(q) ∈ �n is the vector of gravitational forces, H ∈ �n×n is an invertible
constant diagonal matrix characterizing the electro-mechanical conversion between the current vector
and the torque vector, I ∈ �n is the vector of motor armature currents, J (q) ∈ �n×n is Jacobian
matrix, and Fext ∈ �n is external force exerted by the robot at the end-effector. The constant positive-
definite diagonal matrices L ∈ �n×n , R ∈ �n×n , and Kb ∈ �n×n represent the electrical inductance,
the electrical resistance, and the back EMF effects, respectively, of the actuators. Also, u(t) ∈ �n

denotes the control input voltage applied for the joint actuators.
When controlling the dynamic behavior of the end-effector/environment interactions comes to be

a main concern, it is often desirable to describe the manipulator dynamics in its operational space.
Let h ∈ �n be a task space vector defined by [37]

h = φ(q) (3)

where φ(•) ∈ �n → �n is generally a nonlinear transformation describing the relation between the
joint space and the task space. We can relate the velocities and accelerations in the task space to those
in the joint space by the following relations:

ḣ = J (q)q̇ (4)

ḧ = J (q)q̈ + J̇ (q)q̇ (5)

Now, substituting Eqs. (4) and (5) into Eq. (1), and multiplying both sides by J (q)−T yields

M(h)ḧ + H(h, ḣ)ḣ + G(h) = J (q)−T HI − Fext (6)

where

M(h) = J (q)−T D(q)J (q)−1

H(h, ḣ) = J (q)−T
(
C(q, q̇) − D(q)J (q)−1 J̇ (q)

)
J (q)−1

G(h) = J (q)−T g(q)

3. Standard Impedance Control
Impedance control utilizes a single control law, which attempts to regulate both position and force
by specifying a dynamic relationship between them. This relationship is chosen to be a second-
order linear impedance because such systems are well understood and simple to control. A standard
impedance control law is shown in Eq. (7), where Mt, Bt, and kt are constant positive-definite matri-
ces, representing the desired inertia, damping, and stiffness system matrices in task space. Vectors h
and hd represent the actual and the desired end-effector positions, and Fext represents the generalized
force the environment exerts upon the end-effector

Mt(ḧ − ḧd) + Bt(ḣ − ḣd) + kt(h − hd) = −Fext (7)
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The target impedance parameters are specified by the user and have the dimensions of the task space.
They cause the manipulator to exhibit the dynamics of a multi-directional mass–spring–damper sys-
tem. The target impedance matrices are typically chosen to be diagonal, resulting in uncoupled
response along each principle direction of h. With this in mind, Huang and Chen [28] proposed the
standard adaptive impedance controller using FAT and introduced the following target impedance:

Mt(ḧt − ḧd) + Bt(ḣt − ḣd) + kt(ht − hd) = −Fext (8)

where ht ∈ �n is the state vector of the reference model (8). The FAT-based controller is designed
such that h converges to ht asymptotically, which yields convergence of the new target impedance
(8) to (7) as desired. It does not require any knowledge of the system dynamics’ parameters, except
for the Jacobian matrix and torque constant. However, as mentioned in Section 1, weighting matrices
(Fourier series coefficients) with large dimensions impose a considerable computational load in its
real-time implementation. In the next section, we present a simpler FAT-based adaptive impedance
controller for rigid-link electrically driven robot interacting with the environment.

4. Control Design
Based on the aforementioned strategy, an FAT-based adaptive impedance controller is developed that
eliminates elaboration and computational burden in standard FAT-based adaptive impedance control
strategy28 proposed for robotic systems. The controller will be designed in the following order. At
first, fictitious control law Id is designed for I, which is not actual control input of the manipulator.
Next, the actual control signal u(t) is constructed in (2) to ensure convergence of I to Id which results
in convergence of h to desired trajectory ht.

4.1. The output-tracking control loop
As a preliminary to the control design, let us define the actuator current tracking error as
eI = (I − Id) ∈ �n . Therefore, the robot dynamics (6) can be rewritten as

ḧ = J (q)−T HeI + J (q)−T HId + �(t) (9)

where �(t) ∈ �n represents the lumped uncertainty denoted by

�(t) = (
In − M(h)

)
ḧ − H(h, ḣ)ḣ − G(h) − Fext (10)

and In denotes the identity matrix. Before we proceed with the details of controller derivation,
consider the two following assumptions:

A1. The manipulator is operating away from any singularity.
A2. The nonlinear term �(t) is assumed to be an unknown function, and its variation bound is also

assumed to be unavailable.

