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Abstract Let p ≥ 3 be a prime. A generalized multi-edge spinal group

G = 〈{a} ∪ {b(j)i | 1 ≤ j ≤ p, 1 ≤ i ≤ rj}〉 ≤ Aut(T )

is a subgroup of the automorphism group of a regular p-adic rooted tree T that is generated by one rooted

automorphism a and p families b
(j)
1 , . . . , b

(j)
rj

of directed automorphisms, each family sharing a common
directed path disjoint from the paths of the other families. This notion generalizes the concepts of multi-
edge spinal groups, including the widely studied GGS groups (named after Grigorchuk, Gupta and Sidki),
and extended Gupta–Sidki groups that were introduced by Pervova [‘Profinite completions of some groups
acting on trees, J. Algebra 310 (2007), 858–879’]. Extending techniques that were developed in these
more special cases, we prove: generalized multi-edge spinal groups that are torsion have no maximal
subgroups of infinite index. Furthermore, we use tree enveloping algebras, which were introduced by
Sidki [‘A primitive ring associated to a Burnside 3-group, J. London Math. Soc. 55 (1997), 55–64’] and
Bartholdi [‘Branch rings, thinned rings, tree enveloping rings, Israel J. Math. 154 (2006), 93–139’], to
show that certain generalized multi-edge spinal groups admit faithful infinite-dimensional irreducible
representations over the prime field Z/pZ.
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1. Introduction

Throughout, let p be an odd prime, and let T denote a regular p-adic rooted tree. Pioneer-
ing constructions by Grigorchuk, Gupta and Sidki in the 1980s led to the first examples
of subgroups of the automorphism group Aut(T ) that are now called GGS groups. Since
then, the profinite group Aut(T ) has become a ‘building site’ for finitely generated, resid-
ually finite groups with interesting properties, in particular branch groups. Typically the
groups are realized as subgroups of Aut(T ) that are generated by tree automorphisms
with built-in self-similarities; see [4,13].
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In this paper, we consider a collection C of subgroups of Aut(T ), called generalized
multi-edge spinal groups, that form a common generalization of multi-edge spinal groups,
studied in [1], and extended Gupta–Sidki groups (EGS groups), introduced in [21]. Note
that the class of multi-edge spinal groups includes all GGS groups. With a certain amount
of care, we extend the main results in [1,21,25,27] to groups in the larger class C . The
EGS groups, originally manufactured by Pervova as examples of just infinite branch
groups without the congruence subgroup property, seem to have received little attention
beyond [21]. It is reassuring that results first obtained for multi-edge spinal groups carry
over to these groups.

For convenience, we give now an abridged definition of the class C of generalized multi-
edge spinal groups, and illustrate the concept with simple examples. A more detailed
discussion and the definitions of standard terms can be found in § 2.

A generalized multi-edge spinal group

G = 〈{a} ∪ {b(j)i | 1 ≤ j ≤ p, 1 ≤ i ≤ rj}〉 (1.1)

is an infinite subgroup of (a Sylow-pro-p subgroup of) the profinite group Aut(T ) that is
generated by

• a rooted automorphism a of order p permuting cyclically the vertices u1, . . . , up at
the first level of T , and

• families b(j) = {b(j)1 , . . . , b
(j)
rj }, j ∈ {1, . . . , p}, of directed automorphisms sharing a

common directed path Pj in T .

The paths P1, . . . , Pp are required to be mutually disjoint. Without loss of generality,
we can demand that none of the generators are superfluous, hence 0 ≤ rj ≤ p− 1 for all
j ∈ {1, . . . , p}. Since G is infinite, there is at least one j ∈ {1, . . . , p} such that rj �= 0.

By construction, such a generalized multi-edge spinal group is a finitely generated,
residually-(finite p) infinite group. Regarded as a subgroup of Aut(T ) it is frac-
tal, and under additional assumptions, as we will see below, it is just infinite and
branch.

Example 1.1. The EGS group with defining vector e = (e1, . . . , ep−1) ∈ (Z/pZ)p−1
�

{0} is the group
G = 〈a, b, c〉 ≤ Aut(T ),

where the rooted automorphism a permutes cyclically the p vertices at the first level of T ,
whereas the two directed automorphisms b, c belong to the first-level stabilizer StabG(1)
and satisfy the recursion relations

b = (ae1 , . . . , aep−1 , b) and c = (c, ae1 , . . . , aep−1).

Observe that each of the generators a, b, c has order p. In [21], Pervova imposes two
additional requirements:

∑p−1
i=1 ei = 0 and e is non-symmetric, i.e., ei �= ep−i for some

i ∈ {1, . . . , p− 1}. The first condition is equivalent to G being torsion; see [24, Theorem 2]
and [28, Theorem 1]. Pervova shows under these assumptions: G is just infinite and
branch, but does not have the congruence subgroup property; see [21]. This is in contrast
to the Grigorchuk group [22, Theorem 3.1] and branch GGS groups [9, Theorem A].
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Example 1.2. Given r ∈ {1, . . . , p− 1} and a finite r-tuple E of (Z/pZ)-linearly
independent vectors

ei = (ei,1, ei,2, . . . , ei,p−1) ∈ (Z/pZ)p−1, i ∈ {1, . . . , r},
we recursively define directed automorphisms b1, . . . , br via

bi = (aei,1 , aei,2 , . . . , aei,p−1 , bi), i ∈ {1, . . . , r}.
The group G = 〈a, b1, . . . , br〉 ≤ Aut(T ) is the multi-edge spinal group associated with
the defining vectors E. We observe that 〈a〉 ∼= Cp and 〈b1, . . . , br〉 ∼= C r

p are elementary
abelian p-groups. These groups generalize GGS groups, which correspond to the special
case r = 1. In [1] it was seen that the torsion multi-edge spinal groups are just infinite
and branch. Moreover, generalizing the results of Pervova on GGS groups, it was shown
there that torsion multi-edge spinal groups do not contain maximal subgroups of infinite
index. Equivalently, these groups do not contain proper dense subgroups with respect to
the profinite topology.

Remark 1.3. We will have occasion to look at generalized Gupta–Sidki groups. By
this we mean GGS groups G = 〈a, b1〉, i.e. r = 1 in the notation above, with the extra
property that {e1,1, . . . , e1,p−1} = {1, 2, . . . , p− 1}. This definition subsumes the gener-
alized Gupta–Sidki group 〈a, b〉, studied in [27], where b = (a, a2, . . . , ap−1, b). For p = 3
this group is the Gupta–Sidki 3-group.

We extend the results illustrated by the two examples as follows.

Theorem 1.4. Let G be a generalized multi-edge spinal group, that is a group in the
class C as described in (1.1).

(1) If every non-empty family b(j), j ∈ {1, . . . , p}, features at least one non-constant
defining vector, then G is regular branch over γ3(G).
Consequently, if G is torsion then G is just infinite and branch.

(2) If the group G is torsion then G does not contain any proper dense subgroups, with
respect to the profinite topology. The same holds for groups commensurable to G.

(3) Suppose that the families b(1), . . . ,b(p) of directed generators of G satisfy the
additional conditions:
(i) every non-empty family b(j), j ∈ {1, . . . , p}, features at least one non-symmetric

defining vector;

(ii) there are at least two directed automorphisms, from two distinct families, that
have the same defining vector.

Then G does not have the congruence subgroup property.

For comparison, we remark that Bondarenko [5] has shown that there exist finitely
generated branch groups that possess maximal subgroups of infinite index. Bou-Rabee
et al. [6] proceeded to investigate weakly maximal subgroups of branch groups, that is,
those that are maximal among the subgroups of infinite index. The Grigorchuk group,
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the Gupta–Sidki group and many other GGS groups contain uncountably many non-
parabolic weakly maximal subgroups. In Corollary 3.12 we observe that these results also
apply to the branch groups in C .

Returning to the results about maximal subgroups, as explained in [1,20], they relate
to a conjecture of Passman [17, Conjecture 6.1] on the group algebra F [G] of a finitely
generated group G over a field F of characteristic p. The conjecture states that, if the
Jacobson radical Jac(F [G]) coincides with the augmentation ideal Aug(F [G]), then G is
a finite p-group. In [17], Passman proved that, if Jac(F [G]) = Aug(F [G]), then G is a
p-group and every maximal subgroup of G is normal of index p.

The torsion groups in C , having the property that maximal subgroups are normal of
index p, form a natural supply of potential counter-examples to Passman’s conjecture.
However, prominent examples such as the Grigorchuk group and the generalized Gupta–
Sidki p-groups do not satisfy the prerequisite Jac(F [G]) = Aug(F [G]); see [2,3,25,27].
In § 6, we prove similar results for a larger class of groups in C .

The following question of Bergman [16, Problem 17.17] was brought to our attention by
A. Abdollahi: Do there exist finitely generated infinite groups with finitely many maximal
subgroups? As recorded in the Kourovka Notebook [16], an example of a 2-generated 2-
group with 3 maximal subgroups can be extracted from [8, § 7]. Due to Theorem 1.4(2),
we obtain a large and more easily describable collection of finitely generated infinite
groups with finitely many maximal subgroups.

Now a subgroup G ≤ Aut(T ) naturally acts on the boundary ∂T of the tree T . The
tree enveloping algebra AG of G over the prime field F = Z/pZ is the image of F [G]
in the endomorphism algebra End(F 〈〈∂T 〉〉) of the F -vector space on the basis ∂T . The
image of Aug(F [G]) in AG is denoted by Aug(AG). Bartholdi [2,3] extensively studied
the tree enveloping algebra of the Grigorchuk group, over various fields. One of his key
results is that the tree enveloping algebra of the Grigorchuk group over a field of char-
acteristic 2 has a natural grading [2, Corollary 4.16]. This can be concluded from the
recursive presentation of the tree enveloping algebra [2, Theorem 4.15]. It remains open,
as to whether the tree enveloping algebra of the Gupta–Sidki groups, or of other GGS
groups, similarly admit a natural grading. We see from the following that it is desirable
to close this gap in our knowledge.

Theorem 1.5. Let G = 〈a,b(1), . . . ,b(p)〉 be a just infinite group in C , and let AG be
its tree enveloping algebra over F = Z/pZ.

If, either G contains a generalized Gupta–Sidki group as a subgroup, or the induced

augmentation ideal Aug(AG) is a graded algebra with the elements a− 1 and b
(j)
i − 1 for

1 ≤ j ≤ p, 1 ≤ i ≤ rj being homogeneous, then G admits a faithful infinite-dimensional
irreducible F -representation.

