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Abstract

In this paper, we prove the assertion that the number of monic cubic polynomials
F (x) = x3 + a2x

2 + a1x + a0 with integer coefficients and irreducible, Galois over Q
satisfying max{|a2|, |a1|, |a0|} ≤ X is bounded from above by O(X(log X)2). We also
count the number of abelian monic binary cubic forms with integer coefficients up to a
natural equivalence relation ordered by the so-called Bhargava–Shankar height. Finally,
we prove an assertion characterizing the splitting field of 2-torsion points of semi-stable
abelian elliptic curves.

1. Introduction

In the 19th century, Hilbert established the so-called Hilbert irreducibility theorem. One version
of it can be stated as follows: when ordering degree-n monic polynomials

f(x) = xn + a1x
n−1 + · · · + an, ai ∈ Z for i = 1, . . . , n

with the box height
H(f) = max{|a1|, . . . , |an|} (1.1)

a proportion tending to 100 % of such polynomials will be irreducible and have Galois group
isomorphic to the symmetric group Sn.

Hilbert’s original proof of his theorem is not quantitative in the sense that it does not give a
way to quantify how many degree-n polynomials of bounded box height fail to have Sn as their
Galois group. For any transitive subgroup G ≤ Sn and positive number X ≥ 1, we write

N (n)
G (X) = #{f(x) = xn + a1x

n−1 + · · · + an ∈ Z[x], H(f) ≤ X, Gal(f) ∼= G}. (1.2)

Van der Waerden [vdW36] proved that

N (n)
Sn

(X) = (2X)n + On(Xn−6/((n−2) log log n)) (1.3)

for n ≥ 3. He conjectured that one should be able to replace the error term by On(Xn−1), which
is best possible because the subset of monic polynomials where the constant coefficient vanishes,
all of which are reducible, already gives this order of magnitude.

A more precise formulation of van der Waerden’s question is to ask whether one can obtain
a sharper error term once the obvious reducible polynomials are removed and, indeed, to ask for
asymptotic estimates for N (n)

G (X) when G �= Sn.
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On monic abelian cubics

The simplest case of this question corresponds to n = 3 and G = C3. Such polynomials
are called abelian cubics. It is well known that an irreducible cubic polynomial with integer
coefficients is abelian if and only if its discriminant is a square integer.

In this paper, we give an estimate for N (3)
C3

(X). We prove the following result.

Theorem 1.1. Let C3 be the cyclic group of order three and N (3)
C3

(X) given as in (1.2). Then
there exist positive numbers k1, k2 such that for all X > k2 we have

2X ≤ N (3)
C3

(X) < k1X(log X)2. (1.4)

One should compare Theorem 1.1 with the results regarding monic quartic polynomials
obtained by Chow and Dietmann [CD20]. They proved that N (4)

G (X) = o(X3−δG) for all transi-
tive proper subgroups G of S4, where δG is a positive number which depends on G. Most notably
they obtained the exact asymptotic order of magnitude (but not an asymptotic formula) for
N (4)

D4
(X), namely that

N (4)
D4

(X) � X(log X)2.

They also proved that N (3)
C3

(X) = Oε(X3/2+ε) for any ε > 0. Lefton [Lef79] obtained the bound
Oε(X2+ε), which narrowly misses the mark when it comes to van der Waerden’s conjecture.
Two recent results, due to Chow and Dietmann [CD21] and Bhargava [Bha21], are of note.
In [CD21], the authors gave power-saving bounds for N

(n)
G (X) for all n ≥ 4, and in [Bha21]

Bhargava resolved van der Waerden’s original conjecture by showing that the error term in (1.3)
can indeed be taken to be On(Xn−1).

Our Theorem 1.1 and Chow and Dietmann’s theorem are the only results we are
aware of that establishes the exact exponent when counting monic polynomials of degree
n ≥ 3 having Galois isomorphic to G a proper subgroup of Sn with respect to box
height.

The upper bound in Theorem 1.1 should be considered the main contribution of this paper.
The lower bound is given by a simple and classical construction (see, for example, [Ste91]). In
view of the upper bound one should ask whether the lower bound or the upper bound is closer
to the truth. We note that if we count monic totally reducible cubic polynomials instead, then
we achieve the upper bound exactly. Indeed, such polynomials are characterized by triples of
integers r1, r2, r3 by

f(x) = (x − r1)(x − r2)(x − r3) = x − (r1 + r2 + r3)x2 + (r1r2 + r1r3 + r2r3)x − r1r2r3.

It is clear that there are O(X) such polynomials with at least two of r1, r2, r3 = 0 and box height
at most X, and O(X log X) such polynomials if exactly one of r1, r2, r3 is zero. If r1, r2, r3 �= 0,
then the condition |r1r2r3| ≤ X implies that |r1 + r2 + r3|, |r1r2 + r1r3 + r2r3| � X, so there are
O(X(log X)2) such polynomials. Moreover, it is easy to choose 	 X(log X)2 triples (r1, r2, r3)
such that f(x) has height H(f) ≤ X. If one considers abelian cubics to be comparable to totally
reducible cubics, then the upper bound in Theorem 1.1 can be seen as best possible, and quite
possibly the exact order of magnitude.

