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The stochastic sequential assignment problem (SSAP) allocates distinct workers to sequen-
tially arriving tasks with stochastic parameters to maximize the expected total reward. In
this paper, the assignment of tasks is performed under the threshold criterion, which seeks
a policy that minimizes the probability of the total reward failing to achieve a target value.
A Markov-decision-process approach is employed to model the problem, and sufficient con-
ditions for the existence of a deterministic Markov optimal policy are derived, along with
fundamental properties of the optimal value function. An algorithm to approximate the
optimal value function is presented, and convergence results are established.

1. INTRODUCTION

Consider the stochastic sequential assignment problem (SSAP) introduced by Derman,
Lieberman, and Ross [4]: There are n workers available to perform n i.i.d. sequentially-
arriving tasks, where the random variable Xj denotes the value of the jth task that arrives
during time period j, and a fixed value (or success rate) pi is associated with worker i.
Whenever the ith worker is assigned to the jth task, the worker becomes unavailable for
future assignments, with the expected reward associated with this assignment given by pixj ,
where xj is the observed value of the jth task.

Several extensions to the stochastic sequential assignment problem have been discussed
in the literature. Albright [1], Albright [2], and Righter [12] study the SSAP with various
task–arrival-time distributions. Nikolaev and Jacobson [6] consider a variation of SSAP in
which the number of tasks is unknown until after the final arrival and follows a given prob-
ability distribution. An application of SSAP in kidney allocation to patients is addressed
by Su and Zenios [15]. McLay, Jacobson, and Nikolaev [5] and Nikolaev, Jacobson, and
McLay [7] address applications of SSAP in aviation security. Existing SSAP literature
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focuses on a risk-neutral objective function, seeking a policy that maximizes the expected
total reward obtained from the sequential assignment of tasks to workers. However, a risk-
neutral policy is not always desirable since the probability distribution function (p.d.f.) of
the total reward may carry with it a high probability of low unaccepted values; therefore,
there are instances that a decision-maker is interested in a stable reward and looks for a
risk-sensitive optimal assignment policy.

The work presented here is distinct from the existing literature in two ways. First,
it considers the SSAP under a different objective function, termed the threshold criterion,
which seeks to find a policy that minimizes the threshold probability : the probability (or risk)
of the total reward failing to achieve a specified value (target or threshold). Specifically, let

Rφ
n =

n∑
i=1

pφ(d̃i)
Xi

denote the total reward obtained after assigning all n tasks to available workers under policy
φ, where φ(d̃i) is the index of the worker assigned to the ith task under φ. For a given target
value τ , the goal is to find an optimal policy φ∗ that achieves the following infimum:

inf
φ∈Φ

Pφ

{
Rφ

n ≤ τ
}

,

where Φ is the set of all admissible policies. For simplicity, the target-dependent stochastic
sequential assignment problem is denoted here as the TSSAP, and a n-stage TSSAP refers
to a TSSAP with n tasks and n workers.

The second distinction between the work presented here and the existing literature
is that the problem is modelled as a Markov decision process (MDP) and results in an
uncountable-state-space MDP, while the countability of the state space is a basic assumption
in the existing target-dependent, risk measure literature. Hence, the present work extends
the threshold criteria literature to uncountable-state-space MDPs and obtains sufficient
conditions for the existence of a deterministic Markov optimal policy. Fundamental charac-
teristics of the optimal value function and the optimal policy are also presented. Finally, the
algorithm proposed by Boda et al. [3] to approximate the optimal value function is adapted
to the uncountable-state-space model, and convergence of the approximate value function
to the optimal value function is established under certain conditions.

Several authors have studied Markov decision processes with the threshold criterion. As
mentioned before, the focus of these papers is on Markov decision processes over a countable
state space. White [16] considers a finite state space MDP with a bounded reward set, and
characterizes the optimal value function by an optimality equation. Wu and Lin [17] show
that the optimal value function is a distribution function of the target value and prove the
existence of an optimal deterministic Markov policy. Sufficient conditions for the existence
of an optimal policy for an infinite horizon MDP over a countable state space are provided
by Ohtsubo and Toyonaga [10]. An algorithm is proposed by Boda et al. [3] to approximate
the optimal value function, which decreases the computation time significantly. Sakaguchi
and Ohtsubo [13] consider undiscounted semi-Markov decision processes with countable
state and action spaces, with the objective of minimizing the threshold probability. The
existence of an optimal stationary policy is proven, and value iteration methods and a
policy improvement method are proposed. Other variations and applications of the threshold
problem are discussed by Ohtsubo [8], Ohtsubo [9], and Ohtsubo and Toyonaga [11].

The paper is organized as follows. Section 2 mentions potential examples and appli-
cations of the TSSAP. Section 3 studies the model of a n-stage TSSAP with discrete task
values, describes it as a MDP with a countable state space, and presents optimality equations
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so as to find a policy that minimizes the threshold probability. Section 4 discusses exact and
approximate methods to solve the optimality equations given in Section 3. Section 5 extends
the model of a n-stage TSSAP to the case where the p.d.f. of task values has uncountable
support, which results in a MDP with an uncountable state space. Furthermore, sufficient
conditions for the existence of an optimal policy under the threshold criterion and opti-
mality equations to derive the optimal policy are presented. The approximate algorithm
discussed in Section 4 is adapted to the generalized TSSAP, and its behavior is studied.
Section 6 presents numerical results, and finally, Section 7 provides concluding comments
and future directions of the research.

2. ILLUSTRATIVE EXAMPLES

This section provides an example for the TSSAP which demonstrates the application of
the threshold criteria. Consider a SSAP which allows sequentially arriving passengers to be
assigned to available aviation security resources as they check in at an airport. The time
interval for screening passengers is divided into n slots (stages), where passenger j arrives
during stage j. Upon the arrival of each passenger, a pre-screening system determines their
threat (risk) value, classifying them as non-selectees (i.e., the passengers who have been
cleared of posing a risk) or selectees (i.e., those who have not been cleared, based on available
information known about them [5]). Each assessed threat value is defined as the probability
that a passenger carries a threat item, and the p.d.f. for passengers’ threat values is denoted
by f , with Xj indicating the threat value of passenger j. The capacity of the selectee class
(i.e., the number of available screening devices associated with the selectee class) is c, and n
denotes the capacity of the non-selectee class. Define the security level to be the conditional
probability of detecting a passenger with a threat item given that they are classified as
selectees or non-selectees, and let LS and LNS be the security levels associated with the
selectee and non-selectee classes. Moreover, let γj = 1 and γj = 0 denote the jth passenger
assignment as a selectee and a non-selectee, respectively. The total security for this setting
is defined as

n∑
j=1

Xj [LSγj + LNS(1 − γj)] ,

where the objective is to find a policy for assigning passengers to classes as they check in
so as to minimize the probability of the total security failing to achieve the target τ .

In the airport security problem the decision-maker needs to make sure that the total
reward obtained is at least as great as a specified value with high probability. In other
words, it is critical to obtain a stable level of security at all times. Note that although this
security level might not be necessarily the highest possible, a critical goal is to maintain
a reasonable security level at all times. Section 3 studies the n-stage TSSAP with discrete
task values, describes it as a MDP, and presents optimality equations so as to find a policy
that minimizes the threshold probability.