Remark 1.6. The proof of Theorem 1.5 reveals that the groups G to which it applies
satisfy Jac(AG) �= Aug(AG). This implies that Jac(F [G]) �= Aug(F [G]), and hence, even
though it may be torsion, G cannot be a counter-example to Passman’s conjecture.

Passman and Temple showed in [19] that for the Gupta–Sidki p-group GSp and E,
an algebraically closed field of characteristic p, if E[GSp] has a non-trivial irreducible

https://doi.org/10.1017/S0013091517000451 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091517000451


Maximal subgroups and irreducible representations 677

module, then E[GSp] has infinitely many irreducible modules. We extend their result to
branch groups in C .

Theorem 1.7. Let G be a branch group in C , and let E be an algebraically closed field
of characteristic p. If E[G] has a non-trivial irreducible module, then E[G] has infinitely
many irreducible modules.

2. Preliminaries

Let T be the regular p-adic rooted tree, meaning all vertices have the same out-degree p.
Using the alphabet X = {1, 2, . . . , p}, the vertices uω of T are labelled bijectively by
elements ω of the free monoid X in the following natural way. The root of T is labelled by
the empty word ∅, and for each word ω ∈ X and letter x ∈ X there is an edge connecting
uω to uωx. More generally, we say that uω precedes uλ, or equivalently that uλ succeeds
uω, whenever ω is a prefix of λ.

There is a natural length function on X. The words ω of length |ω| = n, representing
vertices uω that are at distance n from the root, are the nth-level vertices and constitute
the nth layer of the tree; the boundary ∂T , whose elements correspond naturally to
infinite rooted paths, is in one-to-one correspondence with the p-adic integers.

Denote by Tu the full rooted subtree of T that has its root at a vertex u and includes
all vertices succeeding u. For any two vertices u = uω and v = uλ, the map uωτ 	→ uλτ ,
induced by replacing the prefix ω by λ, yields an isomorphism between the subtrees Tu

and Tv. We write Tn to denote the subtree rooted at a generic vertex of level n.
Every automorphism of T fixes the root and the orbits of Aut(T ) on the vertices of the

tree T are precisely its layers. For f ∈ Aut(T ), the image of a vertex u under f is denoted
by uf . Observe that f induces a faithful action on the monoid X such that (uω)f = uωf .
For ω ∈ X and x ∈ X we have (ωx)f = ωfx′ where x′ ∈ X is uniquely determined by ω
and f . This induces a permutation f(ω) of X so that

(ωx)f = ωfxf(ω), and consequently (uωx)f = uωf xf(ω) .

The automorphism f is rooted if f(ω) = 1 for ω �= ∅. It is directed, with directing path
� ∈ ∂T , if the support {ω | f(ω) �= 1} of its labelling is infinite and marks only vertices
at distance 1 from the set of vertices corresponding to the path �.

2.1. Subgroups of Aut(T )

Let G be a subgroup of Aut(T ) acting spherically transitively, that is, transitively on
every layer of T . The vertex stabilizer StabG(u) is the subgroup consisting of elements in
G that fix the vertex u. For n ∈ N, the nth-level stabilizer StabG(n) = ∩|ω|=nStabG(uω)
is the subgroup consisting of automorphisms that fix all vertices at level n. Denoting by
T[n] the finite subtree of T on vertices up to level n, we see that StabG(n) is equal to the
kernel of the induced action of G on T[n].

The full automorphism group Aut(T ) is a profinite group:

Aut(T ) = lim←−
n→∞

Aut(T[n])
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The topology of Aut(T ) is defined by the open subgroups StabAut(T )(n), n ∈ N. The
subgroup G of Aut(T ) has the congruence subgroup property if for every subgroup H
of finite index in G, there exists some n such that StabG(n) ⊆ H. For branch groups,
having the congruence subgroup property is independent of the choice of tree and action;
see [12]. In fact, in most of the cases that we consider, there is essentially a unique tree
and action associated with the group; cf. Corollary 3.8.

Each g ∈ StabAut(T )(n) can be described completely in terms of its restrictions to the
subtrees rooted at vertices at level n. Indeed, there is a natural isomorphism

ψn : StabAut(T )(n)→
∏

|ω|=n
Aut(Tuω

) ∼= Aut(T )× pn

. . .×Aut(T ).

We write UG
u for the restriction of the vertex stabilizer StabG(u) to the subtree Tu

rooted at a vertex u. Since G acts spherically transitively, the vertex stabilizers at every
level are conjugate under G. The common isomorphism type of the restriction of the
nth-level vertex stabilizers is the nth upper companion group UG

n of G. The group G is
fractal if every upper companion group UG

n coincides with the group G, after the natural
identification of subtrees.

The rigid vertex stabilizer of u in G is the subgroup RstabG(u) consisting of all auto-
morphisms in G that fix all vertices v of T not succeeding u. The rigid nth-level stabilizer
is the product

RstabG(n) =
∏

|ω|=n
RstabG(uω) � G

of the rigid vertex stabilizers of the vertices at level n. The rigid vertex stabilizers at each
level are conjugate under G and the common isomorphism type LG

n of the nth-level rigid
vertex stabilizers is called the nth lower companion group of G.

We recall that the spherically transitive group G is a branch group, if RstabG(n) has
finite index in G for every n ∈ N. For more detailed algebraic and geometric characteri-
zations, see [13]. If, in addition, G is fractal and 1 �= K ≤ StabG(1) with K × · · · ×K ⊆
ψ1(K) and |G : K| <∞, then G is said to be regular branch over K. Lastly, we note that
an infinite group G is just infinite if all its proper quotients are finite.

2.2. The collection C of generalized multi-edge spinal groups

For j ∈ {1, . . . , p} let rj ∈ {0, 1, . . . , p− 1}, with rj �= 0 for at least one index j, and fix
the numerical datum E = (E(1), . . . ,E(p)), where each E(j) = (e(j)

1 , . . . , e(j)
rj ) is an rj-tuple

of (Z/pZ)-linearly independent vectors

e(j)
i = (e(j)i,1 , . . . , e

(j)
i,p−1) ∈ (Z/pZ)p−1, i ∈ {1, . . . , rj}.

By a we denote the rooted automorphism, corresponding to the p-cycle (1 2 . . . p) ∈
Sym(p), that cyclically permutes the vertices at the first level of T . Observe that

S = {f ∈ Aut(T ) | ∀ω ∈ X : f(ω) ∈ 〈a〉} ∼= lim←−
n∈N

Cp � . . . � Cp � Cp, (2.1)

the inverse limit of n-fold iterated wreath products of Cp, forms a Sylow-pro-p subgroup
of Aut(T ). The generalized multi-edge spinal group in standard form associated with the
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datum E is the group

G = GE = 〈a,b(1), . . . ,b(p)〉 = 〈{a} ∪ {b(j)i | 1 ≤ j ≤ p, 1 ≤ i ≤ rj}〉 ≤ S,

where, for each j ∈ {1, . . . , p}, the generator family b(j) = {b(j)1 , . . . , b
(j)
rj } consists of

commuting directed automorphisms b(j)i ∈ StabG(1) along the directed path

(∅, (p− j + 1), (p− j + 1)(p− j + 1), . . .) ∈ ∂T
that satisfy the recursive relations

ψ1(b
(j)
i ) = (ae

(j)
i,j , . . . , ae

(j)
i,p−1 , b

(j)
i , ae

(j)
i,1 , . . . , ae

(j)
i,j−1);

sometimes e(j)
i is called the defining vector of b(j)i . For each j ∈ {1, . . . , p} with rj �= 0

the subgroup 〈a,b(j)〉 = 〈a, b(j)1 , . . . , b
(j)
rj 〉 of G is a multi-edge spinal group; compare

Example 1.2.
Observe that the directing paths for the generator families b(1), . . . ,b(p), i.e., the paths

(∅, p, pp, . . .), (∅, (p− 1), (p− 1)(p− 1), . . .), . . . , (∅, 1, 11, . . .),

are pairwise distinct. We arrive at the notion of a generalized multi-edge spinal group,
given in abridged form in § 1, by considering subgroups of Aut(T ) that are conjugate to
a generalized multi-edge spinal group in standard form and declaring C to be the class
of all such groups. Whenever they are branch, there is, in fact, a unique branch action
associated with these groups; see Corollary 3.8.

3. First properties of generalized multi-edge spinal groups

3.1. Basic properties

Here we include basic results concerning generalized multi-edge spinal groups, i.e.,
groups in the class C . Directly from the definition we deduce that each group in C is
infinite, fractal and acts spherically transitively on T .

Lemma 3.1. Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form, and let k ∈
{1, . . . , p} with rk �= 0. There exists an automorphism f ∈ Aut(T ) of the form f =
f0f1 = f1f0, where f0 is a rooted automorphism corresponding to a permutation π ∈
Sym(p) with (p− k + 1)π = p− k + 1 and f1 ∈ StabG(1) with ψ1(f1) = (f, . . . , f), such

that Gf = 〈a, b̃(1), . . . , b̃(p)〉 ∈ C is again in standard form and satisfies ψ1(b̃
(k)
1 ) =

(aẽ
(k)
1,k , . . . , aẽ

(k)
1,p−1 , b̃

(k)
1 , a, aẽ

(k)
1,2 , . . . , aẽ

(k)
1,k−1).

Proof. In essence, we may use the same proof as that of [1, Lemma 3.3]. �

Next we recall and adapt a reduction lemma from [1] to the new situation.

Lemma 3.2 ([1, Lemma 3.4]). Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form,
and let k ∈ {1, . . . , p} with r = rk �= 0.
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Then there exists a group G̃ = 〈a, b̃(1), . . . , b̃(p)〉 ∈ C in standard form associated with

the datum Ẽ = (Ẽ(1), . . . , Ẽ(p)), with Ẽ(j) = (ẽ(j)
1 , . . . , ẽ(j)

rj ) supplying defining vectors for

the directed automorphisms b̃(j) = (b̃(j)1 , . . . , b̃
(j)
rj ), such that G̃ is conjugate to G by an

element f ∈ Aut(T ) as in Lemma 3.1 and the following holds:

(1) ẽ(k)
i,1 = 1 in Z/pZ for each i ∈ {1, . . . , r};

(2) if r = 2 and p = 3, then ẽ(k)
1 = (1, 0), ẽ(k)

2 = (1, 1);

(3) if r = 2 and p > 3, then either

(a) for each i ∈ {1, 2} there exists m ∈ {2, . . . , p− 2} such that ẽ
(k)
i,m−1ẽ

(k)
i,m+1 �=

(ẽ(k)
i,m)2 in Z/pZ, or

(b) ẽ(k)
1 = (1, 0, . . . , 0, 0), ẽ(k)

2 = (1, 0, . . . , 0, 1);

(4) if r ≥ 3 then for each i ∈ {1, . . . , r} there exists m ∈ {2, . . . , p− 2} such that

ẽ
(k)
i,m−1ẽ

(k)
i,m+1 �= (ẽ(k)

i,m)2 in Z/pZ.