As a result of A2, traditional adaptive control scheme is not applicable. Under these circumstances,
a Proportional-Derivative (PD) type control law supported by an auxiliary control input υ(t) ∈ �n is
proposed as

Id(t) = H−1 J (q)T
(−K ph − Kdḣ + K pυ(t)

)
(11)

where K p ∈ �n×n and Kd ∈ �n×n are positive proportional and derivative gain matrices, respectively.
Substituting (11) into (9) leads to

ẋ(t) = Ax(t) + B
(
J (q)−T HeI + K pυ(t) + �(t)

)
(12)

where

A =
[

0n In

−K p −Kd

]
∈ �2n×2n, B =

[
0n

In

]
∈ �2n×n, x(t) = [

hT ḣT
]T ∈ �2n

Now, we develop an algorithm to adjust the control input υ(t). To that end, we introduce a reference
model as

ẋd(t) = Axd(t) + BK pυd(t) (13)
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where υd(t) represents the output of target impedance (8). It must be noted that the proposed
approach is in fact a position-based impedance control scheme. Subtracting (13) from (12), we obtain

˙̃x(t) = Ax̃(t) + B
(
J (q)−T HeI + K pℵ(t) + �(t)

)
(14)

where

x̃(t) = x(t) − xd(t) , ℵ(t) = υ(t) − υd(t) (15)

Now, the control problem can be stated as designing a corrective control input ℵ(t) such that x̃(t) con-
verges to zero or at least it is bounded by a constant. With this in mind, the universal approximation
theorem will be used to represent �(t) as linear combinations of basis functions as

�(t) = W T
� Z� + ε� (16)

where W� ∈ �nβ�×n is weighting vector, β� is the number of basis function used, Z� ∈ �nβ� is the
vector of basis functions, and ε� ∈ �n is the approximation error of �(t). This approximation opens
the opportunity to design the outer control loop ℵ(t) based on compensation of the perturbation
present in the plant. Now, making use of the same set of basis functions, we propose

ℵ(t) = −K −1
p Ŵ T

� Z� (17)

where Ŵ� ∈ �nβ�×n is the estimation of W�. When ℵ(t) is generated by (17), it should be translated
into the controller input υ(t) as

υ(t) = ℵ(t) + υd(t) (18)

Now, substituting (16) and (17) into (14), we obtain the output-tracking loop dynamics as

˙̃x(t) = Ax̃(t) + B
(
J (q)−T HeI + W̃ T

� Z� + ε�

)
(19)

where W̃� = W� − Ŵ� is the Fourier series weights approximation error.

4.2. The current tracking control loop
Here, the control objective is to design a control input u(t) to realize the perfect motor current vector
in (11) with the aim of reducing the error signal eI as small as possible. It returns to this fact that,
a constant-bounded disturbance will not destroy the stability result under robust control Id which
is a result of uniform ultimate boundedness of the tracking error using the Lyapunov-based theory
of guaranteed stability of uncertain systems.38 With this in mind, we propose the following control
input:

u(t) = f̂ − KceI (20)

where f̂ is the estimate of f = Lİd + RI + Kbq̇ and Kc ∈ �n×n is a constant diagonal matrix of
desired error dynamics. The current tracking loop dynamics with the controller in (2) can then be
represented in the form of

LėI + KceI = f̂ − f (21)

Following the same procedure as in previous section, let us apply the function approximation
representation:

f = W T
f Z f + εf (22)

where W f ∈ �nβ f ×n is a weighting matrix, Z f ∈ �nβ f is a vector of basis functions, and εf ∈ �n is
the approximation error vector. Utilizing the same set of basis function, f can be estimated as

f̂ = Ŵ T
f Z f (23)
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Define the parameter error vector as W̃f = W f − Ŵ f . Now, Eqs. (21)–(23) can be represented by

LėI + KceI = −W̃ T
f Z f + εf (24)

which is a stable linear time-invariant system driven by the parameter error as well as the
approximation error.