3. MODEL DESCRIPTION

Consider the original SSAP introduced by Derman et al. [4] where n workers are available to
perform n i.i.d. sequentially arriving tasks. A random variable Xj denotes the value of the
jth task that arrives during time period j, with a fixed value (or success rate) pi associated
with worker i. If the ith worker is assigned to the jth task with observed value xj , the

https://doi.org/10.1017/S0269964813000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000028


280 G. Baharian and S.H. Jacobson

worker becomes unavailable for future assignments, and the expected reward due to this
assignment is given by pixj . Throughout this paper, it is assumed that the number of tasks
equals the number of workers. To relax this assumption, let m denote the number of tasks,
while n is the number of workers. If m > n, then we add m − n phantom workers with
success rates of 0, while if m < n, the n − m workers with the smallest values are dropped
so that only those m workers with the highest success rates can be chosen. With such a
modification, the number of tasks equals the number of workers, and hence, the problem
is simplified to the n-task, n-worker model. Unlike the existing SSAP literature, the problem
studied here is under an objective function other than maximizing the expected total reward;
specifically, the goal is to find a policy that minimizes the probability (or risk) of the total
reward failing to achieve a target value, after assigning all the sequentially-arriving tasks to
available workers.

Consider the n-stage TSSAP and assume that the i.i.d. sequentially arriving tasks take
on values in the set S ⊆ [0,+∞); in addition, a vector P = (p1, p2, . . . , pn) is given with pi

denoting the success rate (or value) of the ith worker, where worker values are considered
to be strictly positive. Given P and for k = 1, 2, . . . , n, let

WP
k :=

⎧⎨
⎩(q1, q2, . . . , qn)

∣∣∣∣qi ∈ {0, pi} for i = 1, 2, . . . , n such that
n∑

j=1

I{qj �=0} = n − k + 1

⎫⎬
⎭,

denote the set of all possible vectors of worker values at time period k before the assignment
of the kth task. Any element of the set WP

k has k − 1 zero entries, which correspond to the
workers that are no longer available, since they have been assigned to previous tasks over
the first k − 1 time periods. Note that by definition, WP

1 = {P}.
Let s̃k, ak, and rk denote the state of the system, the action taken by the decision-maker,

and the reward obtained at time period k, respectively. Then, the state of the system at
stage k is defined by

s̃k = (xk, P (k)) ∈ S̃k := S ×WP
k ,

where xk and P (k) indicate the observed value of the kth task and the vector of success rates
at time period k upon the arrival of the kth task, respectively. The state space of the system
is thus defined by S̃ := ∪n

k=1S̃k. In this section, assume that the state space of task values
S is countable (i.e., {Xj} are discrete random variables); the n-stage TSSAP where the
task values are continuous random variables with an uncountable state space S ⊆ [0,+∞)
is studied in Section 5. The objective of the TSSAP signifies the decision-maker’s need to
consider the target level along with the original state of the system at each decision instance,
and hence, the state space of the MDP must be enlarged so as to incorporate the target
level at each time period. To this end, define D̃ := ∪n

k=1D̃k to be the updated state space of
the MDP (referred to as the state space of the decision-maker) where D̃k := S̃k × R. Note
that S̃ is the state space of the system and should not be confused with D̃. At time period
k, the action space A at each state is given by the set of workers available for assignment
at that state, and hence, A(xk, P (k)) =

{
i
∣∣P (k)

i �= 0, 1 ≤ i ≤ n
}

where P
(k)
i denotes the ith

element of P (k), and A := ∪s∈S̃A(s) is the overall action space. It is obvious from this
definition that A(xk, P (k)) is independent of xk; therefore, the action space at a given state
(xk, P (k)) can also be denoted by A(P (k)). If at time period k and upon the arrival of the
kth task, xk, action ak = i ∈ A(P (k)) is chosen, then the target level is decreased by the
realized reward amount, rk = pixk. Given that the value of the task at time period k + 1 is
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x, the conditional transition probability corresponding to this state change is defined by

f(x) = P
{

d̃k+1 = ((x, P (k) − piei), t − pixk)
∣∣d̃k = ((xk, P (k)), t), ak = i

}
,

for d̃k ∈ D̃k, d̃k+1 ∈ D̃k+1, and i ∈ A(P (k)), and k = 1, 2, . . . , n − 1, where f is the underly-
ing probability mass function (pmf ) of task values with support S.

Let Hk denote the set of all admissible histories up to time period k. Given Hk, a
decision rule φk at time period k is a conditional probability measure on the action space
A such that

φk(A(P (k)) | hk) = 1,

for all hk ∈ Hk and k = 1, 2, . . . , n. A decision rule φk, which is applied at time period k
upon the arrival of the kth task, is deterministic if it is a mapping from Hk onto A (i.e.,
φk(hk) ∈ A(P (k)) for any hk ∈ Hk). Consider φk, an arbitrary deterministic decision rule
at time period k. φk is called a continuous decision rule in the target value over the interval
[0, τ ] ⊂ R if for each ((x, P (k)), t) ∈ S̃k × [0, τ ], there exists ε > 0 such that φk((x, P (k)), s) =
φk((x, P (k)), t), for all s ∈ (t − ε, t + ε). Moreover, a sequence φ = (φn, φn−1, . . . , φ1) of deci-
sion rules is called a policy for a n-stage TSSAP. If φk only depends on the current state
at time k for all k = 1, 2, . . . , n, then the policy φ is a Markov policy. In addition, φ is
called a deterministic policy if φk is deterministic for all k = 1, 2, . . . , n. Let Φ, ΦD, ΦM,
and ΦDM denote the sets of all policies, all deterministic policies, all Markov policies, and
all deterministic Markov policies, respectively. Finally, define

φ |l:= (φn, φn−1, . . . , φn−l+1),

for any 1 ≤ l ≤ n.
Fix an arbitrary policy φ ∈ Φ, and define the target-dependent risk measure over the

last k time periods under φ |k as

V φ
k ((x, P (n−k+1)), t) := Pφ

{
Rk ≤ t

∣∣d̃n−k+1 = ((x, P (n−k+1)), t)
}

,

for all d̃n−k+1 ∈ D̃n−k+1, where d̃n−k+1 denotes the state of the decision-maker at time
period n − k + 1 (before the assignment of the (n − k + 1)th task) and the superscript φ in
Rφ

k is dropped to simplify the notation. Therefore, the optimal value function over n time
periods is given by

V φ∗
n ((x, P ), t) = inf

φ∈Φ
Pφ

{
Rn ≤ t

∣∣d̃1 = ((x, P ), t)
}

= inf
φ∈Φ

V φ
n ((x, P ), t),

for all d̃1 ∈ D̃1. Observe that for each φ ∈ Φ, V φ
n ((x, P ), t) = 0 if t < 0 since task values are

assumed to be non-negative, and hence, V φ∗
n ((x, P ), t) = 0 for all t < 0.

For the n-stage TSSAP described here, the state space of the system S̃ is countable; in
addition, the action space A is finite. Therefore, Theorem 1 in Wu and Lin [17] implies that
an optimal policy exists and is in fact deterministic Markovian (i.e., φ∗ ∈ ΦDM); moreover,
the following recursive optimality equations are used to derive the optimal policy and the
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minimum risk of failing to achieve the target value in the n-stage TSSAP:

V φ∗
1 ((x, P (n)), t) = I{t≥pix}, (3.1)

for all ((x, P (n)), t) ∈ D̃n where A(P (n)) = {i}, and

V φ∗
k ((x, P (n−k+1)), t) = min

a∈A(P (n−k+1))
EaV φ∗

k−1(x, P (n−k+1), t), (3.2)

for all k = 2, 3, . . . , n, where

EaV φ
k−1(x, P (n−k+1), t) :=

∑
y∈S

V φ
k−1(y, P (n−k+1) − paea, t − pax)f(y),

for (x, P (n−k+1), t) ∈ S̃n−k+1 × [0, τ ], a ∈ A(P (n−k+1)), and φ ∈ Φ.
Section 4 discusses the exact method to solve the optimality equations given by

(3.1)–(3.2); furthermore, the algorithm proposed by Boda et al. [3] to approximate the opti-
mal value function and the optimal policy is studied, and useful properties of this algorithm
are presented.

