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We present measurements of the azimuthal rotation velocity θ̇ (t) and thermal
amplitude δ(t) of the large-scale circulation in turbulent Rayleigh–Bénard convection
with modulated rotation. Both θ̇ (t) and δ(t) exhibit clear oscillations at the modulation
frequency ω. Fluid acceleration driven by oscillating Coriolis force causes an
increasing phase lag in θ̇ (t) when ω increases. The applied modulation produces
oscillatory boundary layers and the resulting time-varying viscous drag modifies
δ(t) periodically. Oscillation of θ̇ (t) with maximum amplitude occurs at a finite
modulation frequency ω∗. Such a resonance-like phenomenon is interpreted as a
result of optimal coupling of δ(t) to the modulated rotation velocity. We show that an
extended large-scale circulation model with a relaxation time for δ(t) in response to
the modulated rotation provides predictions in close agreement with the experimental
results.
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1. Introduction

Turbulent convection occurs in a variety of astrophysical and geophysical flows,
including convection in the ocean (Marshall & Schott 1999), in the outer layer of
the Sun (Miesch 2000), and in the fluid cores of the Earth and other terrestrial
planets (Busse 2000; Olson 2013). Many planetary bodies in the solar system
undergo time-dependent rotations. For instance, the spinning rate of Mercury exhibits
oscillations dominated by an 88-day periodicity. It is expected that the resulting
librating force strongly influences the convective dynamo process in its fluid core that
sustains Mercury’s global magnetic field (Koning & Dumberry 2013). Furthermore,
variation of the Earth’s rotation speed occurs due to the change of polar ice sheets
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between ice and non-ice ages (Doake 1977), which may produce perturbations to the
outer-core convection and lead to the observed temporal variations of the geomagnetic
field (Miyagoshi & Hamano 2013).

Turbulent Rayleigh–Bénard convection (RBC) in a fluid heated from below has been
studied extensively as a paradigmatic model for turbulent convection in recent years
(Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chillá & Schumacher 2012).
The main component of the fluid flow in turbulent RBC is a large-scale circulation
(LSC) in a vertically oriented plane that consists of buoyant plumes detached from the
thermal boundary layers (see e.g. Krishnamurti & Howard 1981; Niemela, Babuin &
Sreenivasan 2001; Sreenivasan, Bershadskii & Niemela 2002; Funfschilling & Ahlers
2004; Brown, Nikolaenko & Ahlers 2005; Xi et al. 2009). An important feature of
the LSC is the dynamical change of the azimuthal orientation of its circulation plane,
which includes erratic reorientations, such as cessations and reversals (Sreenivasan
et al. 2002; Araujo, Grossmann & Lohse 2005; Brown et al. 2005), originated from
stochastic turbulent fluctuations in the background flow, as well as azimuthal motions
governed by deterministic fluid momentum transport equations (Hart, Kittelman &
Ohlsen 2002; Brown & Ahlers 2006, 2007, 2008; Kunnen, Clercx & Geurts 2008).

To our knowledge, to date, the azimuthal motion of the LSC has been investigated
experimentally only in the context of time-independent forcing. Examples include the
Coriolis force in constant-rotation convection (Hart et al. 2002; Brown & Ahlers 2006;
Kunnen et al. 2008; Zhong & Ahlers 2010), and the fluid pressure gradients due to
the azimuthal asymmetry of the flow field created in samples with non-circular cross-
sections (Song et al. 2014). Under these conditions the fluid acceleration is quickly
damped in the presence of the viscous dissipation from the boundary layers (BLs)
and does not significantly impact the LSC flow. How the LSC dynamics is influenced
by azimuthal fluid acceleration therefore still remains an open question.