4.3. Stability analysis
To carry out the stability analysis of the closed-loop system formed by the robot dynamic models (1)
and (2), together with the controllers (11) and (20), the following Lyapunov-like function candidate
is proposed:

V
(
x̃, eI , W̃�, W̃f

) = 1

2

[
x̃ T P x̃ + eT

I LeI + Tr
(
W̃ T

� ��W̃�

) + Tr
(
W̃ T

f �f W̃f
)]

(25)

Differentiating (25) with respect to time and using (19) and (24) yield in

V̇
(
x̃, eI , W̃�, W̃f

) = 1

2
x̃ T (AT P + PA)x̃ − eT

I KceI + x̃ T PBJ (q)−T HeI

+ x̃ T PBε� + eT
I εf + x̃ T PBW̃ T

� Z� − eT
I W̃ T

f Z f

− Tr
(
W̃ T

� ��
˙̂W� + W̃ T

f � f
˙̂Wf

)
(26)

where �� ∈ �nβ�×nβ� and �f ∈ �nβ f ×nβ f are all positive-definite matrices. Since A is Hurwitz, one
can arbitrarily choose a positive-definite matrix Q and let P ∈ �2n×2n be the unique symmetric
positive-definite matrix that satisfies the Lyapunov equation:

AT P + PA = −Q (27)

Thus, substituting (27) into (26) we have

V̇
(
x̃, eI , W̃�, W̃f

) = −1

2
x̃ T Qx̃ − eT

I KceI + x̃ T PBJ (q)−T HeI

+ x̃ T PBε� + eT
I εf − Tr

(
W̃ T

�

(
��

˙̂W� − Z� x̃ T PB
))

− Tr
(

W̃ T
�

(
� f

˙̂Wf + Z f eT
I

))
(28)

By selecting the updated laws as

˙̂W� = �−1
�

(
Z� x̃ T PB − σ�Ŵ�

)
˙̂Wf = −�−1

f

(
Z f eT

I + σ f Ŵ f
) (29)

where σ(•) are positive numbers, (28) is simplified to

V̇
(
x̃, eI , W̃�, W̃f

) = − [
x̃ T eT

I

]



[
x̃

eI

]
+ [

x̃ T eT
I

]
P ′

[
ε�

εf

]

+ σ�Tr
(
W̃ T

� Ŵ�

) + σ f Tr
(
W̃ T

f Ŵ f
) (30)

where


 =

⎡
⎢⎢⎣

1

2
Q −1

2
PBJ (q)−T H

−1

2
PBJ (q)−T H Kc

⎤
⎥⎥⎦

is a positive-definite matrix by proposer selection of Kc and Q, and P ′ =
[

PB 02n×n

0n In

]
∈ �3n×2n.
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Result 1. Suppose a sufficient number of basis functions are used and the approximation error can
be ignored, then it is not necessary to include the σ -modification terms in (29). Hence, (30) can be
reduced to

V̇
(
x̃, eI , W̃�, W̃f

) ≤ − [
x̃ T eT

I

]



[
x̃
eI

]
≤ 0 (31)

and asymptotic convergence of x̃ and eI can be concluded using the Barbalat’s Lemma.

Result 2. Owing to the existence of ε� and εI in (30), it is very easy to prove the following
inequalities hold:

− [
x̃ T eT

I

]



[
x̃

eI

]
+ [

x̃ T eT
I

]
P ′

[
ε�

εf

]

≤ −1

2
λmin(
)

∥∥∥∥
[

x̃

eI

]∥∥∥∥
2

+ λ2
max(P ′)

2λmin(
)

∥∥∥∥
[

ε�

εf

]∥∥∥∥
2

,

Tr
(
W̃ T

(•)Ŵ(•)

) ≤ 1

2
Tr

(
W T

(•)W(•)

) − 1

2
Tr

(
W̃ T

(•)W̃(•)

)
(32)

Together with this relationship

V
(
x̃, eI , W̃�, W̃f

) ≤ 1

2

[
λmax(�)

∥∥∥∥
[

x̃
eI

]∥∥∥∥
2

+ λmax(��)Tr
(
W̃ T

� W̃�

)