4. THE APPROXIMATE ALGORITHM

In Section 3, the n-stage TSSAP is formulated in a form similar to classical dynamic pro-
gramming problems, and hence, it can be solved by the associated backward recursion
algorithm. For notational simplicity, let ((x, P (n−k+1)), t) be denoted as (x, P (n−k+1), t)
henceforth, for any ((x, P (n−k+1)), t) ∈ S̃n−k+1 × [0, τ ]. Also, for any k = 1, 2, . . . , n,
P (n−k+1) ∈ WP

n−k+1, and t ∈ [0, τ ], define the function V φ
k (., P (n−k+1), t) : S → [0, 1] to be

equal to the target-dependent risk-measure V φ
k over the last k time periods under φ |k where

P (n−k+1) and t are fixed. Let V φ
k (x, ., t) : WP

n−k+1 → [0, 1] and V φ
k (x, P (n−k+1), .) : [0, τ ] →

[0, 1] be defined in a similar fashion. The algorithm proposed by Wu and Lin [17] can be
modified to compute optimal value functions and optimal policies for the n-stage TSSAP
provided that S is finite. For any 1 ≤ k ≤ n, each given x ∈ S, and P (n−k+1) ∈ WP

n−k+1, it
follows from this recursive algorithm that V φ∗

k (x, P (n−k+1), t) is a step distribution function
of t with finite jump points. Let {r̄1, r̄2, . . . , r̄z} be the set of possible rewards that can be
obtained during a single arbitrary time period. In addition, let Jk = {u1, u2, . . . , ujk

} be
the set of all jump points obtained when solving for V φ∗

k in (3.2). Arrange the {ul + ri}
in ascending order for all l = 1, 2, . . . , jk and i = 1, 2, . . . , z so as to obtain ordered values
v1 < v2 < · · · < vM . It is shown by Wu and Lin [17] that all the jump points of V φ∗

k+1 belong
to the set {v1, v2, . . . , vM}, and hence, for any given state of the system (y, P (n−k)), one
only needs to evaluate V φ∗

k+1(y, P (n−k), .) at the points in {v1, v2, . . . , vM}. Furthermore,
V φ∗

k+1(y, P (n−k), t) = 0 for t < v1 and V φ∗
k+1(y, P (n−k), t) = 1 for t ≥ vM .

The algorithm proposed by Wu and Lin [17] quickly becomes computationally inefficient
since a growing number of jump points must be considered as one moves backward through
each successive stage. In fact, the number of points to consider and the computation time to
perform the algorithm grow exponentially as the state space and the action space expand.
Therefore, a straightforward computational substitute for solving (3.1)–(3.2) is used in
which computations are done on a suitable fixed grid of target values (see Boda et al. [3]).
To this end, one can focus on the interval [0, τ ] where τ is the largest target value that is
needed to be considered. Note that taking the lower bound of this interval to be zero is

https://doi.org/10.1017/S0269964813000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000028


SSAP WITH THRESHOLD CRITERIA 283

well-justified, since task values are assumed to be non-negative. The interval [0, τ ] is then
divided into m subintervals using the grid B = {t0, t1, . . . , tm}, where t0 = 0, tm = τ , and
ti < ti+1 for i = 0, 1, . . . , m − 1. For k = 1, 2, . . . , n and each (x, P (n−k+1)) ∈ S̃n−k+1, the
target-dependent risk measure V φ∗

k (x, P (n−k+1), .) on [0, τ ] is approximated by a set of values
{(t0, V φ∗

k (x, P (n−k+1), t0)), (t1, V
φ∗
k (x, P (n−k+1), t1)), . . . , (tm, V φ∗

k (x, P (n−k+1), tm))}. Note
that regardless of the iteration index and the time period, the grid set B is kept fixed.
This approximate algorithm is referred to as the Grid Method (GM) for solving the n-stage
TSSAP.

Let φm and V φm

k denote the approximate policy and the approximate risk measure over
the last k time periods obtained from the GM using the grid set B = {t0, t1, . . . , tm}, respec-
tively. Analogous to (3.1)–(3.2), V φm

k is evaluated at the ti’s recursively from V φm

k−1, and the
interpolation of V φm

k between the grid points is performed using any desired approximation.
The GM approximation equations are given by

V φm

1 (x, P (n), t) := V φ∗
1 (x, P (n), t), (4.1)

for all (x, P (n), t) ∈ S̃n × [0, τ ], and

V φm

k (x, P (n−k+1), ti) := min
a∈A(P (n−k+1))

EaV φm

k−1(x, P (n−k+1), ti), (4.2)

for all (x, P (n−k+1)) ∈ S̃n−k+1, ti ∈ B, and k = 2, 3, . . . , n, with the interpolation

V φm

k (x, P (n−k+1), t) := V φm

k (x, P (n−k+1), ti−1), (4.3)

if t ∈ [ti−1, ti) for some 1 ≤ i ≤ m. Observe that by (4.1)–(4.3), V φm

k (x, P (n−k+1), .) is a
step function, with its jump points belonging to the grid set B.

Lemma 4.1: The GM defined by (4.1)–(4.3) with the grid set B = {t0, t1, t2, . . . , tm}
provides a lower bound for the optimal target-dependent risk measure V φ∗

n . Therefore,

V φm
n (x, P, t) ≤ V φ∗

n (x, P, t), (4.4)

for all (x, P ) ∈ S̃1 and t ∈ [0, τ ]. Moreover, V φm
n (x, P, .) is a non-decreasing step function

on [0, τ ] for each (x, P ) ∈ S̃1.

Proof: The proof is by induction on n starting with n = 2 tasks as the base case. Observe
that for i = 1, 2, . . . ,m and (x, P (n−1)) ∈ S̃n−1,

V φm

2 (x, P (n−1), ti) = min
a∈A(P )

EaV φm

1 (x, P (n−1), ti)

= min
a∈A(P )

EaV φ∗
1 (x, P (n−1), ti) = V φ∗

2 (x, P (n−1), ti), (4.5)

where the second equality follows from (4.1). In other words, V φm

2 and V φ∗
2 coincide at all

the grid points in B, and hence, (4.4) holds true if t ∈ B. Now, assume that t ∈ (ti, ti+1)
for some 0 ≤ i ≤ m − 1, and note that

V φm

2 (x, P (n−1), t) = V φm

2 (x, P (n−1), ti) = V φ∗
2 (x, P (n−1), ti) ≤ V φ∗

2 (x, P (n−1), t),

where the first and second equalities follow, respectively, from (4.3) and (4.5), and
the inequality is obtained since V φ∗

2 (x, P (n−1), t) is a distribution function (and hence,

https://doi.org/10.1017/S0269964813000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000028


284 G. Baharian and S.H. Jacobson

a non-decreasing function) of t on [0, τ ] (see Wu and Lin [17]). It is also inferred
that V φm

2 (x, P (n−1), .) is a non-decreasing step function due to (4.5) and the fact that
V φ∗

2 (x, P (n−1), .) is non-decreasing on [0, τ ]. For the induction step, assume that (4.4) holds
true for n − 1 where n ≥ 3 and that V φm

n−1 is a non-decreasing step function on [0, τ ]. Now
fix an arbitrary t ∈ [0, τ ], and without loss of generality assume that t ∈ [ti, ti+1) for some
0 ≤ i ≤ m − 1. To prove the lemma for n, observe that

V φm
n (x, P, t) = V φm

n (x, P, ti) = min
a∈A(P )

EaV φm

n−1(x, P, ti),

and note that since (4.4) holds for n − 1, it follows that EaV φm

n−1(x, P, ti) ≤ EaV φ∗
n−1(x, P, ti)

for any a ∈ A(P ). Therefore, V φm
n (x, P, ti) ≤ V φ∗

n (x, P, ti) ≤ V φ∗
n (x, P, t), and hence, (4.4)

holds true for n. That V φm
n (x, P, .) is a non-decreasing function on [0, τ ], follows from the

induction assumption and Proposition 5 in [14]. �

Lemma 4.2 studies the behavior of the GM defined by (4.1)–(4.3) as the size of the grid
set B increases.

