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We present here the first study on the stability of plane Poiseuille flow when the fluid
is stratified in density perpendicularly to the plane of horizontal shear. Using laboratory
experiments, linear stability analyses and direct numerical simulations, we describe the
appearance of an instability that results from a resonance of internal gravity waves and
Tollmien–Schlichting waves carried by the flow. This instability takes the form of long
meanders confined in thin horizontal layers stacked along the vertical axis.
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1. Introduction: stratified Poiseuille flow

Plane Poiseuille flow, i.e. steady flow between two infinite parallel plates, is one of
the simplest and most common shear flows. In the non-stratified case, it is known to be
linearly unstable for Reynolds numbers larger than 5772 (Orszag 1971). Above this value,
two-dimensional (2-D) waves, known as Tollmien–Schlichting (TS) waves, are viscously
unstable and can develop and propagate in the flow. We present here the stability analysis
of a horizontal plane Poiseuille flow that is stably stratified in density along the vertical
direction, i.e. orthogonal to the plane of the horizontal shear. As density stratification is
ubiquitous in nature, the instability of this stratified flow may be relevant to water flows in
submarine canyons, to winds in deep valleys or to laminar flows in rivers or canals where
stratification can be due to temperature or salinity gradients.

The situation where shear is inclined versus stratification has already been studied,
for instance, for jets (Candelier, Le Dizès & Millet 2011), for a Kolmogorov shear flow
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(Lucas, Caulfield & Kerswell 2017) or for vortex dipoles (Deloncle, Chomaz & Billant
2007). It differs from the more classical 2-D case where both stratification and shear
lie in the same plane (Gage & Reid 1968; Caulfield 1994). According to the studies of
Basovich & Tsimring (1984) and Bakas & Farrell (2009a,b), horizontal shear flows can
indeed excite internal gravity waves in the presence of a vertical stratification. Our study
follows recent investigations on instabilities of stratified rotating or non-rotating shear
flows: the strato-rotational instability in Taylor–Couette flows (Le Bars & Le Gal 2007;
Park & Billant 2013; Rüdiger et al. 2017) or plane Couette flows (Vanneste & Yavneh 2007;
Facchini et al. 2018), and the radiative instability in boundary layer flows (Candelier, Le
Dizès & Millet 2012; Chen, Bai & Le Dizès 2016), rotating flows (Riedinger, Le Dizès &
Meunier 2011) or vortices (Le Dizès & Billant 2009; Riedinger, Le Dizès & Meunier
2010). All of these examples belong to a class of instabilities caused by the resonant
interaction of Doppler-shifted internal gravity waves (Molemaker, McWilliams & Yavneh
2001; Le Dizès & Riedinger 2010).

More generally, resonances of different types of waves in shear flows are the subject
of a long-standing history originating from the seminal paper of Cairns (1979) on the
Kelvin–Helmholtz instability, then extended to surface flows by Satomura (1981) and also
to different arrangements of stratified flows (see, for instance, the review by Carpenter,
Tedford & Heifetz (2011)). Even TS waves were shown to be possibly interpreted as
the result of a resonant interaction of two different components (Baines, Majumdar &
Mitsudera 1996). A particular feature of the present case is that the TS waves can
themselves also interact and possibly resonate with inviscid gravity waves. But, to our
knowledge, the first to realize the existence of this wave-related destabilization for
continuously stratified fluids was Taylor (1931), who showed that stratification – intuitively
seen as a stabilizing effect – may destabilize stable parallel basic flows. Note that the
phenomenon of interaction between viscous vorticity waves and gravity waves was already
observed by Eaves & Caulfield (2017) in a 2-D numerical simulations of Couette flow
with a three-layer density distribution, i.e. in a case when shear and density gradients are
aligned. As described by these authors, this coupling gives rise to a viscous Holmboe-wave
instability. This interaction was in fact previously suggested by Lindzen & Barker (1985)
through a mechanism of internal wave over-reflections at critical levels.

