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It has been proposed that within the Tarim Basin tectonic activity has been limited since Triassic time. However,
on the basis of magnetostratigraphy from the eastern Tarim Basin, which defines the chronology of sedimenta-
tion and structural evolution of the basin, we show that the basin interior has been uplifted and partitioned dur-
ing Quaternary. Themagnetostratigraphywas constructed from2228 samples that yielded acceptable inclination
values. Characteristic remnant magnetization (ChRM) with both normal (N1–N11) and reversed (R1–R11) po-
larity was isolated by thermal demagnetization. The data correlate best with polarity chrons C3r to C1n, which
range from 5.39 Ma to recent on the geological time scale 2004 (GTS2004). An abrupt decrease in the sedimen-
tation rate is observed at 1.77 Ma in the Ls1 core. This change does not overlap with known Pleistocene climate-
change events.We attribute this sedimentation rate decrease to a structurally controlled local decrease in accom-
modation space where basin basement uplifts occur. This period of sedimentary environmental change reveals
that structural partitioning in the basement of the Tarim Basin occurred since ~1.77 Ma, and we speculate that
tilting of the Southeast Uplift (a sub-basin unit) within the Tarim Basin began in early Pleistocene time.

© 2013 University of Washington. Published by Elsevier Inc. All rights reserved.
Introduction

The Tarim Basin in northwestern China is widely thought to have be-
haved rigidly since Triassic time (Jia, 1997). The basin is bounded on the
north by the south-verging thrust faults of the southern Tian Shan and
on the south by the left-lateral Altyn Tagh strike-slip fault and north-
verging thrust faults (Fig. 1). Uplift of the bounding ranges has occurred
during Cenozoic time in response to convergence between India and sta-
ble Asia (Hendrix et al., 1994; Hao et al., 2002; Wang et al., 2003; Sobel
et al., 2006; Negredo et al., 2007). However, the central Tarim Basin has
sustained little or no deformation during the India–Asia collision (e.g.,
Jia, 1993; Yang and Liu, 2002). The relatively rigid behavior of the basin
and its structural relationship to the north margin of the Tibetan Plateau,
as well as geophysical observations, have led to the suggestion that the
lithosphere of the Tarim Basin has subducted southward beneath the
northern Tibetan Plateau and northward beneath the Tian Shan since
the onset of the India–Asia collision at ~50 Ma (Besse et al., 1984;
Garzanti et al., 1987; Searle et al., 1987; Wittlinger et al., 1998;
Tapponnier et al., 2001). Seismic images show the depth of Moho discon-
tinuity beneath the TarimBasin at 42 kmdepth along its northernmargin
and at ~57 km beneath the Kunlun foreland (Gao et al., 2000; Kao et al.,
2001). Deformation within the upper mantle along the Tarim plate has
been observed beneath the Tibetan Plateau (Kao et al., 2001), but few
data demonstrate Cenozoic deformation within the basement of the
Tarim Basin.
shington. Published by Elsevier Inc. A

mbridge University Press
The depositional successions within the basin provide themost tangi-
ble and accessible records of the lithological, geographical developments,
which occur in a specific area over a specific period of time (Rowley and
Currie, 2006; Fang et al., 2007; Wang et al., 2008). In recent years there
has been an increase in the number of studies aiming to unravel the
links between tectonic events and sedimentary response on a basin
scale (Blair and Bilodeau, 1988; Gupta, 1997; Yin et al., 2002; Sun et al.,
2008; Lu andXiong, 2009; Chang et al., 2012a; Xiao et al., 2012). Addition-
ally, tectonic activity also controls the internal basin conformation. The
development of smaller intra-basinal faults may influence the internal
structure of the basin, partitioning it into related, but separate
depocenters (Tankard et al., 1989; Dong et al., 2012). Tectonic activity,
therefore, is a fundamental control on sedimentation in basins. The sedi-
mentary sequences within a basin can be related to the tectonic activity
that controlled their deposition. The records contained within the basin
sediments are important to evaluate the tectono-sedimentary evolution
of a region (McCann and Saintot, 2003; Wang et al., 2006). Some aspects
of the relationship between tectonic activity and sedimentation can be
recognized although the relationship is complex. The nearly 10-km-
thick Cenozoic sedimentary rocks derived from the surrounding moun-
tains (Jia, 1997) in the TarimBasin provide effective constraints on the de-
formation history of the Tarim Basin. In order to test whether and when
(if it was the case) the basement deformation occurred, we examine the
sediments in the Tarim Basin because sedimentary process in the basin
is sensitive to the environmental and tectonic change (Yin et al., 2008).
ll rights reserved.
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Figure 1. Digital elevation model of the Tarim Basin. The drilling core Ls1, Ls2, natural section, and major geographic locations are located. Boundary of the sub-basin units in the Tarim
Basin was portrayed based on Curie isothermic and isopach surfaces of the strata of Cenozoic (Yan and Mu, 1990; Chen et al., 1998; Li and Xu, 1999).
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We investigated sedimentation in the southeastern Tarim Basin to
understand the tectonic behavior of the Tarim plate and its relationship
to the northern Tibet Plateau during late Cenozoic time.We determined
magnetostratigraphic ages and sedimentary facies for a drill core (Ls1)
from 0.00 to 751.98 m depth. The results show significant changes in
sediment accumulation rates over the past ~5.39 Ma, especially at
1.77 Ma. We interpret this variability to reflect deformation patterns
controlled by regional tectonics during Pliocene–Quaternary time.