As in [1, § 3], we identify some ‘exceptional’ groups to be excluded from some of
our results: let Creg be the class of groups that are conjugate in Aut(T ) to a group
〈a,b(1), . . . ,b(p)〉 ∈ C in standard form such that every non-empty generator family b(j),
j ∈ {1, . . . , p}, features at least one non-constant defining vector e(j)

i �∈ {(α, . . . , α) | α ∈
Z/pZ} with 1 ≤ i ≤ rj .

Proposition 3.3. Let G = 〈a,b(1), . . . ,b(p)〉 ∈ Creg be in standard form. Then

ψ1(γ3(StabG(1))) = γ3(G)× p. . .× γ3(G).

In particular,

γ3(G)× p. . .× γ3(G) ⊆ ψ1(γ3(G)),

and G is regular branch over γ3(G).

Proof. By spherical transitivity, it suffices to show that

γ3(G)× 1× · · · × 1 ⊆ ψ1(γ3(StabG(1))).

Observe that γ3(G) is generated as a normal subgroup by commutators [g1, g2, g3] of
elements g1, g2, g3 ranging over the generating set {a} ∪ {b(j)i | 1 ≤ j ≤ p, 1 ≤ i ≤ rj}. For
each j ∈ {1, . . . , p} with rj �= 0, the subgroup Gj = 〈a,b(j)〉 ≤ G is a multi-edge spinal
group, and [1, Proposition 3.5] shows that

γ3(Gj)× p. . .× γ3(Gj) ⊆ ψ1(γ3(StabGj
(1))) ⊆ ψ1(γ3(StabG(1))).

Hence, it suffices to prove, for k, l,m ∈ {1, . . . , p} with k �= l and any given cj ∈
{b(j)1 , . . . , b

(j)
rj }, j ∈ {k, l,m}, the elements

([a, ck, cl], 1, . . . , 1), ([ck, cl, a], 1, . . . , 1), ([ck, cl, cm], 1, . . . , 1) (3.1)

are contained in ψ1(γ3(StabG(1))).
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First, we observe that

([ck, cl, cm], 1, . . . , 1) = ψ1([c ak

k , c al

l , c am

m ]) ∈ ψ1(γ3(StabG(1))).

Similarly, as ψ1([c ak

k , c al

l ]) = ([ck, cl], 1, . . . , 1), we can take d ∈ StabG(1) such that
ψ1(d) = (a, ∗, . . . , ∗), where the symbols ∗ denote unspecified elements, to deduce that

([ck, cl, a], 1, . . . , 1) = ψ1([c ak

k , c al

l , d]) ∈ ψ1(γ3(StabG(1))).

It remains to deal with the first type of commutator ([a, ck, cl], 1, . . . , 1) listed in (3.1).
Working with a fixed k ∈ {1, . . . , p}, but still allowing for modifications of the specific
generators, we are free to conjugate by an element f ∈ Aut(T ) as in Lemma 3.1, and
without loss of generality we may assume that the defining vectors E(k) of the generators
b(k) have the form of Ẽ(k) described in Lemma 3.2.

Let us specify ck = b
(k)
i and cl = b

(l)
j , where i ∈ {1, . . . , rk} and j ∈ {1, . . . , rl}. More-

over, as we have already seen that γ3(Gk)× 1× · · · × 1 ⊆ ψ1(γ3(StabG(1))), it suffices to
prove that there exists x ∈ Gk such that

([a, b(k)
i , b

(l)
j ][a, b(k)

i , x]b
(l)
j , 1, . . . , 1) = ([a, b(k)

i , xb
(l)
j ], 1, . . . , 1) ∈ ψ1(γ3(StabG(1))).

Arguing similar to [1, Proof of Proposition 3.5], we distinguish between three situations.
Case 1: rk = 1, and thus i = 1. Observing that

hj = ((b(k)
1 )ak−2

)−s(b(l)j )al

= (xb(l)j , ∗, . . . , ∗, 1)

for s = e
(l)
j,p−1 and x ∈ Gk, we obtain

([a, b(k)
1 , xb

(l)
j ], 1, . . . , 1) = ψ1([(b

(k)
1 )ak−1

, (b(k)
1 )ak

, hj ]) ∈ ψ1(γ3(StabG(1))).

Case 2: rk > 1 and (rk, p) �= (2, 3). By properties (3) and (4) of Lemma 3.2, there
exists m ∈ {2, . . . , p− 2} such that e(k)

i,m−1e
(k)
i,m+1 �= (e(k)

i,m)2; apart from an exceptional
case, which only occurs for rk = 2, to be dealt with below. We set

gi,m = ((b(k)
i )ak−m

)e
(k)
i,m((b(k)

i )ak−m−1
)−e

(k)
i,m−1 ,

which gives

ψ1(gi,m) = (a(e
(k)
i,m)2−e

(k)
i,m−1e

(k)
i,m+1 , ∗, . . . , ∗, 1),

where, in this case, the unspecified elements ∗ lie in 〈a, b(k)
i 〉 ≤ Gk. Since the first entry

is non-trivial, there is a power gi of gi,m such that

ψ1(gi) = (a, y, ∗, . . . , ∗, 1), where y ∈ Gk.

Motivated by

ψ1((b
(l)
j )al

) = (b(l)j , ∗, . . . , ∗, as), where s = e
(l)
j,p−1,

and
ψ1((ga−1

i )−s) = (x, ∗, . . . , ∗, 1, a−s) where x = y−s,
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we define hj = (ga−1

i )−s(b(l)j )al

so that

ψ1(hj) = (xb(l)j , ∗, . . . , ∗, 1).

As e(k)
i,1 = 1, it follows that

([a, b(k)
i , xb

(l)
j ], 1, . . . , 1) = ψ1([(b

(k)
i )ak−1

, (b(k)
i )ak

, hj ]) ∈ ψ1(γ3(StabG(1)))

and so we are done.
It remains to deal with the exceptional case that occurs only for rk = 2, and hence

p > 3. According to property (3b) of Lemma 3.2,

e(k)
1 = (1, 0, . . . , 0), e(k)

2 = (1, 0, . . . , 0, 1),

therefore

ψ1(b
(k)
1 )ak−1

= (a, 1, . . . , 1, b(k)
1 ), ψ1(b

(k)
2 )ak−1

= (a, 1, . . . , 1, a, b(k)
2 ).

To show that ([a, b(k)
1 , b

(l)
j ], 1, . . . , 1) and ([a, b(k)

2 , b
(l)
j ], 1, . . . , 1) are contained in

ψ1(γ3(StabG(1))), it suffices to replace gi in the generic argument given above by
(b(k)

2 )ak+1
in both cases.

In fact, for the first element, we can also argue directly as follows: from the relation
ψ1([(b

(k)
1 )ak−1

, (b(k)
1 )ak

]) = ([a, b(k)
1 ], 1, . . . , 1) we deduce

([a, b(k)
1 , b

(l)
j ], 1, . . . , 1) = ψ1([(b

(k)
1 )ak−1

, (b(k)
1 )ak

, (b(l)j )al

]) ∈ ψ1(γ3(StabG(1))).

Case 3: (rk, p) = (2, 3). By property (2) of Lemma 3.2, we may assume that e(k)
1 = (1, 0)

and e(k)
2 = (1,−1) so that

ψ1((b
(k)
1 )ak−1

) = (a, 1, b(k)
1 ) and ψ1((b

(k)
2 )ak−1

) = (a, a−1, b
(k)
2 ).

Setting h = ((b(k)
1 )ak−2

)−s(b(l)j )al

for s = e
(l)
j,p−1, we obtain ψ1(h) = (b(l)j , ∗, 1) and

([a, b(k)
1 , b

(l)
j ], 1, 1) = ψ1([(b

(k)
1 )ak−1

, (b(k)
1 )ak

, (b(l)j )al

]),

([a, b(k)
2 , b

(l)
j ], 1, 1) = ψ1([(b

(k)
1 )ak−1

, (b(k)
2 )ak

, h])

so that both elements lie in ψ1(γ3(StabG(1))). �

Next we record the following result regarding the derived subgroup G′ of G, based on
the extra assumption that there are sufficiently many non-symmetric defining vectors.

Proposition 3.4. Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form and such that
every non-empty family b(j), j ∈ {1, . . . , p}, features at least one non-symmetric defining
vector. Then

ψ1(StabG(1)′) = G′ × p. . .×G′.

In particular, G′ × p. . .×G′ ⊆ ψ1(G′), and G is regular branch over G′.
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Proof. By spherical transitivity, it suffices to show that

G′ × 1× · · · × 1 ⊆ ψ1(StabG(1)′).

Observe that G′ is generated as a normal subgroup by commutators [g1, g2], where g1, g2
range over the generating set {a} ∪ {b(j)i | 1 ≤ j ≤ p, 1 ≤ i ≤ rj}.

For each j ∈ {1, . . . , p} with rj �= 0, we consider the associated multi-edge spinal group
Gj = 〈a,b(j)〉. Without loss of generality we may assume that all defining vectors for the
family b(j) are non-symmetric. The rj subgroups

Hj(1) = 〈a, b(j)1 〉, . . . , Hj(rj) = 〈a, b(j)rj
〉

of Gj are GGS groups and satisfy the corresponding statement to our claim; see [10,
Lemma 3.4]. Consequently,

([a, b(j)i ], 1, . . . , 1) ∈ ψ1(StabHj(i)(1)′) ⊆ ψ1(StabG(1)′) for 1 ≤ i ≤ rj .
Hence it suffices to observe that, for k, l ∈ {1, . . . , p} with k �= l and any given cj ∈

{b(j)1 , . . . , b
(j)
rj }, j ∈ {k, l}, the element ([ck, cl], 1, . . . , 1) = ψ1([c ak

k , c al

l ]) is contained in
ψ1(StabG(1)′). �

Corollary 3.5. The groups in Creg are branch, and the torsion groups in C are just
infinite.

Proof. From Proposition 3.3, it follows similar to [1, Propositions 3.6 and 3.7] that
the groups in Creg are branch.