2. Experimental set-up and numerical methods

The experiments are realized in an annular channel having a diameter at mid-gap of
2R = 1.515 m and a rectangular vertical section of 85 mm × 250 mm. This channel is
filled up to a level h chosen between 128 and 200 mm (position of the free surface) with
linearly stratified salty (NaCl) water. The Schmidt number of the fluid, defined as the ratio
of momentum diffusivity (kinematic viscosity) and mass diffusivity, is equal to Sc = 700.
The tank is made of transparent acrylic glass (polymethyl methacrylate, PMMA) so that
the fluid interior is entirely accessible to non-invasive measurement techniques such as
particle image velocimetry (PIV). For tank rotation, a synchronous servomotor (model
CMPZ100S) with helical-bevel gear unit (KAF57) from SEW-EURODRIVE is used.
Deviations in rotation rate are less than 2 %. The laser used for PIV is a Nano 250-532-100
from the Linos AG company. It is a diode-pumped steady laser that emits a monochromatic
beam at a wavelength of 532 nm. The laser beam goes through a cylindrical-lens optical
system that spreads it into a 2-D plane sheet of about 1 mm thickness. For the experiments
we used a mixture of two different PIV particles from DANTEC: hollow glass spheres and
silver-coated hollow glass spheres. The camera used to record the flow is a GoPro HERO
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FIGURE 1. Drawing (a) and photograph (b) of the experimental installation: an annular channel
of rectangular section 85 mm × 200 mm and radius at mid-gap R = 75.75 cm is rotated at a weak
angular velocity Ω between 0.1 and 0.5 r.p.m. The Poiseuille flow is created by the insertion of a
barrier fixed in the laboratory frame that prohibits solid-body rotation of the fluid in the annulus.

4 Black. It has a video resolution of 1080p, which corresponds to a screen resolution of
1920 × 1080 pixels, with an image rate of 30 or 48 frames per second. A modification that
improved the data was to change the lenses of the GoPro camera with lenses provided by
The Imaging Source®. With the updated lens we can control the focusing and the aperture,
which significantly improves the quality of our PIV measurements.

The free surface fluid is then set in motion by the side and bottom walls of the curved
channel, which is slowly rotated at a rate Ω . However, a barrier (28 cm high, 8.4 cm wide
and 10 mm thick plastic plate) that nearly fits the rectangular cross-section of the channel is
placed along the radius inside the channel. As it is maintained stationary in the laboratory
frame, this wall blocks the fluid and prohibits solid-body rotation, resulting in a nearly
parabolic horizontal velocity profile. Figure 1 presents a drawing and a photograph of the
installation at the Brandenburg University of Technology, Cottbus-Senftenberg.

To complement the experiments, we also perform direct numerical simulations (DNS)
using the spectral element solver NEK5000 (version 19.0; Argonne National Laboratory,
Illinois; available at https://nek5000.mcs.anl.gov) (Fischer 1997). The same equations as
used to study stratified Couette flow by Facchini et al. (2018) are adapted here to the
Poiseuille case. A constant and uniform streamwise force is added to the momentum
equation in order to reach the targeted Poiseuille flow profile by compensating for viscous
dissipation. Note that this is different from the experiment, where the Poiseuille profile is
maintained at zero constant mass flux instead of constant force. This does not affect the
linear behaviour of the instability but might have some effect on its nonlinear development,
which is outside the scope of the present paper.

We consider the simplest case of plane Poiseuille flow between two vertical walls that
are static, with no slip and with zero buoyancy flux. The other directions are assumed to
be periodic. In order to avoid confinement effects due to the inherent discretization of the
wave vectors fitting inside our numerical domain, we consider a rather large domain of
dimensionless size (Lx, Ly, Lz) = (16, 2, 6) × D/2, where D is the width of the channel,
the stratification is along the vertical direction and the Poiseuille flow is along the x
direction. While we can reach the Reynolds and Froude numbers of the experiments,
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we cannot consider the same Schmidt number. We typically consider values between 1
(as in the linear stability analysis, see § 5 below) and 7.

