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type Néron models of algebraic tori over local fields. This provides a geometrization of quasicharacters

of p-adic tori.
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Introduction

As Deligne explained in [14, Sommes trig.], if G is a connected commutative algebraic

group over a finite field k, then the trace of Frobenius provides a bijection between the

group G(k)∗ of `-adic characters of G(k) and isomorphism classes of those rank-one `-adic

local systems E on G for which

m∗E ∼= E � E, (1)

where m : G×G → G is the multiplication map. If one wishes to make a category from

this class of local systems, one is led to consider morphisms E → E ′ of sheaves which

are compatible with particular choices of (1) for E and E ′. A priori, the composition

E → E ′→ E ′′ of two such morphisms need not be compatible with the choices of (1) for

E and E ′′. However, for connected G, the isomorphism (1) is unique, if it exists, and there

is no impediment to making the dictionary categorical.

If G is a commutative algebraic group over k which is not connected, however, then

the isomorphism (1) need not be unique. In order to track the choice of isomorphism,

consider the category CS0(G) of pairs (E, µE ), where E is a rank-one local system on

G and µE : m∗E → E � E is a chosen isomorphism of local systems on G×G. In this
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From the function-sheaf dictionary to quasicharacters of p-adic tori 3

case, the trace of Frobenius provides an epimorphism from isomorphism classes of objects

in CS0(G) to characters of G(k), but the epimorphism need not be injective; consequently,

every character of G(k) may be geometrized as a pair (E, µE ), but perhaps not uniquely.

Indeed, it follows from a special case of the main result of this paper that the kernel of the

trace of Frobenius CS0(G)→ G(k)∗ trivial if and only if the group scheme of connected

components of G is cyclic. The defect in the function-sheaf dictionary for characters

of commutative algebraic groups over finite fields may be addressed with the following

observation: if (E, µE ) and (E ′, µ′E ) determine the same character of G(k) then E ∼= E ′ as

local systems on G.

Motivated by an application to quasicharacters of algebraic tori over local fields, in this

paper we extend the function-sheaf dictionary from commutative algebraic groups over

finite fields to smooth commutative group schemes G over k. In order to do this, we replace

the local system E on G with a Weil local system while retaining the extra structure µE .

In this way we are led to the category CS(G) of character sheaves on G (§ 1.2): objects in

CS(G) are triples (L̄, µ, φ), where L̄ is a rank-one local system on Ḡ := G×Spec(k) Spec(k̄),
and φ : Fr∗G L̄→ L̄ and µ : m̄∗L̄ ∼= L̄� L̄ are isomorphisms of sheaves satisfying certain

compatibility conditions; morphisms in CS(G) are then morphisms of Weil sheaves which

are compatible with the extra structure. This paper establishes the basic properties of

category CS(G), using the group homomorphism

TrG : CS(G)/iso→ G(k)∗

provided by the trace of Frobenius to find the relation between character sheaves on G
and characters of G(k). Then we return to our motivating application, and use character

sheaves to geometrize and categorify quasicharacters algebraic tori over local fields.

We begin our study of category CS(G) by returning to the case when G is a connected

commutative algebraic group over k, revisiting Deligne’s function-sheaf dictionary (§ 1).

We consider character sheaves that arise via base change to k̄ from local systems on G
(§ 1.4) and those that appear in a pushforward from a constant sheaf along a discrete

isogeny H → G (§ 1.5). While these constructions make sense even for non-connected G,

in the connected case we show that every character sheaf can be described in both of these

ways (§ 1.6). We use this fact to prove that TrG : CS(G)→ G(k)∗ is an isomorphism for

connected commutative algebraic groups G. We also determine the automorphism groups

of character sheaves on such G. These facts are well known.

Next, we consider character sheaves on étale commutative group schemes G over k
(§ 2). Étale group schemes form a counterpoint to connected algebraic groups, since the

component group of any smooth group scheme is an étale group scheme. Our key tools

for understanding the trace of Frobenius in the étale case are a reinterpretation of CS(G)
in terms of stalks (§ 2.1) and the Hochschild–Serre spectral sequence (§ 2.2) for Wn Ḡ,

where W ⊂ Gal(k/k) is the Weil group for k. We define (§ 2.3) an isomorphism SG from

CS(G)/iso to the second cohomology of the total space of the spectral sequence

E p,q
2 := Hp(W,Hq(Ḡ, Q̄×` ))⇒ Hp+q(Wn Ḡ, Q̄×` ).

Paired with the short exact sequence

0→ H0(W,H2(Ḡ, Q̄×` ))→ H2(E•G)→ H1(W,H1(Ḡ, Q̄×` ))→ 0
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arising from the spectral sequence, the isomorphism SG allows us to show (§ 2.4) that

the group homomorphism TrG : CS(G)/iso→ G(k)∗ is surjective with kernel H2(Ḡ, Q̄×` )
W .

The necessity of using Weil local systems on G in the definition of CS(G) already appears

here: if one were to use local systems on G instead, the group homomorphism TrG would

not then be surjective (§ 2.5). Moreover, as examples show (§ 2.12), the kernel of TrG is

non-trivial in general.

Having understood CS(G) in two extreme cases (for connected commutative algebraic

groups and for étale commutative group schemes), we turn to the case of smooth

commutative group schemes (§ 3) using the component group sequence

0→ G0
→ G → π0(G)→ 0.

Using pullbacks of character sheaves, we obtain the following diagram.

0 // CS(π0(G))/iso

Trπ0(G)

��

// CS(G)/iso

TrG

��

// CS(G0)/iso

TrG0

��

// 0

0 // π0(G)(k)∗ // G(k)∗ // G0(k)∗ // 0

We show that the rows of this diagram are exact (§§ 3.1, 3.2), so we may apply the snake

lemma to prove the main theorem of the paper,

Theorem (Theorem 3.6). If G is a smooth commutative group scheme over k then the

trace of Frobenius gives a short exact sequence

0 // H2(π0(Ḡ), Q̄×` )
W // CS(G)/iso

TrG // G(k)∗ // 0

If the component group scheme π0(Ḡ) is cyclic, then the kernel of TrG will be trivial, and

each character of G(k) will uniquely determine a character sheaf on G, up to isomorphism.

But when π0(Ḡ) is large (see Remark 2.9), G will admit invisible character sheaves with

trivial trace of Frobenius.

We also illuminate the nature of the category CS(G) by showing that every morphism

in this category is either an isomorphism or trivial, and by showing the following.

Theorem (Theorem 3.9). If G is a smooth commutative group scheme over k then

Aut(L) ∼= H1(π0(Ḡ), Q̄×` )
W

for all quasicharacter sheaves L on G.

Application to quasicharacters of p-adic tori and abelian varieties. As indicated above,

our interest in the function-sheaf dictionary for smooth commutative group schemes over

finite fields comes from an application to p-adic representation theory, specifically to

quasicharacters (§ 4.2) of p-adic tori. However, we found that our method of passing

from p-adic tori to group schemes over k applies more generally to any local field K with

finite residue field k and to any commutative algebraic group over K that admits a Néron
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model X . This class of algebraic groups over K includes abelian varieties and unipotent

K -wound groups, in addition to the algebraic tori we initially considered.

In this paper we show that if X is as above then quasicharacters of X (K ) are

geometrized and categorified by character sheaves on the Greenberg transform GrR(X) of

the Néron model X . Although not locally of finite type, GrR(X) is a commutative group

scheme over k and also a projective limit of smooth commutative group schemes GrR
n (X).

This structure allows us to adapt our work on character sheaves on smooth group schemes

over finite fields to construct (§ 4.4) a category QCS(X) of quasicharacter sheaves for X ,

which are certain sheaves on GrR(X)×Spec(k) Spec(k̄), with extra structure. The ability to

generalize the function-sheaf dictionary to non-connected group schemes plays a crucial

role in this application.

Having defined quasicharacter sheaves on Néron models of commutative algebraic

groups over K and character sheaves on commutative group schemes over k, we consider

how these categories are related as K and k vary. We describe (§ 3.7) functors between

categories of quasicharacter sheaves that model restriction and norm homomorphisms of

character groups G(k′)∗→ G(k)∗ and G(k)∗→ G(k′)∗, and describe how quasicharacter

sheaves behave under Weil restriction (§ 4.6). We also give (§ 4.7) a categorical version of

a result of Chai and Yu [12], relating quasicharacter sheaves for tori over different local

fields, even local fields with different characteristic.

Finally, specializing to the case that X = T is the Néron model of an algebraic torus

over K (§ 4.5), we give a canonical short exact sequence

0→ H2(X∗(T )IK , Q̄
×

` )
W
→ QCS(T )/iso→ Hom(T (K ), Q̄×` )→ 0,

where X∗(T )IK is the group of coinvariants of the cocharacter lattice X∗(T ) of the

algebraic torus TK by the action of the inertia group IK of K , and where Hom(T (K ), Q̄×` )
denotes the group of quasicharacters of T (K ). We further show that automorphism groups

in QCS(T ) are given, for every quasicharacter sheaf F for T , by

Aut(F) ∼= (Ť`)WK ,

where WK is the Weil group for K and Ť` is the `-adic dual torus to T .

By any measure, there are more quasicharacter sheaves for T than quasicharacters of

T (K ). In this regard, we are reminded of the work of Vogan [35], in which he finds a

geometrization of complete Langlands parameters for p-adic groups and, in the process,

is led to study the representations of all the pure rational forms of the p-adic group,

simultaneously. A similar phenomenon appears in recent work by Joseph Bernstein in

which his geometric Ansatz leads to the study of certain sheaves on the stacky classifying

space of the p-adic group, resulting in a category which appears to be tied to the

representations of all the pure rational forms of the p-adic group [3]. Indeed, Bernstein has

suggested to us that our category of quasicharacters for T may be tied to quasicharacters

of all the pure rational forms of T . It would be interesting to pursue this idea.

Relation to other work. The main use of the term character sheaf is due to Lusztig.

It is applied to certain perverse sheaves on connected reductive algebraic groups over

algebraically closed fields in [29, Definition 2.10], and to certain perverse sheaves on
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certain reductive groups over algebraically closed fields in the series of papers beginning

with [30]. When commutative, it is not difficult to relate Frobenius-stable character

sheaves to our character sheaves (Remark 3.11). The new features that we have found

pertaining to Weil sheaves and H2(π0(Ḡ), Q̄×` )
W do not arise in that context because, for

such groups, Weil sheaves are unnecessary (§ 3.6) and H2(π0(Ḡ), Q̄×` )
W
= 0 (Remark 2.9).

For a connected commutative algebraic group over a finite field, it is not uncommon

to refer to local systems satisfying (1) as character sheaves; see, for example, [26,

Introduction]. Our definition of character sheaves on smooth commutative group schemes

over finite fields evolved from this notion, with an eye towards quasicharacters of p-adic

groups. The process of creating a category from the group of quasicharacters of a p-adic

torus informs our choice of the term quasicharacter sheaf in this paper.

We anticipate that future work on quasicharacter sheaves will make use of [32, 33],

and will clarify the relation between this project and other attempts to geometrize

admissible distributions on p-adic groups, such as [13] (limited to quasicharacters of Z×p )

and [1] (limited to characters of depth-zero representations). We are actively pursuing the

question of how to extend the notion of quasicharacter sheaves to provide a geometrization

of admissible distributions on connected reductive algebraic groups over p-adic fields, not

just commutative ones.

1. Definitions and recollections

1.1. Notation

Throughout this paper, G is a smooth commutative group scheme over a finite field k,

and m : G×G → G is its multiplication morphism.