As indicated in Example 1.1, torsion groups in C are already in Creg; see [24,
Theorem 2] and [28, Theorem 1]. Finally, finitely generated torsion branch groups are
just infinite; see [13, § 7]. �

Hence we have established part (1) of Theorem 1.4.
We end this section by proving that the branch groups in C have an essentially unique

‘branch action’. For vertices u, v of T we write u ≤ v if u precedes v, and u < v for
u ≤ v, but u �= v. In [14], Grigorchuk and Wilson (using a different notational convention)
introduced the following condition on a branch group G acting on a regular p-adic tree:

(†) Whenever u, u′, v are vertices of T such that u, u′ are incomparable and u < v, there
exists g ∈ G such that (u′)g = u′, but vg �= v.

With this we state [14, Theorem 1], for branch groups acting on regular p-adic rooted
trees.

Theorem 3.6 (Grigorchuk, Wilson). Let G be a branch group acting on a regular
p-adic rooted tree T and suppose that (†) holds. Let T ′ be any other spherically homo-
geneous rooted tree on which G acts as a branch group. Then there is a G-equivariant
isomorphism from T ′ to a tree obtained from T by deletion of layers.

This motivates us to prove the following result on GGS groups.
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Proposition 3.7. Let G = 〈a, b〉 be a GGS group, acting on a regular p-adic tree
T for p ≥ 5. Suppose further that the defining vector (e1, . . . , ep−1) of the directed
automorphism b is non-constant and that all its entries are non-zero. Then G satisfies
condition (†).

Proof. Let u, u′ be incomparable vertices of T . We denote by ū, ū′ the first-level
vertices satisfying ū ≤ u and ū′ ≤ u′. Suppose that ū = ui and ū′ = uj for labels i, j ∈
{1, . . . , p}. Applying conjugation by a suitable power of a, if necessary, we may assume
without loss of generality that i < j. Replacing b by a suitable power of itself, if necessary,
we may further assume that e1 = 1.
Case 1: There exists m �= 1 such that

ψ1(b) = (a, am, am2
, . . . , amp−2

, b).

This implies
ψ1(b(b−m)a) = (ab−m, 1, . . . , 1, ba−1).

First suppose that (i, j) �= (1, p). Then the element g = (b(b−m)a)ai−1 ∈ StabG(1) has
the form

ψ1(g) = (1, . . . , 1, ba−1, ab−m︸ ︷︷ ︸
ith entry

, 1, . . . , 1).

Consequently, (u′)g = u′, but no vertex v with v > ū is fixed by g due to the factor a in
the ith entry of ψ1(g). Therefore condition (†) is satisfied.

In the remaining case (i, j) = (1, p), we instead use g = (b(b−m)a)a, where

ψ1(g) = (ba−1, ab−m, 1, . . . , 1).

Case 2: There exists k ∈ {2, . . . , p− 2} such that

e2
e1

= · · · = ek

ek−1
but

ek

ek−1
�= ek+1

ek
. (3.2)

Then, as in Case 2 of the proof of Proposition 3.3, we define

gk = (ba
p−k+1

)ek(ba
p−k

)−ek−1 ∈ StabG(1)

so that
ψ1(gk) = (af1 , . . . , afp−k−1 , afp−kb−ek−1 , bekafp−k+1 , 1, k−1. . . , 1),

where

f1 = e2k − ek−1ek+1 �= 0,

fl = ekek+l−1 − ek−1ek+l for 2 ≤ l ≤ p− k − 1,

fp−k = ekep−1 �= 0 and fp−k+1 = −ek−1 �= 0.

The first statement follows from (3.2), while the last two are due to the circumstance
that e1, . . . , ep−1 �= 0.
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We now identify a suitable conjugate g of gk. First we take any conjugate h of gk by
a power of a such that the jth entry of ψ1(h) does not involve a non-trivial power of a.
Hence the jth entry is trivial by the form of ψ1(gk). If the ith entry of ψ1(h) also does
not involve a non-trivial power of a, then consider hal

, where l = j − i. Now the jth entry
of ψ1(hal

) is trivial. If the ith entry of ψ1(hal

) does not involve a non-trivial power of a,
then repeat the process and consider ha2l

, etc. Since there are entries of h that involve
non-trivial powers of a, we arrive in this way at g = haml

, for some m ∈ {0, 1, . . . , p− 1},
such that the jth entry of ψ1(g) is trivial, while the ith entry involves a non-trivial power
of a. Thus condition (†) is again satisfied. �

We remark that GGS groups G = 〈a, b〉 are branch apart from when the defining vec-
tor of the directed automorphism b is constant. In the latter case the group G is only
weakly branch, that is, all rigid stabilizers are non-trivial; see [9, Theorem 3.7] and [10,
Lemma 4.2(iii)]. The next corollary extends the results in [14], which cover GGS groups
with defining vector having at least one zero entry, and additionally the Gupta–Sidki
3-group.

Corollary 3.8. Let G ∈ C be branch. Then the branch action of G is unique in the
sense of Theorem 3.6.

Proof. Observe that G contains a branch GGS group. Thus Proposition 3.7 and [14,
Lemmata 6 and 7] imply that G, too, satisfies condition (†). Hence the result follows by
Theorem 3.6. �

3.2. Length functions and abelianization

For the proof of part(2) of Theorem 1.4, we require certain length functions on the
groups G ∈ C ; as a by-product, we pin down the abelianization G/G′ of G. Fix a group
G = 〈a,b(1), . . . ,b(p)〉 ∈ C in standard form, and consider the free product

Ĝ = 〈â〉 ∗ 〈b̂(1)〉 ∗ · · · ∗ 〈b̂(p)〉

of elementary abelian p-groups 〈â〉 ∼= Cp and 〈b̂(j)〉 = 〈b̂(j)1 , . . . , b
(j)
rj 〉 ∼= C

rj
p for 1 ≤ j ≤ p.

Note that there is a unique epimorphism π : Ĝ→ G such that â 	→ a and b̂
(j)
i 	→

b
(j)
i for 1 ≤ j ≤ p and 1 ≤ i ≤ rj , inducing an epimorphism from Ĝ/Ĝ′ ∼= C

1+r1+···+rp
p

onto G/G′. We want to show that the latter is an isomorphism; see Proposition 3.9.
By the standard theory of free products of groups, each element ĝ ∈ Ĝ has a unique

reduced form

ĝ = âα1 w1 â
α2 w2 · · · âαl wl â

αl+1 ,

where l ∈ N ∪ {0}, w1, . . . , wl ∈ 〈b̂(1) ∪ . . . ∪ b̂(p)〉� {1}, and α1, . . . , αl+1 ∈ Z/pZ such
that αi �= 0 for i ∈ {2, . . . , l}. Furthermore, for each i ∈ {1, . . . , l}, the element wi can be
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uniquely expressed as

wi = (b̂(k(i,1)))β(i,1) · · · (b̂(k(i,ni)))β(i,ni),

where ni ∈ N, k(i, 1), . . . , k(i, ni) ∈ {1, . . . , p}, with k(i,m) �= k(i,m+ 1) for 1 ≤ m ≤
ni − 1, and

β(i,m) = (β(i,m)1, . . . , β(i,m)rk(i,m)) ∈ (Z/pZ)rk(i,m) � {0}, 1 ≤ m ≤ ni,

are exponent vectors so that

(b̂(k(i,m)))β(i,m) = (b̂(k(i,m))
1 )β(i,m)1 · · · (b̂(k(i,m))

rk(i,m)
)β(i,m)rk(i,m) .

The length of ĝ is defined as

∂(ĝ) = n1 + · · ·+ nl.

Furthermore, we define exponent maps from Ĝ to Z/pZ by

εâ(ĝ) =
l+1∑
m=1

αm and

ε
b̂
(k)
j

(ĝ) =
∑

1≤i≤l, 1≤m≤ni

s.t. k(i,m)=k

β(i,m)j for 1 ≤ k ≤ p and 1 ≤ j ≤ rk.

The isomorphism G/[G,G] ∼= Ĝ/[Ĝ, Ĝ] is obtained parallel to [1, § 4.1], which uses a
reformulation of Rozhkov [24].

Proposition 3.9. Let G ∈ C be in standard form and Ĝ as above. Then the surjective
homomorphism

Ĝ→ (Z/pZ)×
p∏

j=1

(Z/pZ)rj , ĝ 	→ (εâ(ĝ), ((ε
b̂
(1)
i

(ĝ))r1
i=1, . . . , (εb̂

(p)
i

(ĝ))rp

i=1))

with kernel Ĝ′ factors through G/G′ and consequently,

G/G′ ∼= 〈a, b(1)1 , . . . , b(1)r1
, . . . . . . , b

(p)
1 , . . . , b(p)

rp
〉 ∼= Cp × 1+r1+···+rp. . . × Cp.

Let G ∈ C and π : Ĝ→ G be the natural epimorphism as above. The length of g ∈ G
is

∂(g) = min{∂(ĝ) | ĝ ∈ π−1(g)}.
Moreover, via Proposition 3.9, we define

εa(g) = εâ(ĝ) and ε
b
(j)
i

(g) = ε
b̂
(j)
i

(ĝ), for 1 ≤ j ≤ p and 1 ≤ i ≤ rj ,

via any pre-image ĝ ∈ π−1(g).
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Since G is fractal, every g ∈ G may be expressed as

g = ψ−1
1 (g1, . . . , gp) aεa(g),

where gi ∈ G for 1 ≤ i ≤ p. Of course, the decomposition can be applied repeatedly,
yielding, for instance, gi = ψ−1

1 (gi,1, . . . , gi,p) aεa(gi) for 1 ≤ i ≤ p.

Lemma 3.10. Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form, and let g ∈ G.
Then, using the notation introduced above,

∑p
i=1 ∂(gi) ≤ ∂(g).

Suppose further that ∂(g) > 1. Then ∂(gi,j) < ∂(g) for all i, j ∈ {1, . . . , p}.

Proof. Let ∂(g) = m. We may express ga−εa(g) = ψ−1
1 (g1, . . . , gp) as

((b(k(1)))β(1))ae1 ((b(k(2))β(2))ae2 · · · ((b(k(m)))β(m))aem

with k(i) ∈ {1, . . . , p}, ei ∈ Z/pZ and exponent vectors β(i) ∈ (Z/pZ)rk(i) \ {0} for
1 ≤ i ≤ m. Furthermore, we have k(i) �= k(i+ 1) whenever ei = ei+1. For each i ∈
{1, . . . ,m}, the factor ((b(k(i)))β(i))aei contributes to precisely one coordinate gj(i) a
factor (b(k(i)))β(i) and to all other coordinates gl, l �= j(i), a power of a. Hence the first
statement of the lemma follows.