3. Base flow profile

We discuss in this section the equilibrium base flow as measured in the experiments in
the absence of instability. At very low velocities (i.e. under a threshold, as we will see
later) and using the PIVlab software (Thielicke & Stamhuis 2014), PIV measurements
in horizontal planes permit the base flow to be characterized at different vertical levels.
Figure 2(a) shows an example of a transverse (in the radial direction of the annulus)
profile of the horizontal velocity, which is compared, on the one hand, to analytically
obtained parabolic 2-D plane Poiseuille flow (which does not therefore take into account
the presence of the bottom), and, on the other hand, to the analytical three-dimensional
(3-D) profile of the channel flow, i.e. when taking into account the shear at the bottom
(see e.g. Theofilis, Duck & Owen 2004). As can be seen, the experimental profile is very
close to the analytical 2-D parabolic profile with a zero flux. Moreover, as presented in
figure 2(b) for two PIV measurements at respectively Re = 1250 for a Froude number
F = 0.30 and at Re = 500 for a Froude number F = 0.12, the vertical profiles of the
horizontal velocity (see figure 2b) are very flat over most of the height of the flow. This
phenomenon is due to the presence of a mixed layer at the bottom of the channel that
acts somehow as a lubrication layer and restricts the velocity vertical gradient to a few
centimetres at the bottom.

As a consequence, the base flow studied here is very close to ideal 2-D laminar
plane Poiseuille flow. This ideal 2-D flow profile with zero flux can be written in the
laboratory frame as a function of the transverse coordinate y (with its origin located at
the middle of the channel) when neglecting the rotation and curvature effects: U( y) =
ΩR[12( y/D)2 − 1]/2, where D is the width of the annular channel and R its radius at
mid-gap. The maximum velocity is thus reached near the vertical walls: U(±D/2) = ΩR
and its minimum is located at the centre of the channel: U(0) = −ΩR/2. The small
asymmetry between the inner and outer walls – located at different radii – is neglected.
Taking D/2 as typical length scale and 3ΩR/2 as typical velocity scale, we can define
the Reynolds number and the Froude number of the flow as: Re = 3ΩRD/4ν, where ν

is the kinematic viscosity of the fluid, and F = 3ΩR/ND, where N is the Brunt–Väisälä
frequency characterizing the density stratification. To check that rotation has a negligible
effect on the flow, we can calculate its Rossby number as the ratio between the local
vorticity and twice the rotation rate Ω . The local vorticity, calculated from the velocity
profile, is equal to 12ΩRy/D2. Therefore, the analytical expression of the Rossby number
is 6Ry/D2. Its mean value across the channel is 3R/2D, which is as large as 13 due to
the high aspect ratio of the channel. Therefore, we can conclude that the rotation of the
channel has a small effect on the flow. Note that the curvature of the channel scales in the
same way and thus can be neglected for the same reason.

To support our experimental observations of the base flow in this particular
arrangement, we have also computed the 2-D flow in the same geometry as that of the
experiment using again NEK5000. The 2-D Navier–Stokes equations are solved inside
a cylindrical annulus rotating at constant rate Ω . A static barrier with no-slip boundary
conditions is inserted at an arbitrary azimuthal angle (here φ = 0[2π]). Starting from
a fluid at rest, we wait for the system to reach a quasi-steady state represented in
figure 2(c). While the expected 2-D Poiseuille profile is perturbed on both sides of the
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FIGURE 2. (a) Example for a Reynolds number Re = 1250 and a Froude number F = 0.30 of
a measured horizontal profile of the dimensionless longitudinal velocity at a height of 100 mm
(the total depth of water being h = 128 mm) (blue circles). We also show for comparison the
theoretical 2-D planar and 3-D profiles, along with the results of a 2-D DNS in the annulus.
(b) Two examples of the vertical profile of the dimensionless horizontal velocity measured in the
experiment at Re = 1250 for a Froude number F = 0.30 (blue squares) and at Re = 500 for a
Froude number F = 0.12 (red squares); the dotted lines are there to guide the eye. These profiles
can be compared to the 3-D channel flow profile (green dashed line) and to the invariant 2-D
Poiseuille flow profile (red full line). (c) Visualization of the azimuthal velocity from DNS during
the quasi-steady phase for Re = 2000 in a rotating 2-D cylindrical annulus. A thin impenetrable
and no-slip barrier is cutting through the annulus on the right. (d) Relative error between the
radial profile of azimuthal velocity in the 2-D cylindrical annulus from DNS and the theoretical
2-D planar Poiseuille profile, as a function of the azimuthal position. The barrier is located at
φ = 0[2π].