We will make use of the short exact sequence of smooth group schemes defining the

component group scheme for G:

0 // G0 ι0 // G
π0 // π0(G) // 0

Then G0 is a connected algebraic group and π0(G) is an étale commutative group scheme.

In contrast to the case of algebraic varieties, the component group scheme π0(G) for G
need not be finite.

It follows from the smoothness of G that the structure morphism G → Spec(k) is locally

of finite type, being smooth. If the structure morphism G → Spec(k) is also étale, then

G is an étale group scheme; this does not imply that π0(G) is finite. An algebraic group

over k is a smooth group scheme of finite type, in which case its component group scheme

is finite.

We fix an algebraic closure k̄ of k, and write Ḡ for the smooth commutative group

scheme G×Spec(k) Spec(k̄) over k̄ obtained by base change from k. The multiplication

morphism for Ḡ will be denoted by m̄.

Let Fr denote the geometric Frobenius element in Gal(k̄/k) as well as the corresponding

automorphism of Spec(k̄). The Weil group W ⊂ Gal(k̄/k) is the subgroup generated by

Fr. Let FrG := idG ×Fr be the Frobenius automorphism of Ḡ = G×Spec(k) Spec(k̄).
We fix a prime `, invertible in k. We will work with constructible `-adic sheaves

[15, § 1.1]; [25, Exposés V, VI] on schemes locally of finite type over k, employing the
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standard formalism. We also make extensive use of the external tensor product of `-adic

sheaves, defined as follows: if F and G are constructible `-adic sheaves on schemes X and Y
and pX : X × Y → X and pY : X × Y → Y are the projections, then F �G := p∗XF ⊗ p∗YG.

For any commutative group A, we will write A∗ for the dual group Hom(A, Q̄×` ).

1.2. Character sheaves on commutative group schemes over finite fields

Definition 1.1. A character sheaf on G is a triple L := (L̄, µ, φ), where the following hold.

(CS.1) L̄ is a rank-one `-adic local system on Ḡ, by which we mean a constructible

`-adic sheaf on Ḡ, lisse on each connected component of Ḡ, whose stalks are

one-dimensional Q̄`-vector spaces.

(CS.2) µ : m̄∗L̄→ L̄ � L̄ is an isomorphism of sheaves on Ḡ × Ḡ such that the following

diagram commutes, where m3 :=m ◦ (m × id) = m ◦ (id ×m).

m̄∗3L̄

(id× m̄)∗µ
��

(m̄× id)∗µ // m̄∗L̄� L̄

µ � id
��

L̄� m̄∗L̄
id�µ // L̄ � L̄ � L̄

(CS.3) φ : Fr∗G L̄→ L̄ is an isomorphism of constructible `-adic sheaves on Ḡ compatible

with µ in the sense that the following diagram commutes.

Fr∗G×G m̄∗L̄
Fr∗G×G µ // Fr∗G×G(L̄ � L̄)

m̄∗ Fr∗G L̄

m̄∗φ
��

Fr∗G L̄�Fr∗G L̄

φ�φ
��

m̄∗L̄
µ // L̄ � L̄

Morphisms of character sheaves are defined in the natural way.

(CS.4) If L = (L̄, µ, φ) and L′ = (L̄′, µ′, φ′) are character sheaves on G, then a morphism

ρ : L→ L′ is a map ρ̄ : L̄→ L̄′ of constructible `-adic sheaves on Ḡ such that
the following diagrams both commute.

Fr∗G L̄

φ

��

Fr∗G ρ̄ // Fr∗G L̄′

φ′

��
L̄

ρ̄ // L̄′

m̄∗L̄
µ

��

m̄∗ρ̄ // m̄∗L̄′

µ′

��
L̄ � L̄

ρ�ρ // L̄′ � L̄′

The category of character sheaves on G will be denoted by CS(G).

Category CS(G) is a rigid monoidal category [19, § 1.10] under the tensor product
L⊗L′ defined by (L̄⊗ L̄′, µ⊗µ′, φ⊗φ′), with duals given by applying the sheaf hom
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8 C. Cunningham and D. Roe

functor Hom(−, Q̄`). This rigid monoidal category structure for CS(G) gives the set
CS(G)/iso of isomorphism classes in CS(G) the structure of a group.

Remark 1.2. The category of character sheaves on G is not abelian since it is not closed
under direct sums; thus CS(G) is not a tensor category in the sense of [16, 0.1]. We
suspect that requiring that µ be injective rather than an isomorphism and dropping the
condition that the stalks be one dimensional would yield an abelian category.

We will describe the group CS(G)/iso in Theorem 3.6 and the sets Hom(L,L′) in
Theorem 3.9; in this way we provide a complete description of the category CS(G).
In the meantime, we make an elementary observation about Hom(L,L′).

Lemma 1.3. Let G be a smooth commutative group scheme over k. If L and L′ are
character sheaves on G, then every ρ ∈ Hom(L,L′) is either trivial (zero on every stalk)
or an isomorphism.

1.3. Trace of Frobenius

In this section we introduce two tools which will help us understand isomorphism classes
of objects in CS(G): the map CS(G)/iso→ G(k)∗ given by trace of Frobenius, and the
pullback functor CS(G)→ CS(H) associated to a morphism H → G of smooth group
schemes over k.

Let (L̄, φ) be a Weil sheaf on G. Every g ∈ G(k) determines a geometric point ḡ fixed
by FrG . Together with the canonical isomorphism (Fr∗G L̄)ḡ ∼= L̄FrG (ḡ), the automorphism

φ determines an automorphism φḡ of the Q̄`-vector space L̄ḡ. Let Tr(φḡ; L̄ḡ) be the trace
of φḡ ∈ AutQ̄`(L̄ḡ), and let t(L̄,φ) : G(k)→ Q̄` be the function defined by

t(L̄,φ)(g) := Tr(φḡ; L̄ḡ), (2)

commonly called the trace of Frobenius of (L̄, φ). Note that, if (L̄, φ) ∼= (L̄′, φ′) as Weil
sheaves, then t(L̄,φ) = t(L̄′,φ′) as functions on G(k).

Now suppose that L = (L̄, µ, φ) is a character sheaf on G. Then the isomorphism
m̄∗L̄ ∼= L̄� L̄ and the diagram of (CS.3) guarantee that the function t(L̄,φ) : G(k)→ Q̄×`
is a group homomorphism, which we will also denote by tL. Moreover, this homomorphism
depends only on the isomorphism class of L, so we obtain a map

TrG : CS(G)/iso→ G(k)∗,

L 7→ tL.

Since tensor products on the stalks of L induce pointwise multiplication on the trace of
Frobenius, TrG is a group homomorphism.

The next two results follow easily from the definitions.

Lemma 1.4. If f : H → G is a morphism of smooth commutative group schemes over k,

then

f ∗ : CS(G)→ CS(H)
(L̄, µ, φ) 7→ ( f̄ ∗L̄, ( f̄ × f̄ )∗µ, f̄ ∗F)
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From the function-sheaf dictionary to quasicharacters of p-adic tori 9

defines a monoidal functor dual to f : H(k)→ G(k) in the sense that

CS(G)/iso

TrG
��

f ∗ // CS(H)/iso

TrH
��

G(k)∗ // H(k)∗

is a commutative diagram of groups. Moreover, ( f ◦ g)∗ = g∗ ◦ f ∗.

If G1 and G2 are smooth commutative group schemes over k, then characters of

(G1×G2)(k) all take the form χ1⊗χ2 for characters χ1 of G1(k) and χ2 of G2(k). The

next lemma shows that character sheaves on G enjoy an analogous property.

Lemma 1.5. If G1 and G2 are smooth commutative group schemes over k, then the

following diagram commutes.

CS(G1)/iso× CS(G2)/iso

TrG1 ×TrG2
��

(L1,L2)7→L1�L2// CS(G1×G2)/iso

TrG1×G2
��

(G1)(k)∗× (G2)(k)∗
(χ1,χ2)7→χ1⊗χ2 // (G1×G2)(k)∗

Moreover, every character sheaf on G1×G2 is isomorphic to L1�L2 for some character

sheaves L1 on G1 and L2 on G2.

Using these results on pullbacks and products, we may prove a naturality property

of TrG .

Proposition 1.6. The homomorphism TrG : CS(G)/iso→ G(k)∗ defines a natural

transformation between the two contravariant additive functors

F1 : G 7→ CS(G)/iso

F2 : G 7→ G(k)∗

from the category of smooth commutative group schemes over k to the category of

commutative groups.

Proof. The first part of Lemma 1.4 shows that F1 is a functor, while the second

part shows that the trace of Frobenius is a natural transformation T : F1 → F2. When

further combined with Lemma 1.5, we see that F1 is an additive functor and T :
F1 → F2 is a natural transformation between additive functors, concluding the proof

of Proposition 1.6.

1.4. Descent

In this section we consider a category of sheaves on G obtained by replacing the Weil

sheaf (L̄, φ) on Ḡ in the definition of a character sheaf with an `-adic local system on G
itself; these will play a role in §§ 1.6 and 3.6.

https://doi.org/10.1017/S1474748015000286 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000286


10 C. Cunningham and D. Roe

Definition 1.7. Let CS0(G) be the category of pairs (E, µE ), where E is an `-adic local

system on G of rank one, equipped with an isomorphism µE : m∗E → E � E satisfying

the analogue of (CS.2) on G; morphisms in CS0(G) are defined as in the second part

of (CS.4).

We put a rigid monoidal structure on CS0(G) in the same way as for CS(G).

Proposition 1.8. Extension of scalars defines a full and faithful functor

BG : CS0(G)→ CS(G).

Proof. Suppose that (E, µE ) is an object of CS0(G). Let bG : Ḡ → G be the pullback

of Spec(k̄)→ Spec(k) along G → Spec(k). Set L̄ = b∗GE . The functor b∗G takes local

systems on G to local systems on Ḡ. The local system L̄ comes equipped with an

isomorphism φ : Fr∗G L̄→ L̄. The resulting functor from local systems on G to Weil local

systems on Ḡ, given on objects by E 7→ (L̄, φ), is full and faithful; see [17, Exposé

XIII] and [2, Proposition 5.1.2]. The isomorphism µ := b∗G×GµE satisfies (CS.2) for

L̄, and φ is compatible with µ in the sense of (CS.3). This construction defines the

functor BG : CS0(G)→ CS(G) given on objects by (E, µE ) 7→ (L̄, µ, φ), as defined here.

Because morphisms in CS0(G) and CS(G) are morphisms of local systems on G and Ḡ,

respectively, satisfying condition (CS.4), this functor is also full and faithful.

We will say that a character sheaf L ∈ CS(G) descends to G if it is isomorphic to some

BG(E, µE ).

Remark 1.9. In fact, it is not difficult to recognize character sheaves that descend to G:

they are exactly those character sheaves L = (L̄, µ, φ) for which the action of W on L̄
given by φ extends to a continuous action of Gal(k̄/k) on L̄; see [17, Exposé XIII, Rappel

1.1.3], for example.

1.5. Discrete isogenies

Here, we consider character sheaves on G that are defined by discrete isogenies onto G
(§ 1.5); these will play a role in § 3.1.

A finite, étale, surjective morphism H → G of smooth group schemes over k for which
the action of Gal(k̄/k) on the kernel is trivial is called a discrete isogeny, inspired by

[26, § 2.2].

Proposition 1.10. Let f : H → G be a discrete isogeny, and let A be the kernel of f . Let

V be a one-dimensional representation of A equipped with an isomorphism V → V ⊗ V .