To prove Theorem 1.1 we first need to parametrize monic abelian cubic polynomials. Note
that the set of monic cubic polynomials is invariant under translations. The action which sends
x 
→ x + u has two basic polynomial invariants, which we denote by I and J , given by

I(F ) = a2
2 − 3a1, J(F ) = −2a3

2 + 9a2a1 − 27a0, (1.5)
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where F (x) = x3 + a2x
2 + a1x + a0. It follows that F has a unique representation as

F

(
x − a2

3

)
= x3 − I(F )

3
x − J(F )

27
. (1.6)

One can interpret this as an action of a subgroup of GL2(Z) on the lattice of integral binary
cubic forms. For the set of monic binary cubic forms, the natural action given above is realized
by the upper triangular subgroup of GL2(Z), namely

U(Z) =
{(

1 n
0 1

)
: n ∈ Z

}
.

The quantities I(F ), J(F ) given in (1.5) are then invariants with respect to this action. In fact,
all polynomial invariants of this action are generated by I, J .

To prove Theorem 1.1, it is convenient to consider binary cubic forms rather than cubic
polynomials. We thus need to parametrize monic binary cubic forms. It is well known that for
any monic cubic form that

4I(F )3 − J(F )2

27
= Δ(F ). (1.7)

As an irreducible cubic form F is abelian if and only if Δ(F ) is a square, it follows that we are
required to study integer solutions to the equation

4z3 = x2 + 3y2.

If gcd(x, y, z) = 1, then the parametrization is provided in full by Cohen [Coh07]. However, it is
not always the case that gcd(x, y, z) = 1. We show in § 3 that it suffices to study the equation

cx3 = u2 − uv + v2, gcd(x, u) = 1, (1.8)

where c = c2
1 − c1c2 + c2

2 for c1, c2 ∈ Z; see Proposition 2.1.
Of course, given the symmetry of (1.8), the roles of u, v may be swapped in Proposition 2.1.
Using Proposition 2.1 we obtain the following parametrization of monic abelian cubics given

by the shape (1.6).

Theorem 1.2. Let F (x, y) = x3 + a2x
2y + a1xy2 + a0y

3 ∈ Z[x, y] be an irreducible cubic form
such that Gal(F ) ∼= A3. Then (I(F ), J(F )) is given by one of the following three possibilities:(

I(F )
J(F )

)
=
(

9c(s2 − st + t2)
27c((2c1 − c2)s3 − 3(c1 + c2)s2t + 3(2c2 − c1)st2 + (2c1 − c2)t3)

)
, gcd(s, t) = 1,

(1.9)

where c = c2
1 − c1c2 + c2

2 and 3 � s2 − st + t2,(
I(F )
J(F )

)
=
(

3c(s2 − st + t2)
27c(c2s

3 + (c1 − 3c2)s2t − c1st
2 + c2t

3)

)
, gcd(s, t) = 1, (1.10)

with c = c2
1 − 3c1c2 + 9c2

2, 3 � c1, s
2 − st + t2, and(

I(F )
J(F )

)
=
(

c(s2 − st + t2)
c((2c1 − 3c2)s3 − 3(c1 + 3c2)s2t + 3(6c2 − c1)st2 + (2c1 − 3c2)t3)

)
, gcd(s, t) = 1

(1.11)

with c = c2
1 − 3c1c2 + 9c2

2, 3 � c1, s
2 − st + t2.

It turns out that a rather convenient way to establish Theorem 1.2 from Proposition 2.1 is
to first parametrize binary cubic forms (not necessarily monic) by their Hessian covariants, or
in the parlance of [BS14], by their shape; see Proposition 3.1.
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A consequence of Proposition 3.1 is that we are able to recover a classical theorem in compo-
sition laws of rings and ideals of low rank, namely the correspondence between 3-torsion of class
groups of quadratic fields and cubic fields which are nowhere totally ramified (see [Bha04] for a
modern view of this phenomenon through composition laws). Our proof perhaps highlights the
phenomenon that the shape (Hessian covariant) of a cubic ring is able to identify certain arith-
metic properties. In essence, we replace an explicit algebraic characterization of the map between
nowhere totally ramified cubic rings and certain ideal classes of the corresponding quadratic field
by identifying a cubic ring with certain integers representable by its Hessian covariant.

The I, J-invariants can be used to define a height for monic binary cubic forms, which is
perhaps more natural than the box height. In [BS15], Bhargava and Shankar used analogous
invariants to define a height on the space of binary quartic forms, which descends to a height on
the space of monic binary cubic forms. We denote this height by the Bhargava–Shankar height,
given by

HBS(F ) = max{I(F )|3, J(F )2/4}. (1.12)

Observe that HBS is only well defined for monic binary cubic forms.
When restricted to abelian cubics, and the observation that Δ(F ) = (4I(F )3 − J(F )2)/27,

it follows that HBS(F ) = I(F )3 for all F abelian (because necessarily Δ(F ) > 0 in this case).
We then have the following theorem.

Theorem 1.3. Let MBS(X) denote the number of U(Z)-equivalence classes of irreducible binary
cubic forms with integer coefficients and Galois over Q with Bhargava–Shankar height bounded
by X. Then

MBS(X) = 3
2X1/3 log X + O(X1/3).

One should compare Theorem 1.3 with the following statement enumerating monic
binary cubic forms which are totally reducible over Q. Let M†

BS(X) denote the number of U(Z)-
equivalence classes of totally reducible binary cubic forms with integer coefficients, ordered by
Bhargava–Shankar height. Then we have

M†
BS(X) = c0X

1/3 + O(X1/6) (1.13)

for some positive number c0. We remark that there is a result of Yu [Yu06] which suggests that
there ought to be Oε(X1/3+ε) GL2(Z)-equivalence classes of quartic forms with Galois group V4

with Bhargava–Shankar height up to X. The consequence of Theorem 1.3 suggests that the same
should be expected for A4-quartic forms.