Lemma 4.2: Consider two sets of breakpoints B1 = {t0, t1, . . . , tm1} and B2 = {v0, v1, . . . ,
vm2} where m1 < m2 and B1 ⊂ B2 which implies that B2 provides a finer grid on [0, τ ]. Let
φm1 and φm2 denote the approximate policies obtained from the GM with grid sets B1 and
B2, respectively. Then,

V
φm1
n (x, P, t) ≤ V

φm2
n (x, P, t), (4.6)

for all (x, P, t) ∈ S̃1 × [0, τ ].

Proof: The proof is by induction on n, with the base of induction starting from n = 2.
It suffices to show that (4.6) holds for all the elements of B2 since V

φm1
n (x, P, .) and

V
φm2
n (x, P, .) are step functions whose jump points are elements of B1 and B2, respec-

tively. Fix an arbitrary subinterval [ti, ti+1) from B1 for some 0 ≤ i ≤ m1 − 1, and re-label
the breakpoints of B2 (if any) that lie within this subinterval as {v̄1, v̄2, . . . , v̄di

}. Note that

V
φm2
2 (x, P (n−1), v̄l) = V φ∗

2 (x, P (n−1), v̄l) ≥ V
φm1
2 (x, P (n−1), v̄l),

for all l = 1, 2, . . . , di where the inequality follows from Lemma 4.1, and hence, the base of
induction is proven. Now, assume that (4.6) holds for n − 1 where n ≥ 3, and observe that

V
φm2
n (x, P, v̄l) ≥ min

a∈A(P )
EaV

φm1
n−1 (x, P, v̄l) ≥ min

a∈A(P )
EaV

φm1
n−1 (x, P, ti)

= V
φm1
n (x, P, ti) = V

φm1
n (x, P, v̄l),

for all l = 1, 2, . . . , di where the first and second inequalities follow, respectively, from the
induction assumption and Lemma 4.1, and the last equality follows from (4.3). �

Lemma 4.1 together with Lemma 4.2 indicate that the GM defined by Eqs. (4.1)–(4.3)
with the grid set B = {t0, t1, . . . , tm} provides a lower-bound step-function approximation
for the optimal target-dependent risk measure V φ∗

n (x, P, .) on [0, τ ] for any initial state of
the system (x, P ) ∈ S̃1; moreover, one obtains better approximations to V φ∗

n as the size of
the grid set B increases. Recall from Wu and Lin [17] that V φ∗

n (x, P, .) is a step distribution
function on [0, τ ] for a given (x, P ) ∈ S̃1. Now, fix an arbitrary initial state (x, P ) ∈ S̃1, and
let J = {t∗1, t∗2, . . . , t∗d} and hj denote the set of all jump points and the jth jump size of

https://doi.org/10.1017/S0269964813000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000028


SSAP WITH THRESHOLD CRITERIA 285

V φ∗
n (x, P, .), respectively. Consider an element of J , t∗j , that lies within the open subinterval

formed by two consecutive elements of B; equivalently, ti < t∗j < ti+1 for some 1 ≤ j ≤ d
and 0 ≤ i ≤ m − 1. Arbitrarily fix t ∈ [t∗j , ti+1), and observe that

V φ∗
n (x, P, t) ≥ V φ∗

n (x, P, t∗j ), (4.7)

since t ≥ t∗j ; moreover,

V φ∗
n (x, P, t∗j ) − V φ∗

n (x, P, ti) ≥ hj , (4.8)

since ti < t∗j where t∗j is the jth jump point of V φ∗
n . Now, note that

V φm
n (x, P, t) = V φm

n (x, P, ti) ≤ V φ∗
n (x, P, ti), (4.9)

which implies that

V φ∗
n (x, P, t) − V φm

n (x, P, t) ≥ V φ∗
n (x, P, t∗j ) − V φm

n (x, P, t)

≥ V φ∗
n (x, P, t∗j ) − V φ∗

n (x, P, ti) ≥ hj , (4.10)

where the inequalities follow from (4.7), (4.9), and (4.8), respectively . Although it is shown
with numerical examples by Boda et al. [3] that the GM (applied to a similar problem in a
different context) approximates the optimal value function extremely well, while reducing
the computation time dramatically, (4.10) implies that the gap between V φ∗

n (x, P, t) and
V φm

n (x, P, t) has a lower bound equal to the jth jump size of V φ∗
n (x, P, .) which is indepen-

dent of m. Equivalently, no matter how much m increases, there is a difference between the
approximation provided by the GM and the optimal risk measure for all t ∈ [t∗j , ti+1) such
that ti < t∗j < ti+1 for some 1 ≤ j ≤ d and 0 ≤ i ≤ m − 1. Even by increasing m, such that
the smallest grid point that is greater than t∗j gets closer and closer to t∗j , this difference
cannot be reduced to a value lower than hj , and hence, the only possible way of eliminat-
ing this gap is to pick ti+1 such that it coincides with t∗j . However, choosing the grid set B so
that it contains all the jump points of V φ∗

n is counter-productive since as mentioned before,
the exact method to obtain the optimal policy (as defined by Wu and Lin [17]) quickly
becomes computationally inefficient since more and more jump points must be considered
as one moves backward through each successive stage. Therefore, the set B must have a
small number of grid points compared to the number of jump points of V φ∗

n so that the
foremost goal of the GM, which is to provide a good approximation in a reasonable amount
of time, is not undermined. In other words, having such gaps between the values of V φ∗

n

and V φm
n is inevitable.

It is obvious that this gap results from jump points that exist in the graph of V φ∗
n (x, P, .)

over [0, τ ] (or equivalently, the jump-point discontinuities of V φ∗
n (x, P, .)). One might wonder

whether the performance of the GM would be affected positively if these jump points had
not existed. Section 5 shifts the focus to a n-stage TSSAP with continuous task values,
presents sufficient conditions for the existence of a deterministic Markov optimal policy,
and provides optimality equations to obtain the optimal policy. Moreover, the behavior
of the GM is studied where it is shown that, under certain mild conditions, the optimal
target-dependent risk measure has no jump points.

5. TSSAP WITH CONTINUOUS TASK VALUES

The task values have been assumed to be discrete random variables. This assumption is
relaxed in this section, where an n-stage TSSAP with continuous task values is considered.
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This results in the state space of the system to be extended to an uncountable set, since
the task values can vary in an interval as opposed to a countable set of real numbers (as
presumed by the existing literature in this area). Suppose that task values are continuous
random variables following a Riemann integrable p.d.f. f with support S ⊆ [0,+∞). Given
a vector of worker values P of size n, the objective is to find a Markov policy φ∗ ∈ ΦM that
minimizes the probability of the total reward failing to achieve a target value.

