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Unidirectional stratified flow through a
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A self-similar solution describing stratified flow through a non-rectangular channel
is derived. The solution shown here is an extension of Wood’s (1968) solution for
stratified withdrawal through a rectangular channel. We consider a restricted set of
geometries (where the bottom of the channel is constrained to be flat) and calculate
the flow, assuming first multi-layer stratification, and second continuous stratification.
In the case of two-layer flow we prove that the self-similar solution is the only possible
solution. The analytical solutions are corroborated by three-dimensional numerical
model simulations.

1. Introduction
The study of withdrawal of a stratified fluid from a stagnant reservoir has

applications in geophysics (such as flow of ocean bottom water through gaps in mid-
ocean ridges) as well as engineering (e.g. withdrawal from a reservoir) and flow of air
through doors and windows. This problem was first considered by Wood (1968), who
wrote a seminal paper in which the notion of hydraulic control was illustrated. Wood’s
(1968) self-similar solution demonstrated that for stratified withdrawal through a
contracting channel with a rectangular cross-section, layers reduced their thickness by
a factor of 2/3 between the stagnant reservoir and the centre of the contraction. At the
centre of the contraction a point of hydraulic control is found, where the propagation
of internal waves in the direction opposite to the flow is arrested. Benjamin (1981)
investigated this type of flow in greater detail, proposing that the self-similar solution
is the only one which is selected for flows drawn from a stagnant reservoir.

Laboratory experiments on unidirectional stratified flows have demonstrated the
relevance of self-similar solutions to the flows observed. Armi & Williams (1993)
showed a number of different cases where self-similar flows, bounded by either
stationary fluid or a solid flat boundary, formed in a laboratory flume.

In principle, hydraulic solutions can be used to describe flow in a number of
situations, such as deep overflows in the ocean, flow at the mouth of estuaries and flow
within reservoirs. Application of the stratified withdrawal solutions are complicated
by several factors, including the effect of mixing upon the flow, the rotation of the
Earth, time dependence, the introduction of bottom topography and the possibility
of sloping sidewalls to the channel. In this note we address the last point raised here,
and argue that self-similar solutions are possible for a restricted set of geometries
in which the sidewalls are sloping, but the bottom of the channel is flat. We adopt
a simplified version of the geometry used by Dalziel (1992), so that the form of the
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Figure 1. (a) Channel geometry for a triangular channel (β =1); (b) layer numbering system
for the example of three layers.

channel as a function of x does not change, but the width of the channel varies to
form a contraction.

Two methods have previously been used for investigating these flows; we explore
this problem using both techniques. First, we use the multi-layer formulation, following
previous studies by Baines (1988) and Engqvist (1996). The multi-layer solution gives
rise to some tedious algebra for large numbers of layers, but has the advantage
that one can easily interpret the results, and pinpoint the virtual control points. In
addition, by reducing the multi-layer solution to just two active layers we are able
to show that the self-similar solution is the only solution. By invoking an induction-
based proof we extend this to apply to an infinite number of layers. We also solve
the problem with arbitrary continuous stable stratification in the upstream reservoir
using the methodology of Killworth (1992) and Hogg & Killworth (2004). Here we
find that self-similar solutions can also be found, and that the control condition at
the topographic minimum of the channel is identical to the layered case.

2. Multi-layer solution
We seek a solution for uni-directional stratified flow through a flat-bottomed

channel which has walls which may not be vertical. Start by writing the width as a
function of the streamwise coordinate x and height z as

b(x, z) = b0(x)zβ. (2.1)

Here b0 is the width of the channel at the top of the stagnant layer (which is
horizontal), and β is the factor used by Dalziel (1992), where β =0 corresponds to
a rectangular channel, β = 1 to a triangular channel (see figure 1a) and if β = 1

2
the

channel is parabolic. Note that the difference between our formulation and that of
Dalziel is that we have not allowed variations in the depth of the channel with x.

In the absence of viscosity energy is constant along streamlines; in other words

1
2
u2 + B = B∞, (2.2)

where u is the horizontal velocity, and B(x, z) = (p + ρgz)/ρ0 is the Bernoulli function
comprising pressure p, density ρ, constant reference density ρ0 and acceleration due
to gravity g. The upstream boundary is assumed to be an infinitely wide reservoir of
known stratification, in which velocities are zero and the Bernoulli function is given
by B∞. Bounding our fluid above is a stagnant layer of constant density, and we
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Stratified flow in a non-rectangular channel 85

assume that at some point downstream of the contraction the channel once again
becomes infinitely wide, with the same density of the overlying fluid.

