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Abstract. The general theory of self-similar magnetohydrodynamic (MHD) expan-
sion waves is presented. Building on the familiar hydrodynamic results, a complete
range of possible field–flow and wave-mode orientations are explored. When the
magnetic field and flow are parallel, only the fast-mode wave can undergo an ex-
pansion to vacuum conditions: the self-similar slow-mode wave has a density that
increases monotonically. For fast-mode waves with the field at an arbitrary angle
with respect to the flow, the MHD equations have a critical point. There is a unique
solution that passes through the critical point that has 1

2γβ = 1 and Br = 0 there,
where γ is the polytropic index, β the local plasma beta and Br the radial compo-
nent of the magnetic field. The critical point is an umbilical point, where sound and
Alfvén speeds are equal, and the transcritical solution undergoes a change from a
fast-mode to a slow-mode expansion at the critical point. Slow-mode expansions
exist for field-flow orientations where the angle between field and flow lies either
between 90◦ and 180◦ or between 270◦ and 360◦. There is also an umbilic point
in these solutions when the initial plasma beta β0 exceeds a critical value βcrit.
When β0 > βcrit, the solutions require a transition through a critical point. When
β0 < βcrit, there is a smooth solution involving an inflection in the density and
angular velocity. For other angles between field and flow, all the slow-mode waves
are compressive. An analytic solution for the case of a magnetic field everywhere
perpendicular to the flow with γ = 2 is presented.

1. Introduction
The problem of how a supersonic fluid interacts with corners is one of longstanding
interest in many areas of fluid dynamics and aerodynamics. The solution to the
problem was identified in 1903 by Prandtl and Meyer, who recognised that a series of
expansion waves would originate at the corner, and accelerate and rarefy the flow as
it moved around the corner. Analytical solutions are possible if the flow is assumed
to be self-similar – that is to say the flow properties are independent of the radial
distance from the corner, and depend only on the angular distance from the start of
the expansion wave. These solutions are well documented in most textbooks on gas
dynamics (e.g. Landau and Lifschitz 1988; Curle and Davies 1971). An important
point is that the flow reaches a vacuum condition after a finite rotation.

The situation is more complex in a magnetised fluid. There are two possible ex-
pansive wave modes of interest – the fast and slow magnetohydrodynamic (MHD)
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waves – both of which are more complex that the pure acoustic wave that deter-
mines the behaviour in the gas-dynamic case. Additional parameters are the plasma
beta (ratio of gas to magnetic pressure), relative orientation of field and flow, and
equation of state. No systematic study of such waves has been carried out. Siscoe et
al. (1969) made some progress by obtaining expressions for the characteristic flow
speeds, but only presented solutions of the MHD equations in the hypersonic limit.
Goedbloed and Lifshitz (1997) have presented an extensive analysis of self-similar
MHD flows, concentrating on cases when the flow and magnetic field are aligned
with each other (i.e. where there is no electric field). Very specific applications have
also appeared in the literature (see below) over the years, but without a general
theoretical framework being provided.

MHD expansion waves are important structures in many areas of space plasma
physics, particularly when high-speed flows interact with abrupt changes in the
Earth’s magnetic field strength or topology (Siscoe and Sanchez 1986; Cargill 1999)
or with other (unmagnetised) obstacles such as moons (Siscoe et al. 1969; Krisko
and Hill 1991) or asteroids. Siscoe and Sanchez (1986) presented some solutions of a
slow-mode expansion wave in the Earth’s magnetotail, and showed that such a wave
was an integral part of the expansion of the shocked solar wind into the Earth’s
magnetotail. Cargill (1999) argued that the interaction of a supersonic solar wind
flow with the Earth’s cusp would be accomplished through an expansion wave, and
noted that plasma could not move significantly Earthward during this interaction.
Siscoe et al. (1969) investigated the interaction of a hypersonic flow with the Moon,
and noted that fast-mode expansion waves played a major role here, whereas Krisko
and Hill (1991) investigated slow-mode expansion waves in the low-plasma-beta
environment of the Jovian moon Io.

While investigating plasma flows in the magnetospheric cusp, it became apparent
that there is no theory that describes such MHD expansion waves in general terms.
That is the purpose of this paper. Section 2 describes briefly the basic hydrodynamic
theory of self-similar expansion waves. Section 3 derives the appropriate MHD
equations, and describes some important properties. Section 4 presents the main
results of the paper for different field–flow orientations, and for both fast and slow
wave modes and also contains a useful analytical solution that has been used to
benchmark numerical solutions of the MHD equations.