In order to proceed, some notation is introduced. Let Φ̃ ⊆ Φ be the set of all policies φ
such that V φ

l (x, P, .) is non-decreasing on [0, τ ] for arbitrarily fixed (x, P ) ∈ S̃1 and 1 ≤ l ≤
n. Under a policy φ ∈ Φ̃ and when the initial state of the system is fixed, the probability of
failing to achieve a target value increases as the target value grows. Likewise, let Φ̃M and
Φ̃DM, respectively, denote the set of all Markov and deterministic Markov policies that lie
in Φ̃; equivalently, Φ̃M := Φ̃ ∩ ΦM and Φ̃DM := Φ̃ ∩ ΦDM. Also, define Δ to be the set of all
Markovian decision rules that are Riemann integrable on S, and let the Ea notation, which
was introduced in Section 4, be modified to suit the continuity assumption in this section, as
follows: For a given (x, P (n−k), t) ∈ S̃n−k × [0, τ ], a ∈ A(P (n−k)), and an arbitrary decision
rule δ ∈ Δ, define the operators Ea and Eδ as

EaV φ
k (x, P (n−k), t) :=

∫
S

V φ
k (u, P (n−k) − paea, t − pax)f(u) du,

EδV
φ
k (x, P (n−k), t) :=

∑
i∈A(P (n−k))

δ(i | x, P (n−k), t)EiV
φ
k (x, P (n−k), t),

(5.1)

for any φ ∈ Φ̃M and k = 1, 2, . . . , n − 1. Note that δ(i | x, P (n−k), t) is the probability that
worker i is chosen under decision rule δ given that the current state is (x, P (n−k), t).
Lemma 5.1 ensures that the operators Ea and Eδ are well-defined.

Lemma 5.1: Assume that task values are continuous random variables following a bounded
Riemann integrable p.d.f. f with interval S its support. Consider an arbitrary policy φ =
(φn, φn−1, . . . , φ1) ∈ Φ̃M with φl ∈ Δ for all l = 1, 2, . . . , n. The following results hold for
any ((x, P (n−k+1)), t) ∈ S̃n−k+1 × [0, τ ] and 2 ≤ k ≤ n:

(i) Eφn−k+1V
φ
k−1(x, P (n−k+1), t) is well-defined.

(ii) V φ
k (x, P (n−k+1), t) = Eφn−k+1V

φ
k−1(x, P (n−k+1), t).

(5.2)

Proof: Proof of the first statement in (5.2) is by induction on k, and the second equation in
(5.2) follows from the first statement. Observe that V φ

1 (x, P (n), t) = P{pix ≤ t} = I{pix≤t},
for any φ ∈ Φ̃M where A(P (n)) = {i}, and hence, Eφn−1V

φ
1 (x, P (n−1), t) is well defined.

The second equation in (5.2) follows directly from conditioning arguments and the Markov
property.

For the induction step, assume that Eφn−k+1V
φ
k−1(x, P (n−k+1), t) is well-defined.

Let δ := φn−k+1 and π := φ|k for notational simplicity, and note that π =
(φn, φn−1, . . . , φn−k+2, δ). Fix an arbitrary (x, P (n−k+1), t) ∈ S̃n−k+1 × [0, τ ], let P̄ :=
P (n−k+1), and observe that

EδV
φ
k−1(x, P̄ , t)

=
∑

a∈A(P̄ )

δ(a | x, P̄ , t)
∫
S

V φ
k−1(u, P̄ − paea, t − pax)f(u) du
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=
∑

a∈A(P̄ )

δ(a | x, P̄ , t)
∫
S

Pφ{Rk−1 ≤ t − pax | d̃n−k+2

= (u, P̄ − paea, t − pax)}f(u) du

=
∑

a∈A(P̄ )

δ(a | x, P̄ , t)Pπ

{
Rk ≤ t | d̃n−k+1 = (x, P̄ , t), δ(x, P̄ , t) = a

}

= V π
k (x, P̄ , t), (5.3)

where the third equality follows from the Markov property. This completes the proof of the
second statement.

According to (5.1) and (5.3), verifying whether Eφn−k
V φ

k (x, P (n−k), t) is well-defined
comes down to proving that the following integral is well-defined for all a ∈ A(P (n−k)):

∫
S

EδV
φ
k−1(u, P (n−k) − paea, t − pax)f(u) du. (5.4)

Recall that EδV
φ
k−1(.) =

∑
i δ(i | .)EiV

φ
k−1(.), and hence, the problem simplifies to showing

that

δ(i | ., P ′, t′)EiV
φ
k−1(., P

′, t′)f(.) (5.5)

is Riemann integrable on S for all i, where P ′ := P (n−k) − paea and t′ = t − pax. Fix i and
consider the following two cases:

• S is a bounded interval: Note that EiV
φ
k−1(u, P ′, t′) =

∫
S V φ

k−1(z, P ′ − piei, t
′ −

piu)f(z) dz is well-defined (by the induction assumption) and is a monotone non-
increasing function of u, since φ ∈ Φ̃M by assumption. Any monotone function on a
bounded interval in R can have at most countably many discontinuity points and
is Riemann integrable. Recall that δ ∈ Δ, and f is a bounded Riemann integrable
function, so (5.5) is Riemann integrable on S.

• S is an unbounded interval: Observe that S can be represented as S = ∪+∞
j=1Ij , where

Ij ’s are bounded disjoint intervals. To show that (5.5) is Riemann integrable on S,
first show that (5.5) is Riemann integrable on Ij , for j = 1, 2, . . . . To see this, fix j
and note that

EiV
φ
k−1(u, P ′, t′) =

∫
S

V φ
k−1(z, P ′ − piei, t

′ − piu)f(z) dz,

since EiV
φ
k−1 is well-defined, by the induction assumption. Define

hl(u) :=
∫

Il

V φ
k−1(z, P ′ − piei, t

′ − piu)f(z) dz,

and observe that for any l ≥ 1, hl(u) is a monotone function of u and has at most
countably many discontinuity points on Ij , which implies that EiV

φ
k−1(u, P ′, t′) =∑+∞

l=1 hl(u) is Riemann integrable on Ij , and hence, (5.5) is Riemann integrable on
Ij , for j = 1, 2, . . . . Now, observe that

0 ≤
∫

Ij

δ(i | u, P ′, t′)EiV
φ
k−1(u, P ′, t′)f(u) du ≤

∫
Ij

f(u) du,
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for any j ≥ 1, which implies that 0 ≤ ∑+∞
j=1

∫
Ij

δ(i | u, P ′, t′)EiV
φ
k−1(u, P ′, t′)f(u)

du ≤ 1, and hence, (5.5) is Riemann integrable on S.
�

Before proceeding to Theorem 5.2, a notation should be introduced. Let φ =
(φn, φn−1, . . . , φ1) ∈ Φ̃M with φl ∈ Δ for any 1 ≤ l ≤ n be an arbitrary policy. Based on φ,
define a deterministic decision rule δ∗φl

: S̃l × [0, τ ] → A such that δ∗φl
(x, P (l), t) ∈ A(P (l))

and

δ∗φl
(x, P (l), t) := arg min

a∈A(P (l))

EaV φ
n−l(x, P (l), t),

for all l = 1, 2, . . . , n − 1. For l = n, let δ∗φn
be the deterministic policy which assigns the

last arriving task Xn to the only remaining worker (this is in fact the only admissible
policy at time period n). Theorem 5.2 provides sufficient conditions for the existence of a
deterministic Markov optimal policy and specifies the optimality equations to obtain it.