Several fluid models have been developed to describe the dynamics of the LSC,
including stochastic models that interpret flow reversal as a random diffusion process
of the LSC strength in a potential well (Sreenivasan et al. 2002), and deterministic
models based on fluid momentum equations that predict oscillations of the LSC
direction (Resagk et al. 2006) and cessations (Araujo et al. 2005). In order to
describe the rich azimuthal dynamics of the LSC, a model consisting of two
stochastic differential equations, respectively, the LSC azimuthal velocity θ̇ and
thermal amplitude δ, was developed (Brown & Ahlers 2007, 2008). The model has
provided predictions for aspects of the LSC dynamics such as diffusive meandering
and erratic reorientation observed in experiments (Brown et al. 2005; Song et al.
2014). Recently, this model was extended to include rotation effects and calculate
the cessation frequency and the probability distribution of δ in rotating RBC (Assaf,
Angheluta & Goldenfeld 2012). These theoretical results were in close agreement
with the experimental observations (Zhong & Ahlers 2010).

Earlier experiments have been devoted to study the influence of modulated rotation
on the convection instability in RBC. Niemela, Smith & Donnelly (1991) reported
that suppression of the convective instability took place only in a certain frequency
range in which the modulation period is close to the momentum diffusion time
across the viscous BL. Outside of this range, modulated rotation was found to result
in an apparent destabilization effect, lowering the threshold for onset of convection.
Thompson, Bajaj & Ahlers (2002) studied the effect of modulated rotation rates on
the onset of the Kuppers–Lortz (KL) instability. It was found that the modulation of
the rotation could prevent the KL instability from occurring, replacing the chaotic
patterns by concentric ring-shaped patterns that are generated at the cylinder boundary.
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Furthermore, an experimental investigation of the heat transport in turbulent RBC in
the presence of modulated rotation was performed by Niemela, Babuin & Sreenivasan
(2010). A sharp transition to a state of enhanced heat transport was observed at
significantly large modulation amplitudes. Recent numerical simulations (Geurts &
Kunnen 2014) elucidated how the enhanced heat transport in turbulent RBC is due to
reorganizations of the thermal flow structures under rapidly modulated rotations. The
influence of modulated rotation on the flow fields has also been investigated both
experimentally and theoretically in the context of Taylor–Couette systems (see e.g.
Donnelly 1964; Hall 1975; Avila et al. 2008).

In this paper we present investigations of the LSC dynamics in turbulent RBC when
the fluid is subjected to librating rotations. We focus on the dynamical response of
the LSC azimuthal velocity θ̇ when fluid acceleration is created by oscillating Coriolis
force, and the time-dependent LSC thermal amplitude δ driven by oscillatory viscous
BLs. We proceed as follows. In § 2 we describe the experimental apparatus and
methods. Section 3.1 presents results pertaining to oscillations of the LSC azimuthal
orientation θ(t) and velocity θ̇ (t). Experimental results are compared with theoretical
predictions from a one-dimensional model. In § 3.2 we discuss oscillations of the LSC
thermal amplitude δ. We extended the LSC model (Brown & Ahlers 2007, 2008),
considering a rotation-dependent thickness of the viscous BLs and a finite relaxation
time τ for δ(t) in response to the oscillating BL thickness. The model predictions
are in good agreement with the experimental results. In § 3.3 we report the resonant
response in θ̇ (t) observed in an intermediate modulation frequency regime, which can
also be interpreted qualitatively with our model. A brief summary and discussion of
the results is provided in § 4.

