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In radio frequency (RF) applications, electric circuits produce signals exhibiting fast oscilla-

tions, whereas the amplitude and frequency may change slowly in time. Thus, solving a system

of differential algebraic equations (DAEs), which describes the circuit’s transient behaviour,

becomes inefficient, since the fast rate restricts the step sizes in time. A multivariate model is

able to decouple the widely separated time scales of RF signals and provides an alternative

approach. Consequently, a system of DAEs changes into a system of multirate partial dif-

ferential algebraic equations (MPDAEs). The determination of multivariate solutions allows

for the exact reconstruction of corresponding time-dependent signals. Hence, an efficient

numerical simulation is obtained by exploiting the periodicities in fast time scales. We outline

the theory of this multivariate approach with respect to the simulation of amplitude as well

as frequency modulated signals. Furthermore, a survey of numerical methods for solving the

arising problems of MPDAEs is given.

1 Introduction

In many applications, technical systems comprise parts that evolve at largely differing

time scales: for example, in vehicle system dynamics, the interaction of catenary and

pantograph links the fast mode of the catenary with the relatively slow dynamics of the

vehicle [34]; in chip design, often only small subsystems of a chip are active, whereas

the largest part is evolving quite slowly or remains nearly inactive [35]. To exploit this

multiscale behaviour in time, specialised schemes have been and are currently developed,

which do not use a joint step size defined by the fastest mode for the whole system,

but employ this multirate potential by treating each subsystem with an appropriate time

stepping, see [8] for an overview.

Another source of multiscale behaviour are multitone systems. Here, the multirate

behaviour cannot be localised at subsystem level, but is spread over the whole system:

each function of the solution itself combines a dynamical behaviour at different, usually

widely separated time scales. This type of multirate behaviour is typical for radio frequency

(RF) circuits, which are in the core of today’s telecommunication systems.

In an industrial framework, electrical networks in general and RF circuits in particular

are usually modelled by applying the modified nodal approach (MNA) [12]. Written in a
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compact way, this approach results in the MNA network equations

d

dt
q(x(t)) = f (b(t), x(t)), (1.1)

where the unknown voltages and currents are collected in x : R → R k . The functions

q : R k → R k comprise charges and fluxes, and the right-hand side f : R s × R k → R k

contains time-dependent input signals b : R → R s. As the Jacobian ∂q(x)/∂x is singular

in general, one has to deal with differential algebraic equations (DAEs).

This paper aims at giving a survey on how to model and simulate numerically these

systems in an appropriate, i.e., fast, robust and reliable way if the involved signals exhibit

a multitone behaviour. Accordingly, a multivariate model can be employed to represent

the signals. Hence, the differential algebraic system (1.1) is analytically transformed into a

singular system of partial differential equations, the so-called multirate partial differential

algebraic equations (MPDAEs). The MPDAE system can be solved more efficiently than

the original DAE description, since time scales are decoupled.

Alternatively, Gautschi type methods and approaches based on Magnus series (see [9])

have been designed for highly oscillatory systems (1.1). These techniques solve initial value

problems efficiently if the system exhibits a weakly non-linear structure. In contrast, the

MPDAE approach allows for simulating strongly non-linear systems. Moreover, boundary

conditions can be directly imposed in the multivariate domain of dependence.

The paper is organised as follows. In Section 2, we deal with systems that feature a

pure amplitude modulation (AM) and, thus, exhibit constant time rates. We start with a

careful discussion of the MPDAE approach based on a multivariate model for amplitude

modulated signals and use the specific structure of the MPDAE system to verify the

well-posedness of the system. Section 3 is devoted to systems with frequency modulation

(FM), which do not possess constant time rates. On the basis of a multivariate model for

frequency modulated signals, we consider a warped MPDAE model as generalisation of

the approach for amplitude modulated signals. The so-called local frequency function will

turn out to be some kind of a generalised modelling parameter, which enables different but

analytically equivalent descriptions of the RF circuits, provided that some transformation

properties are satisfied. Conditions for an appropriate choice of this modelling parameter

can be based on simple boundary conditions or on solving optimisation problems. In

each chapter, a second part gives an overview on numerical methods proposed so far

in the literature, which can be classified as frequency, time or mixed domain methods.

Both sections are completed by a careful discussion of an illustrative example, the ring

modulator and the Colpitt oscillator, respectively. Finally, in Section 4, we formulate

important open questions, which need to be addressed in the future.

2 Model for constant frequencies

In this section, we consider the case of multitone signals in RF circuits, in which the oc-

curring time rates are forced by independent inputs and, thus, are constant. Consequently,

the multidimensional model employs constant frequencies for the representation as well

as the numerical simulation of such signals.
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2.1 Multidimensional approach

2.1.1 Multivariate model for AM signals

The idea to cope with widely separated time scales is to introduce a corresponding

variable to each of them. The multidimensional representation of a signal is then called

multivariate function (MVF). A quasiperiodic signal x : R → C k with m fundamental

frequencies ωl = 2π/Tl , l = 1, . . . , m, can be represented via

x(t) =

∞∑
j1=−∞

· · ·
∞∑

jm=−∞
Xj1 ,...,jm exp(i(j1ω1 + · · · + jmωm) t), (2.1)

where Xj1 ,...,jm ∈ C k and i =
√

−1. This multirate structure leads naturally to the corres-

ponding MVF x̂ : R m → C k with

x̂(t1, . . . , tm) =

∞∑
j1=−∞

· · ·
∞∑

jm=−∞
Xj1 ,...,jm exp(i(j1ω1t1 + · · · + jmωmtm)). (2.2)

Now, the time scales are decoupled in the multidimensional model. Moreover, the MVF is

periodic in each coordinate direction. The original signal is contained in the MVF and can

be reconstructed by x(t) = x̂(t, . . . , t), which follows the diagonal direction. This procedure

is also applicable if the fundamental frequencies ω1, . . . , ωm are commensurable.

For illustration, we introduce a two-tone quasiperiodic signal x : R → R ,

x(t) :=

[
1 + α sin

(
2π

T1
t

)]
· sin

(
2π

T2
t

)
(2.3)

with 0 < α < 1, which exhibits amplitude modulation including two different time scales

T1 > T2. Its MVF x̂ : R 2 → R is derived as follows:

x̂(t1, t2) =

[
1 + α sin

(
2π

T1
t1

)]
· sin

(
2π

T2
t2

)
. (2.4)

Figure 1 shows the signal and its MVF, which is defined in the rectangle [0, T1] × [0, T2].

The more the time scales differ (T1 � T2), the more efficient the multidimensional

approach becomes, since the structure of the MVF is independent of the ratio T1/T2.

In the case of m different time scales with m − 1 periodic and one aperiodic scale, we

consider envelope-modulated signals

x(t) =

∞∑
j2=−∞

· · ·
∞∑

jm=−∞
Xj2 ,...,jm(t) exp(i(j2ω2 + · · · + jmωm) t) (2.5)

with functions Xj2 ,...,jm : R → C k . Usually, the aperiodic part is the slowest time scale. The

MVF is obtained analogously to the quasiperiodic case with Xj2 ,...,jm then depending on

t1. Hence, signals of this type can also be represented efficiently by the multidimensional

approach.
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Figure 1. Signal x (left) and its multivariate function x̂ (right).

2.1.2 MPDAE model

Now, we apply the multidimensional signal model to solutions of the differential algebraic

network equations (1.1), which have been established in Section 1. To determine quasiperi-

odic solutions (2.1) on the level of the DAEs (1.1), time and frequency domain methods

have been introduced in [5] and [37], respectively.

Assuming m different time scales, we introduce MVFs x̂ : R m → R k of the unknowns

and b̂ : R m → R s of the input signals. Considering the DAEs (1.1), Brachtendorf et al. [2]

introduce the corresponding multirate partial differential algebraic equations (MPDAEs),

∂q(x̂)

∂t1
+ · · · +

∂q(x̂)

∂tm
= f (b̂(t1, . . . , tm), x̂(t1, . . . , tm)). (2.6)

Given a solution of the MPDAE (2.6), we can reconstruct a solution of the original

DAE (1.1) by

x(t) = x̂(t, . . . , t), (2.7)

see [2]. To solve the MPDAE, we have to impose boundary conditions, which determine

the structure of the obtained solution. If the inputs b of (1.1) are quasiperiodic, then

a quasiperiodic output x with identical time rates is expected. Looking for an m-tone

quasiperiodic solution (2.1) of the DAE, we solve the MPDAE for an m-periodic MVF

satisfying the boundary conditions

x̂(t1, . . . , tm) = x̂(t1 + k1T1, . . . , tm + kmTm) for all t1, . . . , tm ∈ R ,

and k1, . . . , km ∈ Z .
(2.8)

Considering envelope-modulated signals (2.5) with m− 1 periodic rates and one aperiodic

time scale, we solve an initial-boundary value problem

x̂(0, t2, . . . , tm) = h(t2, . . . , tm) for all t2, . . . , tm ∈ R ,

x̂(t1, t2, . . . , tm) = x̂(t1, t2 + k2T2, . . . , tm + kmTm) for all t1, . . . , tm ∈ R ,

and k2, . . . , km ∈ Z .

(2.9)
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The function h has to be prescribed appropriately. It follows that the reconstructed

signal (2.7) depends only on h(0, . . . , 0), i.e., for every function h with h(0, . . . , 0) = x(0), the

same solution will be obtained. For a more detailed description of the relation between

DAE and MPDAE solutions, we refer to Roychowdhury [33].