Another curiosity about elliptic curves that arises from Theorem 1.2 is the following. It is
well known that all elliptic curves E/Q have a unique minimal Weierstrass model of the shape

E : y2 = x3 − I

3
x − J

27
, (1.14)

where (I, J) has to satisfy some congruence condition modulo 27. In view of (1.6), it follows
that an abelian elliptic curve, or an elliptic curve where the corresponding cubic polynomial is
abelian, has (I, J) given by Theorem 1.2. Note that an elliptic curve E can be semi-stable only
if for all primes p, the corresponding cubic polynomial does not totally ramify. This implies that
gcd(I, J) = 1. This leads to the following conclusion.

Theorem 1.4. Let E/Q be a semi-stable elliptic curve given by the Weierstrass model (1.14).
Suppose that the attached cubic polynomial f(x) = x3 − Ix/3 − J/27 is an abelian cubic poly-
nomial. Then the splitting field of f is Q(ζ9 + ζ−1

9 ), where ζ9 is a primitive ninth root of
unity.
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The outline of this paper is as follows. We first prove Proposition 2.1, which is necessary
to parametrize our abelian cubic forms. Next, in § 3 we use the Hessian covariant of binary
cubic forms to parametrize monic binary cubic forms. Then, using Proposition 2.1, we obtain
a parametrization of monic abelian cubic forms. Section 4 contains the proof of Theorem 1.1.
Finally, auxiliary algebraic consequences, namely Theorems 6.1 and 1.4, are contained in § 6.

2. Parametrizing points on a family of genus-0 curves

In this section, we solve (1.8) in the following sense.

Proposition 2.1. The integer solutions to (1.8) are parametrized by

x(s, t) = s2 − st + t2, u(s, t) = c1s
3 − 3c2s

2t + 3(c2 − c1)st2 + c1t
3,

v(s, t) = c2s
3 + 3(c1 − c2)s2t − 3c1st

2 + c2t
3, s, t ∈ Z, gcd(s, t) = 1

and ranging over all pairs c1, c2 ∈ Z such that c = c2
1 − c1c2 + c2

2.

Proposition 2.1 is a simple consequence of the fact that the ring of Eisenstein integers is a
unique factorization domain. This type of structure has been exploited before in similar counting
problems; see, for example, [Hea12].

We treat (1.8) as an equation over the Eisenstein integers Z[ζ3], where ζ3 = (−1 +
√−3)/2.

We further factor (1.8) as

(u + ζ3v)(u + ζ2
3v) = (c1 + ζ3c2)(c1 + ζ2

3c2)(x1 + ζ3x2)3(x1 + ζ2
3x2)3,

where c = c2
1 − c1c2 + c2

2, a = s2 − st + t2. The co-primality of x with u, v implies that (x1 +
ζ3x2)3 must divide one of u + ζ3v, u + ζ2

3v. Without loss of generality, we assume that (x1 +
ζ3x2)3|u + ζ3v over Z[ζ3]. This implies that

u + ζ3v = ζk
3 (c1 + ζ3c2)(x1 + ζ3x2)3, k ∈ {0, 1, 2}.

We can absorb the ζk
3 term into c1 + ζ3c2, so it suffices to fix a value of k. For k = 0, we obtain

the parametrization

u + ζ3v = (c1 + ζ3c2)(x3
1 + 3ζ3x

2
1x2 + 3ζ2

3x1x
2
2 + x3

2)

= (c1 + ζ3c2)(x3
1 + x3

2 − 3x1x
2
2 + 3ζ3x1x2(x1 − x2))

= (c1(x3
1 + x3

2 − 3x1x
2
2) − 3c2x1x2(x1 − x2) + ζ3(c2(x3

1 + x3
2 − 3x2

1x2)

+ 3c1x1x2(x1 − x2))).

Comparing coefficients we obtain that

v = c2x
3
1 + 3(c1 − c2)x2

1x2 − 3c1x1x
2
2 + c2x

3
2

and
u = c1x

3
1 − 3c2x

2
1x2 + 3(c2 − c1)x1x

2
2 + c1x

3
2.

The co-primality of x and u, v implies that gcd(x1, x2) = 1. This completes the proof of the
proposition.

3. Standard form of monic binary cubic forms and Hessian covariants

For a given binary cubic form

F (x, y) = a3x
3 + a2x

2y + a1xy2 + a0y
3,

554

https://doi.org/10.1112/S0010437X22007369 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007369


On monic abelian cubics

define the Hessian covariant of F to be

HF (x, y) =
1
4

det

⎛
⎜⎜⎝

∂2F

∂x2

∂2F

∂x∂y

∂2F

∂x∂y

∂2F

∂y2

⎞
⎟⎟⎠ .

Explicitly, we have

HF (x, y) = (a2
2 − 3a3a1)x2 + (a2a1 − 9a3a0)xy + (a2

1 − 3a2a0)y2 = Ax2 + Bxy + Cy2. (3.1)

For a binary quadratic form g(x, y) = ax2 + bxy + cy2, we define

Vg(C) = {F (x, y) = a3x
3 + a2x

2y + a1xy2 + a0y
3 : HF (x, y) is proportional to g(x, y)}.

We have the following result.