Regional setting

The Tarim Basin has an area of 560,000 km2 and an elevation of
~1200 m asl. It is typically divided into sub-basin structural units
based on Curie isothermic and isopach surfaces of the strata of Cenozoic
(i.e., Southwest Depression, Central Uplift, North Depression, North Up-
lift, Kuche Depression, Southeast Uplift and Southeast Depression) (Yan
and Mu, 1990; Chen et al., 1998; Li and Xu, 1999; Fig. 1). The geological
rg/10.1016/j.yqres.2013.10.018 Published online by Cambridge University Press
structures of the depression include fault lines in and around the de-
pression that have been identified by field geological surveys, magnetic
airborne surveys, and remote-sensing images, including aerial photo-
graphs and satellite images. These evidences have revealed that the de-
pression is a tectonically active area within well-developed faults and
fractures, even though its present surface topography is very flat
(GGXCI, 1978; Liang, 1987; Wang, 1987a, 1987b; BGMRXUAR, 1993;
Guo and Zhang, 1995; Yan et al., 1998; Zheng et al., 2000; Wang and
Liu, 2001; Chen et al., 2002; Huang et al., 2006; Liu et al., 2006;
Heermance et al., 2007; Meng et al., 2010; Dong et al., 2012).

The Neoproterozoic basement of the Tarim Basin is overlain by late
Precambrian–Cenozoic strata, locally in excess of 15 km thick (Jia,
1993). The northernmargin of the Tarim Basin is thought to have collid-
ed with the southern Tian Shan in late Devonian time during the amal-
gamation of Central Asia (Windley et al., 1990; Avouac et al., 1993). The
southernmargin of the Tarim Basin is thought to have collided with the
(Western) Kunlun terrane during Silurian time (Matte et al., 1996).

https://doi.org/10.1016/j.yqres.2013.10.018
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Little deformation in the interior and intense deformation along itsmar-
gins characterizes the Tarim Basin during Paleozoic time (Jia and Wei,
2002), however, a foreland basin began to develop in Mesozoic time
(Matte et al., 1996).

Basin-ward thrusting of the Tian Shan and Kunlun during Cenozoic
time caused further subsidence deflection of the foreland depressions
where Cenozoic sediments are up to 10 km thick around the basin mar-
gins (Yang and Liu, 2002; Huang et al., 2006). The Miocene sediments
thickness was mainly centered in the Southwest and Kuche depressions.
The thickest sediments are also adjacent to the margins of the basin
close to the margin thrust belts (Yan and Mu, 1990; Jia, 1997). Miocene
strata elsewhere in the basin are typically 500–1200 m thick and have
similar lithofacies in the five inner sub-basin units (Yan and Mu, 1990).
This suggests that deformation occurred along the northern and southern
margins of the Tarim Basin duringMiocene time. The areas influenced by
foreland basin flexural subsidence are thought to have extended from
Miocene to Pliocene time (Yan andMu, 1990; Chen et al., 1998). Pliocene
strata are the thickest along the northern and southern margins of the
basin where they are typically 2000–3500 m thick (Yan and Mu, 1990;
Chen et al., 1998; Li and Xu, 1999). The similarity in bedding dips of late
Miocene–Pliocene strata in Mazartag area suggests that Cenozoic defor-
mation did not propagate appreciably away from the Kunlun to the base-
ment of the Tarim Basin until after ~2.6 Ma (Sun et al., 2008).