barrier, the velocity profile measured at a diametrically opposed position is very close to
the theoretical 2-D planar result (see figure 2a). To be more quantitative we have also
computed the relative error between the radial profile of azimuthal velocity in the 2-D
cylindrical annulus and the theoretical 2-D planar Poiseuille profile, as a function of the
azimuthal position φ. As can be seen in figure 2(d), there is an extended plateau where
this error stays smaller than 7 %.

While this numerical simulation confirms that rotation and curvature effects remain
negligible, the mechanism preventing the 3-D channel profile from developing in the
stratified experiment remains to be explained. But we can speculate that it is due to the
combined effect of stratification and localized turbulent mixing caused by leakage under
the barrier. The fluid is first stratified before being slowly set into rotation. When arriving
at the barrier, except near the bottom wall, the fluid particles stay at the same elevation,
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Run 1 2 3 4

N (rad s−1) 2.26 1.59 1.17 0.93
Height h (cm) 12.8 20 16 17
Rec 2254 1940 1585 1565
Fc 0.55 0.67 0.75 0.93

TABLE 1. Characteristics of the four experimental runs under study with their corresponding
observed instability threshold values Rec and Fc.

minimizing the energy to turn back, following in this way horizontal streamlines. Besides
this effect, which bidimensionalizes the flow, we think that the fluid jet leaking through the
small gap between the barrier and the bottom is mixed by turbulence. This effect decouples
the bulk from the bottom wall, which as a consequence cannot transmit its momentum
through viscous effects. Therefore, we can imagine that this thin layer (which grows very
slowly in time) acts as a kind of lubrication layer. The precise study of this mechanism is
left for a further study, since the analysis of the 2-D Poiseuille flow instability is our main
focus here.

4. Experimental and numerical analysis of the instability

To explore the instability, four independent experimental runs were performed with
different stratifications and heights of water in the channel. Each of these runs obeys the
same protocol. First we create a linear stratified layer of a chosen total height h using
the classical double bucket technique (Oster 1965). Having measured the density profile,
and determined by linear fit the corresponding Brunt–Väisälä frequency, the annulus is
progressively set into rotation step by step. When having reached the desired rotation rate
Ω , we wait for a period of time ranging between several hours and 20 min in the cases
where the velocity increments were small. Note that the critical parameters vary in each
run, as the density gradient and total height h are changed for each of them. Table 1
gives the principal characteristics of the experimental runs and also the values of the
critical Reynolds and Froude numbers obtained from interpolations between the stable and
unstable flows observed by their corresponding PIV velocity fields. The critical Reynolds
numbers Rec are first determined by extrapolating the measured amplitudes of the velocity
fields under and above the transition (see figure 5 later). The corresponding critical Froude
numbers Fc are then calculated from the estimated values of Ω at threshold.

Visualizations and PIV measurements show the appearance of a nearly stationary
pattern relative to the laboratory (in some cases a small drift is detected) composed of
interfering oblique waves. It appears only above a threshold depending on the Reynolds
numbers Re and on the Froude number F. Figures 3(a) and 3(b) present a laser plane
kalliroscope visualization (adding reflective platelets in water) and PIV measurements of
the instability that takes the form of meanders in horizontal planes. These meandering
flows are confined in thin layers along the vertical direction and have a strong visual
similarity with the patterns of the unstable 2-D Poiseuille flow recently discovered by
Falkovich & Vladimirova (2018). We also show in figure 3(c) the numerical results for
similar parameters, Re = 2800 and Fr = 0.7, but in a periodic channel. The results are
shown for the end of the exponential growth phase when the linear instability saturates.
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FIGURE 3. (a) Kalliroscope visualization of the meandering and recirculation eddies in a
horizontal plane (adding reflective platelets in water). (b) An example of PIV measurements
of the velocity field shown here by its streamlines and associated vertical vorticity field in
background colours; here F = 0.70 and Re = 2866. (c) Velocity amplitude from DNS for
Re = 2800, Fr = 0.7 and Sc = 7 in a periodic channel. Results are shown during the early stages
of the nonlinear saturation.