Following Engqvist (1996) we divide the flow into a finite number of layers, where
layer 0 is a stagnant upper layer of density ρ0. Active layers are numbered from 1 to
n starting from the uppermost layer. The layer thicknesses Hi and interface heights
hi are as illustrated in figure 1(b). The momentum equation for the ith layer is then

ρiuiui,x = −g

i∑
j=1

�ρjhj−1,x, (2.3)

where �ρj = ρj − ρj−1 is positive. The continuity equation for each layer is simply

(uiWiHi),x = 0 (2.4)

where the mean width Wi is defined below.
We define several additional quantities relating to the geometry of the flow. The

mid-height of each layer is denoted

hi = 1
2
(hi−1 + hi), (2.5)

and we approximate the mean width of the layer using (2.1):

Wi(x) = b0(x)hi

β
. (2.6)

This approximation is only exact when the sides of the channel are straight (i.e. for
β equal to 0 or 1). However, it tends towards an exact solution as the number of
layers becomes large. The derivative of (2.6), after application of the chain rule, can
be written as

Wi,x =
Wib0,x

b0

+
βWi

hi

, (2.7)

and substituted into the continuity equation (2.4) to give an expression for the
x-derivative of velocity,

ui,x = − ui

Hi

(
Hi

b0

b0,x +
βHi

hi

hi ,x + Hi,x

)
(2.8)

which applies everywhere in the channel. Substituting Hi,x = hi−1,x − hi,x and (2.5)
gives the velocity derivative in terms of interface height derivatives,

ui,x = − ui

Hi

(
Hi

b0

b0,x +
βHi

2hi

(hi−1,x + hi,x) + hi−1,x − hi,x

)
, (2.9)

which we substitute into (2.3) to give

ρiu
2
i

Hi

(
Hi

b0

b0,x +
βHi

2hi

(hi−1,x + hi,x) + hi−1,x − hi,x

)
= −g

i∑
j=1

�ρjhj−1,x . (2.10)

This equation shows that there is a relationship between each layer and the one above,

ρi+1u
2
i+1

Hi+1

(
Hi+1

b0

b0,x +
βHi+1

2hi+1

(hi,x + hi+1,x) + hi,x − hi+1,x

)

=
ρiu

2
i

Hi

(
Hi

b0

b0,x +
βHi

2hi

(hi−1,x + hi,x) + hi−1,x − hi,x

)
+ g�ρi+1hi,x. (2.11)
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86 A. Engqvist and A. McC. Hogg

For illustrative purposes we simplify this situation slightly, by assuming that �ρi = �ρ

for all i (although it should be noted that in the analysis which follows, all results
still hold if this assumption is relaxed). The layer Froude numbers fi are defined as

f 2
i =

ρ0u
2
i

g�ρHi

so that our equation can be written in matrix form as follows:




1 − f 2
1+ f 2

1− 0

f 2
1+ 1 − f 2

1− − f 2
2+ f 2

2−

0 f 2
2+ 1 − f 2

2− − f 2
3+







h0,x

h1,x

h2,x


 =




f 2
1 H1

f 2
2 H2 − f 2

1 H1

f 2
3 H3 − f 2

2 H2


 b0,x

b0

, (2.12)

where we have again simplified the situation by assuming only three layers, and
defined

f 2
i± = f 2

i

(
1 ± βHi

2hi

)
.

This matrix equation shows that at the centre of the contraction where b0,x =0,
then either every interface height has zero gradient there, or else the determinant
of the matrix on the left-hand side of this equation is zero. In the latter case the
restriction on the matrix determinant yields a control condition similar to that derived
by Baines (1988) for a rectangular channel which describes the transition from sub-
to supercritical flow. In the first case the solution does not change criticality at the
throat, so that for the upstream boundary condition used here, flow is subcritical
everywhere.

This determinant equation can be used to give an exact solution if one is prepared
to assume that the flow is self-similar. To demonstrate this we take the two-layer case,
and write layer thicknesses in terms of their upstream value and a height reduction
factor

Hi = αi(x)Hi∞.