2. Basic concepts and hydrodynamic theory
The ideal, steady-state, MHD equations are

∇ · (ρV) = 0, (1)

ρ(V ·∇)V = −∇P + j× B, (2)

∇× (V× B) = 0, (3)

∇ · B = 0, (4)

d

dt

(
P

ργ

)
= 0, (5)

where ρ, P , V and B are the plasma density, pressure, velocity and magnetic field
respectively, and we have assumed an adiabatic relationship between density and
pressure, with γ the ratio of specific heats.
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Figure 1. A sketch of the geometry used in the expansion-wave model. (a) shows a supersonic
fluid moving from left to right along a surface (thick lower lines). At point A, there is a corner,
where the surface turns through an angle δ. A Mach line is shown (line AB), making an angle
of µ = sin−1(1/M ) with respect to the upstream flow, where M is the Mach number. The thin
lines represent streamlines. (b) shows the structure of the expansion fan. It extends in the
angular direction between the lines AB and AD. (c) defines the angle φ between the initial
undisturbed flow and the magnetic field in the (r, θ) plane. In all the results, we assume that
the initial flow has a Mach number (based on the relevant wave speed) of unity (see text).

The geometry with which we are concerned here is shown in Fig. 1(a). A steady-
state supersonic flow is directed from left to right along a boundary (thick line).
At point A, the boundary turns through an angle δ. The issue at hand is how the
flow behaves at the corner. (We note here that the abrupt change in the boundary
can be taken as a model for a more gradual corner (Curle and Davies 1971).) In
an unmagnetised fluid (e.g. a gas such as air), the corner acts as a source of sound
waves. The supersonic flow has no forewarning of the corner, since these waves
cannot propagate upstream and so the flow first ‘knows’ about the corner when
it encounters the first Mach line (line AB in Fig. 1), which makes an angle of
µ = sin−1(1/M ) with respect to the upstream flow, where M is the Mach number.
From this point onward, the corner influences the flow, with the flow being turned
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around the corner by a continuous series of expansion waves (often referred to
as an expansion fan) as shown in Fig. 1(b) (see also Curle and Davies 1971, pp.
119–120).

For many situations, the flow around such a corner is self-similar. To formalise
this, we define a cylindrical coordinate system (r, θ, z), with the origin at point A
in Fig. 1(a) and θ increasing in the clockwise direction. z completes the orthogonal
system, being directed into the paper. It can be seen from Fig. 1(b) that while the
width of the wave or fan increases with r, the overall structure is the same at all
values of r. This leads to a great simplification in the equations of fluid dynamics
(and MHD: Sec. 3), since all derivatives with respect to r can be discarded. (We
also assume invariance in the z direction.) Figure 1(c) shows the nomenclature for
the magnetic field direction in the (r, θ) plane (Bz = 0), to be used in Sec. 4.3.

The theory of such a flow is well known (see e.g. Curle and Davies 1971; Cargill
1999) and need only be restated briefly here. We take the fluid limit of (1)–(5), i.e.
B = 0, and write the surviving equations in cylindrical coordinates:

Vr
∂Vr
∂r

+
Vθ
r

∂Vr
∂θ
− V 2

θ

r
= −1

ρ

∂P

∂r
, (6)

Vr
∂Vθ
∂r

+
Vθ
r

∂Vθ
∂θ

+
VθVr
r

= − 1
rρ

∂P

∂θ
, (7)

ρ

(
Vr
r

+
∂Vr
∂r

)
+ ρ

(
1
r

∂Vθ
∂θ

)
+ Vr

∂ρ

∂r
+
Vθ
r

∂ρ

∂θ
= 0. (8)

Equations (6)–(8) are the r and θ components of the momentum equation and the
continuity equation respectively. One may also derive Bernoulli’s equation along a
streamline:

1
2V

2 +
γ

γ − 1
P

ρ
= X1, (9)

where X1 is constant along a streamline, and can be defined in terms of quantities
at some point in the undisturbed fluid, denoted by subscript zero. Hence,

X1 = 1
2V

2
0 +

γ

γ − 1
P0

ρ0
.

In the absence of a magnetic field, (6)–(8) can be combined to give(
1− C2

V 2
θ

)(
dVθ
dθ

+ Vr

)
= 0, (10)

where C2 = γP/ρ is the square of the sound speed, with P and ρ being the pressure
and density respectively and γ the polytropic index. Equation (10) has two solu-
tions. Setting the second factor to zero gives a trivial (constant pressure) solution.
Therefore the only physically interesting solution to (10) is

Vθ = ±C, (11)

so that the velocity in the θ direction is just the local sound speed. Taking the
positive root in (11), analytic expressions can then be obtained for the radial flow
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Vr and the local Mach number M 2 = V 2/C2 as follows:

Vr =

{
2X1 sin

[(
γ − 1
γ + 1

)1/2

θ

]}1/2

, (12)

