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A new class of exact electrostatic solutions of the Vlasov–Maxwell equations based
on the Jeans’s theorem is proposed for studying the evolution and properties of
two-dimensional anisotropic plasmas that are far from thermodynamic equilibrium.
In particular, the free expansion of a slab of electron–ion plasma into vacuum is
investigated.
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1. Introduction
There has been much interest in the properties of quasi-stationary structures

containing particles whose interaction is governed by long-range, such as the
gravitational or electrostatic, forces (Holloway & Dorning 1991; Buchanan & Dorning
1993; Lancellotti & Dorning 1998; Schamel 2004; Kozlov 2008; Campa et al. 2014;
Levin et al. 2014). Such structures are associated with many phenomena, including
solitons, shocks, vortices, nonlinear waves, etc. in nature and the laboratory, and
can often exist even far from thermodynamic equilibrium because of the absence
collisional or turbulent relaxation within the time scale of interest. In particular, they
can appear in highly rarefied plasmas not near thermodynamic equilibrium. However,
depending on its initial distribution, a collisionless plasma can often still evolve into
quasi-stationary states because of the presence of the self-consistent, or averaged,
electrostatic field of the individual charged particles (Holloway & Dorning 1991;
Buchanan & Dorning 1993; Lancellotti & Dorning 1998; Schamel 2004; Kozlov
2008; Levin et al. 2014). However, unlike collisional relaxation, which tends to
drive the system towards thermodynamic equilibrium, in collisionless relaxation any
initial energy imbalance among the different degrees of freedom can be preserved,
causing the system to evolve in a preferred direction in the physical or phase space.
Moreover, in plasmas the motion of both the electrons and ions can play important
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roles in the evolution, even though they are on very different time scales because
of the much larger ion mass. This is because the initial or short-time behaviour
can often determine the pathway and thus the asymptotic behaviour of the highly
nonlinear evolution (see, e.g. Schamel (2004), Luque & Schamel (2005), Eliasson &
Shukla (2006) and the references therein). Complex behaviour can also be expected
for magnetized plasmas, which are anisotropic and a large number of different modes
of collective motion can exist (Clemmow & Dougherty 1969; Lancellotti & Dorning
1998; Eliasson & Shukla 2006; Levin et al. 2014).

In order to investigate the evolution and properties of collisionless plasmas, we
shall construct time-dependent non-Maxwellian distribution functions satisfying the
two-dimensional Vlasov–Maxwell equations. In general, for initial states far from
equilibrium, the convection terms in the governing equations are not small (Kuznetsov
1996; Bohr et al. 1998; Kiessling 2003; Schamel 2004). They in fact determine the
asymptotic behaviour, which (if it exists) is usually still not near equilibrium (see,
e.g. Taranov 1976; Lewis & Symon 1984; Majda, Majda & Zheng 1994; Dorozhkina
& Semenov 1998; Karimov & Lewis 1999; Karimov 2001; Kovalev & Bychenkov
2003; Karimov 2013; Schamel 2015). For such problems it is necessary to use a fully
nonlinear formulation. In this paper, we shall invoke the Jeans’s theorem (Clemmow
& Dougherty 1969; Lewis & Symon 1984; Kiessling 2003; Agren et al. 2005; Agren
& Moiseenko 2006; Pecseli 2012) to consider the two-dimensional (2-D) evolution
of a collisionless electron–ion plasma slab, in particular, its expansion into vacuum.

2. Formulation of the kinetic problem
We are interested in the non-relativistic electrostatic evolution of a finite 2-D

unmagnetized electron–ion plasma slab. The distribution functions fs = fs(t, r, v),
where s = e, i indicate the electrons and ions, respectively, are governed by the
corresponding Vlasov and reduced Maxwell equations

∂tfs + v · ∇rfs + qs

ms
E · ∇vfs = 0, (2.1)

∇ · E= 4π
∑

s

qsns, (2.2)

∇× E= 0, (2.3)

∂t E=−4π
∑

s

qs j s, (2.4)

where E is the electrostatic field and ns =
∫

fs(t, r, v) dv the number density,
j s =

∫
vfs(t, r, v) dv the flux and qs the charge, of the s particles. The reduced (no

displacement current and magnetic field perturbation) Maxwell equations correspond
to the Darwin approach for open-boundary electrostatic problems in plasma physics
(see, e.g. Nielson & Lewis 1976; Degond & Raviart 1992; Birdsall & Langdon 2004).
The approach is particularly useful for considering electrostatic phenomena in complex
laboratory and space plasmas since by using the reduced current equation, one
can avoid solving Poisson’s equation, which requires stringent boundary conditions
(Arfken & Weber 2006). In the Darwin approach, the electrostatic nature of the
problem is preserved by proper formulation of the initial condition.