Proposition 3.1. Let g(x, y) = ax2 + bxy + cy2 ∈ C[x, y] be a non-singular binary quadratic
form with a �= 0. Then

Vg(C) =
{

a3x
3 + a2x

2y +
ba2 − 3ca3

a
xy2 +

(b2 − ac)a2 − 3bca3

3a2
y3 : a3, a2 ∈ C

}
. (3.2)

This fact appears well known; see, for example, [BS14]. Nevertheless we give a proof of it for
completeness.

Proof. We recall notation from [Xia19], where we dealt with the so-called Hooley matrix :

HF =
1

2Δ(HF )

(
B
√−3Δ(HF ) − Δ(HF ) 2C

√−3Δ(HF )

−2A
√−3Δ(HF ) −B

√−3Δ(HF ) − Δ(HF )

)
,

where A, B, C are as in (3.1). It was shown by Hooley in [Hoo00] that HF is a stabilizer of F
with respect to the substitution action of GL2. Moreover, it was shown in [Xia19] that for a given
binary quadratic form g(x, y) = ax2 + bxy + cy2 with real coefficients and non-zero discriminant
and associated matrix

Hg =
1

2Δ(g)

(
b
√−3Δ(g) − Δ(g) 2c

√−3Δ(g)

−2a
√−3Δ(g) −b

√−3Δ(g) − Δ(g)

)
,

that Hg ∈ AutR(F ) if and only if g is proportional to HF . Here AutR(F ) refers to the stabilizer
subgroup of F in GL2(R) corresponding to the substitution action. Using this, one checks through
explicit calculation that HF is proportional to g if and only if F is given as in (3.2). Similarly, that
any element F ∈ Vg(C) does indeed have Hessian covariant proportional to g is easily checked. �
Remark 3.2. One can also prove Proposition 3.1 by observing that every binary cubic form F
with non-zero discriminant is GL2(C)-equivalent to xy(x + y).

Remark 3.3. Bhargava and Shnidman gave a slightly different form of the set Vg(C) given
in (3.2). Indeed, Vg(C) corresponds to cubic forms of a given shape g.

We now focus on monic binary cubic forms. Let g(x, y) be the primitive integral binary
quadratic form proportional to HF . As Δ(HF ) = −3Δ(F ), it follows that 3|Δ(g) whenever Δ(F )
is a square. As HF is a covariant of F , it follows that g is also a covariant of F . Applying the
transformation in the lemma to g shows that 9g(x + vy, y) ∈ Z[x, y].

Without loss of generality, we first translate F by an integer, which enables us to
assume that a2 ∈ {−1, 0, 1}. We then further translate so that F is of the form (1.6).
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Let g(x, y) = ax2 + bxy + cy2 be a primitive, integral binary quadratic form such that HF is
proportional to g. It then follows from Proposition 3.1 that

F (x, y) = x3 − 3c

a
xy2 − bc

a2
y3. (3.3)

Comparing (1.6) and (3.3), we see that if F ∈ Z[x, y], then I(F ), J(F ) ∈ Z, and either a2 ≡ 0
(mod 3) so I(F ) ≡ 0 (mod 3), J(F ) ≡ 0 (mod 27) or

I(F ) ≡ 1 (mod 3), J(F ) ≡ (±1)(2 − 9a1) (mod 27).

Observe that 9a1 ≡ 0, 9, 18 (mod 27), so (±1)(9a1 − 2) ≡ ±2,±7,±16 (mod 27). Next we see
that

9c

a
,
27bc

a2
∈ Z.

Put a = 3kα, with gcd(α, 3) = 1. We then see that α|c. As g is assumed to be primitive, it follows
that gcd(α, b) = 1. It thus follows that α2|c. As observed earlier, we have that 3|Δ(g). Thus, if
k ≥ 1, then 3|b and, hence, 3 � c. It follows that k ≤ 2.

We first treat the case when k = 0. Then we have c = a2c′ for c′ ∈ Z. It then follows that

F (x, y) = x3 − 3acxy2 − bcy3, gcd(a, b) = 1. (3.4)

We then see that 9c′ = gcd(I(F ), J(F )). If k = 1, then we rewrite (a, b, c) as (3α, 3β, α2γ), with
3 � α. Then we see

F (x, y) = x3 − αγxy2 − βγ

3
y3, gcd(α, β) = 1.

In this case we have J(F ) = 9βγ, so, in fact, J(F ) ≡ 0 (mod 27). As 3 � γ it follows that 3|β,
whence 9|b. We thus obtain the shape

F (x, y) = x3 − acxy2 − bcy3, gcd(a, b) = 1. (3.5)

Finally, if k = 2, then we obtain

F (x, y) = x3 − ac

3
xy2 − bc

27
y3, gcd(a, b) = 1. (3.6)

Comparing (3.4), (3.5), and (3.6) with (1.6) gives

(I, J) =

⎧⎪⎨
⎪⎩

(9ac, 27bc), 3 � a, gcd(a, b) = 1
(3ac, 9bc), 3 � a, gcd(a, b) = 1
(ac, bc), 3 � a, gcd(a, b) = 1.

(3.7)

Then it is easy to see that Δ(F ) for F given as in (3.4), (3.5), and (3.6) is given by

Δ(F ) =

⎧⎪⎪⎨
⎪⎪⎩

27c2(4ca3 − b2) if F is given by (3.4)
c2(4ca3 − 27b2) if F is given by (3.5)
c2(4ca3 − b2)

27
if F is given by (3.6).