Suppose that ∂(gi,j) = ∂(g) for some i, j ∈ {1, . . . , p}. This implies ∂(gi) = ∂(g) and

gi = (b(k(1)))β(1)(b(k(2)))β(2) · · · (b(k(m)))β(m).

Now either k(1) = · · · = k(m) and then ∂(g) = ∂(gi) ∈ {0, 1}, or there exists l ∈
{1, . . . ,m− 1} such that k(l) �= k(l + 1) and thus ∂(gi) > ∂(gi,j) for 1 ≤ j ≤ p. �

We now prove part (3) of Theorem 1.4.

Proposition 3.11. Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form and such that
the families b(1), . . . ,b(p) of directed generators of G satisfy the additional conditions

(i) every non-empty family b(j), j ∈ {1, . . . , p}, features at least one non-symmetric
defining vector;

(ii) there are at least two directed automorphisms, from two distinct families, that have
the same defining vector.

Then G does not have the congruence subgroup property.

Proof. Based on condition (ii), we find directed generators b ∈ b(i) and c ∈ b(j), where
1 ≤ i < j ≤ p, and (e1, . . . , ep−1) ∈ (Z/pZ)p−1 such that

b = (aei , . . . , aep−1 , b, ae1 , . . . , aei−1), c = (aej , . . . , aep−1 , c, ae1 , . . . , aej−1).

We proceed as in [21, Lemma 3.1 and Corollary 3.1].
First we construct recursively, for n ∈ N, elements tn ∈ bG′ ∩ cStabG(n). Set t1 = b. For

n ≥ 2, suppose tn−1 ∈ bG′ ∩ cStabG(n− 1). Condition (i) tells us that Proposition 3.4 is
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at our disposal so that

xn := ψ−1
1 (1, p−j. . . , 1, b−1tn−1, 1, j−1. . . , 1) ∈ G′.

Setting tn = ba
i−j

xn ∈ bG′, we conclude that

ψ1(tn) = (aej , . . . , aep−1 , tn−1, a
e1 , . . . , aej−1)

and thus

ψ1(c−1tn) = (1, p−j. . . , 1, c−1tn−1, 1, j−1. . . , 1).

Since c−1tn−1 ∈ StabG(n− 1), we see that c−1tn ∈ StabG(n), and hence tn ∈ bG′ ∩
cStabG(n).

To finish, we prove that the finite-index subgroup G′ of G is not a congruence subgroup,
i.e. does not contain StabG(n) for any n ∈ N. From Proposition 3.9, it follows that c−1tn ≡
c−1b �≡ 1 (mod G′). Hence G′ does not contain StabG(n). �

3.3. Weakly maximal subgroups

Let G ∈ C be branch. We recall that the parabolic subgroups of G are the stabilizers
of the boundary points � ∈ ∂T . A subgroup of G is weakly maximal if it is maximal
among the subgroups of infinite index. For a finitely generated regular branch group, [6,
Theorem 1.1] shows that any finite subgroup is contained in uncountably many weakly
maximal subgroups. It then follows that there are uncountably many non-parabolic
weakly maximal subgroups. This applies accordingly to G, by using the finite subgroup
〈a〉 acting fix-point freely on ∂T . Note also that Corollary 3.8 allows us to consider all
branch actions, thus [6, Theorem 1.3] is partly generalized:

Corollary 3.12. Let G ∈ Creg. Then there exist uncountably many Aut(G)-orbits of
weakly maximal subgroups of G, all distinct from the orbits of parabolic subgroups under
any branch action of G on any spherically homogeneous rooted tree.

4. Theta maps

4.1. Length reduction

Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form. We may assume that r1 �= 0 and
that b1 = b

(1)
1 satisfies

ψ1(b1) = (ae1,1 , . . . , ae1,p−1 , b1) = (a, ae1,2 , . . . , ae1,p−1 , b1); (4.1)

see Lemma 3.1. We set

n = max{j ∈ {1, . . . , p− 1} | e1,j �= 0 in Z/pZ}. (4.2)

Whereas we considered a slightly more general setting in [1], we suppose here from the
outset that G is a torsion group so that n ≥ 2. This shortens some of the proofs.
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In preparation for § 5, we recall from [1, § 4.2] two length decreasing maps Θ1,Θ2 : G′ →
G′. Clearly, G′ is a subgroup of StabG(1). Furthermore, every g ∈ StabG(1) has a
decomposition

ψ1(g) = (g1, . . . , gp),

where each gj ∈ UG
uj
∼= G is an element of the upper companion group acting on the

subtree rooted at a first-level vertex uj , j ∈ {1, . . . , p}, and we define

ϕj : StabG(1)→ Aut(Tuj
) ∼= Aut(T ), ϕj(g) = gj , (4.3)

using the natural identification of Tuj
and T . In the proof of Theorem 4.1 below we write

(g1, . . . , gp) without warning in place of g ∈ StabG(1), as is customary to streamline
certain computations.

We are interested in projecting, via ϕp, the first-level stabilizer StabM (1) of a subgroup
M ≤ G, containing b1 and an ‘approximation’ az ∈ aG′ of a, to a subgroup of Aut(Tup

).
Writing ψ1(z) = (z1, . . . , zp), one can show that

ϕp(b1(az)−1
) = az−1

1 = a[a, z−1
1 ]

and from this we define

Θ1 : G′ → G′, Θ1(z) = [a, z−1
1 ].

The map Θ2 is obtained similarly. As e1,n �= 0, we find k ∈ Z/pZ such that ke1,n = 1.
One can show that

ϕp((b1k)(az)p−n

) = azn+1···zp = a[a, zn+1 · · · zp]

and we define

Θ2 : G′ → G′, Θ2(z) = [a, zn+1 . . . zp].

Theorem 4.1. Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form such that r1 �= 0
and (4.1) holds. Suppose further that G is a torsion group. Then the length ∂(z) of an
element z ∈ G′ decreases under repeated applications of a suitable combination of the
maps Θ1 and Θ2 down to length 0 or 2.

Proof. Let z ∈ G′. We observe that ∂(z) �= 1. Suppose that m = ∂(z) ≥ 3. Then z ∈
G′ ⊆ StabG(1) has a decomposition

ψ1(z) = (z1, . . . , zp),

and Lemma 3.10 yields

∂(z1) + ∂(zn+1 · · · zp) ≤ m,
where n ≥ 2 is as defined in (4.2).
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If ∂(z1) < m/2 then ∂(Θ1(z)) < m, and likewise if ∂(zn+1 · · · zp) < m/2 then
∂(Θ2(z)) < m, and we apply induction. Hence we may suppose that m = 2μ is even
and

∂(z1) = ∂(zn+1 · · · zp) = μ. (4.4)

We write Z = zn+1 · · · zp = ak(Z1, . . . , Zp), for suitable k ∈ Z/pZ and (Z1, . . . , Zp) ∈
StabG(1) with

∑p
i=1 ∂(Zi) ≤ μ; see Lemma 3.10. Consider

Θ2(z) = [a, Z] = Z−aZ = (Z −1
p Z1, Z

−1
1 Z2, . . . , Z

−1
p−1Zp).

If ∂(Z1) ≥ 1, then n ≥ 2 implies

∂((Θ2(z))1) + ∂((Θ2(z))n+1 · · · (Θ2(z))p) = ∂(Z −1
p Z1) + ∂(Z −1

n Zp) < m.

Consequently, ∂((Θ2(z))1) < m/2 or ∂((Θ2(z))n+1 · · · (Θ2(z))p) < m/2 and we are done
by our earlier argument.

From now on suppose that Z1 ∈ 〈a〉. Applying (4.4) to Θ2(z) instead of z, we may
assume that ∂(Zp) = ∂((Θ2(z))1) = μ. This implies that, in our usual notation,

Z = ak ((b(k(1)))β(1))a∗
((b(k(2)))β(2))a∗ · · · ((b(k(μ)))β(μ))a∗

,

where k(i) ∈ {1, . . . , p} for 1 ≤ i ≤ μ, the β(i) ∈ (Z/pZ)rk(i) are suitable exponent vectors
and the undeclared exponents ∗ of a are such that

Zp = (b(k(1)))β(1)(b(k(2)))β(2) · · · (b(k(μ)))β(μ) (4.5)

and {Z1, . . . , Zp−1} ⊆ 〈a〉; furthermore, k(i) �= k(i+ 1) for 1 ≤ i ≤ μ− 1. This implies
Z −1

n Zp = alZp for some l ∈ Z/pZ, hence

Θ2(Θ2(z)) = [a, alZp] = [a, Zp] = Z −a
p Zp.

We now repeat, for Zp = (Zp,1, . . . , Zp,p), the argument applied earlier to Z. If
∂(Zp,1) ≥ 1, we are done by our earlier reasoning. Otherwise we see that ∂(Zp,p) = μ,
and (4.5) implies k(1) = k(2) = · · · = k(μ) = 1 leading to μ = 1, hence m = 2μ = 2, a
contradiction. �

We briefly comment that the above proof simplifies the corresponding proof in [1,
Theorem 4.5] for the multi-edge spinal groups when n ≥ 2.

5. Maximal subgroups

The cosets of finite-index subgroups of a group G form a base for the profinite topology
on G. A subgroup H of G is dense with respect to the profinite topology if and only if
G = NH for every finite-index normal subgroup N of G. Thus, every maximal subgroup
of infinite index in G is dense, and every proper dense subgroup is contained in a maximal
subgroup of infinite index.

We consider a group G ≤ Aut(T ) acting on the regular p-adic rooted tree T . For any
vertex u of T , the group UG

u ≤ Aut(Tu) maps isomorphically onto a group Gu ≤ Aut(T )
under the map induced by the natural identification of Tu with T . Similarly, for a subgroup
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M of G, we writeMu for the corresponding image of UM
u . If G is fractal, then Gu = G, but

it is sometimes useful to write Gu to emphasize that we are considering the isomorphic
image of UG

u .
Taking into consideration that the notational convention in [1] is slightly different, we

record some preliminary results.

Proposition 5.1 ([20, Proposition 3.2]). Let T be a spherically homogeneous
rooted tree and let G ≤ Aut(T) be a just infinite group acting transitively on each level
of T . Let M be a dense subgroup of G with respect to the profinite topology. Then

(1) the subgroup M acts transitively on each level of the tree T ,

(2) for every vertex u ∈ T , the subgroup Mu is dense in Gu with respect to the profinite
topology.