Material and methods

The Ls1 core used in our investigation was sampled from the
Luobuzhuang area of the eastern Tarim Basin in 2003 (Fig. 1). It is
about 12 km to the north of the Ls2 core, which was drilled in 2004
and for which the magnetostratigraphy was published (Chang et al.,
2012b). According to mineral composition, grain size, bedding, color,
1.70 m
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Figure 2.Magnetic susceptibility vs. Temperature (χ–T) curves from selected sample
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and structure feature, the Ls1 core is similar to corresponding part of
the Ls2, and can be divided into three lithologic units from the bottom
to the top (Fig. 5). (I) 751.98–713.50 m, blue-gray to gray siltstone in-
tercalated with brown-red claystone; with laminations to ripples bed-
ding, layered or massive structure; (II) 713.50–35.66 m, gray, brown
to red clay-rich siltstone intercalated with red-brown claystone, and
blue-gray to gray siltstone with parallel bedding, layered and/or mas-
sive structure; and (III) 35.66–0 m, massive gray fine-grained sand-
stone intercalated sand.

After splitting the core in half lengthwise, 2896 blocks of
2 × 2 × 2 cm were labeled for orientation and removed from the core
for discrete magnetic measurements. Blocks were sampled at intervals
of 10–40 cm. Variability in the sampling interval was a result of favoring
finer-grained horizons to coarser-grained ones.

Low-field magnetic susceptibility was measured with a Bartington
MS2 meter at a frequency of 470 Hz. Remanence was measured using
a 2G cryogenic superconducting magnetometer (Model 755R) housed
in the magnetic shielded space (b150 nT) at the Institute of Earth Envi-
ronment, Chinese Academy of Sciences. All discrete samples were sub-
jected to stepwise thermal demagnetization using a TD-48 thermal
demagnetizer. They were stepwise heated to 690°C with temperature
increments of 10–50°C. Demagnetization results were evaluated in
orthogonal diagram (Zijderceld, 1967) and the principal-component
directions were calculated using a least-squares fitting technique
(Kirschvink, 1980).

In order to study rockmagnetism, temperature-dependent suscepti-
bility (χ–T) curves and stepwise acquisition of the isothermal remanent
magnetisation (IRM) were measured on selected samples. χ–T were
measured continuously in an argon atmosphere at a frequency of
976 Hz from room temperature up to 700°C and back to room temper-
ature using a KappaBridgemagnetic susceptibilitymeter (modelMFK1-
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FA) equipped with a CS-3 high-temperature furnace (AGICO Ltd., Brno,
Czech Republic). IRM acquisitions were determined using an ASC IM-
10-30 pulsemagnetizer up to saturation IRM (SIRM) at a maximum ap-
plied field of 2.7 T and AGICO JR-6A for remanence measurements.

Results

Magnetic mineralogy

Each of the χ–T heating curves undergoes evident decrease near
580°C, which suggests the ubiquitous occurrence of magnetite in the
sediments (Fig. 2). χ increases during subsequent cooling after heating
to 700°C. This may result from the neoformation of fine-grained magne-
tite via annealing of iron-containing paramagnetic minerals (Ao et al.,
2010). Hematite was not obvious in the χ–T curves due to its weakmag-
netism, however, all the χ–T curves still displayed a decreased χ between
~580 and ~680°C. Because the bulk susceptibility of magnetite is
~1000×greater thanmost rockmaterials (Collinson, 1983), this thermo-
magnetic behavior suggests that the magnetic minerals are dominated
by magnetite and hematite. All the IRM acquisition curves indicate that
these samples are not saturated even at 2.7 T (Fig. 3), which is consistent
with a significant hematite contribution. Progressive removal of the
SIRM by applying reversed fields showed that the remanent coercivities
of the SIRM are approximately 45 and 90 mT, indicating that there is
high coercive magnetic mineral, such as hematite, that might be pre-
dominant within the sediments. These results are in agreement with
rock magnetic characteristics from late-Miocene to Holocene sediments
in drill core Ls2 in the Tarim Basin (Chang et al., 2012b) andNeogene red
beds from the Suerkoli (Xorkoli) basin (Dupont-Nivet and Butler, 2003).

Magnetostratigraphy

Formost samples, the high-stability characteristic remnantmagneti-
zation (ChRM) component was separated between 400 and 680°C,
1.7m

101.8

251.86 m 351

451.94 m 502.