2. Experimental apparatus and methods

The experiment was performed with a constant Rayleigh number Ra≡αg1TL3/κν=
8.24× 109 (g is the gravitational acceleration, α, ν and κ are the thermal expansion
coefficient, the viscosity and thermal diffusivity of water, 1T is the applied
temperature difference and L is the sample height) and a constant Prandtl number
Pr ≡ ν/κ = 4.38. We used a convection sample that had a similar design to the
apparatus described in Zhong et al. (2009) and Zhong & Ahlers (2010). It had
circular top and bottom plates made of oxygen-free copper (OFHC, TU1). The
sample was filled with deionized water at a mean temperature of 40.00 ◦C. It had a
diameter D = 24.1 cm and a height L = 24.0 cm, yielding an aspect ratio of 1.00.
The Plexiglas (Lexan) sidewall, 0.4 cm in thickness, was fitted into a groove in each
copper plate. Three rows of eight thermistors, equally spaced azimuthally and lined
up in vertical columns at heights L/4, L/2 and 3L/4, were placed into the sidewall
so as to be within d = 0.08 ± 0.01 cm from the fluid surface. We measured the
temperature of each thermistor Ti with a sampling frequency of 4.0 s, and fitted the
function Ti= T0+ δ cos(iπ/4− θ), i= 1, . . . , 8, to the eight temperatures in each row.
Following this experimental protocol, we determined the LSC thermal amplitude δ(t)
and the azimuthal orientation θ(t) of its circulating plane (Brown et al. 2005). The
results shown here are from the middle-row thermistors unless stated otherwise.

The convection sample was mounted on a rotary table. When working in
a modulation mode, the rotating velocity of the sample varied according to
Ω =Ω0[1+ β cos(ωt)]. We chose Ω0 = 0.104 rad s−1 and β = 0.212, so the Rossby
number Ro=√(αg1T/L)/2Ω varied periodically in the range (0.31 6 1/Ro 6 0.51)
in the presence of modulation. As depicted in grey in figure 1(a), in this range the
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FIGURE 1. Dynamical properties of the LSC when the sample rotates at constant rate.
(a) The mean retrograde rotation velocity ωLSC as a function of 1/Ro. (b) The mean LSC
amplitude δ as a function of 1/Ro. Symbols: black squares, experimental data from Zhong
& Ahlers (2010) with Ra= 8.97× 109; red circles, the present work with Ra= 8.24× 109.
The range in which we perform the modulated rotation experiment is indicated in grey.
The dashed line in (b) is a linear fit to the open circles, through which we determine
χ(1/Ro)= δ(1/Ro)/δ(0)=−5.1/Ro+ 3.1 in (3.2) and (3.3).

LSC retrograde rotation rate ωLSC and the thermal amplitude δ exhibit the maximum
responses to variations in Ω . The normalized modulation rate ω/Ω0 ranged from
0.025 to 1.0. The LSC flow velocity in its circulating plane, U ≈ 1.5 cm s−1, was
determined by the LSC turnover time measured through the autocorrelation functions
of the sidewall temperatures (Zhong & Ahlers 2010). Thus the Strouhal number
Sr = LΩ̇/4ΩU, which measures the ratio of the Euler force and the Coriolis force,
did not exceed 0.08.

Thermistors embedded within the top and bottom conductive plates were calibrated
simultaneously in a separate apparatus against a laboratory standard platinum
thermometer traceable to the ITS-90 temperature scale, with a precision better
than 0.002 ◦C. In each of the conductive plates, there was one thermistor at the
plate centre, and six thermistors equally spaced on a circle of 21.0 cm in diameter.
The temperature inhomogeneity on each conductive plate, as measured by these
thermistors, was within one or two per cent of 1T during the experiment. Calibration
of the 24 sidewall thermistors was conducted against the top- and bottom-plate
thermistors.

The finite thermal diffusion process through the sidewall to the thermistors in it
causes a time delay in our measurements of the fluid temperature. The main time
delay between the instantaneous fluid temperature and the temperature measured by
the sidewall thermistors is estimated to be d2/κs ≈ 4.6 s (κs is the sidewall thermal
diffusivity). Such a time delay has been taken into account in determining φθ̇ and
φδ discussed in figures 4 and 5(a). Such corrections are much less than the standard
deviation of φθ̇ and φδ.

3. Results

3.1. Oscillations of the LSC azimuthal orientation θ and velocity θ̇
Figure 2(a) shows a time series of θ for ω/Ω0= 0.1. The azimuthal orientation of the
LSC undergoes linear net rotation in the retrograde direction at an average rate ωLSC.
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FIGURE 2. Experimental data for ω = 0.1Ω0. Time traces (a) for θ(t), (b) for the
corresponding θd(t) and (c) for the thermal amplitude δ(t). Scaled power spectra (d) of
θ(t) and (e) of δ(t). The solid line in (d) denotes Pθ ∼ f−2.