+ λmax
(
�f

)
Tr

(
W̃ T

f W̃f
)] (33)

where � =
[

P 0
0 L

]
, we may write (30) in the form of

V̇
(
x̃, eI , W̃�, W̃f

) ≤ −μV + 1

2

(
μλmax(�) − λmin(
)

) ∥∥∥∥
[

x̃
eI

]∥∥∥∥
2

+1

2

(
μλmax(��) − σ�

)
Tr

(
W̃ T

� W̃�

)
+1

2

(
μλmax(� f ) − σ f

)
Tr

(
W̃ T

f W̃f
)

+1

2

[
λ2

max(P ′)
λmin(
)

∥∥∥∥
[

ε�

εf

]∥∥∥∥
2

+ σ�Tr
(
W T

� W�

) + σ f Tr
(
W T

f Wf
)]

(34)

By selecting μ ≤ min

{
λmin(
)

λmax(�)
,

σ�

λmax(��)
,

σ f

λmax(�f )

}
, then (34) can be further derived as

V̇
(
x̃, eI , W̃�, W̃f

) ≤ −μV + 1

2

[
λ2

max(P ′)
λmin(
)

∥∥∥∥
[

ε�

εf

]∥∥∥∥
2

+ σ�Tr
(
W T

� W�

)

+ σ f Tr
(
W T

f W f
)] (35)

This implies that V̇ < 0 whenever

V >
λ2

max(P ′)
2μλmin(
)

sup
t0<τ<t

∥∥∥∥
[

ε�(τ)

εf (τ )

]∥∥∥∥
2

+ 1

2μ

[
σ�Tr

(
W T

� W�

) + σ f Tr
(
W T

f W f
)]

(36)

Hence, we have proved that
(
x̃, eI , W̃�, W̃f

)
are uniformly ultimately bounded. �
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Because x̃ is bounded, boundedness of x(t) = [
hT ḣT

]T
can be obtained whereas xd is

bounded. Since the Jacobian matrix is bounded, boundedness of q̇ = J (q)−1ḣ can also be obtained

whereas ḣ is bounded. In addition, q =
t∫

0
J−1(q)ḣdt + q(0) is also bounded, for finite operational

times. Therefore, the robotic system will be stabilized with uniformly ultimately bounded (UUB)
performance under the proposed design.

4.4. Performance evaluation
The stability analysis presented in the previous section only demonstrates boundedness of
(x̃, eI , W̃�, W̃f ), but in practical applications the transient performance is also of great importance.
For further development, we may solve the differential inequality in (35) to calculate the upper bound
for V (t):

V (t) ≤ e−μ(t−t0)V (t0) + λ2
max(P ′)

2μλmin(
)
sup

t0<τ<t

∥∥∥∥
[

ε�(τ)

εf (τ )

]∥∥∥∥
2

+ 1

2μ

[
σ�Tr

(
W T

� W�

) + σ f Tr
(
W T

f W f
)] (37)

Consider the lower bound of V (t) in (25) as

V
(
x̃, eI , W̃�, W̃f

) ≥ 1

2
λmin(�)

∥∥∥∥
[

x̃
eI

]∥∥∥∥
2

+ 1

2

[
λmin(��)Tr

(
W̃ T

� W̃�

)

+ λmin(�f )Tr
(
W̃ T

f W̃f
)] (38)

This implies that

∥∥∥∥
[

x̃
eI

]∥∥∥∥ ≤
√

2V
(
x̃, eI , W̃�, W̃f

)
λmin(�)

. Together with (37), we may compute the

bound as

∥∥∥∥
[

x̃
eI

]∥∥∥∥ ≤
√

2V (t0)

λmin(�)
e

−μ(t−t0)
2 +

√
λ2

max(P ′)
μλmin(�)λmin(
)

sup
t0<τ<t

∥∥∥∥
[

ε�(τ)

εf (τ )

]∥∥∥∥
+ 1√

μλmin(�)

[
σ�Tr

(
W T

� W�

) + σ f Tr
(
W T

f W f
)] 1

2

(39)