The following result is a direct generalization of [1, Proposition 5.2]. The proof of
the latter, however, does not seem to contain all necessary details; these have now been
worked out in a more general setting by Francoeur and Garrido following a strategy
originally due to Pervova; see [11, Proposition 6.3].

Proposition 5.2. Let T be the regular p-adic rooted tree, and let G ≤ Aut(T ) be a
branch group that is just infinite and fractal. Let M be a proper dense subgroup of G,
with respect to the profinite topology. Then Mu is a proper subgroup of Gu = G for every
vertex u of T .

We now proceed in similar fashion to [1].

Proposition 5.3. Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form. Suppose that
G is a torsion group, and let M be a dense subgroup of G, with respect to the profinite
topology.

Then for each j ∈ {1, . . . , p} and i ∈ {1, . . . , rj} there is a vertex u of T and an element
g ∈ StabG(u), acting on Tu as a� for some � ∈ Z/pZ under the natural identification of
Tu and T , such that

(i) (Mg)u = (Mu)a�

is a dense subgroup of Gu = G,

(ii) there exists c ∈ (Mu)a� ∩ 〈b(j)1 , . . . , b
(j)
rj 〉 such that ε

b
(j)
i

(c) �= 0.

Proof. By symmetry it suffices to prove the statement for j = 1 and i = 1, assuming
r1 > 0. For notational simplicity, we write b1 = b

(1)
1 , . . . , br1 = b

(1)
r1 . It suffices to produce

u such that (ii) holds, as with G being fractal, the existence of g is automatic and
Proposition 5.1 yields (i).

Since |G : G′| is finite, G′ is open in the profinite topology. Thus we find x ∈M ∩ b1G′.
In particular x ∈ StabG(1) with εb1(x) �= 0 in Z/pZ. We argue by induction on ∂(x) ≥ 1.

First suppose that ∂(x) = 1. Then x has the form x = ca
�

, where c ∈ 〈b1, . . . , br1〉 with
εb1(c) �= 0. Thus choosing the vertex u to be the root of the tree T , we have c ∈Ma−�

=
(Mu)a−�

.
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Now suppose that m = ∂(x) ≥ 2. We first determine a suitable vertex uω at level 1 or
2, as follows. Observe that

εb1(ϕ1(x)) + · · ·+ εb1(ϕp(x)) = εb1(x) �= 0.

If there exists i ∈ {1, . . . , p} with εb1(ϕi(x)) �= 0 and ∂(ϕi(x)) < ∂(x), then we fix ω = i.
If not, then for each j ∈ {1, . . . , p} with εb1(ϕj(x)) �= 0 we have ∂(ϕj(x)) = ∂(x). But
Lemma 3.10 shows that

∑p
i=1 ∂(ϕi(x)) ≤ ∂(x); hence there exists a unique j such that

∂(ϕj(x)) = ∂(x) and ϕi(x) ∈ 〈a〉 for all remaining indices i �= j. This implies that x is of
the form

x = ((b(k(1)))β(1))a∗ · · · ((b(k(m)))β(m))a∗
,

where the exponents ∗ are such that ϕj(x) = (b(k(1)))β(1) · · · (b(k(m)))β(m) ∈ StabG(1).
Furthermore, εb1(ϕj(x)) �= 0 implies that εb1(ϕjp(x)) �= 0 and ∂(ϕjp(x)) < ∂(x), where
ϕjp(x) = ϕp(ϕj(x)). We fix ω = jp.

We proceed in our analysis with

x̃ = ϕω(x) ∈Muω
≤ Guω

= G,

satisfying εb1(x̃) �= 0 and ∂(x̃) < ∂(x). First suppose that x̃ ∈ StabGu(ω)(1), where we
write u(ω) = uω for readability. By Proposition 5.2, the subgroup Muω

is dense in Guω
=

G, and the result follows by induction.
Now suppose that x̃ �∈ StabGu(ω)(1). For l ∈ {1, . . . , p} we claim

εb1(ϕl(x̃p)) = εb1(x̃) �= 0. (5.1)

To see this, observe that x̃ is of the form

x̃ = akh = ak(h1, . . . , hp), (5.2)

where k = εa(x) �= 0 and h ∈ StabGu(ω)(1) with ψ1(h) = (h1, . . . , hp). Raising x̃ to the
prime power p, we obtain

x̃p = (akh)p = ha(p−1)k · · ·hak

h,

and thus, for l ∈ {1, . . . , p},
ϕl(x̃p) ≡ h1h2 · · ·hp (mod G′

uω
). (5.3)

In view of (5.2) and (5.3), we conclude that (5.1) holds.
Furthermore we observe, from the above equations and from the proof of Lemma 3.10,

that
∂(ϕl(x̃p)) ≤ ∂(x̃) < ∂(x).

If ϕl(x̃p) ∈Mu(ωl) belongs to StabGu(ωl)(1), we are done as before by induction. If not,
we apply the operation y 	→ ϕl(yp) repeatedly. Since M is a torsion group, x ∈ StabM (1)
and x̃ have finite order. Clearly, if y ∈ G has finite order then ϕl(yp) has order strictly
smaller than y. Thus after finitely many iterations, we reach an element

˜̃x = ϕl(ϕl(. . . ϕl(ϕω(x)p)p . . .)p) ∈Mu(ωl...l),

which, in addition to the inherited properties εb1(˜̃x) �= 0 and ∂(˜̃x) < ∂(x), satisfies ˜̃x ∈
StabGu(ωl...l)(1). As before, the proof concludes by induction. �
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The next result follows as in [1, Proposition 5.4]; however, we give a slightly conciser
version of the proof here.

Proposition 5.4. LetG = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form such that r1 �= 0
and (4.1) holds. Suppose further that G is torsion. Let M be a dense subgroup of G, with

respect to the profinite topology, and suppose that b
(1)
1 ∈M . Then there exists a vertex

u of T and an element g ∈ StabG(u) acting on Tu as h ∈ StabG(1) under the natural
identification of Tu and T , such that

(i) (Mg)u = (Mu)h is a dense subgroup of Gu = G,

(ii) a, b(1)1 ∈ (Mu)h.

Proof. It suffices to establish the existence of u and h such that (ii) holds, because
G is fractal. Since G′ is open and M is dense in G, there is z ∈ G′ such that az ∈M .
Recall that we denote the pth vertex at level 1 by up. The coordinate map ϕp allows us
to restrict StabM (1) to Mup

, and b(1)1 ∈M implies b(1)1 ∈Mup
.

Consider the theta maps Θ1,Θ2 defined in § 4, and n ≥ 2 be as in (4.2). By definition,
aΘ1(z) and aΘ2(z) belong to Mup

. Moreover, repeated application of ϕp corresponds to
repeated applications of Θ1 and Θ2. By Proposition 5.2 and Theorem 4.1, we may assume
that ∂(z) ∈ {0, 2}.

If ∂(z) = 0 we take h = 1 and there is nothing further to prove. Suppose now that
∂(z) = 2, and write ψ1(z) = (z1, . . . , zp). We distinguish between two cases.
Case 1: ∂(z1) ∈ {0, 2}. Then ∂(z1) = 0 or ∂(zn+1 · · · zp) = 0 so that Θ1(z) = 1 or Θ2(z) =
1, and again there is nothing further to prove.
Case 2: ∂(z1) = 1. Then z̃ = Θ1(z) = z a

1 z
−1
1 satisfies ∂(z̃) = 2. If ∂(z̃1) = 0 or

∂(z̃n+1 · · · z̃p) = 0, we proceed as in Case 1. Thus we may assume the following: z−1
1 =

aεa(z−1
1 )(a∗, . . . , a∗, h−1) for suitable h ∈ 〈b(j)〉 with j ∈ {1, . . . , p}. If j �= 1, then we

deduce that ẑ = Θ2(z̃) = hah−1 satisfies ∂(ẑ1) = 0 or ∂(ẑn+1 · · · ẑp) = 0, and we proceed
as in Case 1. Now suppose that j = 1. Then hah−1 = aẑ = aΘ2(Θ1(z)) and, observing
that b(1)1 commutes with h, we conclude that a, b(1)1 ∈ (Mupp

)h. �

The proofs of the next two results follow the same logic as those of [1, Proposition 5.5
and Theorem 5.6], so we omit the proofs here.

Proposition 5.5. Let G ∈ C be a torsion group, and let M be a dense subgroup of
G, with respect to the profinite topology. Then there exists a vertex u of T such that
Mu = Gu = G.

Theorem 5.6. Let G ∈ C be a torsion group. Then G does not contain any proper
dense subgroups, with respect to the profinite topology. Equivalently, G does not contain
maximal subgroups of infinite index.

Recall that two groups G and H are (abstractly) commensurable if there exist finite-
index subgroups K ≤ G and L ≤ H with K ∼= L.

Corollary 5.7. Let H be a group that is commensurable with a torsion group G ∈ C .
Then H does not contain maximal subgroups of infinite index.
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Proof. The proof is essentially the same as that of [1, Corollary 1.3]. However, we
note here that G = 〈a,b(1), . . . ,b(p)〉 contains multi-edge spinal subgroups Gj = 〈a,b(j)〉
for j ∈ {1, . . . , p} with rj �= 0. Within these lie the associated GGS groups Gj,i = 〈a, b(j)i 〉
for i ∈ {1, . . . , rj}. These associated GGS groups feature in the proof, as in [1]. �

We have established part (2) of Theorem 1.4.

6. Irreducible representations

In this section, we prove Theorem 1.5 and Theorem 1.7. Throughout, let F denote the
prime field Z/pZ. Let G ∈ C be just infinite, acting on the p-adic regular tree T . We
combine the strategies laid out in [2,25] to demonstrate when the tree enveloping algebra
AG, a proper ring quotient of F [G], is primitive. The latter will imply that G has faithful
irreducible representations over F .

6.1. Preliminaries

We consider the F -vector space F 〈〈∂T 〉〉 on the basis ∂T , the boundary of T . The action
of G on ∂T extends to an F -linear representation of the group algebra

χ : F [G]→ End(F 〈〈∂T 〉〉),

which is injective on G. The tree enveloping algebra of G is the image AG of F [G] under χ.
It was implicitly introduced by Sidki [25], albeit in a different form.

We collect some properties of the F -algebra AG from [2], with statements adapted to
our setting. For conciseness we include certain definitions and proofs, though altered to
suit our notation and purposes.