Within our experimental resolution, ωLSC is determined by Ω0, but independent of the
modulation frequency ω. However, the detrended time series θd(t) = −θ(t) − ωLSCt
exhibited not only diffusive behaviour in long time scales, but also clear oscillations
at the modulation frequency ω (figure 2b). Typical power spectra of θd(t), given in
figure 2(d), show a main peak at f =ω in a background spectrum falling off as f−2, the
latter corresponding to a diffusive meandering of the LSC in the azimuthal direction.
The signal-to-noise ratio of the peak for oscillations decreases with increasing ω up
to ωc ≈Ω0, beyond which the modulation period T = 2π/ω is less than the turnover
time of the LSC. For higher modulation frequencies ω > ωc the peak at f = ω in
the power spectra disappears and we see no regular oscillation in the time series
θd(t).

Similarly, the thermal amplitude δ was also found to consist of oscillations in a
random-fluctuation background. An example is plotted in figure 2(c) for ω/Ω0 = 0.1,
with its power spectrum given in figure 2(e), wherein higher harmonics appear at f =
(2ω, . . . , 5ω) in addition to the main peak at the frequency of modulation.

The principal information of the oscillation phases and amplitudes of θd(t) and
δ(t) resides in their time series dominated by the randomly fluctuating background
(figure 2b,c). In order to discern their general responses to Ω(t) more clearly, we
divide the time series of θd and δ according to the modulation periods. Mean values
of 〈θd〉 and δ0 = 〈δ〉 are subtracted from θd and δ. The data are then overlaid in one
modulation cycle to compose data ‘ensembles’. Modulation periods affected by erratic
reorientation events defined as δ(t) 6 0.1δ0 (Brown et al. 2005) are removed from
the regular oscillation data in our analysis. An example of ensembles for ω/Ω0= 0.1
(figure 3a,b) shows that data points for θd(t) and δ(t) are mostly collapsed into a
sinusoidal curve. Then θd(t) is approximated to an analytical function through a
fourth-order Savitzky–Golay method with window length of one modulation cycle.
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FIGURE 3. Data ensemble (a) of θd(t) and (b) of δ(t) for ω = 0.1Ω0. Green lines:
modulation periods affected by reorientation events, which are removed from the regular
oscillation data (blue curves) for analysis. The red dotted curves show Ω(t) with arbitrary
units.
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FIGURE 4. (a) The phase lag φθ̇ as a function of ω/Ω0. Experimental data are
shown as red circles (from middle-row thermistors), purple triangles (top-row) and green
inverted triangles (bottom-row). Error bars denote the standard deviation. Black curve:
the asymptotic solution of (3.1), φθ̇ = −tan−1(ω/(3νRe/4L2 + 9νRe1/2/L2)). Red curve:
numerical solutions for (3.2) and (3.3). Insets: data ensembles for θ̇ (t)− θ̇0 displayed in
the vertical scale [−0.04, 0.04] (rad s−1). From left to right: ω/Ω0 = 0.05, 0.1 and 0.33.
(b) Extended plot for the theoretical predictions of φθ̇ for 0 6ω/Ω0 6 1.6.

The azimuthal rotation velocity θ̇ (t) is then extracted from θd(t) through its time
derivative.

Figure 4(a) contains data ensembles of θ̇ for three ω values. Despite the variance
of θ̇ about its mean oscillations, one sees that the oscillation phase is sensitive to
the modulation frequency: when ω increases, θ̇ lags behind Ω(t) increasingly. For a
quantitative analysis of its oscillatory response, we fitted θ̇ in each modulation cycle
to θ̇ (t)= θ̇0+Aθ̇ cos(ωt+φθ̇). Figure 4(a) shows φθ̇ as a function of ω/Ω0. It appears
that φθ̇ decreases most rapidly in the regime of (0.16ω/Ω0 6 0.3) and asymptotically
reaches −π/2 at large ω.