Usually, systems exhibiting exactly two different time scales occur in practice,

∂q(x̂)

∂t1
+

∂q(x̂)

∂t2
= f (b̂(t1, t2), x̂(t1, t2)). (2.10)

The corresponding biperiodic boundary conditions read

x̂(t1, t2) = x̂(t1 + T1, t2) for all t1, t2 ∈ R ,

x̂(t1, t2) = x̂(t1, t2 + T2) for all t1, t2 ∈ R ,
(2.11)

and the initial-boundary value problem is solved with

x̂(0, t2) = h(t2) for all t2 ∈ R ,

x̂(t1, t2) = x̂(t1, t2 + T2) for all t1, t2 ∈ R .
(2.12)

The initial-boundary value problem can also be used to determine biperiodic solutions

in case of quasiperiodic input signals. Accordingly, the problem is solved by proceeding

in t1-direction until the solution enters a biperiodic steady state response. This strategy

can be seen as a multidimensional generalisation of transient analysis by applying more

information about the signal structure. Furthermore, if the input signals are periodic with

only one time rate, then the problem (2.12) using two time scales also yields periodic

responses of the DAE (1.1). Starting from some initial condition, the MPDAE (2.10) is

solved until the solution reaches a periodic signal, i.e., the Fourier coefficients in (2.5)

become constant.

Before considering numerical schemes, we investigate the structure of the MPDAE and

the well-posedness of the problem.

2.1.3 Characteristic system of the MPDAE

The following results are based on the special structure of the MPDAE (2.6) and its

inherent partial differential equation (PDE), which have been investigated in [24]. In this

paper, we only give a short overview of the basic ideas.

The inherent PDE of system (2.6) is of hyperbolic type, where each component of the

system consists of a derivative in direction of the diagonal. Thus, the information transport

takes place along characteristic curves, which are straight lines in diagonal direction. The

algebraic constraints in case of DAEs do not affect this information transport and we are

able to formulate the characteristic system of (2.6),

d

dτ
tl(τ) = 1, l = 1, . . . , m,

d

dτ
q(x̂(τ)) = f (b̂(t1(τ), . . . , tm(τ)), x̂(τ)).

(2.13)

Thereby, the time variables as well as the MVF of the solution depend on a parameter τ.
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The part corresponding to the time variables can be solved explicitly. Hence, we obtain

the characteristic projections

(t1(τ), . . . , tm(τ)) = (τ + c1, . . . , τ + cm) for arbitrary c1, . . . , cm ∈ R . (2.14)

The characteristic projections represent a continuum of parallel straight lines in the

domain of dependence. Inserting this result in the last equation of the characteristic

system (2.13) yields

d

dτ
q(x̂(τ)) = f (b̂(τ + c1, . . . , τ + cm), x̂(τ)). (2.15)

This family of DAE systems completely describes the transport of information in the

system of MPDAEs (2.6).

Due to the hyperbolic structure of the system, Cauchy initial value problems are well-

posed provided that initial conditions are consistent. Moreover, the structure can be used

to solve multiperiodic boundary value problems numerically, as we will see in Section 2.2.

2.1.4 Well-posedness of problems

To investigate the properties of the MPDAE system (2.6) with respect to algebraic

constraints, we have to write the original DAE of the network approach in a more

detailed manner. Excluding controlled sources, modified nodal analysis [7, 12] leads to

the system

AC
˙̃q + ARr

(
A�
Ru(t), t

)
+ ALjL(t) + AV jV (t) + AI ı(t) = 0, (2.16a)

Φ̇ − A�
Lu(t) = 0, (2.16b)

A�
Vu(t) − v(t) = 0, (2.16c)

q̃ − qC
(
A�
Cu(t), t

)
= 0, (2.16d)

Φ − ΦL(jL(t), t) = 0. (2.16e)

The incidence matrices AC, AR, AL and AV , AI are associated with capacitive, resistive,

inductive parts of the network and with branches including independent voltage and

current sources, respectively. Correspondingly, we denote charges by q̃, fluxes by Φ,

resistances by r, current sources by ı and voltage sources by v. The state variables

(u, jL, jV )� are node potentials and currents through inductances and voltage sources. To

shorten the notation, we will from now on skip the time dependence of the state variables.

In [16], the multidimensional signal model is applied to the system (2.16) and the

structural properties of the resulting “detailed version” of an MPDAE are investigated.

For this purpose, the MPDAE is split into a semi-explicit system of PDEs and algebraic

equations. This is done by means of orthogonal projectors following techniques proposed

by Estèvez Schwarz and Tischendorf [6], who carry out the splitting for the original

network-DAE (2.16).

As the derivation of the MPDAE’s semi-explicit formulation is rather technical

and lengthy, we show an equivalent approach, where we start from the semi-explicit
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DAE-formulation due to [6] and then introduce the multidimensional signal model.

Thereby, we do not have to deal with the various projectors, which are needed to split

the equations, but we can focus on the transfer by MVFs.

The relation of index properties of the differential algebraic network equations and

topological conditions of the circuit have also been investigated by Tischendorf [36]. The

network-DAE (2.16) has differential index 1, if the following two topological conditions

are satisfied:

T1: There are no cutsets consisting of inductances and/or current sources only:

ker(AC, AR, AV )� = {0}.
T2: There are no loops consisting of only capacitances and at least one voltage source:

kerQ�
CAV = {0}.

In [6], the authors prove that the system (2.16) can then be written in the semi-explicit

form

PC u̇ = − H−1
1

(
A�
Cu, t

)
P�
C

[
AC

∂

∂t
qC

(
A�
Cu, t

)
+ ARr

(
A�
Ru, t

)
+ ALjL + AV jV + AI ı(t)

]
, (2.17a)

j̇L = L−1(jL, t)

(
A�
Lu − ∂

∂t
ΦL(jL, t)

)
, (2.17b)

0 = Q�
C

[
ARr

(
A�
Ru, t

)
+ ALjL + AV jV + AI ı(t)

]
, (2.17c)

0 = A�
Vu − v(t). (2.17d)

This is done using the orthogonal projectors QC onto the kernel of A�
C , and PC such that

QC + PC = I . The capacitance and inductance matrices

C(w, t) :=
∂qC (w, t)

∂w
and L(w, t) :=

∂ΦL(w, t)

∂w
(2.18)

as well as the matrix

H1

(
A�
Cu, t

)
:= ACC

(
A�
Cu, t

)
A�
C + Q�

CQC (2.19)

are positive definite. Thus, the system (2.17) defines differential equations for PCu and jL
and two constraints, which can be resolved for the algebraic variables QCu and jV .

We apply the multidimensional signal model for the biperiodic case of two different

time scales and represent each time-dependent function occurring in (2.17) by its MVF.

Moreover, we introduce the matrices

Ĉ(w, t1, t2) :=
∂q̂C (w, t1, t2)

∂w
and L̂(w, t1, t2) :=

∂Φ̂L(w, t1, t2)

∂w
, (2.20)

which are assumed to be positive definite with a globally bounded inverse on the domain

[0, T1] × [0, T2] defined by the time scales.
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Altogether, we obtain the semi-explicit MPDAE system

∂PC û

∂t1
+

∂PC û

∂t2
= −Ĥ−1

1

(
A�
C û, t1, t2

)
P�
C

[
AC

(
∂q̂C
∂t1

+
∂q̂C
∂t2

)(
A�
C û, t1, t2

)
+AR r̂

(
A�
R û, t1, t2

)
+ ALĵL + AV ĵV + AI ı̂(t1, t2)

]
, (2.21a)

∂ĵL
∂t1

+
∂ĵL
∂t2

= L̂−1(ĵL, t1, t2)

(
A�
L û −

(
∂Φ̂L

∂t1
+

∂Φ̂L

∂t2

)
(ĵL, t1, t2)

)
, (2.21b)

0 = Q�
C

[
AR r̂

(
A�
R û, t1, t2

)
+ ALĵL + AV ĵV + AI ı̂(t1, t2)

]
, (2.21c)

0 = A�
V û − v̂(t1, t2), (2.21d)

where again the matrix

Ĥ1

(
A�
C û, t1, t2

)
:= ACĈ

(
A�
C û, t1, t2

)
A�
C + Q�

CQC (2.22)

is positive definite by construction. The two constraints (2.21c) and (2.21d) are resolvable

for the algebraic variables QC û and ĵV , iff the topological conditions T1 and T2 hold.

Thus, similar to the case of DAEs, the MPDAE-formulation of (2.16) is represented by a

PDE on a manifold, which can be written as a so-called “underlying PDE” (cf. [16]).

If one of the topological conditions is violated, the network-DAE (2.16) is of index 2.

In this case, the system can also be written in a semi-explicit form, where the algebraic

variables of (2.17) are split into index 1 and index 2 variables using further ortho-

gonal projectors. Applying the multidimensional signal model again yields a semi-explicit

MPDAE, which can also be derived starting from the MPDAE-formulation of (2.16) and

then splitting the MVFs of the network variables via the same orthogonal projectors.

In both, index 1 and index 2 cases of the network-DAE, the corresponding MPDAE

inherits all the structural properties of the original system. Moreover, when looking at

the characteristic system (2.15), we also retrieve the structure of the original network-

DAE (2.16). Due to the particular structure, it seems natural to assign index concepts for

DAEs to the MPDAE system. Therefore, we do not expect additional stability problems,

when solving the network equations via the multidimensional approach.

For the general DAE-formulation (1.1), a comparison to (2.16) yields

x := (q̃,Φ, u, jL, jV )�, q(x) := (AC q̃,Φ, 0, 0, 0)� (2.23)

and the remaining terms comprise the right-hand side with the time-dependent input

signals. Thus, the network-DAEs (2.16) represent a special case of (1.1), where a linear

function q is present. Furthermore, the general form (1.1) includes a broad class of

DAEs obtained by other mathematical models of electric circuits than MNA (see [15]

for examples). For simplicity, we use the compact formulation (1.1) to outline numerical

methods in the following sections.
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2.2 Numerical methods

In this section, we describe numerical methods for solving initial-boundary value prob-

lems (2.9) as well as multiperiodic boundary value problems (2.8) of the MPDAE system.