M 2 =
V 2
r + V 2

θ

C2 =
V 2
r

V 2
θ

+ 1 =
(
γ + 1
γ − 1

)
tan2

[(
γ + 1
γ − 1

)1/2

θ

]
+ 1, (13)

where Vr = 0 at θ = 0 andX1 is the constant from the Bernoulli equation. Solutions
for expanding flows can then be constructed in the following way. Equations (12)
and (13) represent the expansion of an M = 1 flow. For a supersonic flow incident
on a corner with M > 1, one simply matches the appropriate solution of an M = 1
expansion, given by (12) and (13), to the incident flow at the first Mach line (AD
in Fig. 1). This gives the Prandtl–Meyer function:

ν =
(
γ + 1
γ − 1

)1/2

tan−1

[(
γ − 1
γ + 1

)1/2

(M 2 − 1)1/2

]
− tan−1[(M 2 − 1)1/2],

where ν is the Prandtl–Meyer angle, defined as the angle turned by the superposed
M = 1 flow to the final edge of the fan at AD. As mentioned previously, a thorough
description of this Prandtl–Meyer expansion fan analysis is readily available in
the literature (see e.g. Curle and Davies 1971, pp. 122–123). Note that the density
vanishes (i.e. a vacuum condition is attained) at a finite value of θ.

3. MHD equations for self-similar expansive flows
It is straightforward to write down the MHD equations for a self-similar flow.
We assume a general magnetic field of the form: B = (Br(θ), Bθ(θ), Bz(θ)), and a
plasma flow in the (r, θ) plane: V = (Vr(θ), Vθ(θ), 0). The solenoidal condition (4)
then becomes

dBθ
dθ

+Br = 0. (14)

From the z component of the momentum equation, we have

Bθ
dBz
dθ

= 0, (15)

so that ifBθ� 0 thenBz = const. In general, we setBz = 0 for simplicity. (The case
Bθ = 0, Bz � 0 requires separate treatment (see Sec. 4.1).) The mass-continuity
equation remains unchanged from the fluid case, and is

ρVr +
d

dθ
(ρVθ) = Vθ

dρ

dθ
+ ρ

(
Vr +

dVθ
dθ

)
= 0. (16)

The r and θ components of the momentum equation are

ρVθ

(
dVr
dθ
− Vθ

)
=
Bθ
µ0

(
dBr
dθ
−Bθ

)
, (17)

ρVθ

(
dVr
dθ

+ Vr

)
= − d

dθ

(
p +

B2

2µ0

)
+
BθBr
µ0

+
Bθ
µ0

dBθ
dθ

(18)

Finally, combining Faraday’s law with Ohm’s law for a perfect conductor gives
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the condition
d

dθ
(VrBθ − VθBr) = 0, (19)

such that Ez = const. Following Siscoe et al. (1969), we combine these equations
to obtain [(

ρV 2
θ −

B2
θ

µ0

)
(ρV 2

θ − γp)− ρV 2
θ

B2
r

µ0

](
dVθ
dθ

+ Vr

)
= 0, (20)

where a polytropic law p = aργ has been used. As in the hydrodynamic case, setting
the second factor to zero gives a physically trivial solution. Setting the first factor
to zero gives the following expression for Vθ:

V 2
θ = 1

2{C2
s + V 2

A ± [(C2
s + V 2

A)2 − 4C2
sV

3
Aθ]

1/2}, (21)

the solutions of which correspond to θ flows at either the local fast or slow-mode
speeds. In (21), VA = |B|/(µ0ρ)1/2 and VAθ = Bθ/(µ0ρ)1/2 are the Alfvén speeds
based on the total and angular field strengths respectively.

To proceed further, we write the equations in dimensionless units. All quantities
are normalised with respect to values at θ = 0, denoted here by the subscript 0.
Thus, in (14)–(21), we replace ρ by ρ/ρ0, B by B/B0, V by V/C0, etc. For clarity, we
do not introduce new symbols for these dimensionless physical quantities. Equation
(21) then becomes

V 2
θ = 1

2

ργ−1 +
2B2

γB0ρ
±
[(

ργ−1 +
2B2

γβ0ρ

)2

− 8ργ−2B2
θ

γβ0

]1/2
 , (22)

where β0 = 2µ0p0/B
2
0 is the plasma beta at θ = 0. Equations (14) and (20) are

dBθ
dθ

= −Br (23)

dBr
dθ

= Bθ −
BrM

2
Aθ

Vθ

(
Vr +

dVθ
dθ

)
M 2
Aθ − 1

. (24)

Finally, the continuity equation and the radial momentum equation are written in
the following form (where (24) has been used in the derivation of (26)):

dρ

dθ
= −
−ρVr − ρdVθ

dθ
Bθ

, (25)

dVr
dθ

= Vθ −
2BθBrM 2

Aθ

γρβ0V 2
θ

(
Vr +

dVθ
dθ

)
M 2
Aθ − 1

. (26)

Note that we do not require the θ component of the momentum equation. All
information therein is contained in the other equations (including (22)). An im-
portant value in these equations is MAθ, the Alfven Mach number based on the θ
components of field and flow:

MAθ =
Vθ
VAθ

. (27)

We note here that both (24) and (26) possess critical points when MAθ = 1 and
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Br = 0. This will be of importance in understanding our results. Equations (22)–
(26) form a set of five equations for five variables, and are solved numerically using
a fourth-order Runge–Kutta scheme with appropriate initial conditions at θ = 0.