1.70 m

Magnetizing field (T)

-0.2 0.3 0.8 1.3 1.8 2.3
-0.2 0.3 0.8 1

-0.2 0.3 0.8 1

-0.2 0.3 0.8 1.3 1.8 2.3

-0.2 0.3 0.8 1.3 1.8 2.3
-0.2 0.3 0.8 1

0

12

4

8

-4

-8

8

4

0

-4

12

8

4

0

-4

-8

8

4

0

-4

-8

-6

-2

2

6

108

4

0

-4

IR
M

(A
/M

)
IR

M
(A

/M
)

IR
M

(A
/M

)

Magnetizing

Magnetizing field (T)

Magnetizing field (T)

Magnetizin

Magnetizin

IR
M

(A
/M

)
IR

M
(A

/M
)

IR
M

(A
/M

)

Figure 3. Isothermal remanent magnetization (IRM) acquisition curves for selected samples f
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which suggests that hematite is the dominant remanence carrier (Figs.
4b–h). For some samples, a maximum temperature of 580°C was need-
ed to yield a ChRM component, suggesting that magnetite is the domi-
nant remanence carrier (Fig. 4a). Thermal demagnetization results
suggest that magnetite and hematite are the main magnetic minerals
in sediments from Ls1 that coincides with research results on rockmag-
netism using the χ–T curves and IRM methods. More than five succes-
sive points in the orthogonal diagrams were used to calculate the
direction of ChRM during the establishment of polarity sequence
(Fig. 5). Specimens not included in our magnetostratigraphic analysis
were rejected based on two criteria. (1) ChRM directions could not be
determined because of ambiguous or noisy orthogonal demagnetization
diagrams. (2) Effective ChRM directions have maximum angular devia-
tion below 10° and their inclinations are between 15° and 75°. Finally, a
total of 2228 (77%) samples gave ChRM directions.

Magnetostratigraphic study result suggests that the Ls1 core record-
ed 11 normal and 11 reversal magnetozones (Fig. 5). Sediments at the
top of the core are Holocene, deposited within the past 100 yr (Zhong
et al., 2005). The magnetic polarity sequence yielded from Ls1 was cal-
ibrated to the Geological Time Scales (GTS2004) (Gradstein, Ogg and
Smith, 2004). Local magnetozone N1 should thus correlate to the
chron C1n of GTS2004, consistent with the other researches concerning
the agemodel near Luobuzhuang (Zhong et al., 2005). In the upper part
of Ls1, the distinctive reversal polaritywith three normal polarities (two
are short and one is long) (R1–R4) appears to correlate with GTS2004
from chrons C2r.1r to C1r (Matuyama chron). In the middle part of
Ls1, the distinctive magnetozones (N5–N7) are characterized by three
normal and two reversals that correlate with the Gauss chron. In the
lower part of the Ls1, there are four discrete positive polarities in long
reversal polarity (R7–R11). This distinctive and well established
magnetozones readily correlate to chrons C3r to C2Ar of the
GTS2004. We did not find any obvious hiatuses or scour surfaces in
the Ls1 core, and the top sediments are assigned to Holocene time
(Zhong et al., 2005). These observations imply that Ls1 core has
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recorded a nearly continuous magnetic polarity sequence from C3r
to C1n (~5.39–0.00 Ma). The Pliocene/Pleistocene (~2.58 Ma) and
Miocene/Pliocene (~5.33 Ma) boundaries are located at 229.22 m
oi.org/10.1016/j.yqres.2013.10.018 Published online by Cambridge University Press
and 742.30 m depth in the Ls1 core, respectively. The Pliocene sedi-
mentary package is 513.08 m thick and is consistent with isopach
maps for the southeastern Tarim Basin (Yan and Mu, 1990).
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Magnetostratigraphic features of Ls1 are similar to the correspond-
ing depth of Ls2 that is about 12 km to the south (Fig. 5) (Chang
et al., 2012b).

