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Abstract. The nonlinear interaction between large-amplitude electromagnetic
waves and electron-acoustic (EA) waves in a two-electron-temperature plasma is
considered, taking into account the combined effects of the radiation pressure and
the thermal force involving the differential Joule heating of the electrons caused
by the electromagnetic waves. By employing a fluid approach, we derive a system
of coupled equations for the electromagnetic waves and the EA waves; the latter
are nonlinearly driven by the radiation and thermal forces. We have carried out
a normal mode analysis of our nonlinearly coupled equations, and have derived a
general dispersion relation that is useful for studying different types of paramet-
ric instabilities. A new class of modulational instability in the collision-dominated
regime is identified. The implications for space and laboratory plasmas are pointed
out.

1. Introduction
It is well known (Jones et al. 1975; Bezzerides et al. 1978; Barkat et al. 1995; Denton
et al. 1995; Choe et al. 1995) that laser-irradiated laboratory and space plasmas usu-
ally contain two distinct groups of electrons. The latter are characterized by their
different energy distributions: the low-energy electrons are much colder in compari-
son with the high-energy hotter electrons. The so-called two-electron-temperature
plasmas (with fixed ion background) exhibit a new type of electron-acoustic (EA)
wave (Jones et al. 1975; Watanabe and Taniuti 1977) in which the restoring force
comes from the pressure of the hot-electron component, while the inertia comes
from the mass of the cold electrons. Various aspects of the linear mode have been
studied (Gary and Tokar 1985; Mace and Hellberg 1990), and drift-driven instabil-
ities invoked in space plasmas (Tokar and Gary 1984; Mace and Hellberg 1993a,b).
Laboratory experiments have also been carried out (Hellberg et al. 2000). Nonlin-
ear wave interactions in two-electron-temperature plasmas have previously been
examined by, for instance, Skaeraasen et al. (1996). It has been shown that EA
waves can give rise to non-envelope solitons and double layers (Bharuthram and
Shukla 1986; Dubouloz et al. 1991, 1993; Mace et al. 1991, 1992; Berthomier et al.
2000; Mace and Hellberg 2001), as well as envelope solitons (Khirseli and Tsintsadze
1980; Hansen et al. 1994; Rao and Shukla 1997; Pottelette et al. 1999), although
weak double layers do not exist (Mace and Hellberg 1993). The importance of EA
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waves in the magnetosphere has recently been emphasized by Singh and Lakhina
(2001).

In this paper, we consider the nonlinear coupling between large-amplitude elec-
tromagnetic (EM) and EA waves, taking into account the EM ponderomotive force
and the differential Joule heating of electrons in the EM wave’s electric field. The
paper is organized as follows. In Sec. 2, we present the EM wave equation and
derive equations for the EA wave potential that is reinforced by the radiation pres-
sure and the thermal nonlinear force. The latter produces electron-temperature
perturbations that are governed by the energy equation. The mode-coupling equa-
tions are Fourier-analyzed to obtain nonlinear dispersion relations. The latter are
analyzed and explicit results for the growth rates of decay and modulational insta-
bilities are obtained. Furthermore, assuming that the electron collision frequency
is much larger than the modulation frequency, we obtain a new class of thermal
modulational instability. Possible applications of our work to space and laboratory
plasmas are pointed out in Sec. 6.

2. Governing equations
We consider the nonlinear propagation of a large-amplitude EM wave in a two-
electron temperature plasma. The nonlinear interaction between the coherent EM
wave and EA waves is governed by (Forslund et al. 1975; Shukla et al. 1986)(

∂2

∂t2
− c2∇2 + ω2

pe

)
A = −ω2

pe

nes
n0

A, (2.1)

which is obtained from

∇× B =
4π
c

J +
1
c

∂E
∂t

(2.2)

by using B = ∇× A, E = −(1/c)∂A/∂t, ∇ · A = 0, and J = −e(n0 + nes)Ve, where
Ve = eA/mec is the electron quiver velocity in the EM wave vector potential A.
The EM wave frequency is taken to be much larger than the effective electron–ion
collision frequency. Here, c is the speed of light in vacuum, ωpe = (4πn0e

2/me)1/2

is the unperturbed electron plasma frequency, n0 = n0h +n0c is the sum of the hot-
and cold-electron number densities, e is the magnitude of the electron charge, me

is the electron mass, and

nes = n1h + n1c ≡ 1
4πe
∇2φ (2.3)

is the electron density perturbation associated with the EA waves. In (2.3), φ is the
electric potential of the EA waves. The right-hand side of (2.1) is associated with
the nonlinear current arising from the coupling of the EM pump-induced electron
quiver velocity and the electron density perturbation of the EA waves.