4. Results
4.1. Field perpendicular to flow

In Sec. 3, it was shown from (15) that when there is a field component in the plane
of the flow, Bz must be constant. However, if Br = Bθ = 0, this condition no longer
holds, and one can solve the MHD equations for a variable Bz. This type of flow is
not described by (22)–(26), which have explicitly set Bz = 0. From the induction
equation (3), we may write

d

dθ
(VθBz) = −VrBz. (28)

For B = (0, 0, Bz(θ)), and V = (Vr(θ), Vθ(θ), 0), (14) and (15) are satisfied. We can
combine (28) with (16) such that

B

ρ
= const, (29)

and so B/B0 = ρ/ρ0. In this case, we find that V 2
θ = C2 + V 2

A, so that the angular
velocity is now the fast-mode speed. One can obtain a Bernoulli equation for the
flow along a streamline:

1
2V

2 +
γ

γ − 1
P

ρ
+ V 2

A = X2, (30)

where X2 is a constant of integration written in terms of the upstream conditions.
Equation (30) can be written as

V 2
r = X2 − γ + 1

γ − 1
C2 − 3V 2

A. (31)

We note that as B/B∞ = ρ/ρ∞, Vθ and Vr can be described completely in terms
of density. For this magnetic field orientation, we have dVr/dθ = Vθ, and so obtain
the following expression for Vr:∫

dVr(
2X2 − V 2

r + 2V 2
A

γ − 2
γ − 1

)1/2
=
∫ (

γ − 1
γ + 1

)1/2

dθ. (32)

Unlike the hydrodynamic case, in general the integral on the left-hand side cannot
be evaluated analytically. For the special case of a polytropic index γ = 2, analytical
solutions are possible. These analytical results are presented below, and have been
used as a test of our numerical integration scheme. We find

Vr =
[
3
(
β0 + 1
β0

)
sin
(
θ√
3

)]1/2

, (33)

and an expression for the density

ρ = cos2
(
θ√
3

)
, (34)
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Figure 2. The structure of an MHD expansion wave when the magnetic field is directed in
the z direction, and is everywhere perpendicular to the flow. The thin solid, thick solid and
dashed line show Vr, ρ and Vθ respectively. We note that in all the figures, velocities, density
and magnetic field are shown in dimensionless units, with the magnetic field, velocity and
density in units of the magnetic field, sound speed and density at θ = 0 respectively, i.e.
B = B/B0, V = V/C0, etc. β0 varies from 0.1 to 2, with decreasing β0 being shown by the
direction of the arrows. The density shows little change as β0 is varied, so only one value is
shown. The electric field E initially points in the negative r direction, and decreases through
the fan to very small values.

independent of the plasma beta. This is reflected in our numerical solutions de-
scribed below.

Figure 2 shows the density and radial and angular velocities as functions of θ for
this case with γ = 5

3 and β0 ranging from 0.1 to 2. At θ = 0, we have ρ = 1, Vr = 0
and Vθ = (1 + 2/γβ0)1/2, so that the initial flow is exactly at the fast-mode speed.
In all the figures, we show the complete expansion from θ = 0 to termination at a
vacuum condition: solutions for particular cases can be obtained by picking up the
solution at the appropriate angle corresponding the Mach number of interest.

In this case, large values of β0 correspond to the well-known hydrodynamic case.
As β0 decreases, we see that (i) the vacuum condition (shown by the termination
of the Vθ plots) is reached for smaller values of θ, (ii) the radial velocity increases
quite considerably, and (iii) the density profile is insensitive to the value of β0. In
addition, the local plasma beta is proportional to ργ−2, so that for γ < 2, β always
tends to infinity when the vacuum condition is reached, i.e. the expansion becomes
purely hydrodynamic. The first two results can be understood by recognising that
decreasing β0 leads to a larger magnetic pressure force, which decelerates the angu-
lar flow more rapidly, hence leading to earlier vacuum conditions. The final result
is not surprising given the analytical result in (34). In this field geometry, the elec-
tric field is given by E = (−VθBz, VrBz, 0). As mentioned previously, the velocity
components can be described in terms of the density only. Because of this and the
relationship between B and ρ, E can be defined purely in terms of the density. The
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components of E are shown in Fig. 2, and it is found that E tends to very small
values as vacuum conditions are approached. At θ = 0, E is in the negative r di-
rection, reflecting the fact that B is directed out of the fiugre (from E = −V × B).
We note that in the subsequent cases, B = (Br, Bθ, 0) so that the resulting electric
field, E = (0, 0, Ez) is constant, as defined by (19).