As mentioned, we shall consider the moving-boundary problem of the expansion
of a 2-D plasma slab far from thermal equilibrium, i.e. we look for solutions of
(2.1)–(2.4) in the form

fs = fs(t, x, y, vx, vy) > 0 (2.5)
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defined in the region Γ = {(x, y), |x|6Xs(t), |y|6 Ys(t)}, where Xs(t) and Ys(t) denote
the average fronts, or boundaries (to be defined more precisely later), separating the
s particles from the vacuum. The initial slab can thus be defined by Xs(t = 0) =
Y(t = 0) = L, where L > 0 is the initial dimension of the plasma slab in the x and
y directions. Accordingly, as initial condition we take

fs(t= 0, r, v)=
{

f0s(vx, vy) > 0, |x|6 L, |y|6 L
0, |x|> L, |y|> L,

(2.6)

where the initial distribution function f0s(vx, vy) has finite moments∣∣∣∣∫ +∞−∞ vkf0s(r, v) dv

∣∣∣∣<∞, k= 0, 1, 2, . . . . (2.7)

The plasma is assumed to be initially neutral and at rest, so that we have∫ +∞
−∞

f0s(r, v) dv = 1 and
∫ +∞
−∞

vf0s(r, v) dv = 0. (2.8a,b)

It is convenient to normalize (2.1)–(2.4) by

t̄=ωpet, r̄ = r
L
, v̄ = v

v0
, Ē= E

E0
, n̄s = ns

n0
, (2.9a−e)

where ωpe =
√

4πn0e2/me is the electron plasma frequency, E0 = 4πen0L, v0 = Lωpe,
n0 is the initial plasma density (n0= ne= ni) and −e and me are the charge and mass
of the electron, respectively. For clarity, in the following we shall omit the overhead
bars. The normalized equations are then

∂t fs + v · ∇rfs + Qs

Ms
E · ∇vfs = 0, (2.10)

∇ · E=
∑

s

Qsns (2.11)

∂t E=−
∑

s

Qs j s, (2.12)

where Qe =−1, Me = 1 and Qi = 1, Mi =mi/me and mi is the ion mass.
The plasma is assumed to be symmetric with respect to (x= 0, y= 0). It is therefore

sufficient to consider only the upper half of Γ . Accordingly, we can write

fs(t= 0, x, y, vx, vy)= f0s(a0
xsvx + b0

xsvy, a0
ysvx + b0

ysvy), (2.13)

where a0
xs, b0

xs, a0
ys and b0

ys are constants, defined in the initial region Γ (t = 0) =
{(x, y), 0 6 x 6 1, 0 6 y 6 1}. We see that the system is not in thermodynamic
(Maxwellian) equilibrium and there is a preferred direction for the evolution, given
by the constant coefficients a0

xs, b0
xs, a0

ys and b0
ys. The latter are determined by the

self-consistent electrostatic field as well as external fields, if any.
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3. The invariants
According to the Jeans’s theorem, solutions of the Vlasov–Maxwell equation can be

written as
fs = fs(I1s, I2s, . . . , IKs), (3.1)

where I1s, I2s, . . . , IKs are the invariants of motion, i.e. they remain constant along the
trajectory of a particle, or along a phase-space characteristic of (2.10), even though
they can be functions of time, space and velocity.

We start from a simple case, where the invariants Ils are linear functions of v,
namely

Ils = als(t)vx + bls(t)vy + cls(t)x+ dls(t)y+ hls(t), (3.2)

where the coefficients als(t), bls(t), cls(t), dls(t) and hls(t) depend only on time. The
ansatz (3.2) corresponds to presetting the spatial structures of the self-consistent and
the external fields (if any), and thereby also the particle densities, currents, etc. These
parameters have to be obtained by trial and error, such that dtIls= 0 along the particle
trajectory (see, e.g. Lewis & Leach 1982; Struckmeier & Riedel 2001). That is, the
time-dependent coefficients should exist and satisfy (2.10)–(2.12).