Let ψ : A→ Q̄×` be the character of V . Then ( f!VH )ψ (the ψ-isotypic component of f!VH )

is an object of CS0(G).

Proof. Let f , A, V , and ψ be as above, and set E = ( f!VH )ψ . Since A is abelian, E is

an `-adic local system on G of rank one. We must show that E comes equipped with an

isomorphism µE : m∗E → E � E . To do this we use étale descent to see that pullback along
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f gives an equivalence between `-adic local systems on G and A-equivariant local systems

on H ; see [4, Proposition 8.1.1]. In particular, f ∗E is the A-equivariant constant sheaf V
on H with character ψ . Since f is a morphism of group schemes, the functor f ∗ defines

µE : m∗E → E � E from the isomorphism m∗ψ ∼= ψ �ψ determined by V → V ⊗ V .

Remark 1.11. Since V is one dimensional, the choice of V → V ⊗ V is exactly the choice

of an isomorphism V ∼= Q̄`.

Remark 1.12. A descent argument similar to the one employed in the proof of Lemma 1.10

is used in [8, Lemma 1.10], though in the more restrictive case of connected algebraic

groups.

1.6. Recollections on character sheaves for connected algebraic groups

If the smooth commutative group scheme G is of finite type, then every character sheaf

descends to G; we will see that this feature does not necessarily hold when G is not of

finite type.

Lemma 1.13. If G is a connected commutative algebraic group over k, then

BG : CS0(G)→ CS(G)

is an equivalence of categories.

Using this equivalence of categories, we may give a good description of CS(G) when G
is connected and finite type.

Proposition 1.14. If G is a connected, commutative algebraic group over k, then the

following hold.

(1) TrG : CS(G)/iso→ G(k)∗ is an isomorphism of groups.

(2) Every character sheaf on G is isomorphic to one defined by a discrete isogeny.

(3) Aut(L) = 1, for all character sheaves L on G.

Proof. By Lemma 1.13, we know that every character sheaf L on Ḡ descends to G; let E
be an object of CS0(G) for which BG(E) ∼= L. Since the functor BG : CS0(G)→ CS(G)
is full and faithful, Aut(L) = Aut(E). From here, Deligne’s function-sheaf dictionary for

connected commutative algebraic groups over finite fields, as in [14, Sommes trig.] or

[28, 1.1.3], gives us all we need for points (1) and (2), as we briefly recall.

As in the proof of Proposition 1.10, use étale descent to see that pullback by the

Lang isogeny Lang : G → G defines an equivalence of categories between local systems

on G and G(k)-equivariant local systems on G. Under this equivalence, local systems

E on G arising from objects in CS0(G) are matched with G(k)-equivariant constant

local systems of rank one on G, and therefore with one-dimensional representations

of G(k). In the same way, pullback along the isogeny Lang×Lang : G×G → G×G
matches the extra structure µE : m∗E → E � E with an isomorphism m∗V → V � V
of one-dimensional representations of G(k)×G(k), which is exactly an isomorphism
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V → V ⊗ V of one-dimensional representations, which is exactly the choice of an

isomorphism V ∼= Q̄`. We see that CS0(G) is equivalent to the category of characters

of G(k). Let ḡ be a geometric point above g ∈ G(k). If E matches ψ : G(k)→ Q̄×` under

this equivalence, a simple calculation on stalks reveals that the action of Frobenius on Eḡ
is multiplication by ψ(g)−1. In other words, for every E in CS0(G), the trace of Lang∗ E
is t−1

E as a representation of G(k), proving parts (1) and (2).

For part (3), suppose that Lang∗ E = V with isomorphism V → V ⊗ V . Observe

that the equivalence above establishes a bijection between Aut(E) and the group of

automorphisms of ρ : V → V for which

V

��

ρ // V

��
V ⊗ V

ρ⊗ρ // V ⊗ V

commutes. Since the only such isomorphism ρ is idV , it follows that Aut(E) = 1,

completing the proof.

We have just seen that, for a connected commutative algebraic group G over k, the

category of character sheaves on G is equivalent to the category of one-dimensional

representations V of G(k) equipped with an isomorphism V ∼= Q̄`, and therefore

equivalent to the category of characters ψ of G(k). We have also just seen that if the

character of Lang∗ E is ψ then the canonical isomorphism m∗ψ ∼= ψ �ψ determines the

isomorphism µE : E → E � E . This fact leads (back) to a perspective on the function-sheaf

dictionary common in the literature in which one considers one-dimensional local systems

E on G for which there exists an isomorphism m∗E ∼= E � E [26, Introduction]. As a slight

variation, one may also consider one-dimensional local systems L̄ on Ḡ for which there

exist an isomorphism Fr∗G L̄ ∼= L̄ and an isomorphism m̄∗L̄ ∼= L̄� L̄.

Although the category CS(G) of character sheaves on G specializes to CS0(G) when G
is of finite type (§ 3.6), this description is not sufficient when extending the dictionary

to smooth commutative group schemes, as we will see already in § 2. In particular, for a

given L̄ and φ there may be many µ that make (L̄, µ, φ) a character sheaf. For étale G,

Proposition 2.7 shows that H2(Ḡ, Q̄×` )
W measures the possibilities for µ. We will see in

§ 3 that H2(π0(Ḡ), Q̄×` )
W plays an analogous role for general smooth commutative group

schemes G.

2. Character sheaves on étale commutative group schemes over finite fields

In this section we give a complete characterization of the category of character sheaves

on étale commutative group schemes over finite fields.

2.1. Stalks of character sheaves

The equivalence G 7→ G(k̄), from the category of étale commutative group schemes over

k to the category of commutative groups equipped with a continuous action of Gal(k̄/k),
provides the following simple description of character sheaves. A character sheaf L on an

étale commutative group scheme G over k is
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(cs.1) an indexed set of one-dimensional Q̄`-vector spaces L̄x , as x runs over G(k̄);

(cs.2) an indexed set of isomorphisms µx,y : L̄x+y
∼=
−−→ L̄x ⊗ L̄y , for all x, y ∈ G(k̄), such

that

L̄x+y+z

µx,y+z

��

µx+y,z // L̄x+y ⊗ L̄z

µx,y ⊗ id
��

L̄x ⊗ L̄y+z
id⊗µy,z // L̄x ⊗ L̄y ⊗ L̄z

commutes, for all x, y, z ∈ G(k̄); and

(cs.3) an indexed set of isomorphisms φx : L̄Fr(x)→ L̄x such that

L̄Fr(x)+Fr(y)

φx+y

��

µFr(x),Fr(y) // L̄Fr(x)⊗ L̄Fr(y)

φx ⊗ φy

��
L̄x+y

µx,y // L̄x ⊗ L̄y

commutes, for all x, y ∈ G(k̄).

Under this equivalence, a morphism ρ : L→ L′ of character sheaves on G is given by

(cs.4) an indexed set ρ̄x : L̄x → L̄′x of linear transformations such that

L̄Fr(x)

φx

��

ρ̄Fr(x) // L̄′Fr(x)

φ′x
��

L̄x
ρ̄x // L̄′x

and

L̄x+y

µx,y

��

ρ̄x+y // L̄′x+y

µ′x,y
��

L̄x ⊗ L̄y
ρ̄x⊗ρ̄y // L̄′x ⊗ L̄′y

both commute, for all x, y ∈ G(k̄).

We will see that TrG : CS(G)/iso→ G(k)∗ may not provide complete information about

isomorphism classes of character sheaves on G when G is not a connected algebraic

group. Our main tool for understanding this phenomenon is a group homomorphism

SG : CS(G)/iso→ H2(E•G) defined in § 2.3, for which the next two sections are preparation.

2.2. A spectral sequence

Let G be a smooth commutative group scheme over k. The zeroth page of the

Hochschild–Serre spectral sequence is a double complex E•,• defined by

E i, j
= C i (W,C j (G(k̄), Q̄×` ));

see [34, § 1.7], expanding on [36, Chapter 5 and § 7.5]. The standard derivative on cochains

yields two derivatives,

dG : E i, j
→ E i, j+1 and

dW : E i, j
→ E i+1, j

;
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we use the first as the derivative d0 on the zeroth page, and the second to induce d1.

Combining them also yields a derivative d = dG + (−1) j dW on the total complex

En
G =

⊕
i+ j=n

E i, j .

The machinery of spectral sequences gives us a sequence of pages E i, j
r , converging to a

page E i, j
∞ . We summarize the key properties of this spectral sequence in the following

proposition.

Proposition 2.1. In the spectral sequence defined above,

(1) the second page is given by E i, j
2 = Hi (W,H j (G(k̄), Q̄×` ));

(2) there is an isomorphism Hn(WnG(k̄), Q̄×` ) ∼= Hn(E•G); and

(3) there is a filtration Hn(WnG(k̄), Q̄×` ) = Fn ⊃ · · · ⊃ F−1 = 0, with Fi/Fi−1 ∼=

E i,n−i
∞ .

Moreover, since W ∼= Z has cohomological dimension 1, E i, j
2 = 0 for i > 1, and the

sequence degenerates at the second page: E i, j
∞ = E i, j

2 . We obtain the following corollary.

Corollary 2.2. There is a short exact sequence

0→ H0(W,H2(Ḡ, Q̄×` ))→ H2(E•G)→ H1(W,H1(Ḡ, Q̄×` ))→ 0.

This sequence will play a key role in understanding the kernel of TrG , as described in

the next few sections. For this application, we need a good understanding of these maps

to and from the total complex.

Proposition 2.3. Consider the short exact sequence in Corollary 2.2.

(1) Every class [α⊕β⊕ γ ] ∈ H2(E•G) is cohomologous to one with γ = 0.

(2) The map H2(E•G)→ H1(W,H1(Ḡ, Q̄×` )) is given by [α⊕β⊕ 0] 7→ [β].

(3) Suppose that a ∈ Z2(Ḡ, Q̄×` ) represents a class in H2(Ḡ, Q̄×` ) fixed by Frobenius.

The map H0(W,H2(Ḡ, Q̄×` ))→ H2(E•G) is given by [a] 7→ [a⊕ 0⊕ 0].

Proof. Since H2(W,C0(Ḡ, Q̄×` )) = 0, we may find a γ1 ∈ C1(W,C0(Ḡ, Q̄×` )) with dWγ1
= γ . Subtracting dγ1 from α⊕β⊕ γ , we may assume that γ = 0.

The latter two claims follow from tracing through the definition of latter pages in the

spectral sequence.

2.3. From character sheaves to the total complex

Let G be a smooth commutative group scheme over k. In this section we define a group

homomorphism

SG : CS(G)/iso→ H2(E•G).
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Let L = (L̄, µ, φ) be a character sheaf on G. For each geometric point x ∈ Ḡ, choose a

basis {vx } for L̄x . Through this choice, L determines functions

a : Ḡ× Ḡ → Q̄×` b : Ḡ → Q̄×`
µx,y(vx+y) = a(x, y)vx ⊗ vy φx (vFrG (x)) = b(x)vx .

Condition (CS.2) implies that

a(x + y, z)a(x, y) = a(x, y+ z)a(y, z) (3)

for all x, y, z ∈ Ḡ, so a ∈ Z2(Ḡ, Q̄×` ). Similarly, condition (CS.3) gives

a(FrG(x),FrG(y))
a(x, y)

=
b(x + y)
b(x)b(y)

(4)

for x, y ∈ Ḡ. Let α ∈ C0(W,C2(Ḡ, Q̄×` )) be the 0-cochain corresponding to a, and let

β ∈ C1(W,C1(Ḡ, Q̄×` )) be the cocycle such that β(Fr) is b. We will write both α and β

additively. Then

dGα = 0, dWα = dGβ, dWβ = 0;

in other words,

α⊕β ∈ Z2(E•G).