Theorem 5.2: Consider the n-stage TSSAP where task values are continuous random vari-
ables following a bounded Riemann integrable p.d.f. f with an interval S as its support. The
optimality equations

V φ∗
1 (x, P (n), t) = I{pix≤t}, (5.6)

where A(P (n)) = {i}, and

V φ∗
l (x, P (n−l+1), t) = min

a∈A(P (n−l+1))
EaV φ∗

l−1(x, P (n−l+1), t), (5.7)

for (x, P (n−l+1), t) ∈ S̃n−l+1 × [0, τ ] and l = 2, 3, . . . , n yield the optimal policy φ∗ if

δ∗φ∗
n−l+1

∈ Δ, (5.8)

for l = 2, 3, . . . , n. Moreover, if (5.8) holds true, then φ∗ ∈ Φ̃DM, and δ∗φ∗
k

is the optimal
decision rule at time period k = 1, 2, . . . , n.

Proof: The proof is by induction on k. At the final stage (i.e., when the value of the last
task is observed), only one worker is remained with value pi by assumption, and the final
task must be matched with this worker independent of the policy applied during the previous
stages. Therefore, V φ∗

1 (x, P (n), t) = I{pix≤t}, and (5.6) is verified. For the induction step,
assume that (5.7) holds for all l where l ≤ k with π := φ∗|k ∈ Φ̃M and that δ∗φ∗

n−k
∈ Δ.

Define a policy φ0 := (π, σ) where σ := δ∗φ∗
n−k

is a deterministic decision rule. Note that

V φ0
k+1(x, P (n−k), t) = EσV π

k (x, P (n−k), t) = EσV φ∗
k (x, P (n−k), t)

= min
a∈A(P (n−k))

EaV φ∗
k (x, P (n−k), t), (5.9)

where the first, the second, and the last equalities follow from Lemma 5.1, the definition of
π, and the definition of σ, respectively. Moreover, φ∗|k ∈ Φ̃M by the induction assumption,
which implies that EaV φ∗

k (x, P (n−k), .) is non-decreasing for any a ∈ A(P (n−k)). Therefore,
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it follows that V φ0
k+1 is a non-decreasing function of t which implies that φ0 ∈ Φ̃M. Observe

that

V φ∗
k+1(x, P (n−k), t) = inf

φ∈ΦM
V φ

k+1(x, P (n−k), t) ≤ V φ0
k+1(x, P (n−k), t)

= min
a∈A(P (n−k))

EaV φ∗
k (x, P (n−k), t). (5.10)

Now, consider an arbitrary policy φ = (φn, φn−1, . . . , φn−k) ∈ ΦM, let P̄ := P (n−k), and
obtain the following:

V φ
k+1(x, P̄ , t)

=
∑

i∈A(P̄ )

φn−k(i | x, P̄ , t)Pφ

{
Rk+1 ≤ t

∣∣d̃n−k = (x, P̄ , t), φn−k(x, P̄ , t) = i
}

=
∑

i∈A(P̄ )

φn−k(i | x, P̄ , t)Pφ

{
Rk ≤ t − pix

∣∣d̃n−k = (x, P̄ , t), φn−k(x, P̄ , t) = i
}

=
∑

i∈A(P̄ )

φn−k(i | x, P̄ , t)Pφ

{
Rk ≤ t − pix

∣∣d̃n−k+1 = (Xn−k+1, P̄ − piei, t − pix)
}

≥
∑

i∈A(P̄ )

φn−k(i | x, P̄ , t)Pφ∗
{

Rk ≤ t − pix
∣∣d̃n−k+1 = (Xn−k+1, P̄ − piei, t − pix)

}

=
∑

i∈A(P̄ )

φn−k(i | x, P̄ , t)EiV
φ∗
k (x, P̄ , t)

≥ min
a∈A(P̄ )

EaV φ∗
k (x, P̄ , t),

which implies that V φ∗
k+1(x, P (n−k), t) ≥ mina∈A(P (n−k)) EaV φ∗

k (x, P (n−k), t). Combining this
with (5.10) yields

V φ∗
k+1(x, P (n−k), t) = V φ0

k+1(x, P (n−k), t) = min
a∈A(P (n−k))

EaV φ∗
k (x, P (n−k), t),

where φ∗|k+1 := φ0 = (φ∗|k, δ∗φ∗
n−k

) ∈ Φ̃DM. �

Theorem 5.3 provides a sufficient condition for (5.8) to hold and presents useful
properties of the optimal policy and the optimal value function under this condition.

Theorem 5.3: Consider the n-stage TSSAP where task values are continuous random vari-
ables following a bounded Riemann integrable p.d.f. f that has interval S as its support.
Then:

• Eq. (5.8) is satisfied, and hence, the optimal policy φ∗ ∈ ΦDM is obtained by (5.6)–
(5.7).

• The optimal decision rule at time period k is right-continuous in the value of the
current task and in the current target level, for k = 1, 2, . . . , n − 1.

• V φ∗
n (x, P, t) is continuous in x and in t and is a non-decreasing function of t.

Moreover, it is a distribution function in t if S is bounded.
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Proof: The proof is by induction on n starting with n = 2 tasks as the base case. Fix
an arbitrary task value x ∈ S and a vector of worker values P (n−1) at time period n = 2,
and assume without loss of generality that A(P (n−1)) = {1, 2}. Note that if EiV

φ∗
1 is a

continuous function of t for i = 1, 2 and δ∗φ∗
n−1

∈ Δ, then V φ∗
2 is continuous in t due to (5.7)

and the fact that it is the minimum over a finite set of continuous functions. Observe that

E2V
φ∗
1 (x, P (n−1), t) =

∫
S∩[0,(t−p2x/p1)]

f(u) du = P

{
X2 ∈ S ∩

[
0,

t − p2x

p1

]}
,

which implies that E2V
φ∗
1 is continuous in t. Similarly, E1V

φ∗
1 is shown to be continuous

in t; therefore, the optimal decision rule at this time period (i.e., when Xn−1 arrives) is
right-continuous in t when (x, P (n−1)) is kept fixed. Following the same argument as above
results in E1V

φ∗
1 and E2V

φ∗
1 being continuous functions of x on S. This implies that (5.8)

is satisfied (i.e., δ∗φ∗
n−1

∈ Δ); thus, the optimality Eq. (5.7) is used to derive δ∗φ∗
n−1

and V φ∗
2 .

It also follows that V φ∗
2 is continuous in x and in t and is a distribution function in t.

For the induction step, assume that Theorem 5.3 holds true for a TSSAP with n − 1 tasks
where n ≥ 3. To prove the theorem for n, fix (x, P ) ∈ S̃1 and i ∈ A(P ), and assume that
the sequence {tj} converges to t0 as j → +∞, where t0 ∈ [0, τ ] is arbitrarily fixed. To prove
that EiV

φ∗
n−1 is continuous in t, consider the following two cases:

• S is a bounded interval: Observe that for any u ∈ S,

lim
j→+∞

V φ∗
n−1(u, P − piei, tj − pix) = V φ∗

n−1(u, P − piei, t0 − pix), (5.11)

by the induction assumption that V φ∗
n−1 is continuous in its third argument. Let M

be an upper bound of f on S and note that

0 ≤ V φ∗
n−1(u, P − piei, tj − pix)f(u) ≤ M, (5.12)

for all u ∈ S and j ≥ 1, since V φ∗
n−1 is a distribution function by the

induction assumption. Hence, the bounded convergence theorem implies that
limj→+∞ EiV

φ∗
n−1(x, P, tj) = EiV

φ∗
n−1(x, P, t0) by (5.11), (5.12), and the fact that the

right-hand side of (5.11) is integrable over S by the induction assumption. Therefore,
EiV

φ∗
n−1(x, P, t) is continuous in t.