4.2. Field parallel to the flow

The second simple case that can be considered is where the flow and field are
everywhere parallel to each other. Two approaches have been attempted. In one,
the MHD equations were written in terms of pseudo-variables (Grad 1960). This is
discussed elsewhere (Taylor 2000). In this paper, we solve the MHD equations in
their standard form. When the velocity and magnetic field are parallel, the electric
field vanishes, so that (19) becomes VrBθ = VθBr. Thus, if the flow and field are
parallel at θ = 0, they are parallel for all values of θ. One can then write B = λρV
(Grad 1960), where λ is a constant, and substitute this relation into the MHD
equations. The Bernoulli equation becomes

V 2

2
+

C2

γ − 1
= X3 (const), (35)

and one can hence derive an expression for the angular velocity:

V 2
θ = C2 +

2λ2

µ0
ρX3 − λ2

µ0

γ + 1
γ − 1

γp, (36)

which appears to differ from (21). We will return to this interesting and important
issue shortly. Equation (36) can be written in the more transparent form

V 2
θ = C2 +

2ρ
γβ0

V 2
r

1− 2ρ
γβ0

. (37)

Since ρ = ρ(θ), we can write the continuity equation as

dρ

dθ
=

−Vrρ
Vθ + ρ

dVθ
dρ

(38)

and the radial momentum equation as

dVr
dθ

=
Vθ − 2ρ

γβ0

(
Vθ − Vr

ρ

dρ

dθ

)
1− 2ρ

γβ0

. (39)

Note that the solenoidal condition is automatically satisfied in this case. One thus
needs to solve (36)–(39) subject to appropriate conditions at θ = 0. We have Vr = 0
there, so (37) gives Vθ = 1 as the initial condition, as one finds in the hydrodynamic
case. However, it should be noted that as β0 changes from being� 1 to� 1, this
initial value of Vθ changes from being a fast-mode wave to being a slow-mode wave.
We now explore the consequences of this.

The results are shown in Figs 3(a) and (b), in the same format as Fig. 2. As before,
γ = 5

3 and β0 varied from� 1 to� 1. Figures 3(a) and (b) show the results for β0
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Figure 3. The wave structure when the magnetic field and plasma flow are everywhere par-
allel. The notation is the same as in Fig. 2. (a) and (b) show results for 1

2γβ0 > 1 and < 1
respectively, with 3(a) showing 4 > β0 > 2 and 3(b) 0.9 > β0 > 0.1. The direction of de-
creasing β0 is indicated by the arrows. In (a), a fast-mode expansion wave exists, while in
(b), the only possible solutions correspond to slow-mode compression waves with pressure
and magnetic field strength out of phase.

between 4 and 2, and between 0.9 and 0.1 respectively. (We return to intermediate
values (especially 1

2γβ0 = 1) shortly.) Figure 3(a) shows that as β0 decreases, there is
relatively little change in the properties of the expansion wave. The radial velocity
decreases with decreasing β0, a reflection of the fact that smaller β0 imply a larger
magnetic tension force, which inhibits any radial flow. Decreasing β0 also leads to
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the vacuum condition occurring at larger angles. An important diagnostic of fast
and slow MHD waves is the relative phase of the pressure and magnetic field. Fast
(slow) waves have the pressure and magnetic field in (out of) phase. For the values
of β0 shown in Fig. 3(a), p and B2 are in phase for all values of θ.

When β0 is decreased below unity, the character of the solutions changes entirely
(Fig. 3b). The only solution in this case is a compression wave, with the density
increasing monotonically. We find that p and B2 are now out of phase for all values
of θ. This is thus a slow-mode wave, as was predicted above, and is compressive,
suggesting that (at least for the case of field-aligned flow) self-similar expansion
waves do not exist for this range of β0. The solution is terminated when Vθ vanishes.
Note also that as β0 becomes small, the density variations become negligible. One
now has a rather rigid magnetic field structure, with the flow simply being guided
along it.

We now return to the apparent inconsistency between (22) and (36). For field-
aligned flow, (22) gives two possible initial values of Vθ, namely 1 and 2/γβ0. For
β0� 1 (� 1), these two values are the fast (slow) and slow (fast) waves. However,
an examination of (20) shows that an initial state at θ = 0, with direct substitution
of B = λρV and Vr = 0, permits only a single solution. Thus, the only solutions
permitted for field-aligned flow are fast-mode expansive waves for 1

2γβ0 > 1 and
slow-mode compressive waves for 1

2γβ0 < 1. We note that this behaviour was also
reported in Goedbloed and Lifshitz (1997).