We observe the same meandering, despite the differences between the experiments and
the idealized periodic simulations.

We have also realized experimental visualizations and velocity measurements in the
median vertical plane located at y = 0 and neglecting the curvature of the channel.
Figure 4(a) shows an example of our PIV measurements that illustrates the layered pattern,
similar to that already observed in plane Couette flow by Facchini et al. (2018). Therefore,
as can be observed on horizontal and vertical plane velocity measurements, the periodic
arrangement of the meanders in horizontal planes is in phase opposition with each of its
neighbouring layers. Note also the difference between the horizontal scale of the pattern,
which is about 10 times larger than the thickness of each layer. This typical feature is again
qualitatively confirmed by the periodic DNS, for which a very similar pattern is observed
during the linear phase (see figure 4b).

By repeating the experiment for different Reynolds and Froude numbers, it is possible
to measure the sensitivity of the instability threshold on these parameters and to compare
it with the theoretical predictions presented in § 5. Moreover, using these threshold values,
we can plot in figure 5 the bifurcation diagram of the instability, gathering all our
measurements by calculating a reduced Reynolds number (Re − Rec)/Rec. We found that
the best way to represent the evolution of the instability finite amplitude is to compute,
from the time-averaged PIV fields, the value ΔU = Umax − Umin (which eliminates the
base flow) divided by 〈U〉 = (Umax + Umin)/2, where Umax and Umin are the minimum
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FIGURE 4. Observation of the horizontal vorticity field in the vertical plane showing the layered
structure reminiscent of wave interaction. (a) Experiment with F = 0.67 and Re = 2741. (b) DNS
with Fr = 0.7, Re = 2800 and Sc = 7 in a periodic channel. Results are shown during the linear
phase of the instability. The same window as (a) is shown in dimensionless units.
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FIGURE 5. Supercritical bifurcation of stratified Poiseuille flow. The dashed line on the right
part of the graph is calculated from a linear fit of the whole set of measurements. Each critical
Reynolds number has been first obtained by interpolation between the stable and unstable data.

and maximum of the horizontal velocity in vertical planes. The average being taken on
a 4 s temporal window, the scatter of the data points comes from some fluctuations of
the amplitude of the velocity fields measured at different times during each run. Despite
this relative non-stationarity of the flow, the bifurcation seems to be supercritical, with a
classical exponent 1/2, as can be seen from the linear fit.

5. Linear analysis of the instability

In this section, the main results obtained by the linear stability analysis of stratified
plane Poiseuille flow are summarized. A more complete account can be found in Chen
(2016). To perform the stability analysis, we use a pseudo-spectral code (already used in
Chen et al. (2016)) that solves the linearized Boussinesq Navier–Stokes equations for the
normal-mode perturbations. For given streamwise and transverse wavenumbers kx and kz,
and given base flow parameters Re, Sc and F, the code provides the complex frequencies
ω of the eigenmodes.

Typical stability diagrams with and without stratification are displayed in figure 6 for a
stratified and a non-stratified base flow. We clearly see in this figure that the presence of
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FIGURE 6. Growth rate contours in the (kx, kz) plane for Re = 104 and Sc = 1 and two values
of the Froude number F: (a) F = ∞ (non-stratified case) and (b) F = 1.1. Both plots use the
same colour bar, with contours every 0.005 from 0.001 to 0.05. Superimposed in panel (b) are
the experimental data points coming from the four experimental runs: run 1 (black triangle),
run 2 (green triangle), run 3 (yellow triangle) and run 4 (red triangle). The dashed line kx = 1
represents the cross-section made for figure 7.

stratification enhances the instability. For the non-stratified configuration (figure 6a), we
observe a single instability mode that corresponds to a viscous TS wave. In the stratified
case (figure 6b), this mode is still present and is unstable in a larger wavenumber domain.
But the most striking feature of the stratified case is the presence of numerous other
instability modes, which are more unstable than the TS wave. These modes have been
generated by adding stratification. Note that we have run a DNS for the same parameters
(Re = 104, F = 1.1 and Sc = 1) and found perfect agreement on both the growth rate and
the wavenumbers of the most unstable mode.