(3.8)

Using (3.8), we can write out all abelian cubic forms of the shape (1.6) which is a translate
of an integral form. In each of the cases in (3.8) we have an equation of the form

4ca3 = u2 + 3v2, u, v ∈ Z, gcd(a, u) = gcd(a, v) = 1. (3.9)

Note that the right-hand side is a norm in Z[ζ3], hence the left-hand side must be as well.
If c is a norm in Z[ζ3], then we are done. Otherwise, there must exist a prime p which is not
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a norm in Z[ζ3] and which divides c with odd multiplicity. It follows that p also divides a, and
p|u, v. However, then a is not co-prime to u, v, contradicting our assumption. Thus, c must be a
norm in Z[ζ3].

We aim to obtain a parametrized set of solutions for this equation, following [Coh07].
First we massage (3.9). Note that u2 + 3v2 = (u − v)2 − (u − v)(−2v) + (2v)2. Put u1 = u − v,
v1 = −2v, so that (3.9) becomes 4ca3 = u2

1 − u1v1 + v2
1. Observe that, by definition, v1 is even,

thus the right-hand side can be even if and only if u1 is even. Now put u1 = 2x and y = −v,
to obtain ca3 = x2 − xy + y2, which is equivalent to (1.8). We may then proceed with the proof
of Theorem 1.2.

3.1 Proof of Theorem 1.2
We unwrap (3.8) and Proposition 2.1 to obtain the desired parametrization. In the first case, we
have

4ca3 = b2 + 3n2, n ∈ Z. (3.10)

We then see that

b(s, t) = 2(c1s
3 − 3c2s

2t + 3(c2 − c1)st2 + c1t
3) − c2s

3 − 3(c1 − c2)s2t + 3c1st
2 − c2t

3

= (2c1 − c2)s3 − 3(c1 + c2)s2t + 3(2c2 − c1)st2 + (2c1 − c2)t3

for some c1, c2 such that c = c2
1 − c1c2 + c2

2. In the second case, we have

4ca3 = 3b2 + n2, n ∈ Z,

whence

b(s, t) = c2s
3 + 3(c1 − c2)s2t − 3c1st

2 + c2t
3, c = c2

1 − c1c2 + c2
2.

However, in this case more needs to be said. As I(F ) ≡ 0 (mod 3), it follows that J(F ) ≡ 0
(mod 27). However, this implies that bc ≡ 0 (mod 3). We had already deduced that 3 � c in
this case, so we must have b ≡ 0 (mod 3). Note that b(s, t) ≡ c2(s3 + t3) (mod 3). If c2 �≡ 0
(mod 3), then s3 + t3 ≡ 0 (mod 3). This implies that n ≡ 0 (mod 3), and because 3 � c, that
a ≡ 0 (mod 3). This violates the fact that gcd(a, b) = 1, whence c2 ≡ 0 (mod 3).

Finally, suppose that the third case in (3.8) occurs. Then once again we have

a(s, t) = s2 − st + t2, b(s, t) = (2c1 − c2)s3 − 3(c1 + c2)s2t

+ 3(2c2 − c1)st2 + (2c1 − c2)t3, s, t ∈ Z, gcd(s, t) = 1.

However, now we need to impose an additional congruence relation, on

n(s, t) = c2s
3 + 3(c1 − c2)s2t − 3c1st

2 + c2t
3.

Indeed, we must have n(s, t) ≡ 0 (mod 3). For the same reasons as in the previous case, we
conclude that c2 ≡ 0 (mod 3).

4. Counting monic abelian cubics by box height

In this section, we count monic, abelian cubics by the naive box height. Although the arguments
given in this section are elementary, it is worthwhile to give a short description of the strategy
to be carried out.

By Theorem 1.2, each monic abelian cubic form can be put into a standard form with
vanishing x2y-coefficient. Our strategy is to first count monic forms of this shape, and then see
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which admit at least one translation x 
→ x + u/3 with the property that the translated form
has box height bounded by X.

It turns out when we fix gcd(I, J), the above condition turns into a question of counting
integer solutions to

N(x1, x2, x3) ≤ X,

where N is a cubic decomposable form. This immediately shows that for a fixed value of c =
gcd(I, J) the corresponding number of cubics is Oc(X(log X)2).

To deal with varying (and possibly very large) values of c, we consider ranges of a, c separately;
that is, we restrict a, c to distinct dyadic ranges, say

T1 < a ≤ 2T1, T2 < c ≤ 2T2.

Our box height condition implies that ac � X2, so naturally T1T2 � X2. We then devise
arguments to deal with each relevant range of T1, T2.

We consider the first case of (3.8); the other two cases being similar. We look for the number
of u ∈ Q with 3u ∈ Z such that the translated polynomial

Fu(x) = (x − u)3 − 3ac(x − u) − bc = x3 − 3ux2 + 3(u2 − ac)x − (u3 − 3acu + bc)

satisfies H(Fu) ≤ X. Suppose that c = c2
1 − c1c2 + c2

2. By Theorem 1.2, we have

a = s2 − st + t2, b = (2c1 − c2)s3 − 3(c1 + c2)s2t + 3(2c2 − c1)st2 + (2c1 − c2)t3, (4.1)

n = −c2s
3 − 3(c1 − c2)s2t + 3c1st

2 − c2t
3.