4.3. General field–flow orientation: fast-mode waves

The above solution involves a constraint on the relation between the field and flow.
However, it serves to draw attention to the rather complex nature of self-similar
MHD expansion waves. We now address the general case of when the field and flow
have an arbitrary angle with respect to each other. One must solve (22)–(26), subject
to the appropriate boundary conditions at θ = 0. To demonstrate the essential
features of the solutions, we focus on a specific case where the field and flow are
perpendicular to each other at θ = 0. An angle φ is introduced to quantify this
orientation. Figure 1(c) shows how φ is defined: the present case corresponds to
φ = π. In this case, the field has only a radial component at θ = 0, so that field and
flow are initially perpendicular. Thus the only possible initial state corresponds to
a fast-mode expansion wave. As was noted in Sec. 3, the solution can be expected to
have interesting properties at the critical point whenMAθ = 1 and Br = 0. Drawing
on extensive experience with such critical points in MHD flows (see e.g. Weber and
Davies 1967), one might anticipate that there is a unique initial condition that
permits a continuous solution through the critical point. We define this unique
initial condition as having β0 = βcrit. Figure 4 shows Vr (upper curves) and Br
(lower curves) for three values of β0 (0.5, 1.8 and 5). For β0 = 5, β0 > βcrit (lower
curve of Vr and Br), the solution breaks down, with dVr/dθ → −∞ when MAθ = 1.
For β0 = 0.5, β0 < βcrit (upper curve of Vr and Br), the solution breaks down at a
smaller value of θ, with dVr/dθ →∞. Note that Br < 0 there. Finally, the central
curves (shown as thick solid lines) have β0 = 1.8 = βcrit, and the solutions do not
break down before the critical point.

We now turn to the properties of the transcritical solution. Figure 5 shows this
solution over the entire range of θ. Up to the critical point, the solution corresponds
to a fast-mode expansion wave with Br, B2 (not shown) and the density decreasing
in phase with each other. Noting that dBθ/dθ vanishes at the critical point, (25) can
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Figure 4. The expansion-wave structure for solutions to the left of the critical point. The
upper and lower sets of curves show Vr and Br respectively. Three values of β0 are shown.
From left to right, the three curves have 1

2γβ0 = 0.5, 1.8 and 5 respectively. Only the
solution with β0 = 1.8 reaches the critical point, and is shown by the thick solid lines. The
other solutions all break down before the critical point is reached.
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Figure 5. The solution that passes through the critical point, which has β0 = 1.8. To the left
of the critical point, the expansion wave is a fast-mode wave. To the right, it is a slow-mode
wave.

only be satisfied if Br increases beyond the critical point. However, in order to have
an expansion solution to the right of the critical point, the density must continue to
decrease, and so Br (and B2) and ρ are now out of phase with each other. Thus the
continuous solution must be slow-mode beyond the critical point: computationally,
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Figure 6. Vr for the critical solutions to the left of the critical point, as the angle φ is increased
from 1

2π to 3
2π (see Fig. 1 for a definition of φ). Here 1

2γβ = 1 at the critical point for each
solution, and the critical point moves to the right as φ is increased. The cases of φ = 1

2π and
3
2π correspond to field-aligned flow and hence do not need to pass through a critical point
for 1

2γβ0 > 1, and are not shown.

this is achieved by taking the minus sign in (22). The entire solution is thus fast-
mode up to the critical point, and slow-mode thereafter.

Such a transition from fast to slow mode at a critical point can only be accom-
plished if the relevant wave speeds are identical at the critical point. Since Br = 0
there, the two solutions for Vθ are simply Vθ = C and Vθ = VA. Such a point is
sometimes referred to as an umbilical point (Myong 1997). Further, if C = VA, this
point corresponds to a location where 1

2γβ = 1, with β now the local plasma beta.
In other words, when β0 = βcrit, we attain the umbilic conditions at the critical
point, and thus are able to continue the expansion to vacuum conditions via the
slow mode.

Figure 6 shows the transcritical solution Vr to the left of the critical point as the
angle φ is increased from 1

2π to 3
2π. The initial conditions are assumed to correspond

to a fast-mode wave, since for φ�π both fast- and slow-mode waves are valid initial
conditions. As φ approaches 1

2π, 1
2γβ0 < 1 and so there is no expansive solution when

φ = 1
2π (see Sec. 4.2). When φ = 3

2π, the vacuum condition is reached before the
critical point. As φ increases, the location of the umbilical point moves to increasing
values of θ, so that by the time φ approaches 3

2π the critical point is located 3 radians
into the expansion, and the density is very close to the vacuum condition.