Although the cocycle α⊕β is not well defined by L, its class in H2(E•G) is. To see this, let

{v′x ∈ L̄×x | x ∈ Ḡ} be another choice, and let α′⊕β ′ ∈ Z2(E•G) be defined by L and this

choice, as above. Now let δ ∈ C0(W,C1(Ḡ, Q̄×` )) correspond to the function d : Ḡ → Q̄×`
defined by v′x = d(x)vx . Chasing through the diagrams in (CS.2) and (CS.3), we find that

α′⊕β ′ = α⊕β + dδ,

so the class [α⊕β] of α⊕β in H2(E•G) is independent of the choice made above. It is

also easy to see that [α⊕β] = [α0⊕β0] when L ∼= L0, which concludes the definition of

the function

SG : CS(G)/iso→ H2(E•G)

[L] 7→ [α⊕β].

It is also easy to see that [α1⊕β1] + [α2⊕β2] = [α3⊕β3] when L3 = L1⊗L2, so SG is a

group homomorphism.

Proposition 2.4. If G is étale then SG : CS(G)/iso→ H2(E•G) is an isomorphism.

Proof. Suppose that [L] ∈ CS(G)/iso with SG([L]) = [α⊕β] = 0, so that α⊕β = dσ for

some σ ∈ C0(W,C1(Ḡ, Q̄×` )) = C1(Ḡ, Q̄×` ). For each x ∈ Ḡ, define σx : L̄x → Q̄` by σx :

vx 7→ σ(x). Then the indexed set of isomorphisms {σx : L̄x → Q̄` | x ∈ Ḡ} defines an

isomorphism L→ (Q̄`)G . Since L = 0 ∈ CS(G)/iso, SG is injective.

To see that SG is surjective, begin with α⊕β⊕ 0 ∈ Z2(E•G). Since dWβ = 0, we may

define a = α ∈ C2(Ḡ, Q̄×` ) and b = β(Fr) ∈ C1(Ḡ, Q̄×` ), which are related to α and β as

above. Set L̄x = Q̄`, and define µx,y : L̄x+y → L̄x ⊗ L̄y by µx,y(1) = a(x, y)(1⊗ 1) and

φx : L̄FrG (x)→ L̄x by φx (1) = b(x). Then (CS.1) holds since dGα = 0, and (CS.2) holds
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since dWα = dGβ. Tracing the construction backward, we have defined a character sheaf

L on G with SG(L) = [α⊕β⊕ 0], showing that SG is surjective.

2.4. Objects in the étale case

In this section we fit the group homomorphisms TrG and SG into a commutative diagram,

determining the kernel and cokernel of TrG when G is an étale commutative group scheme

over k. We begin with a simple general result relating duals, invariants, and coinvariants.

Lemma 2.5. Let X be an abelian group equipped with an action of W. Then

(X∗)W → (XW)∗

[ f ] 7→ f |XW

is an isomorphism.

Proof. We can describe XW as the kernel of the map X
Fr−1
−−−→ X ; let Y = (Fr−1)X be

the augmentation ideal. Dualizing the sequence

0→ XW
→ X → Y → 0

yields

0→ Y ∗→ X∗→ (XW)∗→ Ext1Z(Y, Q̄
×

` ).

Since Ext1Z(−, Q̄
×

` ) vanishes, we get a natural isomorphism from the cokernel of Y ∗
Fr−1
−−−→

X∗ to (XW)∗.

Proposition 2.6. If G is étale, then TrG : CS(G)/iso→ G(k)∗ is surjective and split.

Proof. Pick χ ∈ G(k)∗. Let [β] ∈ H1(W, Ḡ∗) be the class corresponding to χ under

Lemma 2.5. Every representative cocycle β ∈ Z1(W, Ḡ∗) determines a homomorphism

β(Fr) : G(k̄)→ Q̄×` such that β(Fr)|G(k) = χ . Set L̄x = Q̄` for every x ∈ G(k̄). Define

µx,y : L̄x+y → L̄x ⊗ L̄y by µx,y(1) = 1⊗ 1, and φx : L̄Fr(x)→ L̄x by φx (1) = β(Fr)(x).
Since β(Fr) : G(k̄)→ Q̄×` is a group homomorphism, condition (4) is satisfied with a = 1.

So L = (L̄, µ, φ) is a character sheaf with tL = χ . This shows that TrG is surjective.

Now let β ′ ∈ Z1(W, Ḡ∗) be another representative for [β] so β −β ′ = dWδ for some

δ ∈ C0(W, Ḡ∗) defining d ∈ Hom(G(k̄), Q̄×` ). Let L′ be the character sheaf on G defined

by β ′, as above. For each x ∈ G(k̄), define ρ̄x : Lx → L′x by ρ̄x (1) = d(x). The collection

of isomorphisms {ρ̄x | x ∈ G(k̄)} satisfies condition (CS.4), so it defines a morphism ρ :

L→ L′, which is clearly an isomorphism. We have now defined a section of TrG .

Now suppose that χ1, χ2 ∈ G(k)∗. Pick cocycles β1, β2 ∈ Z1(W, Ḡ∗) and construct

character sheaves L1 and L2 on G, as above. Since L1⊗L2 is exactly the character

sheaf built from the cocycle β1 ·β2, and since tL1⊗L2 = tL1 · tL2 , the section of TrG defined

here is a homomorphism.
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Proposition 2.7. If G is étale then the map SG : CS(G)/iso→ H2(E•G) induces an

isomorphism of split short exact sequences

0 // ker TrG

��

// CS(G)/iso

SG
��

TrG // G(k)∗

��

// 0

0 // H0(W,H2(Ḡ, Q̄×` )) // H2(E•G) // H1(W,H1(Ḡ, Q̄×` )) // 0

Proof. This result follows from Propositions 2.3, 2.4, and 2.6.

Definition 2.8. We call a character sheaf L on G invisible if it is non-trivial and

TrG(L) = 1.

The proposition gives a method for determining whether a given G admits invisible

character sheaves.

Remark 2.9. Recall the Künneth formula in group cohomology [9, Proposition I.0.8]: if

A and A′ are groups and M and M ′ are abelian groups with M Z-free, then

Hn(A× A′,M ⊗M ′)
∼=

⊕
i+ j=n

Hi (A,M)⊗H j (A′,M ′) ⊕
⊕

i+ j=n+1

TorZ1
(

Hi (A,M),H j (A′,M ′)
)
.

Now suppose that Ḡ = Zr
×
∏m

i=1 Z/NiZ is an arbitrary finitely generated abelian group,

with Ni | Ni+1. Then the Künneth formula implies that

H2(Ḡ, Q̄×` ) ∼=
(
Q̄×`

)r(r−1)/2
×

m∏
i=1

(Z/NiZ)m+r−i . (5)

We see that H2(Ḡ, Q̄×` ) is trivial if and only if Ḡ is cyclic. Of course, H0(W,H2(Ḡ, Q̄×` ))
may or may not be trivial, even when H2(Ḡ, Q̄×` ) is non-trivial.

Example 2.10. Consider the simplest non-trivial case, where Ḡ = {1, i, j, k} ∼= Z/2Z×
Z/2Z. Using (5), we have H2(Ḡ, Q̄×` ) ∼= Z/2Z, on which W must act trivially, regardless
of its action on Ḡ itself. The non-trivial element corresponds to the extension

1→ Q̄×` → Q → Ḡ → 1, (6)

where Q = {c+ ci i + c j j + ckk | c, ci , c j , ck ∈ Q̄` with exactly one non-zero} is a sub-

group of the quaternion algebra over Q̄`. Let a be a 2-cocycle corresponding to this

extension, with values in {±1}. When FrG acts trivially on Ḡ, any homomorphism b : Ḡ →
Q̄×` will satisfy (4), and the corresponding α⊕β are non-cohomologous in H2(E•G). When

FrG exchanges i and j , then we may take b(1) = 1, b(i) = −1 and b( j) = b(k) = ±1, up

to coboundaries. Finally, when FrG cycles i , j , and k, any homomorphism b : Ḡ → Q̄×`
will satisfy (4), but now the corresponding α⊕β are all cohomologous in H2(E•G). In each

case, we may produce an explicit character sheaf from the listed a and b.
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Note that these character sheaves arise from discrete isogenies, as in § 1.5. Let H̄ be the

quaternion group of order 8: the subgroup of Q with c, ci , c j , ck ∈ {±1}. The sequence (6)

is the pushforward of

1→ {±1} → H̄ → Ḡ → 1

along the inclusion {±1} ↪→ Q̄×` . Note that these character sheaves arise from a

non-commutative cover of Ḡ, justifying the inclusion of such covers in the definition

of a discrete isogeny.

2.5. On the necessity of working with Weil sheaves

In this section we justify the appearance of Weil sheaves in Definition 1.1.

Proposition 2.11. Let G be a commutative étale group scheme over k. Then the image of

CS0(G) under TrG : CS(G)→ G(k)∗ is Hom(G(k), Z̄×` ).

Proof. Objects in CS0(G) may be described by a small modification to the technique

used in §§ 2.2 and 2.3. Set F i, j
:=C i

cts(Gal(k̄/k),C j (G(k̄), Q̄×` )). Then the results of § 2.2

adapt to give a short exact sequence in continuous Galois cohomology

0→ H0(k,H2(Ḡ, Q̄×` ))→ H2(F•G)→ H1(k,H1(Ḡ, Q̄×` ))→ 0,

for which the maps are given by the analogues of Proposition 2.3. Moreover, using [17,

Exposé XIII, Rappel 1.1.3], we see that Proposition 2.4 adapts to provide an isomorphism

CS0(G)/iso→ H2(F•G) compatible with CS0(G)→ CS(G) and with the following map of

exact sequences.

0 // H0(k,H2(Ḡ, Q̄×` ))

��

// H2(F•G)

��

// H1(k,H1(Ḡ, Q̄×` ))

��

// 0

0 // H0(W,H2(Ḡ, Q̄×` )) // H2(E•G) // H1(W,H1(Ḡ, Q̄×` )) // 0

In this way, Proposition 2.11 is now reduced to the claim

H1(k,H1(Ḡ, Q̄×` )) = Hom(G(k), Z̄×` ).

To see that, one may argue as follows. Pick i ∈ π0(G), and let Gi ↪→ G be the

corresponding connected component. Pick a geometric point x on Gi , and observe
that, since Gi is connected as a k-scheme, Gi (k̄) is canonically identified with the

Gal(k̄/k)-orbit of x . We remark that, while Gi is defined over k, the set Gi (k) is non-empty

only when Gi (k̄) = {x}. Since H1(Ḡ, Q̄×` ) = Hom(Ḡ, Q̄×` ), evaluation χ 7→ χ(x) defines

H1(k,H1(Ḡ, Q̄×` ))→ H1(k, Q̄×` ). By continuity, H1(k, Q̄×` ) = H1(k, Z̄×` ). Letting i range

over π0(G), we conclude that H1(k,H1(Ḡ, Q̄×` )) = H1(k,H1(Ḡ, Z̄×` )). When adapted to

abelian groups with continuous action of Gal(k̄/k), the strategy of the proof of Lemma 2.5

gives H1(k,H1(Ḡ, Z̄×` )) = Hom(G(k), Z̄×` ), concluding the proof.