To understand the mechanism of instability, we plot in figure 7 both the real frequency
Re(ω) and the growth rate Im(ω) of the different modes involved in the stability diagram
of figure 6(b) as a function of kz for kx = 1. By this procedure, we can identify in the
frequency plot (figure 7a) five different branches of modes involved in the instability
diagram. By examining the shape of the eigenfunctions along the y direction, it is possible
to discriminate the origin of each of these modes (see Chen 2016). The dashed curves
are found to correspond to viscous TS waves, while the solid curves are associated with
internal gravity waves. The black symbols indicate the points where the growth rate
is locally maximum. We clearly see in figure 7(a) that these points are very close to
the crossing points of the viscous and gravity wave frequency curves. The instability
mechanism can thus be attributed to a phenomenon of resonance between viscous and
gravity waves.

Such a resonant mechanism has been observed in other contexts (see e.g. Satomura 1981;
Le Dizès & Riedinger 2010; Facchini et al. 2018) but it generally involves the coupling
of inviscid waves only. The coupling with a viscous wave seems to be new, at least in
the considered configuration with density gradients perpendicular to the plane of shear.
For a fixed Schmidt number, the maximum growth rate of all the unstable modes can be
calculated as functions of the Reynolds and Froude numbers. The results are summarized
in figure 8(a) for Sc = 1. The growth rate contours are shown for the intervals 400 < Re <

7000 and 0.1 < F < 300 in the (Re, F) plane. The critical Reynolds number is found to
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FIGURE 7. (a) Dispersion relation of the waves calculated by following the eigenvalues of
the linear stability analysis of the flow for Re = 104, F = 1.1 and kx = 1. As can be noticed,
some intersections of these dispersion relations are possible. (b) Growth rates of the instability
corresponding to the aforementioned intersections of dispersion relations – resonance areas are
visible. The dashed curves are the frequencies and growth rates of the viscous modes, whereas
the other solid curves are the dispersion relation of inviscid gravity modes.
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FIGURE 8. (a) Contours of the maximum growth rate in the (Re, F) plane. Contours are every
0.005 from 0.001 to 0.05. (b) Comparison between the instability thresholds observed in the
experimental runs for Sc = 700 (squares) and in the DNS for Sc = 7 (magenta triangles). Open
symbols correspond to stable configurations while solid symbols correspond to unstable cases.
The theoretical curve for Sc = 1 is shown as the solid black line.

be Rec ≈ 480 for Fc ≈ 2.6, well below the critical Reynolds number ReTS ≈ 5770 of 2-D
TS waves. For moderate Reynolds numbers, we observe a large band of unstable Froude
numbers. For instance, for Re = 5000, the instability extends from F ≈ 0.259 to F ≈ 256,
with an extremum at F ≈ 0.8.

6. Comparison with the experimental and numerical results and discussion

The wavenumbers kx and kz can be estimated from the PIV measurements. These values
are reported on figure 6(b) presenting the predicted instability regions obtained from the
linear stability analysis. Note that the vertical wavelengths have, as expected, the order of
magnitude of the buoyancy scale λ (Billant & Chomaz 2001), which in our notation is
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equal to FD. For an average Froude number F ≈ 0.7 as realized in our experiments, λ is
about 3 cm, which in agreement with figure 4.

Similarly, we have plotted in figure 8(b) the experimental data and the marginal stability
curve calculated from the theory at Sc = 1. Interestingly, we observe a good agreement
for the threshold values even if the Schmidt numbers for the theoretical analysis and for
the experiments are quite different: in fact, we could have expected a lower experimental
threshold because of the high value of the salt-water Schmidt number. Even if this were
not the case, the observed agreement is a good indication that the instability is indeed
associated with the mechanism of resonance that we have identified.