4.4. General field–flow orientation: slow-mode waves

We now turn to the case of expansion waves where the wave to the left of the critical
point is slow-mode. The slow-mode wave can be expected to exhibit considerable
dependence on the angle φ. When φ = 0 or π, there is no slow-mode wave. When
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Figure 7. The structure of a slow-mode expansion wave when φ = 100◦ and 1
2γβ0 = 1.4. In

(a), the thick solid, short dashed, long dashed and thin solid lines show the density, Vr, Vθ
and Br respectively as functions of θ. Note the density inflection point corresponding to the
reversal in the direction of Br. (b) shows the plasma pressure (solid line), magnetic pressure
(short dashed line) and local plasma beta (long dashed line) as functions of θ.

φ = 1
2π or 3

2π, the flow and field are aligned, so that the slow mode only exists when
1
2γβ0 < 1, and then only compressive solutions exist.

As an example, Fig. 7(a) shows the density, Vr, Vθ and Br for a case with φ = 100◦

and β0 = 1.4, where the solution is plotted over all θ up to the vacuum condition.
This differs in a number of ways from the fast-mode expansion wave. First, for a
particular range of β0, the solutions do not need to pass through a critical point
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to attain the vacuum condition. This range of β0 is such that locally β < 2/γ as
Br changes its sign, so Vθ = C (local sound speed), α� 1, and there is no critical
point. Secondly, the density does not decrease monotonically for all values of θ.
There is a smooth inflection point at small θ that also corresponds to the location
where Br = 0.

To help understand this further, Fig. 7(b) shows the plasma and magnetic pres-
sure and the local value of β as functions of θ. One important feature is the relative
phase of the plasma and magnetic pressures. As would be expected for a slow-mode
wave, they are out of phase at all locations. A second important point is that for
all these cases we find that the local value of β decreases as one moves into the
expansion wave. Thus, if 1

2γβ0 > 1, one might expect to encounter an umbilical
point with β = 2/γ. As β0 is increased, the inflection becomes more defined and we
find that M 2

Aθ approaches unity until, for a unique β0 = βcrit, 1
2γβ = 1 at the in-

flection point, corresponding to an umbilic point. Clearly the inflection point plays
a special role in the existence of this continuous solution – but in a less restrictive
way than does the critical point in fast-mode expansion waves. The approach to
the umbilic condition can be compared to the behaviour of a solar breeze solution
(see e.g. Priest 1982), with the inflection becoming sharper, and tending towards
a discontinuous gradient change at the umbilic point. So we again have βcrit cor-
responding to an umbilic critical solution, as in the fast case. However, unlike the
fast-mode case, this solution is not unique for a particular φ, and we have contin-
uous solutions for all β0 in the range β0 6 βcrit. For higher β0 (β0 > βcrit), we find
the solutions behaving in a similar manner to 1

2γβ0 6 1, but in this case, when Br
changes sign, Vθ = VA and M 2

Aθ = 1. Thus there is a critical point for all solutions
with β0 > βcrit, transition through which leads to attainment of vacuum conditions.
As β0 is further increased, we find that the solutions exist at increasing values of θ,
and eventually become double-valued and unphysical when the vacuum condition
is reached when θ > 2π.

The solutions show a strong dependence on φ and β0. Figures 8(a) and (b) sum-
marise the properties when π > φ > 1

2π, with fig 8(a) and (b) showing β0 = 2 and
0.2 respectively. The solid and dashed lines show Br and ρ. For high β0, the only
permissible solution at φ = 1

2π is a fast-mode wave. For high β0 with φ fraction-
ally greater than 1

2π, we find that the solutions extend to create a very large fan,
with the inflection point located at a large value of θ. These cases with φ close to
1
2π can also attain vacuum conditions when θ > 2π, and hence are unphysical. As
φ increases, the width of the expansion wave decreases, with the inflection point
moving to lower values of θ, and becomes less pronounced when φ = 135◦. For low
values of β0 (Fig. 8b), the solutions do not have an inflection or umbilical point,
since 1

2γβ0 < 1, and β decreases with θ. For β0 < 2/γ, we find an overall smaller
set of solutions (i.e. smaller termination θ). Finally, as φ approaches π, the density
profile exhibits steep solutions near θ = 0, and at θ = π there are no slow-mode
solutions.

When π < φ < 3
2π, there are no slow-mode expansion waves for any value of

1
2γβ0. The flow always undergoes compression, as we found for the case with flow
and field aligned, and eventually breaks down at a critical point. Figures 9(a) and
(b) show examples of these solutions for β0 = 2 and 0.2 respectively. The density
increases monotonically up to a point where the solution breaks down, just as in
the critical solutions found earlier. We have also demonstrated that the properties
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Figure 8. The structure of slow-mode expansion waves in the range 1
2π < φ < π. (a) shows

the density (dashed lines) and Br (solid lines) for 91◦ < φ < 135◦, with β0 = 2. Solutions
with increasing values of φ are indicated by the arrows. Note the inflection point that moves
to smaller θ as φ increases. (b) shows results for φ = 95◦, 110◦ and 160◦, for β0 = 0.2. Note
the absence of an inflection point.

when 0 < φ < 1
2π are the same as those with π < φ < 3

2π, and the same holds when
3
2π < φ < 2π and 1

2π < φ < π.