Proposition 2.11 reveals the necessity of working with Weil sheaves in Definition 1.1:

one cannot geometrize all characters of G(k) using local systems on G, for general smooth

commutative groups schemes G. Proposition 2.11 is extended to all smooth commutative

groups schemes in § 3.4.
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Example 2.12. Consider the case when G is the étale group scheme Z over k with FrG
trivial. If χ : Z→ Q̄×` is the character of G(k) determined by χ(1) = `, and if L is a

character sheaf on G in the isomorphism class corresponding to χ under Proposition 2.6,

then L does not descend to G, since the image of χ is not bounded. If χ ′ : Z→ Q̄×` is

the character of G(k) determined by χ ′(1) = 1+ `, and if L′ corresponds to χ ′ under

Proposition 2.6, then L′ does descend to G, since the image of χ ′ is bounded. However,

L′ is not defined by a discrete isogeny (§ 1.5). If χ ′′ : Z→ Q̄×` is the character of G(k)
determined by χ ′′(1) = ζ , a root of unity in Q̄×` , and if L′′ corresponds to χ ′′ under

Proposition 2.6, then L′′ is defined by a discrete isogeny.

2.6. Morphisms in the étale case

A complete understanding of the morphisms in CS(G) also requires a description of the

automorphisms of an arbitrary character sheaf L.

Proposition 2.13. Let G be an étale commutative group scheme over k. If L and L′ are

character sheaves on G then every ρ ∈ Hom(L,L′) is either trivial or an isomorphism.

Moreover, the trace map induces an isomorphism of groups

Aut(L)→ Hom(G(k̄)W , Q̄×` ).

Proof. We have already seen, in Lemma 1.3, that every ρ ∈ Hom(L,L′) is either trivial

or an isomorphism. Now suppose that ρ ∈ Aut(L). The second diagram in (cs.4) shows

that the association x 7→ ρ̄x is a homomorphism from G(k̄) to Q̄×` , and the first diagram

in (cs.4) shows that it factors through G(k̄)→ G(k̄)W .

Conversely, if ρ : G(k̄)W → Q̄×` is any homomorphism, then defining ρ̄x as

multiplication by ρ(x) will define a morphism L̄→ L̄′ that will satisfy the two diagrams

in (cs.4).

Composition of morphisms corresponds to pointwise multiplication in this

correspondence, showing that the resulting bijection is actually a group isomorphism.

3. Character sheaves on smooth commutative group schemes over finite fields

3.1. Restriction to the identity component

Consider the short exact sequence defining the component group scheme for G:

0 // G0 ι0 // G
π0 // π0(G) // 0 (7)

Since π0(G) is an étale commutative group scheme (and thus smooth), Lemma 1.4 implies

that (7) defines a sequence of functors

CS(0) // CS(π0(G))
π∗0 // CS(G)

ι∗0 // CS(G0) // CS(0) (8)

and therefore, after passing to isomorphism classes, a sequence of abelian groups

0 // CS(π0(G))/iso
π∗0 // CS(G)/iso

ι∗0 // CS(G0)/iso // 0 (9)
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Note that we found the groups CS(π0(G))/iso and CS(G0)/iso in §§ 2.4 and 1.6,

respectively. We will shortly see that (9) is exact.

Lemma 3.1. Every discrete isogeny to G0 extends to a discrete isogeny to G inducing an

isomorphism on component groups.

Proof. Let π : B → G0 be a discrete isogeny, and set A := kerπ . We will find a

discrete isogeny f : H → G such that H0
= B, f 0

= π , and π0( f ) : π0(H)→ π0(G) is

an isomorphism of component groups. Namely, we will fit π into the following diagram.

A

��

// A

��
B

π

��

// H

f

��

// π0(H)

∼π0( f )
��

G0 // G // π0(G)

(10)

Here, all rows and columns are exact and all maps are defined over k. We will do so by

passing back and forth between group schemes over k and their k̄-points.

Extensions of G0(k̄) by A(k̄) with W-equivariant maps, such as B(k̄), correspond to

classes in Ext1Z[W](G
0(k̄), A(k̄)). Similarly, extensions of G(k̄) by A(k̄) with W-equivariant

maps correspond to classes in Ext1Z[W](G(k̄), A(k̄)). The map G0(k̄)→ G(k̄) induces a

homomorphism

Ext1Z[W](G(k̄), A(k̄))→ Ext1Z[W](G
0(k̄), A(k̄))

fitting into the long exact sequence

Ext1Z[W](G(k̄), A(k̄))→ Ext1Z[W](G
0(k̄), A(k̄))→ Ext2Z[W](π0(G)(k̄), A(k̄))

derived from applying the functor Hom(—, A(k̄)) to G0(k̄)→ G(k̄)→ π0(G)(k̄). Since

W ∼= Z has cohomological dimension 1 [9, Example 4.3], Ext2Z[W](π0(G)(k̄), A(k̄))
vanishes [10, Theorem 2.6].

We therefore have the existence of diagram (10) at the level of k̄-points. This expresses

H(k̄) as a disjoint union of translates of B(k̄); by transport of structure we may take H
to be a group scheme over k̄. Similarly, the restriction of f to each component of H is

a morphism of schemes, and thus f is as well. Finally, the whole diagram descends to a

diagram of k-schemes since the k̄-points of the objects come equipped with continuous

Gal(k̄/k)-actions and the morphisms are Gal(k̄/k)-equivariant.

We now wish to apply the results of § 1.6 to the identity component of G, for which we

must confirm that the identity component of G is actually an algebraic group over k.

Lemma 3.2. If G is a commutative smooth group scheme over k, then its identity

component, G0, is a connected algebraic group over k.
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Proof. Since G is a smooth group scheme over k, its identity component G0 is a connected

smooth group scheme of finite type over k, reduced over some finite extension of k
[20, 3.17]. Since k is a finite field and hence perfect, G0 is actually reduced over k [23,

Proposition 6.4.1]. Since every group scheme over a field is separated [20, 3.12], it follows

that G0 is a connected algebraic group.

Proposition 3.3. The restriction functor ι∗0 : CS(G)→ CS(G0) is essentially surjective.

Proof. By Lemma 3.2 and Proposition 1.14, every character sheaf on G0 is isomorphic

to (π!Q̄`)ψ for some discrete isogeny π : B → G0 and character ψ : kerπ → Q̄×` . So to

prove the proposition it suffices to show that (π!Q̄`)ψ extends to a character sheaf on

G. By Lemma 3.1, there is an extension of the discrete isogeny π : B → G0 to a discrete

isogeny f : H → G such that π0( f ) : π0(H)→ π0(G) is an isomorphism. Then ( f!Q̄`)ψ
is a character sheaf on G, and ( f!Q̄`)ψ |G0 ∼= (π!Q̄`)ψ .

3.2. The component group sequence

Lemma 3.4. The group homomorphism π∗0 : CS(π0(G))/iso→ CS(G)/iso is injective.

Proof. Let L be a character sheaf on π0(G), and let ρ : π∗0L→ (Q̄`)G be an isomorphism

in CS(G). For each x ∈ π0(Ḡ), set Ḡx
:=π−1

0 (x). The restriction π∗0 L̄|Ḡx is the constant

sheaf (L̄x )Ḡx , so the isomorphism ρ̄|Ḡx : (L̄x )Ḡx → (Q̄`)Ḡx determines an isomorphism

ρ̄x : L̄x → (Q̄`)x . The collection {ρ̄x | x ∈ π0(Ḡ)} determines an isomorphism L→
(Q̄`)π0(G) in CS(π0(G)).

Proposition 3.5. The sequence

0 // CS(π0(G))/iso
π∗0 // CS(G)/iso

ι∗0 // CS(G0)/iso
// 0

is exact.

Proof. Exactness at CS(G0)/iso follows from Proposition 3.3, and exactness at

CS(π0(G))/iso from Lemma 3.4. Here we show that it is also exact at CS(G)/iso. First

note that ι∗0 ◦π
∗

0 is trivial by Lemma 1.4. So it suffices to show that, if L = (L̄, µ, φ) is a

character sheaf on G with L|G0 = (Q̄`)G0 , then L is in the essential image of π∗0 .

As above, set Ḡx
:=π−1

0 (x) for x ∈ π0(Ḡ). Let g, g′ be geometric points in the same

geometric connected component Ḡx . Set a = g−1g′, and note that a is a geometric

point in Ḡ0. Let µg,a : L̄ga → L̄g ⊗ L̄a be the isomorphism of vector spaces obtained

by restriction of µ : m∗L̄→ L̄� L̄ to the geometric point (g, a) on Ḡx
× Ḡ0. Since

L|G0 = (Q̄`)G0 , the stalk of L̄ at a is Q̄`. In this way the pair of geometric points

g, g′ ∈ Ḡx determines an isomorphism ϕg,g′ :=µ
−1
g,a from L̄g to L̄g′ . The isomorphisms

ϕg,g′ : L̄g → L̄g′ are canonical in the following sense: if g, g′ ∈ Ḡx and h, h′ ∈ Ḡ y , then it
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follows from (CS.2) and (CS.3) that

L̄gh

µg,h

��

ϕgh,g′h′ // L̄g′h′

µg′,h′

��
L̄g ⊗ L̄h

ϕg,g′⊗ϕh,h′ // L̄g′ ⊗ L̄h′

and

L̄Fr(g)

φg

��

ϕFr(g),Fr(g′) // L̄Fr(g′)

φg′

��
L̄g

ϕg,g′ // L̄g′

(11)

both commute.

For each x ∈ π0(Ḡ), pick g(x) ∈ Ḡx , and set Ēx := L̄g(x). Let φx : ĒFr(x)→ Ēx be the

isomorphism of Q̄`-vector spaces obtained by composing ϕg(Fr(x)),Fr(g(x)) : L̄g(Fr(x))→

L̄Fr(g(x)) with φg(x) : L̄Fr(g(x))→ L̄g(x). For each pair x, y ∈ π0(Ḡ) let µx,y : Ēx+y →

Ēx ⊗ Ēy be the isomorphism of Q̄`-vector spaces obtained by composing ϕg(x+y),g(x)g(y) :

L̄g(x+y)→ L̄g(x)g(y) with µg(x),g(y) : L̄g(x)g(y)→ L̄g(x)⊗ L̄g(y). Using (11), it follows

that (CS.1), (CS.2) and (CS.3) are satisfied for E := (Ēx , µx,y, φx ), thus defining a

character sheaf on π0(G).
The pullback π∗0 (E) of E along π0 : G → π0(G) is constant on geometric connected

components, with stalks given by (π∗0 E)g = Ex for all g ∈ Ḡx . Thus both π∗0 E and

L are constant on geometric connected components of G. The choices above define

isomorphisms L̄|Ḡx → (Ēx )Ḡx for each x ∈ π0(Ḡ). The resulting isomorphism L̄→ π∗0 Ē
satisfies (CS.4), thus defining an isomorphism L→ π∗0 E in CS(G).

3.3. The dictionary

We saw in Proposition 1.6 that TrG : CS(G)/iso→ G(k)∗ is a functorial group

homomorphism. In this section we find the image and kernel of TrG .

Theorem 3.6. If G is a smooth commutative group scheme over k then TrG : CS(G)/iso→

G(k)∗ is surjective and has kernel canonically isomorphic to H2(π0(Ḡ), Q̄×` )
W , so

0 // H2(π0(Ḡ), Q̄×` )
W // CS(G)/iso

TrG // G(k)∗ // 0

is an exact sequence.