Recall that an F -algebra A is called just infinite, if dimF A =∞ and every non-zero
two-sided ideal has finite codimension. The Jacobson radical Jac(A) is the two-sided ideal
Jac(A) = ∩XAnn(X), where X ranges over all simple right A-modules. For a one-sided
ideal I of A, the maximal two-sided ideal contained in I is called the core of I, denoted
by core(I). The algebra A is primitive if it has a faithful irreducible right module, or
equivalently a maximal right ideal with trivial core. The algebra A is semiprimitive if its
Jacobson radical is trivial. Finally, let Aug(AG) denote the image of the augmentation
ideal of F [G] in AG.

Lemma 6.1 ([2, Lemma 3.8, Theorem 3.9]). Let G ∈ C be just infinite. Then its
tree enveloping algebra AG is just infinite.

Corollary 6.2 ([2, Lemma 3.15] and [25, Corollary 4.4.3]). Let G ∈ C be just
infinite. Then Jac(AG) is either the zero ideal or equal to Aug(AG).

Proof. Suppose that Jac(AG) �= {0}. As the algebra AG is just infinite, it follows that
dimF (AG/Jac(AG)) <∞. Since |F | <∞, this implies |AG/Jac(AG)| <∞.

https://doi.org/10.1017/S0013091517000451 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091517000451


Maximal subgroups and irreducible representations 695

Now χ : F [G]→ AG can be factored as

F [G]→ F [G̃]→ AG,

where G̃ is the closure of G in the profinite group Aut(T ). Observe that G̃ is a finitely
generated pro-p group. We obtain an induced group homomorphism

χ̃ : G̃→ (AG/Jac(AG))∗

from G̃ to the unit group of the finite algebra AG/Jac(AG). Set Ñ = ker χ̃, N = G ∩ Ñ
and I = χ−1(Jac(AG)). Then Ñ is normal and of finite index in G̃ and thus Ñ is open in
G̃; see [7, Theorem 1.17]. Hence G̃/Ñ is a finite p-group. Consequently G/N is a finite
p-group.

As 〈x− 1 | x ∈ N〉 ⊆ I, the homomorphism F [G]→ F [G]/I ∼= AG/Jac(AG) factors
through F [G/N ]. Since G/N is a finite p-group, it follows that Jac(F [G/N ]) =
Aug(F [G/N ]) and therefore Jac(AG) = Aug(AG). �

Proposition 6.3 ([2, Proposition 4.22]). Let G ∈ C be just infinite. If AG is
semiprimitive, then it is primitive.

Proof. Let M denote the collection of all maximal right ideals of AG. Suppose that
AG is semiprimitive, i.e., that ∩M∈MM = Jac(AG) = 0. We need to produce an M ∈M
with core(M) = 0. For this it suffices to show that, if M ∈M with core(M) �= 0, then
core(M) = Aug(AG).

Let M ∈M with I = core(M) �= 0. Since AG is just infinite and |F | <∞, it follows
that AG/I is finite. As in the previous proof, there is a normal subgroup N of G such
that the epimorphism F [G]→ AG/I factors through the group algebra F [G/N ] of the
finite p-group G/N .

Write J for the image of J = χ−1(I) ⊆ F [G] in F [G/N ], and observe that J is a
maximal two-sided ideal of F [G/N ]. However, in the finite local ring F [G/N ], the aug-
mentation ideal Aug(F [G/N ]) is the only maximal two-sided ideal. Hence we obtain
J = Aug(F [G/N ]) and therefore J = Aug(F [G]). Hence, I = χ(J) = Aug(AG). �

6.2. The depth function

Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form, acting on the regular p-adic rooted
tree T with vertices labelled by elements of X. Recall that X consists of all words in the
alphabet X = {1, . . . , p}, and the length of a word ω ∈ X is denoted by |ω|. Recall that
every g ∈ G can be expressed as (g1, . . . , gp)aεa(g), where εa(g) ∈ Z/pZ and (g1, . . . , gp) ∈
Gp is short for ψ−1

1 (g1, . . . , gp). Of course, the decomposition can be reiterated, giving
gω = (gω1, . . . , gωp)aεa(gω) for any word ω ∈ X.

As in [25], we define a depth function

d : G→ N0, d(g) = min{d ∈ N0 | ∀ω ∈ X with |ω| ≥ d :

(gω1, . . . , gωp) ∈ 〈b(1)〉 ∪ . . . ∪ 〈b(p)〉}.
We remark that the function is well-defined, because by Lemma 3.10 for any given g ∈ G
the lengths ∂(gω) decrease down to 0 or 1 as |ω| → ∞. Furthermore, we observe for every
g ∈ G:
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◦ d(g) = d((g1, . . . , gp)),

◦ d(g) = 0 if and only if g ∈ 〈b(1)〉〈a〉 ∪ · · · ∪ 〈b(p)〉〈a〉,
◦ if d(g) �= 0, then d(g) = max{d(gi) | 1 ≤ i ≤ p}+ 1.

We notice that the natural embedding of groups

G ↪→ (G× p. . .×G) � 〈a〉, g 	→ ((g1, . . . , gp), aεa(g))

induces a natural embedding of F -algebras

AG ↪→ (AG × p. . .× AG) � F 〈a〉,
where each v ∈ AG is mapped to v0 + v1a+ · · ·+ vp−1a

p−1 with vi = (vi,1, . . . , vi,p) ∈
AG × p. . .× AG for 0 ≤ i ≤ p− 1.

Let (AG × p. . .× AG)◦ denote the image of F 〈b(1)〉 ∪ . . . ∪ F 〈b(p)〉 ⊆ F [G] in AG × p. . .×
AG. Though as the map χ from § 6.1 is injective on G, we will often identify elements of
G with their images in AG.

The depth function d : G→ N0 now extends to AG as follows: for v = v0 + v1a+ · · ·+
vp−1a

p−1 ∈ AG, where vi = (vi,1, . . . , vi,p) ∈ AG × p. . .× AG for 1 ≤ i ≤ p− 1, we define
recursively

d(v) = max({0} ∪ {d(vi,j) + 1 | 0 ≤ i ≤ p− 1 and 1 ≤ j ≤ p
such that vi �∈ (AG × p. . .× AG)◦}).

We observe that if v = v0 has d(v) �= 0, then d(v) > d(v0j) for 1 ≤ j ≤ p.

6.3. Invertibility

With reference to Remark 1.3, let H = 〈a, b〉 be a generalized Gupta–Sidki group acting
on the regular p-adic rooted T ; recall that a denotes the rooted automorphism of order
p and b a directed automorphism defined recursively by

ψ1(b) = (ae1 , . . . , aep−1 , b), where {e1, . . . , ep−1} = {1, . . . , p− 1}. (6.1)

Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form and just infinite. Suppose that H ≤
G, and say, without loss of generality, that b = b

(1)
1 . We denote by T the tree enveloping

algebra of the Sylow-pro-p subgroup S ≤ Aut(T ) described in (2.1) and write AG ⊆ T for
the tree enveloping algebra of G, as usual.

For v ∈ T, we set v[1] = (v, p. . ., v) ∈ T× p. . .× T ⊆ T and recursively, for i ≥ 2,

v[i] = (v[i−1], p. . ., v[i−1]) ∈ T× pi

. . .× T ⊆ T.

Further, identifying elements of G with their images in AG, we introduce the notation

a∗ = (a− 1)p−1 = 1 + a+ · · ·+ ap−1 ∈ AG,

b∗ = (b− 1)p−1 = 1 + b+ · · ·+ bp−1 ∈ AG.
(6.2)
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Observe that for (v1, . . . , vp) ∈ T× p. . .× T ⊆ T,

a∗(v1, . . . , vp)a∗ = (v1 + · · ·+ vp)[1]a∗.

In the following proof, the idea of the first half comes from Sidki [25, Proposition 5.2],
and was already used by Vieira [27, Theorem 1] for the special case of the generalized
Gupta–Sidki group.

Lemma 6.4. Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be just infinite, and suppose that 〈a, b〉,
for b = b

(1)
1 as in (6.1), is a generalized Gupta–Sidki group. Then 1 + ba∗ is not invertible

in the tree enveloping algebra AG.

Proof. Let η = 1 + ba∗. We suppose that η is invertible in the tree enveloping algebra
T of the Sylow-pro-p subgroup S ≤ Aut(T ). Then, as the mappings a 	→ a and b 	→ b−1

induce an automorphism of G, we see that μ = 1 + b−1a∗ is also invertible in T. By [27,
Lemma 2], we may express the inverses as

η−1 = 1− ρa∗ and μ−1 = 1− σa∗,
where ρ, σ ∈ T× p. . .× T ⊆ T such that

ρ(b+ a∗)[1] = b and σ(b−1 + a∗)[1] = b−1. (6.3)

Multiplying on the right by (μ−1)[1] = (1− σa∗)[1], we obtain from the first equation
in (6.3),

ρb[1] = ρ(bμ)[1](μ−1)[1] = b(1− σa∗)[1]
and hence

ρ = b(1− σa∗)[1](b−1)[1]. (6.4)

Similarly, we deduce
σ = b−1(1− ρa∗)[1]b[1]. (6.5)

Substituting (6.5) in (6.4) gives

ρ = b(b−1)[1] − b(b−1)[1](1− ρa∗)[2]b[2]a[1]
∗ (b−1)[1]. (6.6)

Assume for a contradiction that η−1 ∈ AG, and hence ρ = (ρ1, . . . , ρp) ∈ AG × p. . .×
AG. Recalling the depth function d, we observe that d(ρ) ≥ d(ρp), where ρp can be
expressed according to (6.6) as

ρp = 1− (1− ρa∗)[1]b[1]a∗b−1

= 1− (1− ρa∗)[1]b[1](b−1 + b−a−1
a+ · · ·+ b−aap−1).

Now writing ρp = v0 + v1a+ · · ·+ vp−1a
p−1 with vi ∈ AG × p. . .× AG for 0 ≤ i ≤ p− 1,

we obtain d(ρp) ≥ d(v0), where

v0 = 1− (1− ρa∗)[1]b[1]b−1.

Writing v0 = (v0,1, . . . , v0,p), we see that v0,p = ρa∗ and hence d(v0) ≥ d(v0,p) = d(ρ). The
inequalities d(ρ) ≥ d(ρp) ≥ d(v0) ≥ d(ρ) imply equality throughout and hence d(ρ) = 0,
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which is equivalent to ρ ∈ F 〈b(j)〉 ⊆ AG for some j ∈ {1, . . . , p}. Recall that, as before,
we identify F 〈b(j)〉 with its image in AG.