It follows that the constant coefficient of Fu(x) is given by

Gc1,c2(u, s, t) = −u3 + 3c(s2 − st + t2)u + c((2c1 − c2)s3 − 3(c1 + c2)s2t

+ 3(2c2 − c1)st2 + (2c1 − c2)t3). (4.2)

One then checks that

HGc1,c2
(u, s, t) =

1
3

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2G
∂u2

∂2G
∂u∂s

∂2G
∂u∂t

∂2G
∂u∂s

∂2G
∂s2

∂2G
∂s∂t

∂2G
∂u∂t

∂2G
∂s∂t

∂2G
∂t2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 54cGc1,c2(u, s, t). (4.3)

In other words, HGc1,c2
is proportional to Gc1,c2 . The following lemma implies that Gc1,c2 is a

decomposable form; that is, it splits into a product of three linear forms over C. This fact is well
known; see, for example, Theorem 1 in [Bro16] for a modern reference.

Lemma 4.1. Let G(x1, x2, x3) ∈ C[x1, x2, x3] be a ternary cubic form which does not have a
square linear factor. Then G is the product of three linear forms if and only if G is proportional
to its Hessian HG.

Proof. Recall that the intersection points of the cubic curve CG in P2(C) defined by G = 0 with
the curve defined by HG = 0 are exactly the inflection points of CG. If G is proportional to HG,
then these two curves are identical, so every point of CG is an inflection point. This implies that
every component of CG is a line. The converse follows easily by explicit calculation. �

In fact, it is easily checked that Gc1,c2(u, s, t) must necessarily split over R.
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4.1 Proof of the upper bound in Theorem 1.1
We consider dyadic ranges for a, c. In particular, we suppose that

T1 < c ≤ 2T1, T2 < a ≤ 2T2, (4.4)

satisfying T1T2 � X2. We note the fact that there must exist u ∈ Q with 3u ∈ Z such that

3|u2 − ac|, |u3 − 3acu − bc| ≤ X. (4.5)

Put N(T1, T2) for the number of quintuples (u, c1, c2, s, t) which satisfies (4.5).
We view the expression

f(u) = u3 − 3acu + bc (4.6)

as a polynomial in u. By assumption, it has positive discriminant. We then use the cubic equation
for cubic polynomials with positive discriminant. The following formula is given in [Wei].

Lemma 4.2 (Cubic formula for cubic polynomials with three real roots). Letf(x) = x3 − 3px + q
be a real polynomial with three distinct real roots, so that p > 0. Then the roots r1, r2, r3 of f
are given by

r1 = 2p1/2 cos
(

θ

3

)
, r2 = 2p1/2 cos

(
θ + 2π

3

)
, r3 = 2p1/2 cos

(
θ + 4π

3

)
,

where

θ = arccos
(

q

2p3/2

)
.

We write the form Gc1,c2(u, s, t) given by (4.2) as

Gc1,c2(u, s, t) = (u − ξ1s − ξ2t)(u − ξ2s + (ξ1 + ξ2)t)(u + (ξ1 + ξ2)s − ξ1t) = L1L2L3. (4.7)

say, with ξ1, ξ2 ∈ Q ∩ R. Note that

ξ1ξ2(ξ1 + ξ2) = c(2c1 − c2) � T
3/2
1 ,

hence ξ1, ξ2 � T
1/2
1 .

We proceed to show that very small values of T1, T2 do not cause any issues.

Lemma 4.3. Suppose that T1T2 � X2/3. Then N(T1, T2) � X.

Proof. The proof follows easily from the observation that the number of possible choices for u is
O(X1/3). �

For the following, we assume that T1T2 	 X2/3.
We consider u in a dyadic interval (Y/2, Y ] for some Y � X. We show that when Y is

appreciably larger or smaller than
√

T1T2, then the contribution to N(T1, T2) will be negligible.
Indeed, if Y is much smaller or larger than

√
T1T2, then

Li(u, s, t) 	 max{Y,
√

T1T2} 	
√

T1T2

for i = 1, 2, 3. Hence

(T1T2)3/2 � |Gc1,c2(u, s, t)| ≤ X,

which implies that T1T2 � X2/3 and we are done by Lemma 4.3. We may, thus, assume that
Y � √

T1T2.
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For a given quintuple (u, c1, c2, s, t) we order the linear factors L1, L2, L3 by

|L1| ≤ |L2| ≤ |L3|.
If |L1| 	

√
T1T2, then we see that T1T2 � X2/3 and again we are done by Lemma 4.3. Hence, we

may assume that |L1| = o(
√

T1T2). Note that we must have |L3| 	
√

T1T2. These observations
imply that ∣∣∣∣ ∂

∂u
Gc1,c2(u, s, t)

∣∣∣∣ = |L1L2 + L1L3 + L2L3| 	 |L2L3|,

whence

|L2| � X√
T1T2

.

Put
Li(u, s, t) = u − �i(s, t), i = 1, 2, 3.

The binary cubic form nc1,c2(s, t) is precisely given by

cnc1,c2(s, t) = (�1(s, t) − �2(s, t))(�1(s, t) − �3(s, t))(�2(s, t) − �3(s, t)).

As �i − �j = Li − Lj for 1 ≤ i < j ≤ 3, it follows that |�1 − �2| = |L1 − L2| � X(T1T2)−1/2 and
|�1 − �3|, |�2 − �3| �

√
T1T2. Hence,

c · nc1,c2(s, t) � X
√

T1T2. (4.8)

Next let us put
f±X(u) = u3 − 3acu − bc ± X

and let r±i be the corresponding roots of f±X . The possible solutions u to (4.5) given c1, c2, s, t
then lie in the three intervals

[r−1 , r+
1 ], [r−2 , r+

2 ], [r−3 , r+
3 ].