The upper streamline of each layer behaves according to (2.2), which allows us to
find Froude numbers as a function of the Bernoulli function B . It is easy to verify
that the Froude numbers are given by

f 2
1 =

2

α1H1∞
(H1∞(1 − α1) + H2∞(1 − α2)), (2.13)

f 2
2 =

2

α2H2∞
(H1∞(1 − α1) + 2H2∞(1 − α2)). (2.14)

Self-similarity means that each layer contracts by the same amount between the
reservoir and any point x, or α1 = α2 = α. The Froude numbers squared for a self-
similar flow are then

f 2
1± =

2(H1∞ + H2∞)(1 − α)

H1∞α

(
1 ± βH1∞

H1∞ + 2H2∞

)
,

f 2
2± =

2(H1∞ + 2H2∞)(1 − α)

H2∞α
(1 ± β) .
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Stratified flow in a non-rectangular channel 87

By setting the determinant of the matrix on the left-hand side of (2.12) to zero, we
recover

αgc =
2 + 2β

3 + 2β
, (2.15)

which is the geometric control point, reducing to Wood’s familiar 2
3

in a straight-
walled channel (β = 0), and which depends upon the channel shape but not the layer
structure.

The second root,

αvc = 1 − H1∞H2∞

2βH1∞(H1∞ + H2∞) + 2H 2
1∞ + 7H1∞H2∞ + 4H 2

2∞
, (2.16)

is, in general, a virtual control point which occurs upstream of the contraction. As one
increases the number of layers, another virtual control is created for each additional
layer, with the value of α at the virtual controls tending to 1 as n → ∞.

We have found that for two layers, the self-similar vertical height reduction at the
geometrical control is αgc. We will now prove that this holds for any number of layers
using induction; in other words if it holds for n layers, it will still hold when a new
(n+ 1)th layer is inserted. The reservoir height of the top of the nth layer (that is, the
bottom layer) is rescaled to be unity and a new layer is inserted beneath it with height
h. Under this manipulation neither the geometric shape nor the flow parameters of
the top n − 1 layers will be changed. In order to distinguish the Froude number of
the nth layer before and after this manipulation, the former value is marked with
a prime. Expanding (2.12) along the bottom row at the geometric control for the
n-layer case then yields

Dn−1

[
1 − f 2

(n−1)− − f
′2
n+

]
− f 2

(n−1)+f 2
(n−1)− = 0, (2.17)

in which Dn−1 denotes the (n − 1) × (n − 1) cofactor determinant with coinciding
diagonal to (2.12).

After insertion of the (n + 1)th layer, the velocity of the nth layer is unchanged
and thus f

′2
n+ = (1 − h)f 2

n (1 + β) and f 2
n± = f 2

n (1 ± β(1 − h)/(1 + h)) hold. In analogy
to the two-layer case, the Froude numbers as a function of the layer heights are

f 2
n =

2

Hn

(H0 + 1 − Hn − Hn+1) (2.18)

and

f 2
(n+1)+ =

2

Hn+1

(H0 + 1 − Hn − Hn+1 + h − Hn+1)(1 + β). (2.19)

The introduced variable H0 represents the resulting acceleration of the n − 1 layers
above and may be expressed as (1 − αgc)

∑
hj , with the summation taken over

the top n interfaces. However, the exact appearance of this term turns out to be
inconsequential, since the terms containing H0 will eventually cancel. Expanding the
bottom row as in (2.17) with the (n + 1)th layer inserted gives(

1−f 2
n− −f 2

(n+1)+

)[
Dn−1

(
1−f 2

(n−1)− −f 2
n+

)
−f 2

(n−1)+f 2
(n−1)−

]
−Dn−1f

2
n+f 2

n− = 0. (2.20)

Subtracting and adding the terms containing f
′2
n+ and f 2

n+ respectively from and to
(2.17) and substituting the resulting expression into the second term of (2.20) finally
gives a relationship between the Froude numbers of the two bottommost layers:

f 2
n+f 2

n− +
(
1 − f 2

n− − f 2
(n+1)+

)
f 2

n h

[
1 − β

1 − h

1 + h

]
= 0. (2.21)
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88 A. Engqvist and A. McC. Hogg

Inserting the Froude numbers evaluated with Hn+1 = αh and Hn = α(1 − h) yields
the solution α = αgc, which proves by induction that the solution found is valid for
an arbitrary number of layers.

3. Validity of the self-similar assumption
In the previous section we showed the existence of a self-similar solution for

stratified flow through the channels considered. In keeping with previous work on
this subject our approach was to assume that self-similarity applied; this approach
was justified by Wood (1968) by referring to the two-layer solution in which the
self-similar solution was the only one connecting the upstream and downstream
conditions. We now extend this two-layer solution to channels with sloping sidewalls.