Thereby, we restrict out attention to the case of two time scales, since generalisations

to three or more time variables are straightforward. Consequently, we consider the

MPDAE (2.10) in the following.

2.2.1 Frequency domain methods

Brachtendorf et al. [2] introduce a method for determining biperiodic solutions according

to (2.11) purely in the frequency domain. Therefore, both time scales have to be periodic,

since a representation using Fourier coefficients is applied for each variable. This strategy

can be regarded as a multidimensional generalisation of the harmonic balance technique.

The approximation is obtained via a Galerkin approach. The MPDAE implies the

definition of the residual

r(t1, t2) :=
∂q(x̂)

∂t1
(t1, t2) +

∂q(x̂)

∂t2
(t1, t2) − f (b̂(t1, t2), x̂(t1, t2)) (2.24)

and thus, the corresponding weak formulation reads

1

T1T2

∫ T1

0

∫ T2

0

r(t1, t2) · Ψ(t1, t2) dt2 dt1 = 0 (2.25)

for all test functions Ψ : R 2 → C k . Here, the integration, multiplication and complex

conjugation operate on each component l = 1, . . . , k, separately. The unknown solution is

approximated by a finite sum of two-dimensional trigonometric polynomials

x̂(t1, t2)
.
=

p1∑
j1=−p1

p2∑
j2=−p2

X̂j1 ,j2 exp (i(ω1j1t1 + ω2j2t2)) (2.26)

with X̂j1 ,j2 ∈ C k and frequencies ωl = 2π/Tl for l = 1, 2. This approximation is biperiodic

due to its construction. The basis functions used in the sum (2.26) form an orthogonal

system with respect to the sesquilinear form corresponding to (2.25). Let Q̂j1 ,j2 and F̂j1 ,j2 be

the according Fourier coefficients of the biperiodic functions q(x̂) and f (b̂, x̂), respectively.

These values depend on all unknowns X̂ := (X̂j1 ,j2 ). Now, the partial derivatives can be

evaluated explicitly

∂q(x̂)

∂t1
(t1, t2) +

∂q(x̂)

∂t2
(t1, t2)

.
=

p1∑
j1=−p1

p2∑
j2=−p2

i(ω1j1 + ω2j2)Q̂j1 ,j2 (X̂) exp (i(ω1j1t1 + ω2j2t2)) (2.27)

and we define the coefficients

Ĥj1 ,j2 (X̂) := i(ω1j1 + ω2j2)Q̂j1 ,j2 (X̂) − F̂j1 ,j2 (X̂). (2.28)
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Following the Galerkin approach, we employ the test functions

Ψ(t1, t2) = e · exp
(
i(ω1j

∗
1 t1 + ω2j

∗
2 t2)

)
(2.29)

for j∗
1 = −p1, . . . , p1, j

∗
2 = −p2, . . . , p2 , where e ∈ C k denotes e := (1, . . . , 1)�. Inserting

the residual, which depends on the coefficients (2.28), and the test functions in (2.25) yields

the equations

1

T1T2

∫ T1

0

∫ T2

0

p1∑
j1=−p1

p2∑
j2=−p2

Ĥj1 ,j2 (X̂) exp (iω̃(t1, t2)) dt2 dt1 = 0

with ω̃(t1, t2) := ω1(j1 − j∗
1 )t1 + ω2(j2 − j∗

2 )t2

(2.30)

for j∗
1 = −p1, . . . , p1, j

∗
2 = −p2, . . . , p2. If we interchange integration and summation, then

the orthogonality of the basis functions implies

Ĥj1 ,j2 (X̂) = 0 for j1 = −p1, . . . , p1, j2 = −p2, . . . , p2. (2.31)

We obtain a non-linear system of (2p1 + 1)(2p2 + 1)k equations for the unknown Fourier

coefficients in (2.26). Methods of Newton type yield a corresponding approximation of

the involved coefficients. The efficient evaluation of the non-linear system and its Jacobian

matrix demands discrete Fourier transformations and their inverse mappings. Since we

consider solutions x̂ : R 2 → R k , an equivalent real-valued formulation of the approach

leads to a non-linear system for the real degrees of freedom only.

The above method has been successfully used in numerical simulations of electric circuits

(see [2]). The frequency domain technique is efficient if the time scales exhibit a nearly

linear behaviour, i.e., occurring functions are similar to harmonic oscillations. However,

strongly non-linear functions in the MPDAE system may demand a huge number of

coefficients in the sum (2.26) in order to obtain sufficiently accurate approximations.

Hence, the pure frequency domain method becomes inefficient. In this case, time domain

techniques offer an adequate alternative.

2.2.2 Time domain methods

In time domain, techniques can be applied for solving initial-boundary value problems

(2.12) as well as biperiodic boundary value problems (2.11). Finite difference schemes

constitute a simple approach for the approximation of biperiodic solutions of the MPDAE

(2.10). Thereby, the partial derivatives are replaced by difference formulae using values of

the solution on a grid in the time domain. For simplicity, we apply a uniform grid with

the points

(
t1,j1 , t2,j2

)
:= ((j1 − 1)h1, (j2 − 1)h2), where h1 :=

T1

n1
and h2 :=

T2

n2
(2.32)

for j1 = 1, . . . , n1 and j2 = 1, . . . , n2. The values x̂j1 ,j2 := x̂(t1,j1 , t2,j2 ) ∈ R k are unknown. If

we substitute the partial derivatives by symmetric differences, for example, we obtain the
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non-linear equations

1

2h1

[
q
(
x̂j1+1,j2

)
− q

(
x̂j1−1,j2

)]
+

1

2h2

[
q
(
x̂j1 ,j2+1

)
− q

(
x̂j1 ,j2−1

)]
= f

(
b̂
(
t1,j1 , t2,j2

)
, x̂j1 ,j2

) (2.33)

for j1 = 1, . . . , n1 and j2 = 1, . . . , n2. The values x̂j1 ,j2 for the indices j1 = 0, n1 + 1 and

j2 = 0, n2 + 1, which are located outside the grid, are identified with the solution inside

the grid using the periodicities. This results in a non-linear system of n1n2k equations for

n1n2k unknowns. Finite difference methods have been successfully used for investigating

RF circuits (see [21, 25, 33]).

Considering initial-boundary value problems (2.12), techniques based on semidiscret-

isation become feasible. Consequently, only one partial derivative in (2.10) is replaced by

a difference formula and, thus, a system of DAEs for the resulting approximation needs

to be solved. Two types of semidiscretisation techniques exist, which correspond to the

method of lines and the Rothe method in case of parabolic PDEs with initial-boundary

conditions.

First of all, we consider the technique proceeding similarly to the method of lines. The

unknown functions are

x̃j2 (t1) := x̂(t1, (j2 − 1)h2) with h2 :=
T2

n2
for j2 = 1, . . . , n2. (2.34)

The partial derivative with respect to the second time scale is replaced by a difference

formula. For example, using symmetric differences again, we obtain the discretised systems

dq(x̃j2 )

dt1
(t1) = f (b̂(t1, (j2 − 1)h2), x̃j2 (t1)) − 1

2h2

[
q(x̃j2+1(t1)) − q(x̃j2−1(t1))

]
(2.35)

for j2 = 1, . . . , n2. The periodicity of the second time scale allows the identification x̃0 = x̃n2

and x̃n2+1 = x̃1. The condition (2.12) yields according initial values at t1 = 0. Thus, we

obtain an initial value problem of n2k DAEs for the unknown approximations (2.34).

The second approach is based on the Rothe method; i.e., we discretise the derivative with

respect to the first time scale. Using equidistant step size h1, the unknown approximations

read

x̃j1 (t2) := x̂((j1 − 1)h1, t2) for j1 = 1, 2, 3, . . . . (2.36)

For simplicity, we apply a finite difference formula of first order and obtain the systems

dq(x̃j1 )

dt2
(t2) = f (b̂((j1 − 1)h1, t2), x̃j1 (t2)) − 1

h1

[
q(x̃j1 (t2)) − q(x̃j1−1(t2))

]
(2.37)

for j1 = 2, 3, . . . , where the periodicity of the second time scale implies the boundary

conditions x̃j1 (0) = x̃j1 (T2) for each j1. The initial conditions from (2.12) determine the

starting function x̃1 at t1 = 0. This approach yields a sequence of boundary value problems

of k DAEs, which have to be solved successively. In later steps, BDF (backward difference

formula) schemes of higher order can be used in the semidiscretisation to improve the

accuracy.
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Moreover, we can apply the presented techniques based on semidiscretisation to solve

the biperiodic problem (2.11). In the first approach, the periodicity in t1 yields boundary

conditions for the DAE systems (2.35) specified by

x̃j2 (0) = x̃j2 (T1) for all j2 = 1, . . . , n2. (2.38)

This periodic problem can, for example, be solved by methods described in [18]. When

applying the second strategy, the periodicity in t1 imposes

x̃1(t2) = x̃n1
(t2) for all t2 ∈ [0, T2], where h1 :=

T1

n1
. (2.39)

Since the approximation x̃n1
is computed starting from x̃1, a condition for the unknown

initial values of the biperiodic solution is obtained. Using this approach corresponds

to a hierarchical solution of boundary value problems. We try to satisfy the outer

condition (2.39) iteratively, whereas we consider the successive inner problems (2.37) to

evaluate the outer condition. Numerical results using the latter approach are presented

in [24, 33], for example.