Note that these intervals need not be disjoint. Typically, we expect that these intervals are very
short: the only exception is when

θ = arccos
(

bc

2(ac)3/2

)
given as in Lemma 4.2 is very close to zero. We quantify this by writing

bc

2(ac)3/2
= 1 − η

2(ac)3/2
.

This implies that

cos θ = 1 − θ2

2
+ O(θ4)

= 1 − η

2(ac)3/2
,

which shows that
θ2 + O(θ4) =

η

(ac)3/2
.

This bound is trivial if η(ac)−3/2 	 1 but measures how close θ is to zero when η = o((ac)3/2).
We now note that, by (4.8), θ will be very close to zero if T1T2 	 X.
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Lemma 4.4. Suppose that T1T2 	 X and let f(x) be given as in (4.6). Then θ, defined as in
Lemma 4.2, satisfies θ = O(X/T1T2).

Proof. We consider n = nc1,c2(s, t) in the equation

4ca3 = b2 + 3n2 (4.9)

and factoring over Z[
√−3], we write the right-hand side as

(b + n
√−3)(b − n

√−3).

Viewing the first vector as a complex number and expressing it in polar coordinates, we see that

b + n
√−3 = 2(ca3)1/2eiθ

with θ as in the statement of the lemma. Further, we have

n =
2(ca3)1/2

√
3

sin(θ).

By our bounds on n given in (4.8) we see that

sin(θ) = O

(
X
√

T1T2

(T1T2)3/2

)
= O

(
X

T1T2

)
. (4.10)

By looking at the Taylor expansion of sin(θ) around 0 we conclude that θ = O(X(T1T2)−1), as
desired. �

In particular, Lemma 4.4 implies that whenever T1T2 	 X, we have η/(ac)3/2 � 1.
We first assume that η/(ac)3/2 	 1, and so T1T2 � X. In this case, we see that θ is bounded

away from zero. We expand the series of

cos
(

θ

3

)
, sin

(
θ

3

)
and note that

cos(α + 2π/3) =
−1
2

cos α −
√

3
2

sin α, cos(α + 4π/3) =
−1
2

cos α +
√

3
2

sin α.

If we write

θ� = arccos
(

bc + X

2(ac)3/2

)
and θ� = arccos

(
bc − X

2(ac)3/2

)
,

we see that

cos
(

θ�

3

)
− cos

(
θ�

3

)
= O(|θ� − θ�|) = O

(
X

(ac)3/2

)
, (4.11)

because max{θ�, θ�} 	 1. Similarly, | sin(θ�/3) − sin(θ�/3)| = O(X/(ac)3/2) and by Lemma 4.2
we conclude that u must lie in a union of three intervals each having length O(X(T1T2)−1). This
immediately shows that ∑

T1T2�X

N †(T1, T2) �
∑

T1T2�X

T1T2 = O(X log X), (4.12)

where the † indicates only those (c1, c2, s, t) for which η/(ac)3/2 	 1 are counted. Here we used the
trivial bound O(T1T2) to count such (c1, c2, s, t) and for each such quadruple with η/(ac)3/2 	 1
there are O(X(T1T2)−1 + 1) possibilities for u.
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We now turn our attention to the case when η/(ac)3/2 � 1 (but with no restriction on the
size of T1T2). In this case, we note that (4.11) still holds, because

θ2
� − θ2

� = O

(
((η + X)1/2 − (η − X)1/2)(η1/2)

(T1T2)3/2

)
= O

(
X

(T1T2)3/2

)
.

Hence, we see∣∣∣∣cos
(

θ� + 2π

3

)
− cos

(
θ� + 2π

3

)∣∣∣∣ = O

(
X

(T1T2)3/2

)
+

|θ� − θ�|
2
√

3
+ O(|θ� − θ�|3)

� X

η1/2(T1T2)3/4
.

If η is much smaller than X, then we no longer have disjoint intervals, and the longest interval
has length O(X1/2/(T1T2)1/4). We see then that the number of possible u is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
O

(
X

η1/2(T1T2)1/4
+ 1
)

if η 	 X

O

(
X1/2

(T1T2)1/4
+ 1
)

if η � X.

(4.13)

Put N(T1, T2, T3) for the set of quintuples (u, c1, c2, s, t) for which a = s2 − st + t2, c = c2
1 −

c1c2 + c2
2 satisfies (4.9) and T3 < η ≤ 2T3.

We factor b + n
√−3 over Z[

√−3] ⊂ C into c · a3, say, where

c = c1/2eiγ

and
a = a1/2eiα.

We then have

γ + 3α + 2kπ = θ = O

(
T

1/2
3

(T1T2)3/4

)
, (4.14)

where k = 0, 1, 2. The situation is now essentially symmetric in a, c. Suppose, say, that T1 � T2

(so, in particular, T1 � X). Then we first fix a vector c, and then choose a vector having norm
a ∈ (T2, 2T2] lying in one of three sectors of angle O(X(T1T2)−1). Equation (4.14) gives three
sectors depending on the value of k. Call one of these sectors Aγ , say. If we have two vectors

a1 = p1 +
√−3 · q1, a2 = p2 +

√−3 · q2 ∈ Aγ ,

with corresponding angles α1, α2, then

√
3 · |p1q2 − p2q1| = ‖a1‖‖a2‖| sin(α1 − α2)| = O

(
T

1/2
3

(T1T2)3/4
· T2

)
= O

(
T

1/2
3 T

1/4
2

T
3/4
1

)
.