Proof. Let

0 // CS(π0(G))/iso

Trπ0(G)

��

// CS(G)/iso

TrG

��

// CS(G0)/iso

TrG0

��

// 0

0 // π0(G)(k)∗ // G(k)∗ // G0(k)∗ // 0

(12)

be the commutative diagram of abelian groups obtained by applying Lemma 1.4 to (7).

The sequence of abelian groups

1 // G0(k) // G(k) // π0(G)(k) // 0

is exact since H1(k,G0) = 0 by Lemma 3.2 and Lang’s theorem on connected algebraic

groups over finite fields [27]. Since Q̄×` is divisible, Hom( − , Q̄×` ) is exact, and thus
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the dual sequence of character groups in (12) is exact. The upper row in (12) is

exact by Proposition 3.5. Now Lemma 3.2 and Proposition 1.14 imply that ker TrG0 = 0
and coker TrG0 = 0, while Proposition 2.7 gives ker Trπ0(G)

∼= H0(W,H2(π0(Ḡ), Q̄×` )) and

coker Trπ0(G) = 0. It now follows from the snake lemma

(13)

that coker TrG = 0 and ker Trπ0(G)→ ker TrG is an isomorphism. This gives the promised

short exact sequence

0 // H2(π0(Ḡ), Q̄×` )
W // CS(G)/iso

TrG // G(k)∗ // 0

Remark 3.7. Although Trπ0(G) is split and TrG0 is an isomorphism, we do not know if

TrG is split, in general. Surjectively of TrG shows that every `-adic character of G(k)
admits a geometrization, but without a splitting for TrG we do not know how to make

this geometrization canonical.

3.4. Descent, revisited

We now extend Proposition 2.11 to all smooth commutative group schemes over k.

Proposition 3.8. Let G be a smooth commutative group scheme over k. Then L ∈ CS(G)
descends to G if and only if tL : G(k)→ Q̄×` has bounded image.

Proof. By Lemma 3.2, the identity component G0 is a connected algebraic group over k.

It follows from Proposition 1.14 that the restriction of L to G0 descends to G. Also,

since G0(k) is finite, the image of tL : G(k)→ Q̄×` is a finite subgroup, and therefore

has bounded image. If χ ∈ G(k)∗ then there is some finite-image character χ0 with the

same restriction to G0(k) since G0(k) lies inside the torsion part of the finitely generated

abelian group G(k). Therefore χ is bounded if and only if χ ·χ−1
0 is bounded. But χ ·χ−1

0
descends to a character of π0(G). Thus, it is enough to prove Corollary 3.8 for étale group

schemes G, which is done in Proposition 2.11.

Proposition 3.8 shows that the full subcategory CS0(G) ⊂ CS(G) is not an equivalence,

for general smooth commutative group schemes G. Again we see the necessity of working

with Weil sheaves in Definition 1.1.
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3.5. Morphisms of character sheaves

Theorem 3.9. Let G be a smooth commutative group scheme over k. There is a canonical

isomorphism

Aut(L) ∼= Hom(π0(Ḡ)W , Q̄×` ).

Proof. Fix L = (L̄, µ, φ), and consider the group homomorphism from Aut(L) to

Hom(ḠW , Q̄×` ) defined in the proof of Proposition 2.13. This homomorphism is injective

because morphisms of sheaves are determined by the linear transformations induced on

stalks. Homomorphisms in the image of Aut(L)→ Hom(ḠW , Q̄×` ) are continuous when Ḡ
is viewed as the base of the espace étalé attached to L̄. Since ` is invertible in k, it follows

that the image of Aut(L)→ Hom(ḠW , Q̄×` ) is contained in Hom(π0(ḠW), Q̄×` ). We also

have π0(ḠW) = π0(Ḡ)W . To see that Aut(L)→ Hom(π0(Ḡ)W , Q̄×` ) is surjective, begin

with θ ∈ Hom(π0(Ḡ)W , Q̄×` ), and, for each [x] ∈ π0(Ḡ)W , define ρ̄ y
: L̄y
→ L̄y by scalar

multiplication by θ([x]) ∈ Q̄×` for each y ∈ [x]. This defines an isomorphism ρ̄ : L̄→ L̄ of

local systems on Ḡ compatible with µ and φ, and thus an isomorphism ρ : L→ L which

maps to θ under Aut(L)→ Hom(π0(Ḡ)W , Q̄×` ).

3.6. The dictionary for commutative algebraic groups over finite fields

Having extended the function-sheaf dictionary from connected commutative algebraic

groups over k to smooth commutative group schemes G over k, we look back briefly

to the case when G is a commutative algebraic group. Although Weil sheaves are not

necessary in that case, the dictionary is still not perfect, generally.

Corollary 3.10. Let G be a commutative algebraic group over k. All character sheaves on

G descend to G: CS(G) is equivalent to CS0(G) (§ 2.5). The trace of Frobenius determines

a short exact sequence

0 // H2(π0(Ḡ), Q̄×` )
W // CS0(G)/iso

TrG // G(k)∗ // 0

The group H2(π0(Ḡ), Q̄×` )
W need not be trivial.

Proof. Since G(k) is finite, the first statement follows from Propositions 1.8 and 3.8. The

second statement is then a consequence of Theorem 3.6. The third statement is justified

by Example 2.10.

Remark 3.11. Suppose G is a reductive algebraic group over k with cyclic component

group scheme. Such groups are considered in [30]. When commutative, such groups are

extensions of finite cyclic groups by algebraic tori. Every Frobenius-stable character sheaf

on G, in the sense of [30], is a character sheaf on G, in our sense, and vice versa. Moreover,

since H2(π0(Ḡ), Q̄×` ) = 0 by Remark 2.10, it follows that each Frobenius-stable character

sheaf on G as in [30] is determined by its trace of Frobenius, up to isomorphism.
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3.7. Base change

When using character sheaves to study characters, it is useful to understand how

character sheaves behave under change of fields. Let k′ be a finite extension of k. Then

k ↪→ k′ induces a group homomorphism ik′/k : G(k) ↪→ G(k′), and thus a homomorphism

i∗k′/k : G(k
′)∗→ G(k)∗

χ 7→ χ ◦ ik′/k .

We can interpret this operation on characters in terms of character sheaves.

Proposition 3.12. Set Gk′ :=G×Spec(k) Spec(k′), and let

CS(Resk′/k(Gk′))
ι∗

−→ CS(G)

be the functor obtained by pullback along the canonical closed immersion

ι : G ↪→ Resk′/k(Gk′)

of k-schemes. The following diagram commutes.

CS(Resk′/k(Gk′))/iso

TrResk′/k (Gk′ )

��

ι∗ // // CS(G)/iso

TrG
��

G(k′)∗
i∗k′/k // // G(k)∗

Proof. The closed immersion ι : G ↪→ Resk′/k(Gk′) is given by [7, § 7.6]. Proposition 3.12

follows immediately from Lemma 1.4 together with the identifications

Resk′/k(Gk′)(k) ∼= Gk′(k′) ∼= G(k′)

from the definitions of Weil restriction and base change.

In the opposite direction, let Nm : G(k′)→ G(k) be the norm map, and consider the

group homomorphism

Nm∗ : G(k)∗→ G(k′)∗

χ 7→ χ ◦Nm .

We can also interpret this operation in terms of character sheaves.

If L := (L̄, µ, φ) is a character sheaf on G, we define L′ := (L̄, µ, φk′) on the base change

Gk′ of G to k′ by setting

φk′ :=φ ◦Fr∗G(φ) ◦ · · · ◦ (Frn−1
G )∗(φ).

The commutativity of diagram (CS.3) for φk′ follows from the fact that FrGk′
= Frn

G . Note

that we may also think about the construction of φk′ from φ as restricting the action ϕ

of Wk on L̄, defined in § 1.2, to Wk′ .
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Proposition 3.13. With the notation above, the rule νk′/k : (L̄, µ, φ) 7→ (L̄, µ, φk′) defines

a monoidal functor CS(G)→ CS(Gk′) such that the following diagram commutes.

CS(G)/iso

TrG
��

νk′/k // CS(Gk′)/iso

TrGk′
��

G(k)∗ Nm∗ // G(k′)∗

Proof. Let L := (L̄, µ, φ) ∈ CS(G), and write F for FrG . For any x ∈ G(k′), we may

compute the value of TrGk′
(νk′/kL)(x) = tνk′/kL(x) as the trace of φk′ on L̄x , and the

value of Nm∗(TrG(L))(x) as the trace of φ on L̄Nm(x). Applying (CS.3) to the stalk of L̄�n

at the point (x,Fr(x), . . . ,Frn−1(x)) yields the following diagram.

L̄Nm(x)

φNm(x)

��

// L̄F(x)⊗ L̄F2(x)⊗ · · ·⊗ L̄x

φx⊗(F∗φ)x⊗···⊗((Fn−1)∗φ)x
��

L̄Nm(x) // L̄x ⊗ L̄F(x)⊗ · · ·⊗ L̄Fn−1(x)

Choose a basis vector v for L̄Nm(x), and write v0⊗ v1⊗ · · ·⊗ vn−1 for the image of v under

the bottom map, for vi ∈ L̄Fri (x). By (CS.2), v maps to v1⊗ v2⊗ · · ·⊗ v0 along the top

of the diagram. Let αi ∈ Q̄×` represent ((F i )∗φ)x with respect to these bases, and let α

be the trace of φNm(x). We may now equate the trace α of φ on L̄Nm(x) with the product

α0 · · ·αn−1, which is the trace of φk′ on L̄x .

Finally, let G ′ be a smooth commutative group scheme over k′. We explain how to

geometrize the canonical isomorphism between characters of G ′(k′) and of (Resk′/k G ′)(k).
We may decompose the base change (Resk′/k G ′)k′ of Resk′/k G ′ to k′ into a product of

copies of G ′, indexed by elements of Gal(k′/k):

(Resk′/k G ′)k′ ∼=
∏

Gal(k′/k)

G ′.

Since products and coproducts agree for group schemes we have a natural inclusion of

k′-schemes

G ′ ↪→ (Resk′/k G ′)k′ ,

mapping G ′ into the summand corresponding to 1 ∈ Gal(k′/k). Composing νk′/k from

Proposition 3.13 with pullback along this map yields a functor

ρ : CS(Resk′/k G ′)→ CS(G ′).

Proposition 3.14. Let k′/k be a finite extension and let G ′ be a smooth commutative group

scheme over k′. Then the functor

ρ : CS(Resk′/k G ′)→ CS(G ′),

https://doi.org/10.1017/S1474748015000286 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000286


From the function-sheaf dictionary to quasicharacters of p-adic tori 27

defined above, induces

CS(Resk′/k G ′)/iso

TrResk′/k G′

��

ρ // CS(G ′)/iso

TrG′

��
G ′(k′)∗ // G ′(k′)∗

where the bottom map is the identity.

Proof. By Lemma 1.4, the pullback part of the definition of ρ corresponds to the map

(Resk′/k G ′)(k′)∗→ G ′(k′)∗

induced by g 7→ (g, 1, . . . , 1). Since the action of Gal(k′/k) on

(Resk′/k G ′)k′ ∼=
∏

Gal(k′/k)

G ′

is given by permuting coordinates, composition with the norm map yields the identity

on G ′(k′).

4. Quasicharacter sheaves for p-adic tori

Let K be a local field with ring of integers R and finite residue field k; in this section we

denote the group W by Wk . We continue to assume that ` is invertible in k.