The transport of information in the MPDAE system can be used to construct methods

of characteristics. Considering the initial-boundary value problem (2.12), we apply a

discretisation of the initial manifold. For example, using equidistant step sizes yields the

points

(t1, t2) = (0, (j2 − 1)h2) for h2 :=
T2

n2
and j2 = 1, . . . , n2. (2.40)

A unique characteristic projection runs through each point and the systems according

to (2.15) with x̃j2 (τ) := x̂(τ, τ + (j2 − 1)h2) are

dq(x̃j2 )

dτ
(τ) = f (b̂(τ, τ + (j2 − 1)h2), x̃j2 (τ)) for j2 = 1, . . . , n2. (2.41)

Each DAE system can be solved separately for τ ∈ [0, T1], where the end point T1 is

not necessarily a period. The condition (2.12) defines the initial values for the integration.

Moreover, the resulting functions represent exact values of the corresponding solution.

However, solving a system of the form (2.41) in the complete time interval [0, T1] for

some T1 � T2 demands the same computational effort as an initial value problem of the

original DAE (1.1), which should be avoided due to the huge number of oscillations. For

example, if T1 ≈ qT2 with q � 1 holds, then n2q oscillations have to be resolved. Hence,

although feasible, this approach is drastically inefficient for solving initial-boundary value

problems.

Nevertheless, an efficient method of characteristics can be provided in case of biperiodic

boundary value problems. Thereby, we exploit the fact that the biperiodic solution is

uniquely defined by its initial values on the manifold {(t1, t2) ∈ R 2 : t2 = 0}. Thus, the

initial points

(t1, t2) = ((j1 − 1)h1, 0) for h1 :=
T1

n1
and j1 = 1, . . . , n1 (2.42)
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T2

t2

T1 t1

Figure 2. Characteristic projections of MPDAE in domain of dependence.

are used. The corresponding systems (2.15) with x̃j1 (τ) := x̂(τ + (j1 − 1)h1, τ) read

dq(x̃j1 )

dτ
(τ) = f (b̂(τ + (j1 − 1)h1, τ), x̃j1 (τ)) for j1 = 1, . . . , n1. (2.43)

Now, the advantage is that each system has to be solved only for τ ∈ [0, T2]. Since we

assume that T1 � T2, only n1 oscillations have to be captured in each solution of an

initial value problem corresponding to the n1 subsystems (2.43). Again, the systems can

be solved separately.

The initial values of the biperiodic solution are unknown a priori. The following strategy

can be used to determine these quantities. The periodicity in the first time scale is satisfied

via an identification at the boundaries. The periodicity in the second time scale demands

x̃j1 (0) = x̂((j1 − 1)h1, 0) = x̂((j1 − 1)h1, T2). (2.44)

A unique characteristic projection runs through each initial point as depicted in Figure 2.

Solving the systems (2.43) with initial values from the biperiodic solution yields final

values on the line t2 = T2. We apply these values to interpolate the solution in the

points ((j1 − 1)h1, T2) for j1 = 1, . . . , n1. The periodicity in the first time variable allows

to shift the final values for approximating all given points. Considering (2.44), we obtain

the linear boundary conditions

(x̃1(0), . . . , x̃n1
(0))� = B(x̃1(T2), . . . , x̃n1

(T2))
�, (2.45)

where B ∈ R n1k×n1k represents a constant matrix depending on the used interpolation

scheme. Alternatively, a similar condition can be constructed by interpolating the final

values of the integration using the initial points. Hence, we end up with a boundary value

problem of the n1k DAEs (2.43). Solving the problem (2.43), (2.45) yields an approx-

imation of the biperiodic solution in the according parallelogram (see Figure 2). Using

the periodicities, we can interpolate an approximation everywhere. The boundary value

problem of DAEs can now be solved by shooting methods or finite difference schemes.

The efficiency of this approach results from applying the specific structure of the

hyperbolic PDAE system. The separate characteristic systems (2.43) are only coupled by

the boundary conditions (2.45). In contrast, a finite difference method based on a uniform
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grid performs an unnecessarily strong coupling in both coordinate directions. Thus,

concerning the computational effort, the method of characteristics is much more efficient

than the standard techniques. A comparison between finite difference methods using on

the one hand a uniform grid and on the other hand a characteristic grid is given in [25].

Furthermore, the method of characteristics features an inherent potential for parallelism

(see [26]). Even applied to circuits including digital-like signal structures, the method of

characteristics constitutes an efficient tool for the numerical simulation (see [17]).

2.2.3 Mixed domain methods

In Section 2.2.1, a pure frequency domain method is discussed, which is efficient for

mildly non-linear functions in the MPDAE. Otherwise, time domain methods are more

preferable. In some applications, the fast time scale behaves nearly linearly, whereas strong

non-linearities occur in the slow part. An early idea of Ngoya and Larchevegue [23] is

to transform only the second time scale, which is always assumed to be periodic, into the

frequency domain. From this approach, we obtain the expansion

x̂(t1, t2)
.
=

p2∑
j2=−p2

X̂j2 (t1) exp (iω2j2t2) (2.46)

with X̂j2 : R → C k and ω2 := 2π/T2. Let Q̂j2 (t1) and F̂j2 (t1) be the Fourier coefficients

of the periodic functions q(x̂(t1, ·)) and f (b̂(t1, ·), x̂(t1, ·)), respectively. These values depend

on the unknown functions X̂ := (X̂j2 (t1)) in (2.46). Following a Galerkin approach similar

to the procedure in Section 2.2.1, we obtain the relation

p2∑
j2=−p2

[
dQ̂j2 (X̂)

dt1
(t1) + iω2j2(Q̂j2 (X̂))(t1) − (F̂j2 (X̂))(t1)

]
exp (iω2j2t2) = 0. (2.47)

Since the occurring basis functions are orthogonal, we obtain the conditions

dQ̂j2 (X̂)

dt1
(t1) = (F̂j2 (X̂))(t1) − iω2j2(Q̂j2 (X̂))(t1) for j2 = −p2, . . . , p2, (2.48)

representing a system of DAEs for the (2p2 + 1)k unknown functions X̂j2 . An equivalent

real-valued formulation can also be derived. We are now able to use time domain

methods for solving this system. Such mixed techniques are feasible, since the time scales

are decoupled. Thus, we can tailor our method according to the behaviour of the separate

time variables and obtain a mixed time-frequency domain scheme. The initial-boundary

value problem (2.12) yields an initial value problem for the resulting DAEs (2.48). A

modification of this MPDAE approach has been used in [1, 4] to determine periodic

responses of autonomous DAEs (1.1) as well as their a priori unknown periods. On the

other hand, the biperiodic boundary value problem (2.11) implies a periodic boundary

value problem for the DAEs (2.48). Corresponding numerical simulations are given in

[3, 32, 33].

In the above approach, we perform the transformation in the frequency domain first

and then apply time domain schemes. Vice versa, mixed methods also result by considering
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Uin2

Uin1 Uout

Figure 3. Circuit diagram of the ring modulator.

the scheme (2.37), which is resulting from a semidiscretisation in the time domain. The

according sequence of periodic boundary value problems of DAEs can also be solved by

harmonic balance, i.e., a method in frequency domain. Furthermore, the periodic boundary

value problem of the DAEs (2.35) allows the use of frequency domain methods, which

may be advantageous in case of a mildly non-linear slow time scale.

2.3 Illustrative example: Ring modulator

As an example for a numerical simulation using the MPDAE model, we consider the

ring modulator. Figure 3 shows the corresponding circuit diagram. The ring modulator

performs a multiplicative mixture of two independent input signals UIN1 and UIN2. A

mathematical model of the circuit is introduced by Horneber [14], where an artifical ca-

pacitance CS has been added. Consequently, the model is a system of ordinary differential

equations (ODEs) for seven node voltages and eight branch currents:

CU̇1 = I1 − I3/2 + I4/2 + I7 − U1/R,

CU̇2 = I2 − I5/2 + I6/2 + I8 − U2/R,

CSU̇3 = I3 − d(UD1) + d(UD4),

CS U̇4 = −I4 + d(UD2) − d(UD3),

CS U̇5 = I5 + d(UD1) − d(UD3),

CS U̇6 = −I6 − d(UD2) + d(UD4),

CP U̇7 = −U7/RP + d(UD1) + d(UD2) − d(UD3) − d(UD4),

LH İ1 = −U1,

LH İ2 = −U2,

LS2İ3 = U1/2 − U3 − RG2I3,

LS3İ4 = −U1/2 + U4 − RG3I4,

LS2İ5 = U2/2 − U5 − RG2I5,

LS3İ6 = −U2/2 + U6 − RG3I6,

LS1İ7 = −U1 + UIN1 − (RJ + RG1)I7,

LS1İ8 = −U2 − (RC + RG1)I8.

(2.49)
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In this system, the following abbreviations for the voltages corresponding to the diodes

are used:

UD1 =U3 − U5 − U7 − UIN2,

UD2 = −U4 + U6 − U7 − UIN2,

UD3 = U4 + U5 + U7 + UIN2,

UD4 = −U3 − U6 + U7 + UIN2.
(2.50)

The current–voltage relation of the diodes reads

I = d(U) := γ(exp(δU) − 1). (2.51)

The artificial capacitance CS causes a parasitic oscillation and, therefore, we set CS = 0

in our simulations. Consequently, the system (2.49) represents a DAE of index 2. More

information concerning the mathematical model of the ring modulator is given in [15].

For the input signals, we choose two harmonic oscillations with different periods

UIN1(t) = A1 sin

(
2π

T1
t

)
and UIN2(t) = A2 sin

(
2π

T2
t

)
, (2.52)

where T1 > T2 holds. The output voltage UOUT of the circuit is U2. Since the ring

modulator produces a multiplicative mixture of the input signals, we expect roughly

UOUT(t) ≈ B · sin

(
2π

T1
t + ϕ1

)
· sin

(
2π

T2
t + ϕ2

)
; (2.53)

i.e., a multirate behaviour with two separate time scales occurs. Consequently, we change

from the DAE system (2.49) to the corresponding MPDAE system of the form (2.10).