The increasing phase lag in θ̇ at large ω implies that fluid acceleration plays a role
in determining the LSC dynamics. To explain this, an equation of motion for θ̇ is
obtained from the Navier–Stokes equation, in which the LSC azimuthal acceleration is
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FIGURE 5. (a) The phase lag φδ as a function of ω/Ω0 measured in the experiments and
as obtained from the model (black curve). (b) Same as panel (a), but for the normalized
amplitude Aδ(ω)/Aδ(0). Here Aδ(0)= |δ(Ωmax)− δ(Ωmin)|/2 is the adiabatic response given
in figure 1. Error bars: the standard deviations.

attributed to its rotational inertia, the viscous dissipation and the Coriolis force (Brown
& Ahlers 2006):

θ̈ +
(

3νRe
4L2
+ 9ν
√

Re
L2

)
θ̇ − 3νRe

4L2
Ω(t)= 0, (3.1)

with the Reynolds number Re = UL/ν. When a constant rotation is applied, the
azimuthal acceleration θ̈ is quickly damped by viscous dissipation. Also θ̇ (t)
approaches a steady solution proportional to Ω so φθ̇ = 0. However, when Ω is
oscillating at a frequency ω, the acceleration term θ̈ becomes significant to modify
the response of θ̇ at large ω. It is this inertia effect that causes the phase lag in θ̇ .
The solution of φθ̇ for (3.1) is depicted in figure 4(a,b), which interprets reasonably
the observed increasing phase lag when ω increases.

3.2. Oscillations of the LSC thermal amplitude δ
Another important aspect of the LSC dynamics in the presence of rotational
modulation is the oscillations of its thermal amplitude δ, which is readily seen
in its ensemble (figure 3b). In order to capture its harmonic features, we fitted δ(t)
within each modulation cycle by δ(t) = δ0 + Aδ cos(ωt + π + φδ), neglecting its
high-frequency oscillating components indicated in the power spectrum (figure 2e).
The term π is included because δ(t) is anticorrelated to Ω(t) in the low-frequency
limit ω≈ 0 (figure 1b). Figure 5 shows φδ and the normalized amplitude Aδ(ω)/Aδ(0)
as functions of ω/Ω0. We observe that, with increasing ω, δ(t) lags behind Ω(t)
strongly and Aδ appears to decrease monotonically.

To provide a quantitative interpretation of this oscillatory state, we consider a
physical model in which the main degrees of freedom (δ and θ̇ ) of the LSC flow are
governed by two coupled stochastic equations. The formulation of the model follows
the prior works in Brown & Ahlers (2007) and Assaf et al. (2012), with extensions
to include the effects of modulated rotations noted below.
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The equation of motion for δ is a Langevin equation,

δ̇ = δ

τδ
− δ3/2

τδδ
1/2
0

√
χ(Ω ′)

+ fδ(t), (3.2)

with τδ =L2/(18νRe1/2), δ0= 18π1TPrRe3/2/Ra and χ(Ω ′) is as specified below. The
increment of the LSC flow strength, and hence δ̇, is given by the buoyancy force
and the viscous dissipation from the BLs. Similar to the theory mentioned in (3.1),
the Langevin equation for θ̇ is coupled to the LSC flow strength U. Assuming U is
instantaneously proportional to δ, we obtain

θ̈ =−
(

δ

τθ̇δ0
+ δ1/2

2τδδ
1/2
0

√
χ(Ω ′)

)
θ̇ + δ

τθ̇δ0
Ω(t)+ fθ̇(t), (3.3)

where τθ̇ = L2/(2νRe). The stochastic driving terms fδ and fθ̇ in both (3.2) and (3.3)
model the small-scale turbulent fluctuations. They are assumed to be Gaussian white
noise with a mean diffusivity Dδ=3.0×10−5 (K2 s−2) and Dθ̇ =1.0×10−5 (rad3 s−2),
determined from the experimental data.