4.1. Néron models

We will consider connected commutative algebraic groups over K that admit a Néron

model, by which we mean a locally finite type Néron model. By [7, § 10.2, Theorem 2],

these are precisely the connected commutative algebraic groups over K that contain no

subgroup isomorphic to Ga. Write NK for the full subcategory of the category of algebraic

groups consisting of such objects. This category is additive, and includes all algebraic

tori over K , abelian varieties over K , and unipotent K -wound groups. We write N for

the category of Néron models that arise in this way; in particular, N is a full subcategory

of the category of smooth commutative group schemes over R.

Example 4.1. If TK = Gm,K , then a Néron model can be obtained by gluing copies of Gm,R
(one for each n ∈ Z) along their generic fibres, via the gluing morphisms Spec(Z[t, t−1

])→

Spec(Z[t, t−1
]) defined by t 7→ πn t [7, § 10.1, Example 5].

Suppose that K ′/K is a quadratic extension, and that TK = U1(K ′/K ) is the unitary

group. When K ′/K is unramified, the Néron model of TK is a form of the Néron model for

Gm,K , with the non-trivial automorphism σ ∈ Gal(K ′/K )mapping (x, n) to (σ (x),−n) for

x ∈ R′× and n ∈ Z specifying the copy of Gm,R′ . This example illustrates the compatibility

between Néron models and unramified base change [7, § 10.1, Proposition 3].

On the other hand, if K ′ = K (
√
π) is totally ramified over K , then the Néron model of

U1(K ′/K ) is affine, namely Spec(R[x, y]/(x2
−πy2

− 1)). The special fibre is the disjoint

union of two affine lines.
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Finally, we remark that, if K ′/K is any finite extension of local fields and X ′ is a

Néron model for X K ′ , then ResR′/R(X ′) is a Néron model for ResK ′/K (X K ′) [7, § 7.6,

Proposition 6].

4.2. Quasicharacters

Write m for the maximal ideal of R, and set Rn = R/mn+1 for every non-negative integer n.

Suppose that X ∈ N . Note that X (K ) = X (R). A quasicharacter of X (K ) is a group

homomorphism X (K )→ Q̄×` that factors through X (R)→ X (Rn) for some non-negative

integer n. We note that this definition is compatible with [11, Chapter XV, § 2.3]. The

group of quasicharacters of X (K ) will be denoted by Hom(X (K ), Q̄×` ), and the subgroup

of those that factor through X (Rn) will be denoted by Homn(X (K ), Q̄×` ). In this section

we will see how to geometrize and categorify quasicharacters of X (K ) using character

sheaves.

4.3. Review of the Greenberg transform

Let K , R, and Rn be as above. For each n ∈ N, the Greenberg functor maps schemes

over Rn to schemes over k. See [5] for the definition and fundamental properties of the

Greenberg functor as we use it; other useful references include [21], [22], [18, V, § 4, no. 1],

[7, Chapter 9, § 6], and [31, § 2.2]. For any non-negative integer n, we will write

GrR
n : Sch/R → Sch/k

for the functor produced by composing pullback along Spec(Rn)→ Spec(R) with the

Greenberg functor. This functor respects open immersions, closed immersions, étale

morphisms, smooth morphisms, and geometric components. Moreover, there is a

canonical isomorphism

GrR
n (X)(k) ∼= X (Rn)

for any scheme X over R.

For any n 6 m, the surjective ring homomorphism Rm → Rn determines a natural

transformation

%R
n6m : GrR

m → GrR
n

between additive functors. Crucially, %R
n6m(X) : GrR

m(X)→ GrR
n (X) is an affine morphism

of k-schemes, for every R-scheme X and every n 6 m [5, Proposition 4.3]. This observation

is key to the proof that, for any scheme X over R, the projective limit

GrR(X) := lim
←−
n∈N

GrR
n (X),

taken with respect to the surjective morphisms %R
n6m(X) : GrR

m(X)→ GrR
n (X), exists in

the category of group schemes over k; see [24, § 8.2]. This leads to the definition of the

Greenberg transform:

GrR : Sch/R → Sch/k .

By construction, the k-scheme GrR(X) comes equipped with morphisms

%R
n (X) : GrR(X)→ GrR

n (X), ∀n ∈ N.
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4.4. Quasicharacter sheaves

Set S = Spec(R) and Sn = Spec(Rn); note that S0 = Spec(k) is the special fibre of S. Let

X be a smooth commutative group scheme over S. For every non-negative integer n,

the Greenberg transform GrR
n (X) is a smooth commutative group scheme over S0. The

Greenberg transform GrR(X) of X is a commutative group scheme over k with k-rational

points X (R). The morphism of k-schemes %R
n (X) : GrR(X)→ GrR

n (X) induces a functor

%R
n (X)

∗
: CS(GrR

n (X))→ CS(GrR(X)),

as in Lemma 1.4.

Definition 4.2. Let X be a smooth group scheme over R. A quasicharacter sheaf of X is

a triple

F := (n, {Fi }n6i , {αi6 j }n6i6 j ),

where n is a non-negative integer, each Fi is a character sheaf on GrR
i (X), and each

αi6 j : L j → %R
i6 j (X)

∗Li

is an isomorphism; here, αi6i is the identity, and the αi6 j are compatible with each

other. If F := (n, {Fi }, {αi6 j }) and F ′ := (m, {F ′i }, {α
′

i6 j }) are objects, then Hom(F ,F ′) is

the set of equivalence classes of pairs (k, {βi }k6i ), where n,m 6 k and the βi : Fi → F ′i
are morphisms of character sheaves such that

F j

βi

��

α j // %R
i6 j (X)

∗Fi

f ∗i6 jβ j

��
F ′j

α j // %R
i6 j (X)

∗L′i

commutes for all k 6 i 6 j ; we identify two such pairs (k, {βi }) and (l, {γi }) if βi = γi for

sufficiently large i . Identities and composites are defined in the natural way. Let QCS(X)
denote the category of quasicharacter sheaves for X .

Remark 4.3. If %R
n (X)

∗
: CS(GrR

n (X))→ CS(GrR(X)) is full, then the construction above

can be improved by forming QCS(X) from the essential images of the functors %R
n (X)

∗;

however, we do not know if %R
n (X)

∗ is full.

Remark 4.4. We offer the following alternate construction of QCS(X). As above, let X
be a smooth group scheme over R. Although GrR(X) is not locally of finite type and

therefore not smooth, let us consider the rigid monoidal category CS(GrR(X)) as defined

in § 1.2, though without insisting that the commutative group k-scheme G is smooth. A

quasicharacter sheaf for X is an object of the following rigid monoidal subcategory of

CS(GrR(X)), denoted by QCS(X):

(1) objects in QCS(X) are the `-adic sheaves %R
n (X)

∗L, for n ∈ N and L ∈ CS(GrR
n (X));
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(2) morphisms %R
n (X)

∗L→ %R
m(X)

∗L′ in QCS(X) are those morphisms in CS(GrR(X))
which take the form %R

m(X)
∗ρ for ρ ∈ Hom(%R

n6m(X)
∗L,L′) when n 6 m, and

%R
n (X)

∗ρ for ρ ∈ Hom(L, %R
m6n(X)

∗L′) when m 6 n.

Theorem 4.5. Let K be a local field with residue field k, in which ` is invertible; let R be

the ring of integers of K .

(0) The trace of Frobenius provides a natural transformation between the additive

functors

X 7→ QCS(X)/iso and X 7→ Hom(X (K ), Q̄×` )

as functors from N to the category of commutative groups.

Regarding this natural transformation, for every X ∈ N ,

(1) there is a canonical short exact sequence of commutative groups

0→ H2(π0(X)k̄, Q̄
×

` )
Wk → QCS(X)/iso→ Hom(X (K ), Q̄×` )→ 0;

(2) for all quasicharacter sheaves F , F ′ on GrR(X), and for every ρ ∈ Hom(F ,F ′),
either ρ is trivial or ρ is an isomorphism;

(3) for all quasicharacter sheaves F for X , there is a canonical isomorphism

Aut(F) ∼= Hom((π0(X)k̄)Wk , Q̄
×

` ).

Proof. To prove (0), use Proposition 1.6 with G = GrR
n (X), the fact that Néron models

are unique up to isomorphism, the fact that every CS(GrR
n (X)) is a full subcategory of

QCS(X), and the observation that every object in QCS(X) is in the essential image of

CS(GrR
n (X)) for some n. To prove (1), use Theorem 3.6 with G = GrR

n (X), and then argue

as in part (0). To prove (2), argue as in the proof of Lemma 1.3. To prove (3), use

the fact that the component group of GrR
n (X) is independent of n, Theorem 3.9 with

G = GrR
n (X), in which case π0(G) = π0(X ×S S0) and π0(Ḡ) = π0(X)k̄ , and then argue as

in part (0).

Remark 4.6. In § 4.5 we see that the étale site on GrR(X) is rich enough to geometrize all

quasicharacters of X (K ) as `-adic local systems on GrR(X), where X is a Néron model

for an algebraic torus or an abelian variety over a local field K . It is natural to ask if

the étale site on the generic fibre X K would have sufficed. This seems unlikely, since the

geometric étale fundamental group of Gm,K is Ẑ; however, limited results in this direction

were established in [13] when K = Qp.

4.5. Quasicharacter sheaves for p-adic tori

As we explained in the Introduction, our original motivation for this paper was to find

a geometrization of quasicharacters of p-adic tori. This is now provided by the following

adaptation of Theorem 4.5 in the case when T ∈ N is a Néron model for an algebraic

torus over K .
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Corollary 4.7. Let T be a Néron model for an algebraic torus over K . The following is a

commutative diagram of exact sequences.

0

��

0

��
H2(X∗(T )IK , Q̄

×

` )
Wk

��

H2(X∗(T )IK , Q̄
×

` )
Wk

��

0

��
0 // QCS(π0(T ))/iso

Trπ0(T )

��

π∗0 // QCS(T )/iso

TrGrR (T )

��

ι∗0 // QCS(T 0)/iso

TrGrR (T )0

��

// 0

0 // Hom(π0(T )(k), Q̄×` )

∼=

��

inf // Hom(T (K ), Q̄×` )

∼=

��

res // Hom(T 0(R), Q̄×` )

∼=

��

// 0

0 0 0

Proof. The horizontal sequence of groups coming from categories of quasicharacter

sheaves is exact by Proposition 3.5, together with the observation that the functors π∗0
and ι∗ preserve limits. It is elementary that the horizontal sequence of quasicharacters

is exact. Accordingly, by Theorem 4.5, the kernel of TrGrR(T ) is H2(π0(T )k̄, Q̄
×

` )
W . By

[6, Equation (3.1)], the special fibre of the component group scheme for T is given by

π0(T )k̄ = X∗(T )IK ,

where X∗(T ) is the cocharacter lattice of TK and IK is the inertia group for K . Thus,

H2(π0(T )k̄, Q̄
×

` )
Wk = H2(X∗(T )IK , Q̄

×

` )
Wk .

Thus, the middle vertical sequence is exact. Since T 0 and π0(T ) do not lie in N , we

cannot use Theorem 4.5 to determine the image and trace of Frobenius for these schemes.

Instead, we observe that T 0 and π0(T ) are smooth commutative group schemes over R, so

Definition 4.2 gives meaning to categories QCS(T 0) and QCS(π0(T )), and, moreover, that

π0(GrR
n (T

0)) = π0(T 0)k = 1 and π0(GrR
n (π0(T ))) = π0(T )k are both independent of n. It

follows that the vertical sequences through QCS(T 0)/iso and QCS(π0(T ))/iso are exact

by Theorem 3.6 and Definition 4.2. The diagram commutes by Lemma 1.4.