The values of the involved parameters are chosen as follows:

RG1 = 36.3 Ω, RG2 = RG3 = 17.3 Ω, RJ = RP = 50 Ω, RC = 600 Ω, R = 25 kΩ,

C = 16 nF, CP = 10 nF, LH = 4.45 H, LS1 = 2 mH, LS2 = LS3 = 0.5 mH,

γ = 40.67286402 · 10−9 A, δ = 17.7493332V−1, A1 = 0.5 V, A2 = 2 V.

The numerical simulation follows [27]. We apply the method of characteristics presented

in Section 2.2.2. Thereby, the related boundary value problem (2.43), (2.45) is solved via

a finite difference method using a scheme of Dahlquist (see [10]). Although Dahlquist’s

formula is unstable for solving initial value problems of ODEs, the discretisation of

boundary value problems is successful. Furthermore, we use linear interpolation for

evaluating the boundary conditions. We fix the slow rate at T1 = 1,000 ms, whereas four

different cases with respect to the fast rate T2 are simulated. Figure 4 illustrates the

resulting MVFs for the output voltage. The multidimensional model allows a graphic

comparison of the signal’s behaviour in the time domain. Further numerical simulations

using the MPDAE model for a ring modulator circuit are given in [2, 3, 19].

Finally, we use the solution of the MPDAE to reconstruct the corresponding DAE

solution via (2.7) in the case T1 = 1,000 ms and T2 = 0.1 ms. Consequently, the MVFs

allow to reconstruct 10,000 oscillations during one slow period. For comparison, an initial

value problem of the DAE (2.49) is solved applying the RADAU5 integrator (see [11]),

where the solution of the MPDAE in t1 = t2 = 0 provides the starting values. Figure 5
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T1 = 1,000 ms, T2 = 10  ms T1 = 1,000 ms, T2 = 1  ms

T1 = 1,000 ms, T2 = 0.1 ms T1 = 1,000 ms, T2 = 0.01 ms
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Figure 4. MPDAE solutions for ÛOUT using different time scales.
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Figure 5. Output voltage UOUT obtained by transient analysis of the DAE (solid line) and by

reconstruction using the MVF (circles) in time intervals (0 ms, 0.5 ms) and (700 ms, 700.5 ms).

demonstrates the results for two different time intervals. We observe a good agreement of

both approximations. In particular, the amplitude modulation is resolved correctly.

The above test example exhibits a medium-sized dimension. Numerical simulations

using electric circuits, where the number of unknown voltages and currents is larger, are

presented in [20]. For huge dimensions, the non-linear systems for biperiodic problems

may become too costly. However, extremely large circuits with the considered multitone
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Figure 6. Frequency modulated signal x (left) and corresponding naive MVF x̂ (right).

behaviour are not likely to appear in practice, since each voltage or current has to feature

oscillations of the same time scales. In case of parts with different time behaviour in a

circuit, according decompositions are required.

3 Model for frequency modulation

Now, we assume the existence of autonomous parts in an RF circuit, which enable the

generation of frequency modulation. Thus, we have to modify the signal model as well

as the corresponding MPDAE system to tackle this problem efficiently. Although the

succession of the survey is analogue to the previous chapter, the analytical and numerical

properties of the multivariate model become different and require a deeper investigation.

3.1 Multidimensional approach

3.1.1 Multivariate model for AM/FM signals

In this section, we consider the presence of frequency modulation in addition to amplitude

modulation. For example, the multitone signal

x(t) :=

[
1 + α sin

(
2π

T1
t

)]
· sin

(
2π

T2
t + β sin

(
2π

T1
t

))
(3.1)

with T1 � T2 includes amplitude modulation introduced by the parameter 0 < α < 1,

whereas the parameter β > 0 determines the amount of frequency modulation. Figure 6

(left) shows the qualitative behaviour of the signal (3.1). We can directly specify a

corresponding biperiodic MVF via

x̂(t1, t2) :=

[
1 + α sin

(
2π

T1
t1

)]
· sin

(
2π

T2
t2 + β sin

(
2π

T1
t1

))
. (3.2)

Again, the reconstruction reads x(t) = x̂(t, t). Unfortunately, this MVF includes many

oscillations in the related rectangle [0, T1] × [0, T2]; see Figure 6 (right). The number of

oscillations increases the larger the parameter β becomes. The naive representation (3.2)
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is inefficient in the case of frequency modulated signals, although it is suitable for purely

amplitude modulated signals.

To obtain an appropriate formulation, Narayan and Roychowdhury [22] propose to

model the frequency modulation separately. Accordingly, the MVF just includes the

amplitude modulation part, which yields the biperiodic description

ŷ(t1, t2) :=

[
1 + α sin

(
2π

T1
t1

)]
· sin (2πt2) , (3.3)

where the second period is transformed to 1. The alternative MVF (3.3) exhibits the

same form as the MVF (2.4) shown in Figure 1 (right). Thus, we again obtain a simple

and efficient representation. The frequency modulation part is specified by the additional

time-dependent function

Ψ (t) :=
t

T2
+

β

2π
sin

(
2π

T1
t

)
. (3.4)

We perform the reconstruction of the original signal (3.1), using

x(t) = ŷ(t, Ψ (t)). (3.5)

Thereby, the function (3.4) stretches the second time scale and, thus, it is called a warping

function. The derivative of the warping function can be seen as a local frequency of the

respective signal. In our example, the local frequency is given by

ν(t) := Ψ ′(t) =
1

T2
+

β

T1
cos

(
2π

T1
t

)
, (3.6)

which represents a simple T1-periodic function in time. Hence, we obtain an efficient

multidimensional model for frequency modulated signals by means of an MVF and a

corresponding local frequency function. Note that the multivariate representation is not

unique here, since a family of MVFs and respective local frequencies can reproduce the

same signal.

The outlined multidimensional model can be generalised to an arbitrary finite number

of time scales. As we have seen in the above example, the signal (3.1) can be described by

the MVF (3.2) with constant frequency as well as by the MVF (3.3) including a varying

frequency function. We have the choice to arrange a time scale either with a constant

frequency or with varying frequency in the multivariate representation. The suitable way

of modelling follows from the structure of the underlying signal.

3.1.2 Warped MPDAE model

If the solution of the DAE (1.1) exhibits frequency modulation, then the multivariate

representation again implies an MPDAE. Narayan and Roychowdhury [22] introduce a

corresponding system of warped multirate partial differential algebraic equations. In the
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general case of m separate time scales, the system reads

m∑
l=1

νl(t1, . . . , tm)
∂q(x̂)

∂tl
= f (b̂(t1, . . . , tm), x̂(t1, . . . , tm)), (3.7)

where νl : R m → R represent local frequency functions for l = 1, . . . , m. Setting νl ≡ cl with

a constant cl ∈ R means that the lth time scale is assumed to own a constant frequency

or an aperiodic behaviour. If the local frequency is not constant, then an appropriate

function is often unknown a priori. Hence, the system (3.7) is underdetermined and we

need additional conditions to identify adequate local frequencies. Some choices of such

conditions will be discussed in Section 3.1.5.

In many applications, the input does not include frequency modulated signals but

produces frequency modulation in the output signals. If the MVF b̂ involves (without

loss of generality) just the first p variables t1, . . . , tp with p < m, then the local frequency

functions depend only on the same variables.

In the general case (3.7), there exists no explicit formula for the reconstruction of a

corresponding DAE solution. Here, the strategy of reconstruction requires the solution of

a system of ordinary differential equations (ODEs), which is analysed in Section 3.1.3.

To solve the system (3.7), initial and boundary conditions have to be specified. The

multidimensional approach is efficient only if all fast time scales exhibit a periodic

behaviour. Only the slowest time scale may be periodic or aperiodic.

In electric circuits involving frequency modulation, the most common case consists in

a forced slow time scale together with an autonomous fast time scale. The input signals

operate just at the slow time scale and, thus, do not require a multivariate description.

Consequently, the corresponding system of warped MPDAEs has the form

∂q(x̂)

∂t1
+ ν(t1)

∂q(x̂)

∂t2
= f (b(t1), x̂(t1, t2)). (3.8)

Since we assume that the input produces the frequency modulation, the local frequency

function depends on the same variable as the input. In this specific case, it is straightfor-

ward to reconstruct a solution of the DAE (1.1) via

x(t) = x̂

(
t,

∫ t

0

ν(s) ds

)
, (3.9)

which corresponds to the signal model outlined in Section 3.1.1.

The resulting boundary conditions for the warped MPDAE (3.8) are analogous to

the case of constant frequencies, cf. Section 2.1.2. If the input signal is aperiodic, then

we obtain an initial-boundary value problem (2.12) with T2 = 1. The second period is

normalised to 1, whereas the local frequency specifies the magnitude of the second time

scale. In case of T1-periodic input signals, a biperiodic solution of the pure boundary

value problem (2.11) with T2 = 1 is to be determined. Furthermore, the discussion from

Section 2.1.4 can be performed in an analogous way to verify the well-posedness of the

system (3.8).
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3.1.3 Characteristic system of the warped MPDAE

According to the multirate system (2.6), warped MPDAE systems also exhibit a hyperbolic

structure. We obtain a corresponding characteristic system, which completely describes the

transport of information. The characteristic system of the general warped MPDAE (3.7)

reads

d

dτ
tl(τ) = νl(t1(τ), . . . , tm(τ)), l = 1, . . . , m ,

d

dτ
q(x̂(τ)) = f (b(t1(τ), . . . , tm(τ)), x̂(τ)) ,

(3.10)

where the variables tl as well as the MVF x̂ depend on a parameter τ. For given local

frequency functions, the part for the variables t1, . . . , tm, represents a system of ODEs. A

solution of this system yields the characteristic projections. If solutions of corresponding

initial value problems are always unique, then two different characteristic projections

never intersect. For example, the uniqueness can be guaranteed via νl ∈ C1 for all l.