The equations for the coefficients als(t) to hls(t) can be obtained by substituting (3.1)
into (2.10): ∑

l

[
Gs(x, v)+ Qs

Ms
(alsEx + blsEy)

]
∂Ils fs = 0, (3.3)

where
Gs(x, v)= ȧlsvx + ḃlsvy + ċlsx+ ḋlsy+ clsvx + dlsvy + ḣls, (3.4)

and the overhead dot denotes the time derivative. Since ∂Ils fs should be independent
for s= e, i, equation (3.3) is satisfied if

Gs(x, v)+ Qs

Ms
(alsEx + blsEy)= 0. (3.5)

Since the space and velocity coordinates are independent in the phase space, we obtain
cls =−ȧls, dls =−ḃls, and

älsx+ b̈lsy− ḣls = Qs

Ms
(alsEx + blsEy). (3.6)

The initial conditions (2.13)

als(t= 0)= a0
ls, bls(t= 0)= b0

ls, hls(t= 0)= ȧls(t= 0)= ḃls(t= 0)= 0 (3.7a−c)

allow us to define the number K (here not more than four) of constants of motion.
In fact, the set (3.2) is a system of linear algebraic equations relating Ils to vx and
vy. Accordingly, the four invariants Ils 6= 0 at any time uniquely determine vx and vy.
However, from (3.7) we have ds(t = 0) = cs(t = 0) = hls(t = 0) = 0 at t = 0, so that
the rank of the matrix with als, bls, cls, dls and hls is not more than two. That is, there
are only two independent equations. The distribution functions can then be rewritten
as functions of the invariants

fs(t, r, v)= fs(Ixs, Iys), (3.8)

where l= x, y.
The case K = 1 is singular: Ixs and Iys are not linearly independent. Nevertheless, it

is still realistic and shall thus be separately considered later.
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4. The case K = 2

We first investigate the case K = 2, and use (3.8) to determine als, bls and E. The
particle densities and fluxes can be expressed as integrals in Ixs and Iys (in place of
vx and vy) (see appendix A)

ns = 1
Λs
, (4.1)

which verifies the ansatz that the densities ns are functions of time only. Moreover,
we have

jxs = ȧxsbys − bxsȧys

Λ2
s

x+ ḃxsbys − bxsḃys

Λ2
s

y+ bxshys − byshxs

Λ2
s

, (4.2)

jys = ȧysaxs − aysȧxs

Λ2
s

x+ axsḃys − aysḃxs

Λ2
s

y+ ayshxs − axshys

Λ2
s

, (4.3)

where Λs = axsbys − aysbxs.
From (2.11) and (4.1), we obtain

∂xEx + ∂yEy =
∑

s

qsΛ
−1
s , (4.4)

where the right-hand side is only a function of t. One can then write

Ex = A(t)x+ B(t)y+H(t), Ey =C(t)x+D(t)y+ F(t), (4.5a,b)

where the time-dependent functions A, B, C, D, H and F still have to be determined.
Substituting (4.5) into (2.3) we get

C(t)= B(t). (4.6)

Equation (3.6) then becomes

älsx+ b̈lsy− ḣls = Qs

Ms
[(alsA+ blsB)x+ (alsB+ blsD)y+ (alsH + blsF)]. (4.7)

The terms involving the space coordinates x and y can now be separated. Accordingly,
we have

äls = Qs

Ms
(alsA+ blsB), b̈ls = Qs

Ms
(alsB+ blsD), ḣls =−Qs

Ms
(alsH + blsF). (4.8a−c)

One can verify that Ampere’s law without the displacement current is identically
satisfied.