We assume that the phase velocity of the EA waves is much smaller (larger) than
the thermal speed of the hot (cold) electron component and that their wavelength
is smaller than VTe/νeh, where VTe = (Te/me)1/2 is the electron thermal speed, Te
is the temperature of the hot electrons, and νeh is the collision frequency of hot
electrons with stationary ions. Thus, the equation of motion for the hot-electron
component is

n1h = n0h
eφ

Te
− n0h

Te1

Te
− n0he

2|A|2
2meTec2 , (2.4)
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where Te1 is a small temperature fluctuation (� Te), and the third term on the
right-hand side of (2.4) represents the ponderomotive potential of the EM waves.

The electron temperature perturbation is determined from (Stenflo 1985)

3
2
∂Te1

∂t
+ νrTe1 − χe

n0h
∇2Te1 − Te

n0h

∂n1h

∂t
= 2meνeh|Ve|2, (2.5)

where χe = 3.2n0hV
2
Te/νeh is the electron thermal conductivity, νr = 3meνeh/mi is

the electron energy relaxation rate due to electron–ion collisions, and mi is the ion
mass. The right-hand side of (2.5) represents the differential Joule heating of the
hot electrons due to collisions in the EM wave fields.

The dynamics of cold electrons is governed by

∂n1c

∂t
+ n0c∇ · vc = 0, (2.6)

and
∂vc
∂t

=
e

me
∇φ− e2

2m2
ec

2∇|A|2, (2.7)

where n1c (� n0c) is the small cold-electron number-density perturbation and vc is
the cold-electron fluid velocity. Equations (2.3)–(2.7) form a closed system for the
EA waves.

Eliminating vc from (2.6) and (2.7), we obtain

∂2n1c

∂t2
+
n0ce

me
∇2φ− n0ce

2

2m2
ec

2∇2|A|2 = 0. (2.8)

Substituting (2.4) and (2.8) into (2.3), we have[
(∇2 − k2

D)
∂2

∂t2
+ ω2

pc∇2
]
φ +

k2
D

e

∂2Te1

∂t2
= − k2

De

2mec2

(
∂2

∂t2
− C2

e∇2
)
|A|2, (2.9)

where ωpc = (4πn2
0c/me)1/2 is the plasma frequency of the cold-electron component,

kD = (4πn0he
2/Te)1/2 ≡ λ−1

D is the Debye wavenumber of the hot electrons, and
Ce = ωpc/kD is the EA wave speed. In the absence of electron-temperature fluctu-
ations, (2.9) reduces to[

(1− λ2
D∇2)

∂2

∂t2
− C2

e∇2
]
φ =

e

2mec2

(
∂2

∂t2
− C2

e∇2
)
|A|2, (2.10)

which for λ2
D∇2φ� φ gives

φ =
e

2mec2 |A|2. (2.11)

Correspondingly, we have from (2.4)

nes =
1

8πmec2∇2|A|2, (2.12)

which exhibits the radiation-pressure-driven non-resonant density response in an
electron plasma.

On the other hand, from (2.4) and (2.5), we obtain(
5
2
∂

∂t
+ νr − 3.2

V 2
Te

νeh
∇2
)
Te1 − e∂φ

∂t
=

2νehe2

mec2

(
1− 1

4νeh

∂

∂t

)
|A|2. (2.13)
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Combining (2.9) and (2.13), we readily obtain(
5
2
∂

∂t
+ νr − 3.2V 2

Te

νeh
∇2
)[
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)
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+
2eνeh
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(
1− 1
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∂

∂t

)
∂2|A|2
∂t2

, (2.14)

which is the EA wave equation in the presence of radiation pressure and the thermal
nonlinearity produced by the differential Joule heating of electrons in the presence
of EM waves.

Equations (2.1), (2.2), (2.9), and (2.14) are the desired set for nonlinearly coupled
EM and EA waves in a plasma containing two types of electrons. In the following,
we consider the parametric excitation of the EA waves by EM waves.

3. Dispersion relations
Let us suppose that an EM pump, A0 exp(ik0 · r− iω0t) + complex conjugate, in-
teracting with low-frequency [ω(� ω0), k] EA waves, generates EM sidebands
A± exp(ik± · r − iω±t), where ω± = ω ± ω0 and k± = k ± k0 are the frequen-
cies and wavenumbers for the EM sidebands. Hence, we obtain from (2.1), (2.2),
(2.9), and (2.14), after Fourier transformation,

ε±A± = −k
2e

me
φsA0±, (3.1)