In contrast to constant frequencies, we do not have an explicit formula for the char-

acteristic projections in this general case. Considering a specific characteristic projection,

we obtain the whole characteristic curve by solving the last equation in (3.10), which

represents a system of DAEs. The solution of (3.10) with initial values

t1(0) = · · · = tm(0) = 0, x̂(0) = x0 (3.11)

recovers a solution of the original DAE (1.1). Therefore, solving the ODE part in (3.10)

is necessary to obtain the reconstruction scheme for solutions of the underlying DAE.

In the important case (3.8) with two time scales, we obtain the characteristic system

d

dτ
t1(τ) = 1,

d

dτ
t2(τ) = ν(t1(τ)) ,

d

dτ
q(x̂(τ)) = f (b(t1(τ)), x̂(τ)) .

(3.12)

We are able to solve the part for the variables t1, t2 explicitly and we obtain characteristic

projections of the form

t2(t1) =

∫ t1

0

ν(s) ds + c for arbitrary c ∈ R , (3.13)

which generate a continuum of parallel curves in the domain of dependence.

3.1.4 Transformation properties

We can transform an MVF satisfying the general system (3.7) for a specific local frequency

function into an MVF fulfilling the system with another local frequency. However, such

a transformation is interesting only if it does not change a certain initial manifold. In

case of two time scales, an MVF x̂ solving the MPDAE (3.8) for a local frequency

function ν ∈ C0 can be transformed to another MVF ŷ satisfying the system with an
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arbitrary local frequency µ ∈ C0 via

ŷ(t1, t2) := x̂

(
t1, t2 +

∫ t1

0

ν(s) − µ(s) ds

)
. (3.14)

The initial manifold {(t1, t2) ∈ R 2 : t1 = 0} is invariant under this transformation. In

particular, both solutions yield the same solution of the underlying DAE (1.1) in the

corresponding reconstructions (3.9), since

x(t) = x̂

(
t,

∫ t

0

ν(s) ds

)
= ŷ

(
t,

∫ t

0

µ(s) ds

)
. (3.15)

Hence, the local frequencies represent free parameters in the multidimensional approach,

which we can specify to achieve an efficient representation by corresponding MVFs.

However, we do not have knowledge about the solutions a priori. We need additional

conditions, which identify appropriate local frequency functions.

For biperiodic MVFs, the involved local frequency functions have to satisfy some

restrictions in order to preserve the periodicities in the transformation (3.14). The four

properties

(i) x̂ ∈ C1 is (T1, 1)-periodic, (iii) µ ∈ C0 is T1-periodic,

(ii) ν ∈ C0 is T1-periodic, (iv)
∫ T1

0
µ(s) ds =

∫ T1

0
ν(s) ds,

(3.16)

guarantee that the function ŷ ∈ C1 defined by (3.14) is (T1, 1)-periodic. The require-

ments (i)–(iii) are obvious. Defining the average frequency of a periodic local frequency

function σ ∈ C0 as

σ :=
1

T1

∫ T1

0

σ(s) ds, (3.17)

property (iv) implies that the average frequencies coincide, i.e., ν = µ. Therefore, the

existence of one biperiodic solution yields a family of solutions with the same average

frequency generated via (3.14). In particular, a solution corresponding to a constant local

frequency ν exists; i.e., it satisfies a standardised form of the MPDAE (2.10).

Furthermore, the specific system (3.8) is autonomous in the second time scale. Thus,

given an MVF satisfying the system, the shifted function

ẑ(t1, t2) := x̂(t1, t2 + c) for constant c ∈ R (3.18)

represents a solution corresponding to the same local frequency function again. This

transformation, which is obvious on the MPDAE level, represents a hidden degree of

freedom in solutions of the original DAE system (1.1).

3.1.5 Additional conditions

In this section, we discuss the identification of adequate local frequency functions. We

restrict ourselves to the case of two time scales described by the system (3.8), where
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just one frequency function has to be specified. If widely separated time scales are

present, then small changes in the local frequency function cause huge deformations in

the corresponding MVFs due to the transformation (3.14) (see [28]). In view of this

sensitivity, we cannot expect that an a priori specification of the local frequencies yields

a suitable solution. The local frequency function has to be determined indirectly by

additional conditions, which use the representation by MVFs.

Narayan and Roychowdhury [22] propose a continuum of phase conditions, which

control the phase in each cross section of the MVF corresponding to a constant value t1.

Without loss of generality, we choose the first component of the MVF x̂ = (x̂1, . . . , x̂k)�.

In time domain, an example for a phase condition reads

x̂1(t1, 0) = η(t1) for all t1 ∈ R (3.19)

with predetermined function η : R → R . Appropriate constant choices η ≡ η0 are often

sufficient. Another example is given by

∂x̂1

∂t2
(t1, 0) = η(t1) for all t1 ∈ R . (3.20)

Thereby, it is often appropriate to require η ≡ 0. The constant choices represent multi-

dimensional generalisations of phase conditions for DAEs. Both (3.19) and (3.20) yield

an additional boundary condition in the time domain. The existence of corresponding

solutions can be motivated by the implicit function theorem and employing the transform-

ations (3.14) and (3.18). We may apply these phase conditions for solving pure boundary

value problems (2.11) as well as initial-boundary value problems (2.12).

If the fast time scale is transformed in the frequency domain, then phase conditions

can be based on Fourier coefficients of the MVF (see [22]). A simple example is the

requirement

Im
(
X1

j (t1)
)

= 0 for all t1 ∈ R , (3.21)

where Im(X1
j ) : R → R represents the imaginary part of the jth coefficient in the Fourier

expansion applied to the first component x̂1. Zhu and Christoffersen [38, 39] succeed in

using conditions with Fourier coefficients for numerical simulations.

In general, elementary phase conditions already yield simple, i.e., efficient solutions of

the MPDAE system. However, this favourable property cannot be proven universally.

Therefore, the idea is to incorporate the complete MVF in order to determine an optimal

solution. Clearly, the optimality condition still needs to be specified.

Houben [13] introduces a minimisation criterion of the form

β(t1) :=

∫ 1

0

∥∥∥∥∂q(x̂)

∂t1

∥∥∥∥
2

dt2 → min. for each t1 (3.22)

using the Euclidean norm ‖ · ‖ in the space R k . The function β includes just the derivative

with respect to the slow time scale, since the derivative corresponding to the fast time

scale is invariant under the transformation (3.14). The example in Section 3.1.1 illustrates
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that inappropriate MVFs exhibit many oscillations in the direction of the slow time scale.

This disadvantageous behaviour can be improved by requiring (3.22).

An according calculation yields an explicit formula for the optimal local frequencies

depending on the MVF, namely

νopt(t1) =

∫ 1

0

〈
f (b(t1), x̂(t1, t2)) ,

∂q(x̂)

∂t2

〉
dt2∫ 1

0

∥∥∥∥∂q(x̂)

∂t2

∥∥∥∥
2

dt2

, (3.23)

where the inner product of the space R k is denoted by < ·, · >. Inserting (3.23) in the

MPDAE (3.8) allows for solving the initial-boundary value problems (2.12) directly. How-

ever, instead of using the solution x̂ itself, the minimisation is based on the function q(x̂)

to replace corresponding derivatives by terms in (3.8). In many cases, the MVF x̂ will be

efficient if and only if q(x̂) represents a simple function. Yet this property cannot be guar-

anteed in general. Moreover, considering a semi-explicit DAE for (1.1), the minimisation

does not involve the algebraic variables.

Thus, another approach consists in minimising the derivatives of the MVF itself

(see [31]). Considering biperiodic boundary value problems (2.11), the corresponding

requirement reads

γ (x̂) := T1

∫ T1

0

∫ 1

0

k∑
l=1

wl

(
∂x̂l

∂t1

)2

dt2 dt1 → min. (3.24)

with constant weights w1, . . . , wk � 0. The weights can be used to achieve an appropriate

scaling in each component if the corresponding physical quantities differ by several orders

of magnitude. Moreover, setting some weights to zero allows to focus on an arbitrary

subset of components.

Based on the transformation formula (3.14), a corresponding variational calculus implies

a necessary condition for an optimal solution, namely

r(t1) :=

∫ 1

0

k∑
l=1

wl · ∂2x̂l

∂t12
· ∂x̂l

∂t2
dt2 = 0 for all t1 ∈ R . (3.25)

In contrast to the phase conditions (3.19) and (3.20), the requirement (3.25) is not

a boundary condition, but depends on values in the complete biperiodic domain of

dependence, which is needed to perform the minimisation everywhere. If an arbitrary

biperiodic solution of the MPDAE (3.8) exists, then the existence of an optimal function

with respect to the minimisation (3.24) can be expected in the continuum of transformed

solutions. In case of initial-boundary value problems (2.12), alternative minimisation

criteria imposed on the MVF itself have to be considered.

All presented conditions involve scalar functions depending on the slow time scale.

Thus, the structure of an additional requirement always agrees to the amount of free

parameters in the problem, since the local frequency function also represents a scalar

function depending on the slow time scale.
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Furthermore, the existence of a biperiodic solution implies a continuum of biperiodic

solutions with the same local frequency function via the translation (3.18). Consequently,

for biperiodic boundary value problems (2.11), another extra condition is necessary to

isolate a specific solution from the continuum. For this purpose, we may apply scalar

phase conditions like

x̂1(0, 0) = η0 or
∂x̂1

∂t2
(0, 0) = η0 for a constant η0 ∈ R . (3.26)

In the first variant, the constant η0 has just to be chosen out of the range of x̂1(0, ·). In the

second type, the choice η0 = 0 is always feasible, since x̂1(0, ·) is a smooth and periodic

function. Employing the continuous phase condition (3.19) or (3.20), this specification is

done automatically.