Similarly, from (4.2), (4.3) and (4.5) with (4.6) in (2.12), one obtains

Ȧx+ Ḃy+ Ḣ=−x
∑

s

Qs
ȧxsbys − bxsȧys

Λ2
s

− y
∑

s

Qs
ḃxsbys − bxsḃys

Λ2
s

−
∑

s

Qs
ḃxshys − bysḣxs

Λ2
s

(4.9)
and

Ḃx+ Ḋy+ Ḟ=−x
∑

s

Qs
ȧysaxs − aysȧxs

Λ2
s

− y
∑

s

Qs
axsḃys − aysḃxs

Λ2
s

−
∑

s

Qs
ȧyshxs − axsḣys

Λ2
s

.

(4.10)
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Equating the terms in equations (4.9) and (4.10) of similar spatial dependence, we
get

Ȧ=
∑

s

QsΛ
−2
s (bxsȧys − ȧxsbys), (4.11)

Ḃ=
∑

s

QsΛ
−2
s (bxsḃys − ḃxsbys), (4.12)

Ḋ=
∑

s

QsΛ
−2
s (aysḃxs − axsḃys), (4.13)

Ḣ =
∑

s

Qs
bysḣxs − ḃxshys

Λ2
s

, (4.14)

Ḟ=
∑

s

Qs
axsḣys − ȧyshxs

Λ2
s

, (4.15)

and from (4.6) the condition∑
s

QsΛ
−2
s (bxsḃys − ḃxsbys)=

∑
s

QsΛ
−2
s (aysȧxs − ȧysaxs). (4.16)

From the mathematical point of view, the equations (4.8)–(4.16) form a closed set
that depends on the parameters A, B and D. We now consider the physical meanings
of these parameters and the relation (4.16). Accordingly, we first evaluate

Ωs =∇× j s. (4.17)

Inserting (4.2) and (4.3), we get

Ωs = bxsḃys + ȧysaxs − ḃxsbys − aysȧxs

Λ2
s

. (4.18)

It follows that (4.16) corresponds to the condition for vortex-free motion. The
functions B(t) and C(t) are then related to the vortex component of the electrical
field in (4.5) by C− B=∑QsΩs.

On the other hand, combining (4.11) and (4.13) and integrating with respect to time,
we get

A+D=
∑

Qsns, (4.19)

which shows that A(t) and D(t) are related to the action of the electrostatic field.
Finally, we should define the moving boundaries Xs(t) and Ys(t) for the expanding

electron and ion fluids by requiring that the total number

Ns =
∫ Xs

0

∫ Ys

0
ns dx dy (4.20)

of each species of particles is constant since there is no loss or source of particles in
the evolving plasma volume Γ (t). For spatially homogeneous plasma, we have Ns =
XsYsns.
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For convenience, we set Ne(t = 0) = Ni(t = 0) = 1 in the initial volume Γ (t = 0).
From the particle conservation condition dtNs = 0 we obtain

Ysns

[
Ẋs + ṅs

2ns
Xs

]
+ Xsns

[
Ẏs + ṅs

2ns
Ys

]
= 0. (4.21)

Since Xs(t) and Ys(t) are independent, we can set

Ẋs + ṅs

2ns
Xs = 0, Ẏs + ṅs

2ns
Ys = 0 (4.22a,b)

and find
Xs(t)= Ys(t)= n−1/2

s , (4.23)

which in view of (4.1) becomes

Xs(t)= Ys(t)=Λ1/2
s . (4.24)

5. Existence of solutions
We now show that there indeed exist non-trivial solutions of (4.8)–(4.16). Let us

consider the invariants with the coefficients

bxs = ays, bys = axs, hxs = hys = 0, (5.1a−c)

so that (4.16) is satisfied and (4.12) becomes

Ḃ=
∑

s

Qs

a2
xs − a2

ys

[
ȧxs + ȧys

axs + ays
− ȧxs − ȧys

axs − ays

]
. (5.2)

Equations (4.11) and (4.13) become identical:

Ȧ= Ḋ=
∑

s

Qs

a2
xs − a2

ys

[
ȧxs + ȧys

axs + ays
+ ȧxs − ȧys

axs − ays

]
, (5.3)

so that A(t)=D(t) if A(t= 0)=D(t= 0). As a result, equations (4.8) reduce to

äls = Qs

Ms
(Aaxs + Bays), äys = Qs

Ms
(Aays + Baxs). (5.4a,b)