εlφs =
e2

2m2
ec

2 (ω2 − ω2
e)(A0− · A+ + A0+ · A−), (3.2)

and

(Ωεl + ω3)φs =
e

2mec2

[
Ω(ω2 − ω2

e) + i2νehω2
(

1 + i
ω

νeh

)]
×(A0− · A+ + A0+ · A−), (3.3)

where ε± = ω2
± − ω2

pe − k2
±c

2, Ω = 5
2ω + iνr + iωχ, ωχ = 3.2k2V 2

te/νeh, εl =
(1 + k2λ2

D)ω2 − ω2
e, ωe = kCe, φ = φs exp(ik · r − iωt), A0+ = A0, A0− = A∗0 , and

the asterisk denotes the complex conjugate.
From (3.1)–(3.3) we readily obtain the nonlinear dispersion relation

εl = −k2c2(ω2 − ω2
e)W0

∑
±
ε−1
± , (3.4)

and

Ωεl + ω3 = −k2c2[Ω(ω2 − ω2
e) + iω2(2νeh + 1

4 iω)]W0

∑
±
ε−1
± , (3.5)

where W0 = e2|A0|2/2m2
ec

4. We note that ε± ≈ ±2ω0(ω − k · vg ∓ δ), where
vg ≈ k0c

2/ω0 is the group velocity of the pump, ω0 = (k2
0c

2 + ω2
pe)

1/2 is the pump
wave frequency, and δ = k2c2/2ω0 is the frequency shift caused by the nonlinear
interaction of EM waves with the EA waves. The pump and sidebands are assumed
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to be coplanar. In the following sections, we analyze (3.4) and (3.5) to show the
existence of decay and modulational instabilities.

4. Instabilities without Joule heating
For the three-wave decay interaction, a large-amplitude EM pump decays into a
daughter EM wave and a EA wave. Hence, ε− = 0 and εl = 0. Ignoring the upper
sideband in (3.4), we then obtain

εl(ω − k · vg + δ) =
k2c2

2ω0
(ω2 − ω2

e)W0. (4.1)

Letting ω = ωe(1 + k2λ2
D)−1/2 + iγd and ω = k · vg − δ + iγd in (4.1), we obtain the

growth rate

γd =
kc

2
kλD

(1 + k2λ2
d)

3/4

(
ωeW0

ω0

)1/2

. (4.2)

For the modulational interactions, we have ε± ≈ 0 and εl� 0. Here, (3.4) yields

[(ω − k · vg)2 − δ2](1 + k2λ2
D)ω2 − ω2

e = −k2c2(ω2 − ω2
e)
δ

ω0
W0. (4.3)

It can be easily shown that for |ω − k · vg|� δ, ωe and k2λ2
D� 1, (4.3) reduces to

ω − k · vg = ±ikc
(
δW0

ω0

)1/2

, (4.4)

which admits an oscillatory modulational instability.

5. Thermal modulational instability
Let us now focus on the thermal modulational instabilities. Here (3.5) takes the
form

[(ω − k · vg)2 − δ2]{Ω[(1 + k2λ2
D)ω2 − ω2

e] + ω3}
= −k2c2[Ω(ω2 − ω2

e) + iω2(2νeh + 1
4 iω)]

δ

ω0
W0. (5.1)

Equation (5.1) is a fifth-order polynomial in ω. It can be analyzed numerically.
However, some interesting analytical result follows for ωχ, νr, ωe� |ω|� νeh,
k2λ2

D� 1 and k · vg = 0. Here, we have from (5.1)

ω3 = −ik2c2νeh
4δ
7ω0

W0 ≡ (iΩ0)3, (5.2)

which predicts an instability whose increment is

γ ≈ (k2c2νeh)1/3
(
δ

ω0

)1/3

W
1/3
0 . (5.3)

6. Summary
In this paper, we have considered the nonlinear coupling between large-amplitude
electromagnetic and electron-acoustic waves in a two-electron-temperature plasma.
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Accounting for the radiation pressure and the differential Joule heating of the elec-
trons in the radiation field, we have obtained general dispersion relations. The latter
have been analyzed for the decay and modulational interactions. Explicit expres-
sions for the growth rates have been obtained. Furthermore, assuming that the
electron collision frequency far exceeds the modulation frequency, we have shown
that our general dispersion relation admits a new class of modulational instability.
The growth rate of that instability is proportional to ν1/3

eh and |A0|2/3. The present
nonlinear instability may thus produce non-thermal fluctuations that can affect
the propagation of EM waves in space and inertially confined fusion plasmas. We
note that our theoretical prediction of stimulated scattering of EM waves off the
EA waves may lend support to a recent observation from the Trident laser facil-
ity (Montgomery et al. 2001). Furthermore, our theoretical results may also help
to design new experiments for exploring the physics of complex nonlinear inter-
actions in the Earth’s ionosphere during heating by powerful radar beams. Here,
the backscattered signal will provide the signature of the EA waves, thereby helping
to determine the ambient plasma parameters in situ.
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