3.2 Numerical methods

In general, we can modify a numerical technique for solving the MPDAE (2.6) to derive

a method for solving the warped MPDAE (3.7). We outline these transitions for the

methods presented in Section 2.2. Thereby, we consider the system (3.8) with two time

scales. Consequently, an additional condition to identify the local frequency function (see

Section 3.1.5) has to be included in each scheme.

3.2.1 Frequency domain methods

In this section, we sketch the construction of a pure frequency domain method to solve the

biperiodic boundary value problem (2.11) of the MPDAE (3.8). Following Section 2.2.1,

we apply the finite sum (2.26) with ω2 = 2π as approximation for the (T1, 1)-periodic

MVF. Again the partial derivatives in the MPDAE are given by a modification of the

respective coefficients; see (2.27). However, the partial derivative with respect to t2 is

multiplied with the local frequency in the MPDAE. We obtain additional coefficients for

the biperiodic function

ν(t1)
∂q(x̂)

∂t2
(t1, t2)

.
=

p1∑
j1=−p1

p2∑
j2=−p2

R̂j1 ,j2 (X̂, ν) exp (i(ω1j1t1 + 2πj2t2)) . (3.27)

These values depend on the coefficients X̂j1 ,j2 as well as on the local frequency function,

which represents a drawback in frequency domain methods applied to warped MPDAEs

in comparison to common MPDAEs. The corresponding Galerkin approach yields the

non-linear system

Ĝj1 ,j2 (X̂) := iω1j1Q̂j1 ,j2 (X̂) + R̂j1 ,j2 (X̂, ν) − F̂j1 ,j2 (X̂) = 0 (3.28)

for j1 = −p1, . . . , p1, j2 = −p2, . . . , p2. Nevertheless, since the values Q̂j1 ,j2 (X̂) have to be

computed to handle the first derivative, these coefficients can be used to evaluate the

second derivative in the time domain. Given some T1-periodic function ν, the term on the

left-hand side in (3.27) can be transformed to frequency domain.
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As usual, the periodic local frequency function is unknown a priori. If a representation

of the form

ν(t1) =

∞∑
j1=−∞

Nj1 exp (iω1j1t1) (3.29)

exists and when we choose a finite sum in (3.29), we then need to compute a finite number

of unknown coefficients. Furthermore, we may apply an approximation for ν by defining a

set of T1-periodic functions, which depend on some parameters. The unknown parameters

are determined via additional conditions obtained from phase conditions.

According to Section 2.2.1, an approach in the frequency domain causes a non-linear

system for the involved Fourier coefficients. In corresponding Newton methods, the evalu-

ation of the system and its Jacobian matrix has to be done by appropriate transformations

between time and frequency domain. Methods of this type have not been used to simulate

practical examples of warped MPDAEs yet.

3.2.2 Time domain methods

The possibly simplest algorithm to solve biperiodic boundary value problems of the

warped MPDAE (3.8) is based on a discretisation of the partial derivatives using a

uniform grid in the time domain. This approach corresponds to the finite difference

methods presented in Section 2.2.2. According to the problem (2.11), we consider the

periods T1 and T2 = 1. For example, if we employ symmetric differences with respect to

the grid (2.32), then we again obtain the non-linear equations

1

2h1

[
q
(
x̂j1+1,j2

)
− q

(
x̂j1−1,j2

)]
+ νj1

1

2h2

[
q
(
x̂j1 ,j2+1

)
− q

(
x̂j1 ,j2−1

)]
= f

(
b(t1,j1 ), x̂j1 ,j2

) (3.30)

for j1 = 1, . . . , n1, j2 = 1, . . . , n2. Thereby, the values

νj1
.
= ν

(
t1,j1

)
for j1 = 1, . . . , n1 (3.31)

represent additional unknowns. This system of n1n2k equations exhibits n1n2k + n1 un-

knowns. To formulate a well-defined discretised problem, further conditions have to be

imposed. The phase condition (3.19) yields n1 additional equations. Likewise, n1 equations

can be obtained by discretising the phase condition (3.20) on the uniform grid.

Furthermore, an appropriate approximation of (3.25) on the uniform grid allows to

use the condition from the minimisation criterion (3.24). For example, a straightforward

discretisation produces the approximation

r(t1,j1 )
.
= h2

n2∑
j2=1

k∑
l=1

wl · 1

h1
2

[
x̂lj1−1,j2

− 2x̂lj1 ,j2 + x̂lj1+1,j2

]
· 1

2h2

[
x̂lj1 ,j2+1 − x̂lj1 ,j2−1

]
= 0

(3.32)

for j1 = 1, . . . , n1. Due to the periodicity, only values at the grid points are involved. The
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T1 t1

t2

1

Figure 7. Characteristic projections of warped MPDAE in domain of dependence.

computational effort of the method is not significantly higher in comparison to techniques

using phase conditions, since the discretisation of the MPDAE system represents the most

expensive part of the procedure. Recall that only n1 conditions are added to a system of

n1n2k equations. Finite difference methods including the additional conditions (3.32) have

been successfully used for numerical simulations (see [31]).

In Section 2.2.2, a method of characteristics has been presented for solving biperiodic

problems in case of constant frequencies. This approach can be transferred to the warped

MPDAE system using the transport of information outlined in Section 3.1.3. However,

the construction of the technique becomes more complicated, since the characteristic

projections depend on the a priori unknown local frequency. Nevertheless, we obtain an

efficient and robust method for solving the biperiodic problem (2.11) (see also [28]).

In the following, we consider widely separated time scales, i.e., ν(t1) � T−1
1 for all t1.

In particular, ν � 0 holds. As in the previous method of characteristics, we choose the

initial points (2.42). According to the characteristic system (3.12), a unique characteristic

projection belongs to each initial point given by

t1,j1 (τ) = τ + (j1 − 1)h1, t2,j1 (τ) =

∫ (j1−1)h1+τ

(j1−1)h1

ν(s) ds for j1 = 1, . . . , n1. (3.33)

Figure 7 illustrates the arising characteristic projections. The last equation in (3.12) yields

the corresponding characteristic systems for x̃j1 (τ) := x̂(t1,j1 (τ), t2,j1 (τ)),

dq(x̃j1 )

dτ
(τ) = f

(
b(τ + (j1 − 1)h1), x̃j1 (τ)

)
for j1 = 1, . . . , n1. (3.34)

The j1th projection (3.33) intersects the line t2 = 1 in an end point corresponding to

the value τj1 . Since the characteristic projections depend on the frequency function, the

n1 parameters τj1 are unknown a priori. Again we can use the solution obtained from the

DAE systems (3.34) to interpolate the points required for the periodicity condition in the
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second time scale. Hence, the resulting boundary conditions exhibit the form

(x̃1(0), . . . , x̃n1
(0))� = B(x̃1(τ1), . . . , x̃n1

(τn1
))�. (3.35)

Thereby, the matrix B ∈ R n1k×n1k depends on the used interpolation scheme and the

unknown parameters τ1, . . . , τn1
.

The selection of the initial points suggests to use the discretisation (3.31) of the

local frequency function again. A quadrature scheme generates an approximation of the

integrals in (3.33), where we employ exclusively the values from (3.31). For example, in case

of largely differing time scales, the trapezoidal rule approximates the j1th characteristic

projection by a quadratic polynomial

t2,j1 (τ) =

∫ (j1−1)h1+τ

(j1−1)h1

ν(s) ds
.
=

(
τ − τ2

2h1

)
νj1 +

τ2

2h1
νj1+1 for τ ∈ [0, h1]. (3.36)

If an initial guess for the local frequency is given, we obtain an approximation for the

end points τ1, . . . , τn1
and, thus, we can evaluate the non-linear system (3.35).

The strategy leads to a boundary value problem of DAEs given by (3.34), (3.35). We can

solve the problem numerically using shooting methods or finite difference methods, for

example. Using the phase conditions, we are able to specify the additional unknowns (3.31).

The requirement (3.19) can be added directly to the boundary conditions (3.35), since

only initial values are involved. On the other hand, an appropriate discretisation of the

demand (3.20) is necessary for achieving a condition, which depends just on the initial

values. Both phase conditions have been successfully used in methods of characteristics

(see [29]).

The inclusion of requirements from minimisation criteria like (3.32), for example,

becomes more difficult, since values of the solution outside the characteristic systems

are needed. Nevertheless, if we apply a finite difference method for solving (3.34),(3.35),

quantities from a characteristic grid can be interpolated on a uniform grid just to evaluate

the conditions (3.32). The use of methods of characteristics involving conditions for

optimal solutions is feasible.

For solving initial-boundary value problems (2.12) in the time domain, the construction

of techniques based on semidiscretisation is obvious (cf. Section 2.2.2). Houben [13]

employs a method of lines to solve the MPDAE (3.8), where the local frequency function

is replaced by (3.23). Using phase conditions, the approximate DAE systems from the

semidiscretisation have to include an additional algebraic constraint for identifying the

frequencies. Theory and numerical behaviour of such techniques are topics of current

research. The application of some elementary schemes is investigated in [30].

3.2.3 Mixed Domain Techniques

Finally, we briefly discuss the use of mixed time-frequency domain methods for warped

MPDAEs. The motivation of these methods is the same as explained in Section 2.2.3.