To explore the stability diagram further, we have also run DNS with parameters
comparable to those of the experiments but in a doubly periodic channel and with a
Schmidt number of Sc = 7. All unstable experimental cases are also found to be unstable
numerically. However, as can be seen in figure 8(b), some cases considered stable in the
experiment and in the theory are found to be unstable numerically. This discrepancy could
be attributed first to the already evoked differences in Schmidt numbers: Sc = 1 for the
linear stability analysis, while Sc = 7 in the DNS and Sc = 700 in the experiments. More
likely, and even if the effects of rotation and curvature can be discarded because of the
quite large values of the Rossby number, we can notice that the experimental base flow
is slightly different than the 2-D planar parabolic Poiseuille profile (see figure 2) used in
the theory and in the DNS. This small departure could indeed affect the stability threshold
of the flow. Finally, we can also evoke the amplitude sensitivity of the measurements. As
in any experimental instability study, the unstable flow needs to reach finite-amplitude
saturated states before being detectable. Moreover, close to threshold, these nonlinear
regimes need a very long time to establish and our observations may have missed them.

To conclude this discussion, we think that a combination of these different reasons is
probably responsible for the observed and unexpected delay of the instability threshold
observed experimentally, but this should not underplay the otherwise good qualitative
agreement between all of our three approaches.

7. Conclusion

In this study, we have performed laboratory experiments, linear stability analysis
and direct numerical simulations of density-stratified Poiseuille flow. This flow was
heuristically created by the insertion of a barrier in an annular slowly rotating channel.
Even if we do not fully understand the detailed mechanism at the origin of the 2-D
basic flow in the bulk of the fluid, we have observed and described an instability that
we claim to arise from a resonant interaction of waves. In a wave dispersion diagram, such
a resonant interaction is signalled by a crossing or near-crossing of dispersion curves;
simply speaking, either by a pair of waves showing different Doppler shifts or by two
waves of different physical origin. In the present study, the interaction is between a viscous
Tollmien–Schlichting wave and an inviscid internal gravity wave (see figure 7). Hence, the
coupling of the two stable waves makes the basic flow unstable even without the necessity
of an inflection point in the basic flow. Our results fit nicely in a number of findings on
enhanced instability for classical but stratified flows. With the present study we added
stratified Poiseuille flow to this list with the expectation that this confined flow will be
a proxy of natural stratified flows like stratified water flows in rivers or winds in narrow
valleys.

The unstable pattern we observe for stratified Poiseuille takes the form of a meandering
flow confined in horizontal layers with a well-defined vertical wavelength close to the
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buoyancy scale. The experimental characteristics of the instability are well predicted by
the linear stability analysis even if the latter was performed for a Schmidt number equal
to unity and not 700 as in the experiment. However, our DNS confirm the results found
in the laboratory and the predictions obtained with the linear stability analysis. Therefore,
they validate the scenario built on the resonance between non-viscous internal gravity
waves and the TS waves of the Poiseuille flow. Our study on this linear instability of a
realistic flow opens new perspectives in the interpretation and understanding of stratified
flow characteristics such as the scaling of coherent structures in stratified turbulent shear
flows (Chen et al. 2016; Lucas, Caulfield & Kerswell 2019), bridging observations to linear
or nonlinear instability characteristics.

Of interest for further studies is the interplay between wave-related instabilities,
turbulence and mixing (Caulfield 2021). As described in our study, the unstable flow
saturates at a finite-amplitude meandering layered pattern. A further step would be to
increase the rotation rate of our experimental set-up in order to bring the stratified
Poiseuille flow closer to high-Reynolds-number large-scale geophysical flows. This may
permit study of the nonlinear regimes associated with the types of instabilities we have
observed, possible secondary instabilities, and evaluation of the energy transfers or the
competition with other instabilities. Moreover, for larger Reynolds numbers the flow
might become intermittent or turbulent, and it would be of a particular relevance to
study the mixing efficiency, e.g. as a function of the Froude number, and connect this
to environmental flows.
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