This could be achieved by first finding the location of the virtual control, solving
(2.12) and then using the same equation to integrate the solution in either direction.
More instructive, however, is to use the constant layer fluxes

Qi =

√
g�ρWi

2
H 3

i f 2
i /ρi,

to write a ratio which is constant for all x:

Q2
1

Q2
2

=
ρ2

ρ1

f 2
1

f 2
2

H 3
1

H 3
2

W1
2

W2
2
. (3.1)

To demonstrate the point being made here we select the case where upstream layer
heights are equal (H1∞ = H2∞); the results are not sensitive to this assumption, but
the algebra is simplified considerably. We then substitute (2.13) and (2.14) into (3.1)
to give

Q2
1

Q2
2

=
ρ2

ρ1

α2
1

α2
2

(2 − α1 − α2)

(3 − α1 − 2α2)

(
2α2 + α1

α2

)2β

. (3.2)

In fact, when self-similarity is assumed (α1 = α2) this ratio is independent of x. We
look for other plausible roots of this equation by evaluating this constant expression
at the virtual control point:

3α2
1(2 − α1 − α2)(2α2 + α1)

2β = 2α2
2(3 − α1 − 2α2)(3α2)

2β. (3.3)

One solution of this equation is α1 = α2; additional solutions depend upon the value
of β . We show an example in figure 2 using β = 1

2
(parabolic channel). Here we see

that the solid line (α1 = α2) is the only root connecting the reservoir conditions at
(1,1) to the virtual control, the geometric control and the downstream asymptotic
solution where both layers become infinitely thin. In this case three other roots exist.
Only one of these solutions is physically plausible (i.e. it exists in the range [0,1]); it
is shown by the dashed line in figure 2, and intersects the self-similar solution at the
virtual control.

Thus the nature of the the self-similar solution for the two-layer case is clear. Like
Wood (1968), we are hesitant to tackle the algebra for more than two layers, but
instead proceed to show that the self-similar solution can exist for this flow with
arbitrary upstream stratification.
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Figure 2. Physically plausible solutions of (3.3), with the self-similar solution shown by the solid
line. The reservoir height of each layer is 1, and positions of virtual and geometric control are
marked.

4. Continuously stratified solution
To calculate a solution for continuously stratified flow, the channel geometry in

this case requires us to integrate the continuity equation across the channel:

∫ b(x,z)

0

uxdy +

∫ b(x,z)

0

vydy +

∫ b(x,z)

0

wzdy = 0, (4.1)

which simply becomes

bux +

∫ vw

0

dv + bwz = 0. (4.2)

Here vw is the velocity along the channel wall, which can be calculated from the other
two components of velocity (vw = bxu + bzw), so that

(bu)x + (bw)z = 0. (4.3)

We now proceed by transforming from (x, z) coordinates to (X, η) coordinates
where x = X and η is the height of the streamline in the upstream reservoir. To do
this, note that we can use the chain rule in combination with xη = 0 and xX = 1,
leaving

∂

∂X
→ ∂

∂x
+ zX

∂

∂z
,

∂

∂η
→ zη

∂

∂z
.

These are inverted and applied to (4.3) to give

(bu)X − zX

zη

(bu)η +
1

zη

(bw)η = 0. (4.4)
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Note that vertical velocity is simply horizontal velocity multiplied by the streamline
slope (w = uzX), leaving simply

(buzη)X = 0. (4.5)

This is the same form as for cases with vertical sidewalls (see (2.6) in Hogg &
Killworth 2004).

We now assume that flow within the layer is self-similar, or in other words the
height and energy of a streamline can be separated into X- and η-dependent parts:

z(X, η) = α(X)η, B(X, η) = α(X)B∞(η), (4.6a, b)

and thus write (2.2) and (4.5) respectively as

u = (2B∞(1 − α))1/2 , (4.7)

b0(αη)βuα = Q(η), (4.8)

where we have included the width information from (2.1). These are combined to give

b0α
(β+1)(1 − α)1/2 =

Q(η)

(2B∞)1/2 ηβ
, (4.9)

in which the left-hand side depends only upon X and the right-hand side only upon
η. The control condition can be found by differentiation with respect to X:

1

b0

db0

dX
=

dα

dX

(
(2β + 3)α − 2(β + 1)

2α(1 − α)

)
. (4.10)

The geometrical control condition is then identical to that given by (2.15).