Corresponding techniques are introduced in [22]. The MVF is approximated by the finite
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sum (2.46) with ω2 = 2π. Consequently, the MPDAE (3.8) implies the condition

p2∑
j2=−p2

[
dQ̂j2 (X̂)

dt1
(t1) + i2πj2ν(t1)(Q̂j2 (X̂))(t1) − (F̂j2 (X̂))(t1)

]
· exp(i2πj2t2) = 0, (3.37)

where (Q̂j2 (X̂))(t1) and (F̂j2 (X̂))(t1) denote the Fourier coefficients of the functions q(x̂(t1, ·))
and f (b(t1), x̂(t1, ·)), respectively. Since the basis functions are orthogonal, we obtain the

coupled systems

dQ̂j2 (X̂)

dt1
(t1) = (F̂j2 (X̂))(t1) − i2πj2ν(t1)(Q̂j2 (X̂))(t1), j2 = −p2, . . . , p2. (3.38)

A system of DAEs for the unknown functions in the approximation (2.46) results. Initial

or boundary value problems of this system correspond to Section 2.2.3.

However, the local frequency function ν is unknown. We obtain a well-defined DAE

system by imposing a condition, which involves the Fourier coefficients. For example,

requirements like (3.21) directly prescribe the real or imaginary part of an unknown func-

tion. Numerical simulations employing conditions with Fourier coefficients are presented

in [38, 39]. Moreover, phase conditions defined in the time domain can be transformed

into the frequency domain to derive equivalent requirements, which possibly couple all

functions.

3.3 Illustrative example: Colpitt oscillator

To simulate a realistic electric circuit again, we examine a forced Colpitt oscillator. The

Colpitt oscillator represents a typical LC-oscillator. The circuit includes one inductance,

four capacitances and a bipolar transistor (see Figure 8). A specific mathematical model

of the Colpitt oscillator leads to an implicit ODE system, which describes the transient

behaviour of four node voltages

⎛
⎜⎜⎝

1 0 0 0

0 C1 + C3 −C3 −C1

0 −C3 C2 + C3 + C4 −C2

0 −C1 −C2 C1 + C2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

U̇1

U̇2

U̇3

U̇4

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R2

L
(U2 − U1) + R2U̇op

1

R2
(Uop − U1) +

(
IS +

IS

bC

)
g(U4 − U2) − ISg(U4 − U3)

− 1

R4
U3 +

(
IS +

IS

bE

)
g(U4 − U3) − ISg(U4 − U2)

− 1

R3
U4 +

1

R1
(Uop − U4) − IS

bE
g(U4 − U3) − IS

bC
g(U4 − U2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.39)
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UopR4

3
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4

R
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Figure 8. Circuit of Colpitt oscillator.

The applied transistor model includes the non-linear function

g(U) = exp

(
U

UT

)
− 1. (3.40)

The values of the technical parameters are set as follows:

C1 = 50 pF, C2 = 1 nF, C3 = 50 nF, C4 = 100 nF, R1 = 12 kΩ,

R2 = 3 Ω, R3 = 8.2 kΩ, R4 = 1.5 kΩ, L = 10 mH, Uop = 10 V,

IS = 1 mA, bE = 100, bC = 50, UT = 25.85 mV.

Using these parameters, the Colpitt oscillator has a periodic solution with time rate

T0 = 0.125 ms. More details about the modelling of the Colpitt oscillator can be found

in [15].

Now, an external source controls the third capacitor

C̃3(t) = C3

(
1 + 0.8 sin

(
2π

T1
t

))
(3.41)

and we choose T1 = 1 s (see Figure 9 (left)). Hence, the capacitance matrix in (3.39)

becomes time-dependent and the system is no longer of the form (1.1). Nevertheless, the

resulting capacitance matrix is always regular; i.e., the arising system is equivalent to an

explicit ODE, which represents a special case of (1.1).
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Figure 9. Input signal C3[nF] (left) and resulting local frequency ν[s−1] (right).
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Figure 10. MVFs Û1[V] (left) and Û4[V] (right).

The time-dependent capacitance (3.41) introduces frequency modulation at widely

separated time scales. Thus, we apply the warped MPDE model corresponding to the

ODE (3.39). The phase condition (3.20) with η ≡ 0 is added to determine the local

frequency function. To solve the biperiodic boundary value problem (2.11), we use the

method of characteristics from Section 3.2.2. We solve the boundary value problem

(3.34),(3.35) for ODEs by the shooting method, where trapezoidal rule is applied as a

basic solver in numerical integration. More information concerning this simulation can

be found in [28].

Figure 9 (right) shows the local frequency function. The capacitance and the frequency

are indirectly proportional: In regions of small capacitances, the frequency is high. This

behaviour is typical for LC-oscillators. Consequently, from the phase conditions, we are

able to determine physically reasonable frequencies. The MVFs for U1 and U4 are shown

in Figure 10. Each function exhibits just one oscillation in each coordinate direction, and

therefore, an efficient representation is possible. Furthermore, we see the performance of

the phase condition (3.20) in the first component.

Finally, we also reconstruct the corresponding quasiperiodic solution of (3.39), using

the relation (3.9). For comparison, an initial value problem for (3.39) is solved by the

trapezoidal rule, where the MPDE solution provides the starting values. Figure 11 demon-

strates the resulting signals for the most interesting component U4. In the first few cycles,

we observe a good agreement between both approximations. In later cycles, a phase shift
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Figure 11. ODE solution U4[V] integrated (solid line) and interpolated from MVFs (dashed line)

in time intervals [0 ms, 0.5 ms] (left) and [700 ms, 700.5 ms] (right).

occurs for two reasons. Firstly, small numerical errors in the local frequency function

are amplified over many oscillations. Secondly, the transient integration also causes a

phase shift in comparison to the exact solution, which represents a more general problem.

Nevertheless, the other signal properties agree also in later cycles, i.e., the amplitude, the

shape and the frequency.

4 Conclusions and outlook

The simulation of radio frequency circuits is quite time consuming, if based on differ-

ential algebraic models commonly used in circuit simulation packages to describe its

transient behaviour: here the fast rate restricts the step size in time. This problem can be

overcome by replacing multitone signals via multivariate functions and, correspondingly,

by transforming the DAE model into a singular PDE model. This transition decouples

the widely separated time scales of RF signals and allows for a reconstruction of the

original time-dependent signal. The arising modelling approach can be generalised from

systems with only amplitude modulation to systems with amplitude and/or frequency

modulation. For both MPDAE models, the original and the warped version, different

numerical techniques proposed so far in the literature have shown their practicability in

numerical simulations of RF circuits.

Two important questions remain to be addressed in the future: on the one hand, it has to

be investigated whether modelling via MPDAEs can be applied in an efficient way to other

areas of application besides RF circuits. For example, flexible multibody systems might

be a promising starting point. On the other hand, adequate strategies for partitioning

a circuit by introducing appropriate couplings are desirable, which allow to apply the

MPDAE model to several subcircuits separately. In a complex circuit, the individual parts

possibly exhibit different multirate behaviour and, therefore, each subcircuit may require

its own MPDAE system or an alternative technique in case of completely aperiodic time

scales.
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tialfunktion mit einer systematischen Darstellung der Analyse nichtlinearer dynamischer Net-

zwerke. PhD Thesis, University Kaiserslautern.

[15] Kampowsky, W., Rentrop, P. & Schmitt, W. (1992) Classification and numerical simulation

of electric circuits. Surv. Math. Ind. 2, 23–65.

[16] Knorr, S. & Günther, M. (2006) Index analysis of multirate partial differential–algebraic

systems in RF-circuits. In: A. M. Anile, G. Alı̀ & G. Mascali (editors), Scientific Com-

puting in Electrical Engineering. Mathematics in Industry 9, Springer, Berlin, pp. 93–

100.

https://doi.org/10.1017/S0956792507007188 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792507007188


742 R. Pulch et al.

[17] Knorr, S. & Feldmann, U. (2006) Simulation of pulsed signals in MPDAE-modelled SC-

circuits. In: A. Di Bucchianico, R. M. M. Mattheij & M. A. Peletier, (editors), Progress in

Industrial Mathematics at ECMI 2004. Mathematics in Industry 8, Springer, Berlin, pp. 159–

163.

[18] Kundert, K. S., Sangiovanni-Vincentelli, A. & Sugawara, T. (1988) Techniques for finding

the periodic steady-state response of circuits. In: T. Ozawa, (editor), Analog Methods for

Computer-Aided Circuit Analysis and Diagnosis. Marcel Dekker Inc., New York, pp. 169–203.

[19] Lang, B. (2002) Einbettungsverfahren für Netzwerkgleichungen. PhD Thesis, University Bremen,

Shaker, Aachen.

[20] Lehtovuori, A. (2003) Multivariate Steady-State Time-Domain Analysis Method. Master’s thesis,

Helsinki University of Technology.

[21] Lehtovuori, A., Virtanen, J. & Valtonen, M. (2003) GMRES preconditioner for multivariate

steady-state time-domain method. In: Proceedings of IMS’2003, Philadelphia, 8–13 June 2003,

pp. 2129–2132.

[22] Narayan, O. & Roychowdhury, J. (2003) Analyzing oscillators using multitime PDEs. IEEE

Trans. CAS I, 50, 894–903.

[23] Ngoya, E. & Larcheveque, R. (June 1996) Envelop transient analysis: A new method for the

transient and steady state analysis of microwave communication circuits and systems. IEEE

Microwave Theory Tech. Symp. Digest, 1365–1368.

[24] Pulch, R. & Günther, M. (2002) A method of characteristics for solving multirate partial

differential equations in radio frequency application. Appl. Numer. Math. 42, 397–409.

[25] Pulch, R. (2003) Finite difference methods for multi time scale differential algebraic equations.

Z. Angew. Math. Mech. 83(9), 571–583.

[26] Pulch, R. (2003) A parallel finite difference algorithm for multirate partial differential algebraic

equations. In: K. Antreich, R. Bulirsch, A. Gilg & P. Rentrop, (editors), Modeling, Simula-

tion and Optimization of Integrated Circuits. International Series of Numerical Mathematics
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