Significant changes in the rate of sedimentation were observed in
our investigation of the Ls1 core. The average sedimentation rate re-
corded in the core is ~140 m/Ma. The sediment accumulation rate de-
creased significantly at ~3.3 Ma, ~3.0 Ma, and ~1.77 Ma (Fig. 6). The
sedimentation rate remained steady with only minor fluctuations
from 5.39 to 3.58 Ma, 3.04 to 1.77 Ma, and 1.77 to 0.0 Ma.
rg/10.1016/j.yqres.2013.10.018 Published online by Cambridge University Press
Discussion

The most obvious change of sedimentation rate occurred at
~1.77 Ma at the depth of 70.98 m, where it decreased from 185 m/Ma
to 40 m/Ma (Fig. 6). This sharp sedimentation rate change is also
supported by results from Ls2 (Chang et al., 2012b). Sediment-
accumulation rates within terrestrial basins are controlled primarily
by the sediment supply and accommodation space. Sediment supply is
generally a function of climate, stream power (Nott and Roberts,

https://doi.org/10.1016/j.yqres.2013.10.018
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1996; Zhang et al., 2001), source-rock lithology or resistance to
weathering (Sklar and Dittrich, 2001), and the proximity of the sedi-
ment source (Burbank and Beck, 1991). Accommodation space is creat-
ed when the crust subsides and is caused by: 1) attenuation of the crust
due to stretching; 2) contraction of the lithosphere due to cooling; and
3) depression of both crust and lithosphere by sedimentary or tectonic
loading. The primarymechanisms of basin subsidence are isostasy, flex-
ure, and cooling effects of lithosphere (Beaumont, 1981).

Sedimentation ratemay be influenced by both tectonismand climat-
ic change (Molnar and England, 1990). In the current case, the climatic-
control hypothesis can be excluded because of the following two lines of
evidence. (1) The frequency and amplitude of global climate variability
have increased markedly since 3 Ma (Lisiecki and Raymo, 2007), how-
ever this variability is not in phase with sediment-accumulation rates
recorded in the Ls1 core. It must be concluded that global climatic
change is not the predominant factor that controls the sedimentation
rate in the Tarim Basin. (2) The sediments are composed of clay-rich
siltstone intercalated with claystone. There are no hiatuses or other ev-
idence that suggest that lithofacies changed during early Pleistocene.
Therefore, Ls1 does not show sharp lithofacies changes in the range of
5.0–0.7 Ma.

Furthermore, the climate as revealed by magnetic susceptibility did
not obviously change during Pliocene to early Pleistocene (Chang
et al., 2012b; Fig. 6). Both the lithology and ostrocods assemblage in
the northern TarimBasin also showed that therewas no obvious climat-
ic change during the early Pleistocene (Sun et al., 1999). It follows that
local climatic change is not the primary factor that triggered the de-
crease in sedimentation rate since the early Pleistocene.

On the other hand, there are four clues that call our attention to tec-
tonic influence on the sedimentary environment in the Tarim Basin. (1)
Although small in magnitude, earthquakes have occurred inside the
Tarim Basin (Xiao et al., 2004). (2) The mantle heat-flow density is
oi.org/10.1016/j.yqres.2013.10.018 Published online by Cambridge University Press
generally less than 20 μW/m2 in depressions of the Tarim Basin, but it
is higher than the value in the higher blocks separating them (Wang
et al., 1996). This suggests that mantle heat flow density is imbalance
between the elevated blocks and depressions. (3) The Moho is about
40 km deep in the elevated block, but 57 km beneath the Southwest
Depression (Gao et al., 2000). Changes in the depth of theMoho suggest
that the basement of the Tarim Basin has deformed in the past. (4) The
Pliocene–Pleistocene sediments have deformed in the middle of the
Tarim Basin (Sun et al., 2008). We propose that the sedimentation
rate decrease at ~1.77 Ma indicates onset of shortening and rock uplift
that occurred in the elevated sub-basin structural units during Quater-
nary time. As a corollary, the sedimentation rate should increase in
depression sub-basin structural units because of an increase in accom-
modation space when the nearby region is raised. Further study of
drill core from sub-basin depressions may be used to test this
hypothesis.

The basement of the Tarim Basin began to change during the early
Pleistocene, when the southwestern and southeastern parts of the
basin were uplifted as a result of the growth of the Tibetan Plateau
(Mu et al., 2001; Dong et al., 2012). The NNE–SSW principal compres-
sion stress resulting from collision between Indian and Eurasian plates
has exerted significant control on the regional geology during the
partitioning of the sub-basin structural units (Guo and Zhang, 1995;
Wang and Liu, 2001). This explanation is in accordance with the linear
structure map of Chinese land (IMDCAGS, 1981).