We note that the viscous damping for the equations of both δ and θ̇ is caused by
dissipation from the viscous BLs. In performing volume averaging, one finds that the
magnitudes of these dissipation terms are proportional to λ−1(Ω), with the viscous BL
thickness λ dependent on Ω . Over the range of 1/Ro studied here (0.31 6 1/Ro 6
0.51), variations of the Ekman layer thickness play a role in influencing the LSC
flow. According to linear BL theory, its thickness decreases with increasing Ω , as
demonstrated in recent DNS results (Kunnen et al. 2011).

We estimate the formation time of the Ekman layer, τE = δ2
E/ν ≈ 9 s (with

δE = (ν/Ω0)
1/2 is the Ekman layer thickness). It is much shorter than a modulation

period. Therefore we can assume that when rotational modulation is applied, variation
in λ follows adiabatically its dependence on Ω(t). Here we introduce a dimensionless
variable χ(Ω) = [λ(Ω)/λ(0)]2 (Assaf et al. 2012). It is given by the stationary
solution of (3.2) with δ̇ = 0 and χ(Ω) = δ(Ω)/δ(0). In practice, it is determined
from fitting the experimental data of δ(1/Ro) in the studied regime (figure 1b):
χ(1/Ro) = δ(1/Ro)/δ(0) = −5.1/Ro + 3.1. A scale factor for the BL thickness,
χ(Ω)−1/2, is thus multiplied in the dissipation terms in (3.2) and (3.3). Furthermore,
since the LSC flow spans the size of the sample L, the response of its amplitude
δ to the variation of the viscous drag from the BLs requires a relaxation time
τ . The magnitude of τ is assumed to be of the order of the LSC turnover time
τ ≈πL/U=50 s. This time-delay effect is included in the equations, Ω ′(t)=Ω(t− τ),
in determining the dissipation terms. We close the dynamical system with (3.2)
and (3.3), with one unknown parameter χ(Ω) determined by direct fitting of the
experimental data δ(Ω) in figure 1(b). We presume that the features of high-order
harmonic oscillations shown in the power spectra of both δ(t) and θ(t) (figure 2d,e)
are due to the nonlinearity of (3.2) and (3.3).

We compare the model predictions to the experimental results. Figure 4(a) shows
that, in the experimental range (0 6 ω/Ω0 6 0.5), φθ̇ is underestimated by the
model. Further investigations of the interplay between modulated rotations and the
LSC dynamics in short time scales (such as sloshing and torsional oscillations
(Funfschilling & Ahlers 2004; Xi et al. 2009)) may provide insight to understand
the predominant inertia effect observed. However, the model does predict the
increasing phase lag, which approaches −π/2 in the high-frequency limit, as shown
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FIGURE 6. Experimental (a) and numerical (b) data for the normalized amplitude
Aθ̇ (ω)/Aθ̇ (0) as a function of ω/Ω0. Here Aθ̇ (0) = [ωLSC(Ωmax) − ωLSC(Ωmin)]/2 is the
adiabatic response given in figure 1. The open symbols in (a) denote the standard
deviations of Aθ̇ . Inset in (b): amplitude Aθ̇ (ω, φδ) as a function of ω/Ω0 and φδ . Its
solution Aθ̇ (ω) with the constraint of φδ(ω) (dashed red line in the ω–φδ plane) given in
(3.3) is shown as a black curve.

in figure 4(b). We also note that the results from the full dynamical model are in
general agreement with the theory in (3.1). They imply that the phase lag in θ̇ is
mainly attributable to the azimuthal fluid acceleration of the LSC flow, but nearly
independent of the oscillations of δ. Figure 5 compares the modelling results to the
experimental data for φδ and Aδ(ω)/Aδ(0) in the experimental range of ω/Ω0. The
model predictions are in good accord with the measurements. The phase lag in δ
could be explained as mainly due to the finite relaxation time it takes for the bulk
circulation to respond to the time-varying BL thickness.