• S is an unbounded interval: Observe that S can be represented as S = ∪+∞
j=1Ij ,

where Ij ’s are bounded disjoint intervals. Note that hj(t) :=
∫

Ij
V φ∗

n−1(u, P − piei, t −
pix)f(u) du is continuous in t for all j, by the bounded convergence theorem. Also,
0 ≤ hj(t) ≤

∫
Ij

f(u) du, for any t ∈ [0, τ ] and j = 1, 2, . . ., where
∑+∞

j=1

∫
Ij

f(u) du =

1 < +∞. The Weierstrass M-test implies that
∑+∞

j=1 hj(t) converges uniformly on

[0, τ ], and hence, EiV
φ∗
n−1(x, P, t) is a continuous function of t.

Likewise, it is proven for each i ∈ A(P ) that EiV
φ∗
n−1(x, P, t) is continuous in x. Conti-

nuity of EiV
φ∗
n−1 in x and in t for all i ∈ A(P ) implies that the optimal decision rule upon

the arrival of the first task (i.e., δ∗φ1
) is right-continuous in both x and t. Therefore, the

optimality Eq. (5.7) is used to derive V φ∗
n , and hence, V φ∗

n is continuous in both t and x
since the action space A(P ) is finite. It also follows that V φ∗

n is a distribution function in t
by the induction assumption (see Proposition 5 in [14]) if S is bounded. �
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Remark: The results of Lemma 5.1, Theorem 5.2, and Theorem 5.3 can be generalized to
the case where the support of f is an open subset of [0,+∞) or a countable union of disjoint
intervals in [0,+∞). (Recall that every open set in R can be represented as a countable union
of disjoint bounded open intervals.) The proof is similar to that presented for Lemma 5.1.

Lipschitz continuity of the optimal value function is proven in Theorem 5.4 for
continuous task values with bounded integrable probability distribution functions.

Theorem 5.4: Consider the n-stage TSSAP where task values are continuous random vari-
ables following a bounded Riemann integrable p.d.f. f that has an interval S as its support.
For any arbitrarily fixed pair (x, P ) ∈ S̃1, V φ∗

n (x, P, t) is Lipschitz continous in t:
∣∣V φ∗

n (x, P, t) − V φ∗
n (x, P, s)

∣∣ ≤ C | t − s |, (5.13)

for s, t ∈ [0, τ ] where C is a positive constant, independent of x.

Proof: The proof is by induction on n starting with n = 2 tasks as the base case. Arbitrar-
ily fix (x, P (n−1)) ∈ S̃n−1, and assume without loss of generality that A(P (n−1)) = {1, 2}.
Let s, t ∈ [0, τ ] with s ≤ t and P̃ := P (n−1) − p2e2, and observe that

∣∣E2V
φ∗
1 (x, P (n−1), t) − E2V

φ∗
1 (x, P (n−1), s)

∣∣
≤

∫
S

∣∣V φ∗
1 (u, P̃ , t − p2x) − V φ∗

1 (u, P̃ , s − p2x)
∣∣f(u) du

=
∫
S∩(

s−p2x
p1

,
t−p2x

p1
]

f(u) du

≤ M

pmin
(t − s),

where M is an upper bound of f on S and pmin := mini∈{1,2,...,n} pi. A similar argument
can be made for E1V

φ∗
1 , and hence, it follows that |V φ∗

2 (x, P (n−1), t) − V φ∗
2 (x, P (n−1), s)| ≤

(M/pmin)|t − s|, for all (x, P (n−1)) ∈ S̃n−1 and s, t ∈ [0, τ ]. For the induction step, assume
that V φ∗

n−1(x, P (2), t) is Lipschitz continous on [0, τ ] with the Lipschitz constant (M/pmin)
for all (x, P (2)) ∈ S̃2 and some n ≥ 3. To show that (5.13) holds for n, fix (x, P ) ∈ S̃1, and
observe that

∣∣EiV
φ∗
n−1(x, P, t) − EiV

φ∗
n−1(x, P, s)

∣∣
≤

∫
S

∣∣V φ∗
n−1(u, P − piei, t − pix) − V φ∗

n−1(u, P − piei, s − pix)
∣∣f(u) du

≤ M

pmin
|t − s|,

for all i ∈ A(P ) and s, t ∈ [0, τ ], which implies that |V φ∗
n (x, P, t) − V φ∗

n (x, P, s)| ≤
(M/pmin)|t − s|, due to the finiteness of the action space. �

Corollary 5.5 presents an interesting property of the optimal value function.

Corollary 5.5: Consider the n-stage TSSAP where task values follow a bounded Riemann
integrable p.d.f. f with an interval S as its support. For any sequence {tj}+∞

j=1 converging
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to an arbitrarily fixed t ∈ [0, τ ], V φ∗
n (x, P, tj) converges uniformly to V φ∗

n (x, P, t) on S as
j → +∞; that is,

sup
x∈S

∣∣V φ∗
n (x, P, tj) − V φ∗

n (x, P, t)
∣∣ → 0 as j → +∞.

Proof: The proof follows from Theorem 5.4 and the Cauchy criterion for uniform
convergence and is eliminated due to simplicity. �

Before proceeding to Lemma 5.6, the GM presented in Section 4 for the discrete case
is generalized to the continuous case using (4.1)–(4.3), where EiV

φm

l is defined in (5.1).
Lemma 5.6 proves that the operator Ei is well-defined for the GM.

Lemma 5.6: Consider the n-stage TSSAP with continuous task values following a bounded
Riemann integrable p.d.f. f with an interval S as its support. Let B = {t0, t1, . . . , tm}
with t0 = 0 and tm = τ be a grid set for the GM. For l = 1, 2, . . . , n, V φm

l (., P (n−l+1), t)
and V φm

l (x, P (n−l+1), .) are non-increasing and non-decreasing functions, respectively.
Moreover, EiV

φm

l is well-defined for l = 1, 2, . . . , n − 1.

Proof: The proof of V φm

l being a monotone function on S and on [0, τ ] is by induction on
l. That the operator EiV

φm

l is well-defined follows from V φm

l being a monotone function on
S. The proof is eliminated due to simplicity. �

Note that the results of Lemma 4.1 and Lemma 4.2 are easily generalized to the
GM defined for the continuous case. For an n-stage TSSAP with continuous task values,
Proposition 5.7 studies the behavior of the GM as the grid on [0, τ ] becomes finer.