4.4.1. Behaviour of slow-mode waves at critical values of φ. It is of particular interest
to understand how the slow-wave properties change as the four critical angles (0, 1

2π,
π and 3

2π) are crossed. Due to the 180◦ symmetry of the solutions, we concentrate
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Figure 9. The structure of self-similar slow-mode waves in the range π < φ < 3
2π. Three

values of φ are shown: 260◦, 220◦ and 190◦. (a) and (b) show β0 = 2 and 0.2 respectively. In
all cases, the waves are compressive and break down at a finite value of θ, with the breakdown
taking place at smaller values of θ as φ decreases.

on φ = 1
2π and π. The latter case is straightforward. As noted above, when φ = π is

approached from below, the density gradient becomes increasingly negative near
θ = 0, resulting in an increasingly rapid attainment of vacuum conditions, until the
solution vanishes completely at φ = π. As φ approaches π from above, the solution
breaks down (i.e. develops infinite gradients) at smaller values of θ, until at φ = π
it does not exist. Thus only the fast-mode wave can exist at φ = π.

The case of φ = 1
2π is more complicated, and the results depend on the value of β0.
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Table 1. Properties of the slow mode as a function of φ.

Range of φ Slow-mode properties

φ = 0, π No slow-mode wave (all 1
2γβ0)

φ = 1
2π, 3

2π Slow-mode compressive wave if 1
2γβ0 < 1 (field and flow

aligned) No slow mode if 1
2γβ0 > 1

1
2π < φ < π, 3

2π < φ < 2π Undergoes full expansion to vacuum conditions.
Continuous solutions for 1

2γβ < 1.
Critical point for 1

2γβ > 1 at Br = 0, with umbilic
solution at 1

2β = 1. High β0, φ near 1
2π attain

unphysical θ > 2π solutions
π < φ < 3

2π, 0 < φ < 1
2π Permature termination at finite density (all 1

2γβ0).
Compressive

For 1
2γβ0 < 1, we require that in the limit of φ→ 1

2π, the slow mode become purely
compressive (see Sec. 4.2). For 1

2γβ0� 1 and φ near 1
2π, the density is approximately

constant for the majority of the wave, and then abruptly decreases to achieve the
vacuum condition. As we increase 1

2γβ0 towards unity, the density becomes more
compressive, similar in appearance to the post-inflection density solution in the
1
2γβ0 > 1 case. For φ slightly less than 1

2π, we find the density to be compressive
and terminated by a breakdown of the solution. The overall behaviour about this
point can be described as ‘cusp-like’ in that for φ just less than 1

2π we have the
solution tending to very large values (gradient→ +∞) and for φ just greater than
1
2π, we have the solution → 0 (gradient → −∞), with φ = 1

2π corresponding to a
finite-density, zero-angular-velocity fan termination.

For 1
2γβ0 > 1, φ approaches 1

2π from above, and the inflection point moves to
larger values of θ, corresponding to a larger overall θ at termination. As mentioned
previously, this also corresponds to double-valued unphysical solutions in θ. At
φ = 1

2π, we have no solution, since we have a fast-mode wave only. Approaching
1
2π from below, solutions with density gradients→ +∞ in very small θ exist. Thus,
as we pass from high to low φ through φ = 1

2π, we find the large θ > 2π solutions,
moving to no slow-mode solution at φ = 1

2π, to very small compressive solutions
with gradients → +∞.

The results as a function of φ can be summarised as in Table 1.

5. Conclusions
This paper has presented a comprehensive range of solutions of the MHD equa-
tions corresponding to self-similar expansion (and compression) waves. The solu-
tions have revealed a surprisingly complexity to this problem. There are serious
restrictions in parameter space where solutions exist that ultimately attain a vac-
uum condition after a finite distance. Fast-mode expansion waves exist only for
a single condition at the start of the expansion; slow-mode waves exist only for
a range of angles between flow and field. In other cases, either the wave becomes
compressive or the solution fails before reaching a vacuum condition.

The implications of this work for space physics are numerous. Two examples are
the presence of expansion waves in the cusp and in the distant magnetotail. In the
former case, the expansion is expected to be fast-mode, and is thus unlikely to occur
in anything other than the high-beta limit, or for field-aligned flow. The result is
then likely to be a very turbulent transition while the magnetosheath flow tries to
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turn into the cusp, and cannot do so in a steady manner. In the latter case, one can
expect the proposed expansion to depend crucially on the interplanetary magnetic
field conditions. For some values, a smooth expansion if possible, but for others,
only a compressional solution will exist. The implications to these situations will
be discussed elsewhere.
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