This proves that the time history of

∥∥∥∥
[

x̃
eI

]∥∥∥∥ is bounded by an exponential function plus some

constants. This also implies that by adjusting controller parameters, we may improve output error
convergence rate. As a consequence,

lim
t→∞

∥∥∥∥
[

x̃
eI

]∥∥∥∥ ≤
√

λ2
max(P ′)

μλmin(�)λmin(
)
sup

t0<τ<t

∥∥∥∥
[

ε�(τ)

εf (τ )

]∥∥∥∥
+ 1√

μλmin(�)

[
σ�Tr

(
W T

� W�

) + σ f Tr
(
W T

f W f
)] 1

2

(40)

Considering the Frobenius norm definition,
(∥∥∥W̃(•)

∥∥∥2

F
= Tr

(
W̃ T

(•)W̃(•)

))
, one can also obtain the

following bounds for the weighting vectors W̃� and W̃f , respectively:
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lim
t→∞

∥∥∥W̃�

∥∥∥2

F
≤

√
λ2

max(P ′)
μλmin(��)λmin(
)

sup
t0<τ<t

∥∥∥∥
[

ε�(τ)

εf (τ )

]∥∥∥∥
+ 1√

μλmin(��)

[
σ�Tr

(
W T

� W�

) + σ f Tr
(
W T

f W f
)] 1

2

(41)

lim
t→∞

∥∥∥W̃f

∥∥∥2

F
≤

√
λ2

max(P ′)
μλmin(�f )λmin(
)

sup
t0<τ<t

∥∥∥∥
[

ε�(τ)

εf (τ )

]∥∥∥∥
+ 1√

μλmin(�f )

[
σ�Tr

(
W T

� W�

) + σ f Tr
(
W T

f W f
)] 1

2

(42)

The transient performance analysis is then completed. �

5. Simulation Results
In this section, we present simulation results for the proposed control scheme. The simulation task is
carried out based on a 2-DOF planar robot including the actuator dynamics. The dynamic model of
the robot system can be described in the form of Eq. (1) as39

D(q) =
[

d11 d12

d21 d22

]

d11 = m1l2
c1 + I1 + m2

(
l2
1 + l2

c2 + 2l1lc2cos(q2)
) + I2

d21 = d12 = m2l2
c2 + m2l1lc2cos(q2) + I2

d22 = m2l2
c2 + I2

C(q, q̇)q̇ =
[−2m2l1lc2sin(q2)

(
q̇1q̇2 + 0.5q̇2

2

)
m2l1lc2sin(q2)q̇2

1

]

g(q) =
[

m1lc1gcos(q1) + m2g
(
lc2cos(q1 + q2) + l1gcos(q1)

)
m2lc2gcos(q1 + q2)

]

J =
[−l1sin(q1) − l2sin(q1 + q2) −l2sin(q1 + q2)

l1 cos(q1) + l2 cos(q1 + q2) l2 cos(q1 + q2)

]

(43)

where qi (i = 1, 2) is the joint angle, mi is the mass of each link, li is the length of each link, and
g is the gravity acceleration. The manipulator parameters are defined as l1 = l2 = 0.75 m, lc1 = lc2 =
0.375 m, m1 = m2 = 0.5 kg, and I1 = I2 = 0.0234 (kg.m2). The actuator dynamic model parameters
are selected as H = diag(10, 10) (N.m/A), R = diag(1, 1) 
, L = diag(0.025, 0.025) H, and Kb = diag
(1, 1) (V/rad/s).

The endpoint starts from x(0)=[0.8 m 0.75 m 0 0]T to track a 0.2-m radius circle centered at
(0.8 m,1 m) during 2 s. The initial condition of the target impedance states is the same as the initial
value of the desired task space trajectory. We assume that the end-effector position can be obtained
from a position sensor, such as vision systems, electromagnetic measurement systems, position sen-
sitive detectors, or laser trackers. The values of the parameters in M(h), H(h, ḣ), G(h) are assumed
to be unknown.

A vertical wall with a stiffness of ke = 5000 (N/m)is located at hxe = 0.95 m along the y-axis. The
environment dynamic was modeled as a regular spring, that is,

fext = ke(hx − hxe) for hx ≥ hxe (44)
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Fig. 1. Tracking performance of end-point in the task space (proposed approach).