5. Numerical simulation results
For a rectangular channel the control condition gives αgc = 2

3
, and αgc = 3

4
, 4

5
and

6
7

correspond to channel cross-sections that are parabolic, triangular and hyperbolic
respectively. Employing a three-dimensional numerical model MITgcm (Marshall
et al. 1997), set up with boundary conditions according to Stenström (2003), these
theoretical results may be tested. The numerical tests differ from the theory in two
ways. First, while the theory is inviscid and non-diffusive, the model is not. In
spite of the efforts made to reduce the diapycnal mixing it cannot be completely
eliminated and acts to blur the isopycnals. Second, in the theory there is an infinite
cross-section area ratio between the far upstream and the narrowest constriction. In
the model this can only be achieved at the expense of computational effort in the
same proportion. The compromise made is depicted in figures 1(a) and 3 in which
effects of the non-hydrostatic approach control (see Zhu & Lawrence 1998) are visible
together with aberrations from horizontal cross-sectional interfaces. Taken together
these factors combine to produce significant uncertainty in the simulated values of
αgc. Figure 3 shows the modelled steady-state flow through a triangular channel,
indicating the uncertainty involved in measuring αgc. The comparison between theory
and simulation is shown in table 1 for four different channels. In each case the model
and theory agree within the estimated uncertainty. Unexpectedly, these uncertainties
increase for small β-values. Even with the liberal allowances made when estimating
these, the layer averages of the simulated αgc-values provide corroborative evidence
that the present theory applies.
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Figure 3. (a) Cissect through the mid-section, and (b) transect at the geometrical control
for a three-layer simulation with β =1 showing unfiltered raw data isopycnals, with equal
density differences between adjacent layers. The uncertainties due to approach control
and non-horizontal interfacial cross-section are apparent. The former is indicated for the
mid-interface with a pair of arrows.

β αgc (model) αgc (theory)

0.0 0.74 ± 0.07 0.67
0.5 0.76 ± 0.05 0.75
1.0 0.82 ± 0.04 0.80
2.0 0.84 ± 0.03 0.86

Table 1. Average vertical height reduction of three active layers similar to figure 3 together
with an estimated S.D. compared to the theoretically expected value.

6. Discussion
The inherent nature of the self-similar solutions is most clearly revealed by (3.2) in

which the flow ratio between layers is proved to be constant throughout the domain,
provided that α1 = α2. Combined with a cross-section geometry that also maintains
the layer area ratio regardless of the vertical self-similar height reduction, a steady
flow can be sustained throughout the channel. Both (3.2) and (4.9) reveal that the
so-called Dalziel-geometry (1992) is the unique set of shapes for which this holds true
by cancelling the α-factor in the former case and making the equation separable in
the latter.

The αgc-factor for controlled flow beneath a stagnant layer in (2.15) was derived
earlier by Dalziel (1992), but for one-layer flow through a flat-bottom channel. This
instance would thus have sufficed as a starting point for the induction-based proof
in § 3. The simplifying assumption made in § 2 with an equal density difference between
layers could be relaxed. The fi

2-matrix would then also contain density quotients (ri)
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according to, for example equation (27) in Lane-Serff, Smeed & Postlethwaite (2000).
Likewise the ‘mid-height’ approximation leading to (2.6) could possibly also be relaxed
since in (2.8) the sole appearance of the hi-term is as a quotient between its derivative
and itself. The pursuit of the algebra with hi representing the exact average width
entails considerably more complicated weight-coefficients than the 0.5-factors used
here for hi−1,x and hi,x in (2.9) and does not seem to elucidate the physics more than
the algebra is obscured.

It was pointed out by Wood (1968) that his solution for two-layer flow through
a rectangular cross-section required no assumption of Boussinesq stratification. This
also applies to the multi-layered solutions presented here. Arbitrarily strong gradients
may thus be approximated by making the individual layers sufficiently thin.

The self-similar solutions presented here require a number of conditions, including
a flat-bottomed channel, to be exact. Therefore, direct application to, for example,
oceanographic flows is limited; however solutions such as these greatly enhance
physical understanding of the mechanisms underpinning nonlinear stratified flows.
In addition, they represent incremental progress towards more general hydraulic
solutions. For example, Engqvist & Stenström (2004) discuss the possibility of
expanding existing solutions to exchange flows, provided that there is only one
homogeneous contra-flowing top layer.

Petter Stenström has assisted with the three-dimensional simulations utilizing the
MITgcm model and is bestowed due gratitude. Our thanks also to Peter Killworth
who contributed to many discussions on the nature of virtual controls and David
Smeed who has commented on some early versions of this work. Two anonymous
reviewers have given valuable points of view to the improvement of the manuscript.
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