Equation (4.13) can be integrated to

A=D= 1
2

∑
s

Qs

a2
ys − a2

xs

≡ 1
2

∑
s

Qsns 6= 0. (5.5)

As mentioned, the functions A(t) and D(t) are associated with the action of
electrostatic field E. However, for (5.1) there are no non-trivial quasi-neutral states,
i.e. the plasma layer always remains charged. To verify this we start by assuming the
opposite, namely ne = ni. In view of (5.1), we can then write

a2
ye − a2

xe ≡ a2
yi − a2

xi, (5.6)
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and set A≡ 0 in (5.4). From the reduced equations (5.4) one gets

Ms

Qs
(aysäxs − axsäys)= (a2

ys − a2
xs). (5.7)

The condition (5.6) requires that the right-hand side of (5.7) does not depend on s,
so that we can set

als =
√

Qs

Ms
αl(t), (5.8)

where αl(t) is a function of t. However, this form of als cannot satisfy the quasi-
neutrality condition (5.6). Accordingly, the choice (5.1) cannot describe quasi-neutral
expansion of the plasma slab.

Thus, the ordinary differential equations (ODEs) (5.2)–(5.4), together with the
initial conditions on the distribution functions, fully determine the evolution of the
plasma, which remains non-neutral for all t. Given the initial values of als and bls,
one can numerically integrate these ODEs. The evolution of the distribution functions
is then determined when the explicit forms of the initial distribution functions
fs(Ixs(t= 0), Iys(t= 0)) are specified.

6. The reduced case K = 1

We now consider the degenerate case, where the rank of the matrix of the algebraic
equations (3.2) is unity, or when the equations are linearly dependent. For simplicity,
we shall concentrate on the case where the distribution function depends only on one
invariant, say Is, or

fs = fs(Is). (6.1)

A simple but physically relevant exact solution can be obtained if we also set bs=λas,
where λ is an arbitrary constant. Then Is becomes

Is = asvx + λasvy − ȧsx− λȧsy+ hs, (6.2)

where we have omitted the subscript l (i.e. as = als, bs = bls and hs = hls). We note
that the problem remains exact and two-dimensional, even though we have used only
one invariant and a specific choice of parameters.

From (B 3) and (B 8a,b) one can get the particle densities and fluxes (see
appendix B)

ns = 1
λa2

s

, jxs = ȧsx− hs

λa3
s

, jys = ȧs

λa3
s

y. (6.3a−c)

The relations (4.9) and (4.10) then become

Ȧx+ Ḃy+ Ḣ =−
∑

s

Qs
ȧsx− hs

λa3
s

, (6.4)

Ḃx+ Ḋy+ Ḟ=−
∑

s

Qs
ȧsy
λa3

s

. (6.5)

It follows that

Ḃ= Ḟ= 0, Ȧ= Ḋ=−
∑

s

Qs
ȧs

λa3
s

, Ḣ =
∑

s

Qs
ḣs

λa3
s

. (6.6a−c)
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Integrating the first two relations in (6.6) with respect to t, we find

B= F= 0, A=D= 1
2λ

∑
s

Qs

a2
s

, (6.7a,b)

so that equations (4.8) become

äe =
(

1
a2

e

− 1
a2

i

)
ae

λ
, äi =−δ

(
1
a2

e

− 1
a2

i

)
ai

λ
, (6.8a,b)

and
ḣs =−Qsas

Ms
H, (6.9)

where δ =me/mi. Substituting (6.9) into the third equation of (6.6) we obtain

Ḣ =−
∑

s

1
λMsa2

s

H, (6.10)

which can be integrated to

H =H0 exp
[
−1
λ

∫ t

0

(
1
a2

e

+ δ

a2
i

)
dt′
]
, (6.11)

where H0 is an arbitrary constant to be determined by the initial conditions. Finally,
combining (6.3) and (4.23), we get

Xs(t)= Ys(t)= asλ
−1/2, (6.12)

where λ is determined by the initial value Ns(t= 0). The evolution of the distribution
functions are thereby fully determined by their initial values fs(Is(t = 0)), where the
invariants Is are given by the solutions of (4.8). We note that the coefficients ae and
ai are the functions describing the moving boundaries of the electron and ion fluids.
That is, equations (6.8) are the equations of motion for the corresponding fronts.