Proposition 5.7: Consider the n-stage TSSAP with a given vector of workers P and con-
tinuous task values following a bounded Riemann integrable p.d.f. f that has an interval S as
its support. For a grid set B = {tm0 , tm1 , . . . , tmm} where tmi := (τ/m)i, V φm

n (x, P, t) converges
to V φ∗

n (x, P, t) uniformly on S × [0, τ ] with order one as m → +∞; that is,

sup
x∈S,t∈[0,τ ]

∣∣V φ∗
n (x, P, t) − V φm

n (x, P, t)
∣∣ = O

(
m−1

)
. (5.14)

Proof: Observe that by (4.1) and as in the discrete case, V φ∗
2 and V φm

2 coincide at the
breakpoints; therefore, V φ∗

2 (x, P (n−1), tmi ) = V φm

2 (x, P (n−1), tmi ), for i = 0, 1, 2, . . . ,m and
(x, P (n−1)) ∈ S̃n−1. Fix an arbitrary (x, P (n−1)) ∈ S̃n−1 and t ∈ [0, τ ], and without loss of
generality assume that t belongs to the (k + 1)th interval defined by B on [0, τ ] for some
0 ≤ k ≤ m − 1 (i.e., t ∈ [tmk , tmk+1)). Note that the GM provides a lower bound approximation
for the optimal value function; therefore,

0 ≤ V φ∗
2 (x, P (n−1), t) − V φm

2 (x, P (n−1), t)

≤ V φ∗
2 (x, P (n−1), tmk+1) − V φ∗

2 (x, P (n−1), tmk ) ≤ C
τ

m
,

where the second inequality follows from Lemma 5.6 (specifically, the fact that
V φ∗

2 (x, P (n−1), .) is a non-decreasing function), and C is the Lipschitz constant defined
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in Theorem 5.4; hence, (5.14) is satisfied for a problem of size n = 2. For the induction step,
assume that for some n ≥ 3:

0 ≤ V φ∗
n−1(u, P (2), tmj+1) − V φm

n−1(u, P (2), tmj ) ≤ (n − 2)C
τ

m
,

for all u ∈ S, P (2) ∈ WP
2 , and j = 0, 1, . . . , m − 1. To prove (5.14) for n, observe that

0 ≤ V φ∗
n (x, P, t) − V φm

n (x, P, t)

≤ V φ∗
n (x, P, tmk+1) − V φm

n (x, P, tmk )

= min
i∈A(P )

EiV
φ∗
n−1(x, P, tmk+1) − min

i∈A(P )
EiV

φm

n−1(x, P, tmk ). (5.15)

Since tmk+1 − tmk = (τ/m) (or equivalently, (tmk+1 − pix) − (tmk − pix) = (τ/m)), it fol-
lows that there exists k′ < k such that tmk − pix ∈ [tmk′ , tmk′+1] and tmk+1 − pix ∈ [tmk′+1, t

m
k′+2).

Therefore,

EiV
φ∗
n−1(x, P, tmk+1) =

∫
S

V φ∗
n−1(u, P − piei, t

m
k+1 − pix)f(u) du

≤
∫
S

V φ∗
n−1(u, P − piei, t

m
k′+2)f(u) du,

and

EiV
φm

n−1(x, P, tmk ) =
∫
S

V φm

n−1(u, P − piei, t
m
k − pix)f(u) du

=
∫
S

V φm

n−1(u, P − piei, t
m
k′)f(u) du,

which leads to

EiV
φ∗
n−1(x, P, tmk+1) − EiV

φm

n−1(x, P, tmk )

≤
∫
S
(V φ∗

n−1(u, P − piei, t
m
k′+2) − V φm

n−1(u, P − piei, t
m
k′))f(u) du

=
∫
S
(V φ∗

n−1(u, P − piei, t
m
k′+2) − V φ∗

n−1(u, P − piei, t
m
k′+1))f(u) du

+
∫
S
(V φ∗

n−1(u, P − piei, t
m
k′+1) − V φm

n−1(u, P − piei, t
m
k′))f(u) du. (5.16)

Now, recall from Theorem 5.4 that V φ∗
n−1(u, P − piei, t

m
k′+2) − V φ∗

n−1(u, P − piei, t
m
k′+1) ≤

C τ
m , for all u ∈ S. Moreover, the second term on the right-hand side of Eq. (5.16) can be

bounded above by the induction assumption. Therefore,

0 ≤ EiV
φ∗
n−1(x, P, tmk+1) − EiV

φm

n−1(x, P, tmk ) ≤ (n − 1)C
τ

m
, (5.17)

for all i ∈ A(P ), which implies that

0 ≤ V φ∗
n (x, P, t) − V φm

n (x, P, t) ≤ (n − 1)C
τ

m
,

by (5.15) and from the finiteness of the action space. �
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Proposition 5.7 establishes the uniform convergence of the approximate value function
obtained by the GM to the optimal value function as the grid on [0, τ ] becomes finer.
However, recall that for the n-stage TSSAP with discrete task values, there are intervals
within [0, τ ] in which a lower bound exists on the difference between the approximate and
the optimal value function. As shown in Section 4, this lower bound is a constant and
unaffected by increases in m (i.e., the number of grid points); equivalently, for any value of
m which results in a reasonable computation time for the GM, there always exist intervals
within [0, τ ] with gaps (greater than a given constant) between the approximate and optimal
value functions. Therefore, the GM has a better performance when applied to the n-stage
TSSAP with countinuous task values. Section 6 provides numerical results to compare the
performance of the SSAP and TSSAP.

6. NUMERICAL RESULTS

This section compares the performance of the optimal policies obtained from the SSAP
and TSSAP, using a numerical example. Consider a stochastic sequential assignment
problem with n = 10 tasks arriving sequentially at each time period to be allocated
to the available resources. Assume that the task values follow a Binomial distri-
bution with parameters (4, 0.3) and the vector of worker values is given by P =
(10, 50, 100, 150, 250, 400, 540, 600, 750, 950). We solve the TSSAP for each target value
within the interval [3, 000, 13, 000] with a step size of 50. For each fixed target value, a
total of s = 1, 000 TSSAPs are solved by simulating the arriving task values with the given
Binomal distribution, and for every one of the 1, 000 problems simulated, a SSAP is solved
as well. For a fixed target value τ , let rτ

T and rτ
S denote the number of times (out of a 1, 000
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Figure 1. (Color online) Comparing the optimal policy of SSAP vs. TSSAP.
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simulations) that the TSSAP and the SSAP yield a total reward lower than τ . Figure 1
depicts the ratio (rτ

S/rτ
T) as a function of τ . As it can be seen from the figure, the optimal

policy from the TSSAP performs significantly better than that of the SSAP for target values
that are below or around the Ef [X]

∑n
i=1 pi (where Ef [X] is the expected value of Xj and

pi is the success rate of the ith worker). As the target value increases, the ratio (rτ
S/rτ

T)
decreases but stabilizes at one (which is intuitive).

7. CONCLUSION

This paper studies the SSAP under the threshold criterion, which attempts to minimize
the probability of the total reward (obtained from the sequential assignment of tasks to
available workers) failing to achieve a specified target value. The problem is modelled as
an MDP for discrete task values and is then extended to the case where the state space
of arriving tasks is uncountable (i.e., task values are considered to be continuous random
variables). Sufficient conditions for the existence of a deterministic Markov optimal policy
are derived along with fundamental properties of the optimal value function. An algorithm
(referred to here as GM) is introduced to approximate the optimal value function and the
optimal policy, since the problem becomes computationally inefficient and intractable as
the number of arriving tasks increases. The behavior of GM is analyzed for the countable
and the uncountable state space cases, and convergence of the approximate value function
(obtained by GM) to the optimal value function is established.

It is assumed here that the underlying distribution function of task values is given
beforehand, and further research is required to address the TSSAP in which task values
follow a probability distribution with unknown parameters. In addition, a possible extension
of the TSSAP is to the case where the total number of tasks is unknown until after the
final arrival and follows a generic probability distribution. Other challenges include shifting
one’s attention from the i.i.d. sequence of tasks to a more general case with dependent task
values and/or considering an infinite sequence of arriving tasks. Moreover, another research
direction is extending the main results in this paper, which are obtained for the SSAP, to
a more general MDP framework, where the action space is not necessarily finite.
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