Yin et al. (2008) also suggested that currently the TarimBasin is in its
initial stage of disintegration, being consumed by thrusting around its
rims and inside its interior and will eventually be incorporated into
the Tibetan Plateau and the Altyn Tagh fault will be entirely inside the
expanded plateau, like the Kunlun fault today. The depth of the Moho
discontinuity beneath the Tarim Basin, 42 kmalong its northernmargin
and at ~57 km depth beneath Kunlun foreland (Gao et al., 2000; Kao
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et al., 2001) suggests that the rigid Tarim Basin has partitioned in the
past. The formation of the sub-basin structural units of the Tarim
Basin may be the part of this process.

The drill core Ls1 sample is located in the Southeast Uplift of
the Tarim Basin (Fig. 1). Shortening and rock uplift of the Southeast
Uplift reduced accommodation space, resulting in the decreased sedi-
mentation rate at 1.77 Ma. This structural control in the sedimentation
rate is supported by growth strata documented along the Atushi (Fig. 1)
from the western Tarim Basin that indicate basement deformation
there, likely from 1.9 to 1.4 Ma (Chen et al., 2002; Scharer et al., 2006;
Heermance et al., 2007).

We suggest that the Southeast Uplift of the Tarim Basin was struc-
turally uplifted and segmented from the Central Uplift since ~1.77 Ma.
This uplift and partitioning would have resulted in a decreased sedi-
mentation rate in the uplifted sub-basin unit.

Conglomeratic facies are often localized near the mountain front
where streams flow into the foreland basin and lose much of their
sediment-transport capacity. Grain size should naturally decrease
into the foreland as a result of the decreasing river gradient within
the basin (Scharer et al., 2006). Dispersion of gravel suggests a tec-
tonic coupling that is independent of climatic influences if it can be
linked into initiation and growth of specific structures. In order to
study specific timing of initiation of individual thrust faults and
folds in the Tarim Basin, Heermance et al. (2007) studied 14 sections
in the foreland basin in the Southwest Depression in Atushi region of
the Tarim Basin. Their data suggest that the basal age of the conglom-
erate varies from 15.5 ± 0.5 Ma at the northernmost part of the
foreland basin in the Southwest Depression, to 8.6 ± 0.1 Ma in the
central part of the foreland and to 1.9 ± 0.2 Ma, ~1.04 and
0.7 ± 0.1 Ma along the southern deformation front of the foreland
basin. The Atushi section shows a similar rapid sedimentation rate
decrease at approximately the same time in the transition zone be-
tween the Southwest Depression and the Central Uplift sub-basins
(Heermance et al., 2007).

Jin et al (2003) explored Cenozoic deposition sequences in the pied-
mont along the west Kunlun and discovered that molasse deposition
was interrupted in the early Pleistocene by a tectonic pulse, which re-
sulted in tilting of the molasse and underlying sediments at high-
angle towards the Tarim Basin. Recent research on high-resolution
magnetostratigraphy and sedimentation shows that both the strongest
tectonic deformation and changes from deposition to erosion since
1.8 Ma (Fang et al., 2007).

Studies of the geomorphology and stratigraphy in the northeastern
Tibetan Plateau suggest that there has been strong uplift of the north-
east plateau since 1.7 Ma, and this is when the Yellow river drainage
system started to form in the Longzhong Basin (Li et al., 1996, 1997).
The independent evidences of tectonic movement in the northeast
part of the Tibetan Plateau and the Tarim Basin support the inference
that the Tarim Basin will eventually be incorporated into the Tibetan
Plateau and the Altyn Tagh fault will be entirely inside the expanded
plateau in the future (Yin et al., 2008).

Conclusions

It has been proposed that the Tarim Basin has behaved rigidly since
Triassic time, and that the tectonic activity is limited inside the basin.
However, the current study shows that the interior of the basin has
uplifted and partitioned during Quaternary time.

Our magnetostratigraphy investigation of drill core Ls1 provides the
detailed age control for the upper Cenozoic strata from the inner Tarim
Basin. The base of the Ls1 core is ~5.39 Ma, whereas the top is Holocene
in age. The sedimentation rate in the eastern Tarim Basin decreased rap-
idly at 1.77 Ma from about ~185 m/Ma to 40 m/Ma. This decrease re-
sulted primarily from the basement involved shortening and rock uplift
and occurred contemporaneous with shortening in the northwestern
Tarim Basin (Heermance et al., 2007). The Southeast Uplift and
rg/10.1016/j.yqres.2013.10.018 Published online by Cambridge University Press
Depression sub-basins began to separate tectonically by ~1.77 Ma. The
tectonic deformation in the northeastern Tibetan Plateau represents a
possible future structural development for crust now present in the
Tarim Basin.
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