Fig. 2. External forces (proposed approach).

where fext is the force acting on the surface, ke represents the environment dominant stiffness, hx is
the coordinate of the end-point in the X direction, and hxe denotes the location of the undeformed
environment. Hence, the external force vector becomes Fext =

[
fext 0

]T
. Parameter matrices in the

target impedance are selected to be Mt = diag(0.5, 0.5), Bt = diag(100, 100), and kt = diag(1500,
1500).28 The controller parameters were selected asK p = diag(1200, 1200), Kd = diag(70, 70), and
Kc = diag(100, 100).

Let us select the 11-first terms of Fourier series expansion as the basis function for approximation
of f and �(t). Therefore, Ŵ f ∈ �22×2 and Ŵ� ∈ �22×2. The initial weighting vectors for the entries
are also assigned to zero. The adaptive gain matrices are selected as �f = �� = 10−4 × I22 where
I(•) is the identity matrix. In this step, we assume that the approximation error can be neglected, and
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Fig. 3. Tracking in the current tracking loop (proposed approach).

Fig. 4. Motor voltages (proposed approach).

hence the σ -modification parameters are chosen as σ f = σ� = 0. In order to have quantitative results,
the mean-squared-error (MSE) criterion has been selected.

Under these settings, Fig. 1 represents the desired and actual trajectories of the proposed adaptive
impedance controller in the task space. The MSE for this figure is defined as MSE = 1

2

∫ 2
0 (e2

x + e2
y)dt

that takes the value of 0.001534.
Since the surface is away from the desired initial endpoint position, different phases of opera-

tion can be observed. The robot was initially moving in free space toward the wall. Following the
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Fig. 5. Approximation of �(t) (proposed approach).

Fig. 6. Approximation of f (proposed approach).

commanded trajectory, the manipulator comes into contact with the wall at about t = 0.271 s (Fig. 2),
enforcing the motion of the manipulator to stop in the normal direction to the wall. Because of
the constraint from the wall and the tendency of the manipulator to follow the commanded trajec-
tory, a collision force fext, shown in Fig. 2, is generated between the manipulator and the wall. The
robot end-effector slides on the surface of the wall while exerting a certain normal force during this
period.
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Fig. 7. Tracking performance of end-point in the task space (standard FAT-based impedance controller by Huang
and Chen28).

Fig. 8. External forces (standard FAT-based impedance controller by Huang and Chen28).

The performance in the current tracking loop is very good as shown in Fig. 3. The MSE for
these signals is defined as MSE = 1

2

∫ 2
0 (e2

I 1 + e2
I 2)dt which shows the value of 0.001317. The control

voltages to the actuators are reasonable that can be verified in Fig. 4. Finally, Figs. 5 and 6 represent
the function approximation performance.

For completeness of the study and comparison purpose, the standard FAT-based adaptive
impedance controller has been selected.28 Details of the controller parameters are the same as those
presented in ref. [28]. For this controller, Figs. 7–14 represent tracking performance, external force
trajectories, tracking in the current loop, control efforts, and performance of the function approxima-
tion. The MSE for the tracking performance of this controller is about 0.003209 in Fig. 7. Also, the
MSE criterion for the tracking in current loop of this controller in Fig. 9 is 0.0005312.
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Fig. 9. Tracking in the current tracking loop (standard FAT-based impedance controller by Huang and Chen28).

Fig. 10. Motor voltages (standard FAT-based impedance controller by Huang and Chen28).

As can be seen, both the proposed and standard FAT-based adaptive impedance controllers give
the same results because of universal approximation property of Fourier series expansion. However,
the new control scheme is much simpler and less computational than the standard form. In the
standard adaptive impedance controllers, the weighting matrices dimensions for inertia matrix,
centrifugal/Coriolis matrix, gravity vector, and the actuator disturbance voltage vectors (with the
same number of sinusoidal functions (βD = βC = βG = β f = 11)) are ŴD ∈ �44×2, ŴC ∈ �44×2,
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Fig. 11. Approximation of M(h) (standard FAT-based impedance controller by Huang and Chen28).

Fig. 12. Approximation of C(h, ḣ) (standard FAT-based impedance controller by Huang and Chen28).
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Fig. 13. Approximation of G(h) (standard FAT-based impedance controller by Huang and Chen28).