7. The behaviour at short and long times
The ODEs (6.8) can be solved numerically when δ and λ as well as ae and ai and

their time derivatives at t = 0 are given, so that the solutions depend only on these
initial conditions. Typical solutions are shown in figure 1: (a) free expansion of the
plasma slab, (b) expansion with large-amplitude oscillations and (c) contracting plasma
slab with oscillating electron front. Numerical investigation also allows us to obtain
an empirical relation

D−ai < ae <D+ai, (7.1)

where D− > 0 and D+ > 0 are constants. This relation reflects the electrostatic
interaction between the ion and electron fluids.

One can give a qualitative analysis of the expansion dynamics at large times.
Combining the equations (6.8) we get

äe

ae
+ 1
δ

äi

ai
= 0, (7.2)
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10 A. R. Karimov, M. Y. Yu and L. Stenflo

FIGURE 1. Evolution of the ion and electron fronts ai(t) (blue dotted curve) and ae(t)
(red solid curve) respectively for the different initial data: (a) ai(0)= ae(0)= 0.1, ȧe(0)=
10−6, ȧi(0) = 0.1; (b) ai(0) = ae(0) = 1, ȧe(0) = −0.7, ȧi(0) = 0.1; (c) ai(0) = ae(0) = 1,
ȧe(0)= 0.1, ȧi(0)=−0.01.

which after integration with the initial conditions (3.7) yields

ȧe

ae
+ 1
δ

ȧi

ai
+
∫ t

0

[(
ȧe

ae

)2

+ 1
δ

(
ȧi

ai

)2
]

dt′ = 0. (7.3)
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Further integration gives

aea
1/δ
i = exp

[
−
∫ t

0
θ(ae, ai) dt′

]
, (7.4)

where

θ(ae, ai)=
∫ t

0

[(
ȧe

ae

)2

+ 1
δ

(
ȧi

ai

)2
]

dt′ > 0. (7.5)

Taking into account (7.1), we can rewrite (7.4) as

ai <D−δ/1+δ− exp
[
− δ

1+ δ
∫ t

0
θ(ae, ai)dt′

]
. (7.6)

This relation implies that ae and ai, and thus Xs and Ys, are always bounded. In
view of the Chaplygin comparison theorems (see, e.g. Yang, Shi & Li 2011), similar
behaviour for the more general case K = 2 can be expected.

8. Discussion and conclusion
In contrast to the asymptotic stationary solution, namely the Maxwell distribution,

of the Boltzmann and other equations including collision or velocity–space diffusion
effects, the Vlasov equation can have an infinite number of asymptotic states
(Clemmow & Dougherty 1969), depending on the initial distribution. For example, the
works of Demeio & Zweifel (1990), Demeio & Holloway (1991), Manfredi (1997)
showed that even though small-amplitude electric fields can be damped and eventually
vanish, sufficiently large-amplitude perturbations can evolve into wave-like or other
states. The results here belong to the latter class. The Vlasov system possesses such a
property because it precludes direct particle–particle collisions that tend to randomize
the particle velocities, and the interaction via the self-consistent electrostatic field
cannot change the system entropy. However, one can still compare the macroscopic
quantities (velocity–space moments of the distribution function) and the electrostatic
field with that obtained from the corresponding fluid models. In fact, some of our
results on the evolution of initially confined plasmas are similar to phenomena
predicted by the latter (Karimov & Godin 2009; Karimov, Stenflo & Yu 2009a,b;
Karimov, Yu & Stenflo 2011, 2012; Wang et al. 2016).

In this paper we have considered the properties and expansion of a collisionless
plasma slab with anisotropic non-equilibrium particle distributions. We obtained fully
nonlinear time-dependent, 2-D solutions of the Vlasov–Maxwell equations by invoking
the Jeans’ theorem. In contrast to most existing works invoking the latter, here the
invariants of motion used to construct the distribution function are linear combinations
of the phase-space variables, but the coefficients are time dependent and governed
by ODEs. That is, they are not related to the traditional conservation laws such as
that for energy and momentum. The plasma density, flux, as well as the electrostatic
field then depend on the form of the invariants as well as how they appear in the
distribution function, as can be seen from the relations (4.5), (4.1), (4.2) and (4.3).
The solutions then describe non-equilibrium plasma flows, where imbalance among the
different degrees of freedom leads to a preferred direction of evolution in the phase
space.