3.3. Dynamical resonant response in θ̇

Finally we point out an interesting finding of the oscillation amplitude of θ̇ from the
experiment that can be reasonably predicted within the framework of our modelling
analysis. In figure 6(a) we present experimental data for Aθ̇(ω)/Aθ̇(0) as a function
of ω. It is apparent that the dependence of Aθ̇ on ω is non-monotonic. A maximum
occurs at ω∗= 0.167Ω0 where Aθ̇ is enhanced by as much as 100 %. The appearance
of this resonant-like behaviour in Aθ̇ can be understood as a result of optimal coupling
of δ and Ω . In the limit of very slow modulations (ω≈ 0) we have φδ ≈ 0; and θ̇ (t)
instantaneously follows the time variation in Ω(t), such that θ̇ (t)=ωLSC(Ω(t)) is given
by figure 1(a). Thus Aθ̇ approaches the value Aθ̇(0). Moreover, we derive from (3.3)
that in this regime the variation of Aθ̇ due to a small change in φδ is given by (in the
leading order of φδ): Aθ̇(ω)− Aθ̇(0)∼−sin φδ. On the other hand, when ω�Ω0, Aδ
decreases to zero (figure 5b) and correspondingly Aθ̇ ≈ 0 as well. Therefore we infer
that a maximum in Aθ̇ occurs in between these two extremes.

To elucidate more clearly the mutual influences of Aδ and φδ on Aθ̇ , we solved for
Aθ̇(ω, φδ) numerically from (3.3) for an oscillating function δ(t) with arbitrary phases
(0<φδ < 2π) and with its amplitude fixed to the solution Aδ(ω) given by (3.2). The
results of Aθ̇(ω, φδ) are depicted in the inset of figure 6(b), where the non-monotonic
dependence of Aθ̇ on φδ is clarified. The solution Aθ̇(ω) to the full dynamical system
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(3.2) and (3.3) is then determined with the constraint of φδ(ω) given by (3.2). It is
depicted in figure 6(b) and in its inset as well. Despite the different values of ω∗ and
the maximum in Aθ̇ , the model offers a reasonable prediction of the resonant response
of θ̇ . We conclude that oscillation of θ̇ with a maximum amplitude can be produced
in an intermediate ω regime in which δ(t) has the optimal phase shift from Ω(t).

4. Discussion

In this paper we present an experimental study of the LSC dynamics in turbulent
RBC with modulated rotation. We observe clear oscillations in the LSC azimuthal
rotation velocity θ̇ (t) and thermal amplitude δ(t). The fluid acceleration driven by
oscillating Coriolis force is found, for the first time, to influence the LSC azimuthal
motions and cause an increasing phase lag in θ̇ (t) with respect to Ω(t) when the
modulation frequency increases. It is considered as a manifestation of the inertia
effect of the LSC flow in the presence of rotational modulation. Moreover, the
applied modulation gives rise to oscillatory BLs and we show that the resulting
time-varying viscous drag may modify δ(t) periodically.

Remarkably, oscillation of the azimuthal rotation velocity θ̇ (t) with maximum
amplitude occurs at modulation frequency ω∗ = 0.167Ω0. Such a resonance-like
phenomenon in a turbulent background is intriguing, since one would expect that,
instead of a periodic flow with a single dominant time scale, turbulent flows with a
broad frequency spectrum in the fluid interior are driven by the modulated rotations.
Presently, a theoretical understanding of the resonant turbulence and the value of ω∗
is lacking. However, the proposed linear response theory ((3.2) and (3.3)) provides
a reasonable interpretation that the resonant response of the LSC flow occurs when
δ(t) is strongly correlated with Ω(t) and produces the optimal driving force for
oscillations in θ̇ (t).

In summary, we present the first experimental study of the dynamics of the LSC in
turbulent thermal convection in response to modulated rotation. These findings may,
to some extent, shed new light on the nature of the large-scale flows in turbulent
convection, and be relevant to observed phenomena in astrophysical and geophysical
systems.
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