If j = 1, then ρ = ρp = v0 = v0,p = ρa∗, and therefore ρ = 0, giving us the required con-
tradiction. Now suppose that j �= 1. According to (6.6), the coordinates of ρ = (ρ1, . . . , ρp)
are

ρi = aeib−1 − aeib−1(1− ρa∗)[1]b[1]a∗b−1 for 1 ≤ i ≤ p− 1,

ρp = 1− (1− ρa∗)[1]b[1]a∗b−1.

Moreover, ρ ∈ F 〈b(j)〉 implies that ρp−j+1 ∈ F 〈b(j)〉 and ρ1, . . . , ρp−j ,ρp−j+2, . . . , ρp ∈
F 〈a〉. As ρ1, . . . , ρp−1 all differ by a left multiple of a, it follows that ρp−j+1 ∈ F 〈b(j)〉 ∩
F 〈a〉 = F . Consequently, there is a λ ∈ F such that

aep−j+1b−1(1− (η−1b)[1]a∗b−1) = λ. (6.7)

Our next aim is to express (6.7) in matrix form via the embedding

ϕ : AG → Matp(AG) (6.8)

induced by

a 	→

⎛⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
...

. . . . . .
...

0 . . . . . . 0 1
1 0 . . . . . . 0

⎞⎟⎟⎟⎟⎟⎠ and (c1, . . . , cp) 	→

⎛⎜⎜⎜⎜⎜⎝
c1

c2
. . .

cp−1

cp

⎞⎟⎟⎟⎟⎟⎠ ;

cf. [2, § 3]. First we compute the relevant terms individually:

ϕ(ap−j+1) =

(
0 Idj−1

Idp−j+1 0

)
, ϕ(a∗) =

⎛⎜⎜⎜⎜⎜⎝
1 . . . 1

...
. . .

...

1 . . . 1

⎞⎟⎟⎟⎟⎟⎠ ,

ϕ(b−1) =

⎛⎜⎜⎜⎜⎜⎝
a−e1

a−e2

. . .

a−ep−1

b−1

⎞⎟⎟⎟⎟⎟⎠ ,

ϕ((η−1b)[1]) =

⎛⎜⎜⎜⎜⎜⎜⎝
η−1b

η−1b

. . .

η−1b

η−1b

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Combining these terms, we deduce from (6.7),

λIdp = ϕ(aep−j+1b−1(1− (η−1b)[1]a∗b−1))

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a−ep−j+2η−1ba−e1 . . . −a−ep−j+2η−1ba−ep−1 −a−ep−j+2η−1

...
...

...
−b−1η−1ba−e1 . . . −b−1η−1ba−ep−1 b−1(1− η−1)

a−e1(1− η−1ba−e1) . . . −a−e1η−1ba−ep−1 −a−e1η−1

...
...

...
−a−ep−j+1η−1ba−e1 . . . −a−ep−j+1η−1ba−ep−1 −a−ep−j+1η−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Comparing the first and last terms of the first row, we see that λ = 0. Hence ρ = 0, and
therefore η−1 = 1, which cannot be possible. Thus, we have our contradiction. �

Remark 6.5. In [18, Theorem 12.3] Passman claims that Sidki’s proof [25] for the
Gupta–Sidki 3-group follows through for Gupta–Sidki p-groups for all primes p ≥ 3. How-
ever, (6.3) does not hold for Gupta–Sidki p-groups, where p ≥ 5. One instead obtains the
following equation:

ρ(b+ a+ a−1 + p− 1)[1] = b,

which prevents us from going on to the next deduction, as a+ a−1 + p− 1 �= a∗. We do
not know of a way to skirt around this.

Proposition 6.6. Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be just infinite, and suppose that

〈a, b〉, for b = b
(1)
1 as in (6.1), is a generalized Gupta–Sidki group. Then Jac(AG) = 0.

Proof. As Jac(AG) is a quasi-invertible ideal and as a∗ ∈ Aug(AG), it suffices by
Corollary 6.2, to prove that 1 + λa∗ is not invertible in AG for some λ ∈ AG. The
statement of the proposition now follows from Lemma 6.4. �

6.4. Graded ideals

Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form and just infinite. By conjugation,
we may assume that r1 �= 0 and we write b = b

(1)
1 . We observe that the elements a∗, b∗ ∈

AG defined in (6.2) satisfy a2
∗ = b2∗ = 0. Furthermore, we write b∗ = (a∗ε1, . . . , a∗εp−1, b∗)

where for 1 ≤ i ≤ p− 1,

εi =

{
0 if ei = 0 in Z/pZ,

1 otherwise.

Several preliminary results will be needed; the first is by Smoktunowicz.

Theorem 6.7 ([2, Lemma 4.24] and [26, Theorem 1.1]). Let I = ⊕∞
i=1Ii be a

graded algebra (without unit) generated in degree 1. Then the following are equivalent:

(1) Jac(I) = I;

(2) for every choice of n,m ∈ N, all n× n matrices with entries in Im are nilpotent.
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In the following, the proof is a slight modification of that in [25, Proposition 4.1.1],
due to the allowance of arbitrary exponents ei.

Proposition 6.8. Let G = 〈a,b(1), . . . ,b(p)〉 ∈ C be just infinite. The subalgebra
F [b∗a∗] of AG generated by b∗a∗ is a polynomial algebra. In particular, b∗a∗ is not
nilpotent, and Aug(AG) is not nil.

Proof. We denote b∗a∗ by X and a∗b∗ by Y . Let

N = |{ei | ei �= 0 for 1 ≤ i ≤ p− 1}|,
regarded as an element of (Z/pZ)∗. By induction,

X2j−1 = N j−1(ε1Y j−1a∗, . . . , εp−1Y
j−1a∗,Xj−1b∗)a∗

X2j = N j−1(ε1Y j , . . . , εp−1Y
j , NXj)a∗

(6.9)

for all j ≥ 1.
For a contradiction, assume that X is a root of some non-zero polynomial f ∈ F [t] of

minimal degree m = deg(f) ∈ N, say. Note that f has zero constant term, as otherwise
it would imply that X = b∗a∗ were invertible. Now

0 = f(X) = (l1, . . . , lp−1, q)a∗

for some l1, . . . , lp−1, q ∈ AG, and from (6.9) we deduce that

0 = q = q0(X) + q1(X)b∗,

where q0, q1 ∈ F [t] satisfy max{deg(q0),deg(q1)} = �m/2�, and the polynomial q0 also
has zero constant term.

Now since 0 = qX = q0(X)X and 0 = qa∗ = q1(X)X, it follows that X is a root of
each of the polynomials q0(t)t, q1(t)t. We conclude that m ∈ {1, 2} by minimality. Thus
f is either t or t2 + ct for some constant c ∈ F . It follows by a direct computation, with
the aid of (6.9), that all these cases lead to a contradiction. �

Proposition 6.9. LetG = 〈a,b(1), . . . ,b(p)〉 ∈ C be in standard form and just infinite.

If Aug(AG) is a graded algebra with the elements a− 1 and b
(j)
i − 1 for 1 ≤ j ≤ p, 1 ≤

i ≤ rj being homogeneous, then Jac(AG) = 0.

Proof. It follows that X = b∗a∗ is homogeneous of degree m, say. Proposition 6.8
shows that condition (2) of Theorem 6.7 does not hold for n = 1. Therefore we obtain
Jac(Aug(AG)) < Aug(AG).

Now it follows from Corollary 6.2 that Jac(AG) = Aug(AG) or Jac(AG) = 0. However,
as Jac(Jac(AG)) = Jac(AG) (see [15, Exercise 4.7]), we must have Jac(AG) = 0. �

We can now give a proof of our main result.

Proof of Theorem 1.5. From Proposition 6.6 and Proposition 6.9, it follows that
Jac(AG) = 0 in both cases. From the proof of Corollary 6.2, we see that this ensures the
existence of a maximal right ideal M , with null core, which gives us a faithful irreducible
representation of AG on the F -space AG/M . �
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6.5. Irreducible representations

We prove that when a branch generalized multi-edge spinal group has a non-trivial
irreducible representation, then it has infinitely many. The proof is similar to but conciser
than that of [19, Theorem 2.2].

Theorem 6.10. Let G ∈ Creg, and let F be an algebraically closed field of character-
istic p. If the group algebra F [G] has at least one non-trivial irreducible module M , then
F [G] has infinitely many such irreducible modules.

Proof. For notational convenience, setH = γ3(G). Furthermore, set L = γ3(StabG(1)),
the normal finite-index subgroup of H with L ∼= H × p. . .×H, by Proposition 3.3. If
V1, . . . , Vp are irreducible F [H]-modules, then V1 ⊗ . . .⊗ Vp is an irreducible F [L]-module;
see [23, Proposition 8.4.2]. Let F0 denote the trivial 1-dimensional module, for both F [G]
and F [H].

We consider F [H]. Let U be the given non-trivial irreducible F [G]-module. Its restric-
tion UH = U ′

1 ⊕ · · · ⊕ U ′
t is a finite direct sum of irreducible F [H]-modules, by Clifford

theory. If all U ′
i
∼= F0, then U is an irreducible F [G/H]-module, as H acts trivially on U .

But G/H is a finite p-group, and as the characteristic of F is p, this implies that U = F0,
a contradiction. Therefore, F [H] has a non-trivial irreducible module V , and by [19,
Lemma 2.1], it suffices to show that H has infinitely many such.

By the branching property of H, we have, for all m ∈ N, a subgroup Lm ≤ StabH(m)
that is isomorphic to H × pm

. . .×H under ψm. We write Lm = Lm,1 × · · · × Lm,pm , where
Lm,i

∼= H for 1 ≤ i ≤ pm. The group G permutes these factors by conjugation. By viewing
V as a module for each F [Lm,i], we can consider the pm + 1 irreducible F [Lm]-modules

Yj = V ⊗ j. . .⊗ V ⊗ F0 ⊗ pm−j. . . ⊗ F0,

where j ∈ {0, . . . , pm}. Since V �∼= F0, and G permutes the factors Lm,i of Lm, it follows
that Y0, . . . , Ypm are in distinct orbits under the action of G.

For each j, let Zj be an irreducible constituent of Y H
j . Since the Yj are in distinct

H-orbits, it follows that Z0, . . . , Zpm are distinct irreducible F [H]-modules. As this is
true for all m ∈ N, the result follows with the aid of [19, Lemma 2.1]. �
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