Fig. 14. Approximation of f (standard FAT-based impedance controller by Huang and Chen28).

Ŵg ∈ �22×2, and Ŵ f ∈ �22×2, respectively, while the new control scheme requires two weighting
matrices with dimension of Ŵ� ∈ �22×2 and Ŵ f ∈ �22×2, under the same number of basis functions
β� = β f = 11.

For better illustration of the proposed algorithm superiority, variation of the payload, as the most
important parameter that affects the controller performance, is considered. Toward this end, we
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Fig. 15. Tracking performance under time varying payload.

Fig. 16. Tracking performance of end-point in the task space (standard FAT-based impedance controller by
Huang and Chen28).

assume that link 2 should pick up a heavy payload at t = 0.8 s and release it at t = 1.5 s during the
tracking path. Since the load mass can be viewed as a part of the second link, the payload variation
condition is that the mass of �m2 kg is added to the mass of link 2 at t = 0.8 s, that is, m2 + �m2,
and removed at t = 1.5 s. In this simulation, we take �m2 = 4 kg. The controller parameters are
the same as before. Under these circumstances, Fig. 15 shows the tracking performances of the pro-
posed approach and standard FAT-based adaptive impedance controller subject to the aforementioned
variation.

The MSE for standard FAT-based adaptive impedance controller and the proposed approach are
0.01531 and 0.001855, respectively. From this simulation, it is concluded that the proposed control
strategy can achieve a favorable performance and represents high robustness, while the standard
FAT-based adaptive impedance algorithm does not give suitable tracking performance.

In order to study the performance of the proposed controller in tracking other command signals,
a square trajectory in the X–Y plane has been considered. The controller parameters are the same
as the circular trajectory. Assume that the aforementioned vertical wall is located at hxe = 0.48 m
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Fig. 17. External forces (standard FAT-based impedance controller by Huang and Chen28).

Fig. 18. Tracking in the current tracking loop (standard FAT-based impedance controller by Huang and Chen28).

along the Y-axis. The performance of standard FAT-based impedance controller in the X–Y plane is
illustrated in Fig. 16. The MSE for this figure is 0.005455. The external forces for this controller are
presented in Fig. 17. The tracking performance in the current control loop for this controller is given
in Fig. 18. The MSE for this figure is 0.0005364. The control signals for this controller in tracking
the square trajectory are plotted in Fig. 19. The tracking performance of the proposed controller in
the X–Y plane for tracking this trajectory is presented in Fig. 20. The MSE for this figure is 0.001696.
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Fig. 19. Motor voltages (standard FAT-based impedance controller by Huang and Chen28).

Fig. 20. Tracking performance of end-point in the task space (proposed approach).

The external forces for this controller are presented in Fig. 21. According to this figure, these signals
are smooth and bounded. The tracking performance in the current control loop for this controller
is given in Fig. 22. The MSE for these signals is 0.0005917. The control signals for the proposed
controller in tracking the square trajectory are plotted in Fig. 23. As shown in this figure, motor
voltages are bounded. Moreover, variation of payload for this trajectory has been simulated. It has
been assumed that the aforementioned �m2 is added to the mass of link 2 at t = 0.8 s, that is, m2

+ �m2, and removed at t = 2.5 s. The tracking performances of both controllers in the X–Y plane
are presented in Fig. 24. According to this figure, the proposed method is more robust and shows a
more precise tracking. The MSE criterion for the standard FAT-based and the proposed approaches
are 0.02476 and 0.003487, respectively.
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Fig. 21. External forces (proposed approach).

Fig. 22. Tracking in the current tracking loop (proposed approach).

6. Conclusion
An FAT-based robust impedance controller for electrically driven robots has been proposed in this
paper. The control law considers the actuator dynamics and has been derived under the assumption
that no information of the system and environment is in hand. The system stability has been verified
by the Lyapunov’s second method. The superiority of proposed method in comparison with standard
FAT-based adaptive impedance controllers is reducing the number of regressor matrices. Simulation
results on a 2-DOF planar robot manipulator actuated by DC motors verify the effectiveness of the
proposed controller.
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Fig. 23. Motor voltages (proposed approach).

Fig. 24. Tracking performance under time varying payload on a square trajectory.
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