We emphasize that the solutions, including the highly simplified but physically
non-trivial case K = 1, are mathematically exact and are also valid for open systems,
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including those with non-conservative space- and time-dependent external forces. One
can expect that similar results can also be found for higher-dimensional systems.
Finally, we note that by using polynomial (instead of linear) forms of the invariants,
the dynamics of other systems of physical interest (Lewis & Leach 1982; Struckmeier
& Riedel 2001; Agren et al. 2005) can also be considered, such as that of a vortex
system (Eyink & Sreenivasan 2006; Saffman 2006; Chavanis 2012).
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Appendix A. Particle densities and fluxes for K = 2

Here we show how the time-dependent coefficients of the invariants Ixs and Iys in
(3.2) are related to the particle densities and fluxes of the initially bounded plasma.
From (3.2), we have

Λsvx(Ixs, Ixs)= bysIxs − bxsIys + (bysȧxs − bxsȧys)x+ (bysḃxs − bxsḃys)y+ bxshys − byshxs,

(A 1)
Λsvy(Ixs, Ixs)= axsIys − aysIxs + (axsȧys − aysȧxs)x+ (axsḃys − aysḃxs)y+ ayshxs − axshys,

(A 2)

where Λs = axsbys − aysbxs.
In terms of the invariants, we can express the density as

ns =
∫

fs(Ixs, Iys) dvx dvy

= Λ−1
s

∫
fs(Ixs, Iys) dIxs dIys, (A 3)

where we have used the transformation Jacobian J = D(vx, vy)/D(Ixs, Iys)= 1/Λs. In
view of the initial or normalization condition, one can see that the plasma density is
ns =Λ−1

s . That is, the plasma indeed remains homogeneous during its evolution.
Similarly, for the macroscopic flux we have

jxs =
∫
vx(Ixs, Ixs)fs(Ixs, Iys)Λ

−1
s dIxs dIys

= Λ−2
s [(ȧxsbys − bxsȧys)x+ (ḃxsbys − bxsḃys)y+ bxshys − byshxs], (A 4)

and

jys =
∫
vy(Ixs, Ixs)fs(Ixs, Iys)Λ

−1
s dIxs dIys

= Λ−2
s [(ȧysaxs − aysȧxs)x+ (axsḃys − aysḃxs)y+ ayshxs − axshys], (A 5)

where we have again used the initial condition. Thus, the macroscopic flow parameters
are rather complicated functions of the structure coefficients appearing in (3.2).
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Appendix B. Particle densities and fluxes for K = 1

Here we obtain the macroscopic densities and fluxes for K= 1 by using the solution
(6.1) with (6.2). Accordingly, we have

ns =
∫

fs(asvx + λasvy − ȧsx− λȧsy+ hs) dvx dvy = 1
λa2

s

∫
fs(ξ + η) dξ dη, (B 1)

where we have used

ξ = asvx − ȧsx+ hs, η= λ(asvy − ȧsy). (B 2a,b)

In view of the initial condition (3.7) we obtain

ns = 1
λa2

s

. (B 3)

The corresponding macroscopic fluxes are

jxs =
∫
vxfs(asvx + λasvy − ȧsx− λȧsy+ hs) dvx dvy (B 4)

and
jys =

∫
vy fs(asvx + λasvy − ȧsx− λȧsy+ hs) dvx dvy. (B 5)

These can be rewritten as

jxs = 1
λa3

s

(∫
ξ f (ξ + η) dξdη+ (ȧsx− hs)

∫
f (ξ + η) dξ dη

)
, (B 6)

jys = 1
λ2a3

s

(∫
ηf (ξ + η) dξ dη+ λȧsy

∫
f (ξ + η) dξ dη

)
. (B 7)

Applying the initial conditions (3.7), we find

jxs = ȧs − hs

λa3
s

x, jys = ȧs

λa3
s

y. (B 8a,b)

We note that for the distribution (6.1) with (6.2), the relation (B 3) is not unique. It is
the simplest non-trivial choice. One can obtain other results for jxs and jys if different
ξ and η are used.
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