Example 4.8. When TK = Gm,K or TK = U1(K ′/K ), the geometric component group

π0(T )k̄ is cyclic, so TrGrR(T ) is an isomorphism. Conversely, when TK = G2
m,K , then

H0(Wk,H2(π0(T ), Q̄×` )) = Q̄×` ,

and there are uncountably many invisible quasicharacter sheaves for T .

We may also give examples of tori whose Néron models have component groups

appearing in Example 2.10. Let L = K ′(
√
π) be a quadratic ramified extension of K ′.

When K = K ′ and TK = U1(L/K )×U1(L/K ), the component group π0(T )k̄ is Z/2Z×
Z/2Z with trivial Frobenius action. When K ′/K is an unramified quadratic extension
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and TK = ResK ′/K U1(L/K ′), then π0(T )k̄ is Z/2Z×Z/2Z with Frobenius exchanging

the direct factors. Finally, let K ′/K be a cubic unramified extension and SK =

ResK ′/K U1(L/K ′). If TK is the subtorus with character lattice X∗(SK )/〈(1, 1, 1)〉, then

π0(T )k̄ is Z/2Z×Z/2Z with Frobenius of order 3. Each of these tori will have one invisible

quasicharacter sheaf.

We may also extract information about the automorphism groups of quasicharacter

sheaves from Theorem 4.5.

Corollary 4.9. Let T be a Néron model for an algebraic torus over K . For E ∈
QCS(π0(T )), F ∈ QCS(T ), and F0

∈ QCS(T 0), there are canonical isomorphisms

Aut(E) ∼= (Ť`)WK , Aut(F) ∼= (Ť`)WK , Aut(F0) ∼= 1,

where Ť` := Hom(X∗(T ), Q̄×` ), the `-adic dual torus to TK .

Proof. We already know that Aut(E) = 1 from Proposition 1.14, part (3). By

Theorem 4.5,

Aut(F) ∼= Hom((π0(T )k̄)Wk , Q̄
×

` ).

By [6, Equation (3.1)] again,

Hom((π0(T )k̄)Wk , Q̄
×

` )
∼= Hom(X∗(T )WK , Q̄

×

` ).

But Hom(X∗(T )WK , Q̄
×

` )
∼= Hom(X∗(T ), Q̄×` )

WK . So, for any quasicharacter sheaf F
for T ,

Aut(F) ∼= (Ť`)WK ,

canonically. The case when X = π0(T ) is handled by the same argument, replacing

Theorem 4.5 with Theorem 3.6 and Definition 4.2, as in the proof of Corollary 4.7,

after observing that π0(π0(T )k̄) = π0(T )k̄ .

Remark 4.10. Since π0(T )k̄ = X∗(T )IK by [6, Equation (3.1)], we have

Hom(π0(T )(k), Q̄×` ) = Hom((X∗(T )IK )
Wk , Q̄×` ) = Hom(X∗(T )IK , Q̄

×

` )Wk = H1(Wk, Ť IK
` ).

By the Langlands correspondence for p-adic tori [37],

Hom(T (K ), Q̄×` ) ∼= H1(WK , Ť`),

where we refer to continuous cohomology, since Hom(T (K ), Q̄×` ) refers to continuous

group homomorphisms T (K )→ Q̄×` . It now follows from the inflation-restriction exact

sequence that the following diagram commutes.

0 // Hom(π0(T )(k), Q̄×` )

∼=

��

inf // Hom(T (K ), Q̄×` )

∼=

��

res // Hom(T 0(R), Q̄×` )

∼=

��

// 0

0 // H1(Wk, Ť IK
` )

inf // H1(WK , Ť`)
res // H1(IK , Ť`)Wk // 0

https://doi.org/10.1017/S1474748015000286 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000286


From the function-sheaf dictionary to quasicharacters of p-adic tori 33

Combining this with Corollary 4.7 produces the following commutative diagram of exact

sequences.

0

��

0

��
H2(X∗(T )IK , Q̄

×

` )
Wk

��

H2(X∗(T )IK , Q̄
×

` )
Wk

��

0

��
0 // QCS(π0(T ))/iso

��

π∗0 // QCS(T )/iso

��

ι∗0 // QCS(T 0)/iso // 0

0 // H1(Wk, Ť IK
` )

��

inf // H1(WK , Ť`)

��

res // H1(IK , Ť`)Wk

��

// 0

0 0 0

(14)

It is natural to ask if the vertical surjections can be defined directly, without making use

of local class field theory, for which the results of [32, 33] may be helpful. The case when

TK = Gm,K is already very interesting, in which case (14) becomes

0 // QCS(Z)/iso

∼=

��

π∗0 // QCS(GNeron
m,K )/iso

∼=

��

ι∗0 // QCS(Gm,R)/iso

∼=

��

// 0

0 // Hom(Wk, Q̄×` )
inf // Hom(WK , Q̄×` )

res // Hom(IK , Q̄×` ) // 0

(15)

We suspect that the general case of (14), where K is any local field and TK is any torus

over K , may be deduced from (15). In § 4.6 we develop a tool for further work in that

direction.

4.6. Weil restriction and quasicharacter sheaves

Let K ′/K be a finite Galois extension of local fields, and let k′/k be the corresponding

extension of residue fields. Let R and R′ be the rings of integers of K and K ′, respectively.

Suppose that X ∈ N , set X K ′ := X K ×Spec(K ) Spec(K ′), and let X ′ be a Néron model for

X K ′ .

Proposition 4.11. The canonical closed immersion

X K ↪→ ResK ′/K X K ′

of K -group schemes induces a map of k-group schemes

f : GrR(X)→ Resk′/k GrR′(X ′)

which, through quasicharacter sheaves, induces

Hom(X K (K ′), Q̄×` )
χ 7→χ |X (K ) // Hom(X K (K ), Q̄×` )

https://doi.org/10.1017/S1474748015000286 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000286


34 C. Cunningham and D. Roe

Proof. By the Néron mapping property, the canonical closed immersion

X K ↪→ ResK ′/K (X K ′)

extends uniquely to a morphism

X → ResR′/R(X ′) (16)

of smooth R-group schemes. Applying the functor GrR
n to (16) and using [5, Theorem 1.1]

defines the morphism of smooth group schemes

fn : GrR
n−1(X)→ Resk′/k GrR′

en−1(X
′), (17)

where e is the ramification index of K ′/K . Using Lemma 1.4, (17) induces a functor

f ∗n : CS(Resk′/k GrR′
en−1(X

′))→ CS(GrR
n−1(X)). (18)

Since (
Resk′/k GrR′

en−1(X
′)
)
(k) =

(
GrR′

en−1(X
′)
)
(k′),

it follows from Lemma 1.4 that the pullback functor (18) actually induces

Homen−1(X ′(R′), Q̄×` )→ Homn−1(X (R), Q̄×` ).

Since X ′ is a Néron model for X K ′ and X is a Néron model for X K , this may be rewritten

as

Homen−1(X K ′(K ′), Q̄×` ) = Homen−1(X K (K ′), Q̄×` )→ Homn−1(X K (K ), Q̄×` ).
Passing to limits now defines

Hom(X K (K ′), Q̄×` )→ Hom(X K (K ), Q̄×` ).

Argue as in Proposition 3.12 to see that this is indeed restriction of characters.

4.7. Transfer of quasicharacters

Let K and L be local fields with rings of integers OK and OL , respectively. Pick

uniformizers $K and $L for OK and OL , respectively; what follows will not depend

on these choices. Suppose that ` is invertible in the residue fields of K and L.

We begin with X K ∈ NK with Néron model X and YL ∈ NL with Néron model Y .

Suppose that m is a positive integer such that

OK /$
m
K OK ∼= OL/$

m
L OL .

Suppose also that

X ×Spec(OK ) Spec(OK /$
m
K OK ) ∼= Y ×Spec(OL ) Spec(OL/$

m
L OL) (19)

as smooth group schemes over OK /$
m
K OK . Then

GrOK
m−1(X) ∼= GrOL

m−1(Y )

as smooth group schemes over k. Accordingly, by Lemma 1.4, the isomorphism above

determines an equivalence of categories

CS(GrOK
m−1(X)) ∼= CS(GrOL

m−1(Y )) (20)
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which induces an isomorphism

Homm−1(X (K ), Q̄×` ) ∼= Homm−1(Y (L), Q̄×` ). (21)

The isomorphism (21) is an instance of transfer of (certain) quasicharacters between

X (K ) and Y (L). We now recognize this transfer of quasicharacters as a consequence of

the equivalence of categories of quasicharacter sheaves (20).

The isomorphism (19) can indeed exist between quasicharacters of algebraic tori over

local fields, even when the characteristics of K and L differ. Suppose that TK and ML
are tori over local fields K and L, splitting over K ′ and L ′, respectively. Then TK and

ML are said to be n-congruent [12, § 2] if there are isomorphisms

α : OK ′/$
n
KOK ′ → OL ′/$

n
LOL ′

β : Gal(K ′/K )→ Gal(L ′/L)

φ : X∗(TK )→ X∗(ML)

satisfying the following conditions:

(1) α induces an isomorphism OK /$
n
KOK → OL/$

n
LOL ;

(2) α is Gal(K ′/K )-equivariant relative to β; and

(3) φ is Gal(K ′/K )-equivariant relative to β.

If TK and ML are n-congruent then α, β, and φ determine an isomorphism

Homn−1(TK (K ), Q̄×` ) ∼= Homn−1(ML(L), Q̄×` ). (22)

Note that, if TK and ML are n-congruent, then they are m-congruent for every m 6 n.

Now let T be a Néron model for TK , and let M be a Néron model for ML . One of the

main results of [12] gives an isomorphism of group schemes

T ×Spec(OK ) Spec(OK /$
m
K OK ) ∼= M ×Spec(OL ) Spec(OL/$

m
L OL)

assuming that TK and ML are sufficiently congruent. In [12], the authors define a quantity

h (the smallest integer such that $ h lies in the Jacobian ideal associated to a natural

embedding of TK into an induced torus [12, § 8.1]) and show that, if n > 3h and TK and

ML are n-congruent, then there is a canonical isomorphism of smooth group schemes

Grn−3h−1(T )→ Grn−3h−1(M) determined by α, β, and φ [12, Theorem 8.5]. Combining

this with the paragraph above gives the following instance of the geometrization of the

transfer of quasicharacters.

Proposition 4.12. With the notation above, suppose that TK and ML are n-congruent and

that n > 3h. Set m = n− 3h. Then there is a canonical equivalence of categories

CS(GrOK
m−1(T )) ∼= CS(GrOL

m−1(M))

determined by α, β and φ inducing an isomorphism

Homm−1(T (K ), Q̄×` ) ∼= Homm−1(M(L), Q̄×` )

compatible with (22).
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disabusing us of a misapprehension concerning the Greenberg realization functor, and for

drawing our attention to their result on Weil restriction and the Greenberg transform.

Finally, we thank Joseph Bernstein for very helpful comments.

We gratefully acknowledge the financial support of the Pacific Institute for the

Mathematical Sciences and the National Science and Engineering Research Council

(Canada), as well the hospitality of the Banff International Research Station during

a Research in Teams programme.

References

1. A.-M. Aubert and C. Cunningham, An introduction to sheaves on adic spaces
for p-adic group representation theory, in Functional Analysis, VII (Dubrovnik, 2001),
Various Publications Series (Aarhus), Volume 46, pp. 11–51 (University Aarhus, Aarhus,
2002).
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