For each κ = O(T 1/2
3 T

1/4
2 /T

3/4
1 ) with |p1q2 − p2q1| = κ there are at most O(1) possibilities for

a2 ∈ Aγ once a1 is fixed, because any different solution would be separated by ‖a1‖ 	 T
1/2
2 .

Hence, having fixed c we see that Aγ contains O(T 1/2
3 T

1/4
2 /T

3/4
1 + 1) possibilities for a. Thus,

the number of choices for a, c is

O(T 1/2
3 T

1/4
1 T

1/4
2 + T1).

If instead we have T2 ≤ T1, then we switch tracks and fix a first. The argument proceeds in an
identical manner except now there is only one sector Bα, say. Using symmetry in this way allows
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us to conclude that there are

O(T 1/2
3 T

1/4
1 T

1/4
2 + min{T1, T2}) (4.15)

possibilities for a, c.
By (4.13), the number of choices for u is then O(X/T

1/2
3 (T1T2)1/4 + 1) if T3 	 X. Thus, we

have

N(T1, T2, T3) = O

(
X + T

1/2
3 T

1/4
1 T

1/4
2 +

X1/2 min{T1, T2}
(T1T2)1/4

+ min{T1, T2}
)

.

Noting that θ � X(T1T2)−1 by (4.10), we see that

T3 � η � θ2(T1T2)3/2 � X2

T
1/2
1 T

1/2
2

.

This implies that

T
1/2
3 T

1/4
1 T

1/4
2 � X

T
1/4
1 T

1/4
2

· (T1T2)1/4 � X.

Further, we see that (T1T2)1/4 	 (min{T1, T2})1/2, hence

X1/2 min{T1, T2}
(T1T2)1/4

� X1/2 min{T1, T2}1/2.

We thus obtain ∑
X�T3�X2/(T

1/2
1 T

1/2
2 )

∑
X2/3�T1T2�X2

N(T1, T2, T3)

�
∑

T3�X2

∑
T1�X

T1�T2�X2/T1

O(X + X1/2T
1/2
1 + T1)

� X(log X)2.

If instead T3 � X, then we use the second bound from (4.13), which shows that

N(T1, T2, T3) = O

(
X1/2T

1/2
3 + T

1/2
3 T

1/4
1 T

1/4
2 +

X1/2 min{T1, T2}
(T1T2)1/4

+ min{T1, T2}
)

= O(X1/2T
1/2
3 + T

1/2
3 T

1/4
1 T

1/4
2 + X1/2 min{T1, T2}1/2 + min{T1, T2}).

Summing over dyadic ranges we again obtain the bound O(X(log X)2). This is sufficient for the
proof of the upper bound of Theorem 1.1.

4.2 Proof of the lower bound in Theorem 1.1
For the lower bound, we have that the set

S(X) = {x3 + ax2 + (a − 3)x − 1 : a ∈ [−X, X] ∩ Z}
contains 2X + O(1) elements. Let fa denote the element in S(X) corresponding to the
parameter a. Then Δ(fa) = (a2 − 3a + 9)2, so fa is either an abelian cubic or is totally reducible
over Q. The latter situation occurs only when fa has a rational integer root. However, the
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constant coefficient of fa is −1, so this root must be ±1. We then check that

fa(1) = 2a − 3, fa(−1) = 1

are both odd, so they cannot be zero. Hence, fa is irreducible for all a ∈ Z and, thus, fa is an
abelian cubic for all a ∈ Z. This provides the required lower bound.

We remark that the family S(X) is well known; see, for example, [Ste91] and [Smi99].

5. Counting monic abelian cubics by invariants

In this section, we prove Theorem 1.3. As in all cases our parametrization demands that
gcd(s, t) = 1, we first address this issue. Put

S(T ) = {(s, t) ∈ Z2 : gcd(s, t) = 1, s2 − st + t2 ≤ T}
and S(T ) = #S(T ). Next, put Z(T ) = {(s, t) ∈ Z2 : s2 − st + t2 ≤ T} and Z(T ) = #Z(T ). Then
for any positive number M we have

S(T ) =
∏

p<M
p �=3

(
1 − 1

p2

)
Z(T ) + O

( ∑
M<p�T 1/2

Z(T )
p2

)
. (5.1)

Note that the infinite product satisfies∏
p>M

(
1 − 1

p2

)
= exp

(∑
p>M

log
(

1 − 1
p2

))

= exp
(∑

p>M

(
− 1

p2
− 1

2p4
− 1

3p6
− · · ·

))

= exp
(
− cp

p2

)
,

where cp =
∑∞

n=1(1/np2n−2) is an absolute constant. It follows that∏
p>M

(
1 − 1

p2

)
= 1 + O(p−2).

From here one concludes that

S(T ) =
27
4π2

· πT√
3

+ O(T 1/2). (5.2)

We proceed to treat the first case given by (1.9). Thus, we are required to count the solutions
(c1, c2, s, t) satisfying the inequality

(c2
1 − c1c2 + c2

2)(s
2 − st + t2) ≤ X1/3/9 (5.3)

and gcd(s, t) = 1, 3 � s2 − st + t2. We then have

∑
c=c21−c1c2+c22≤X1/3

S(X1/3/9c) =
∑

c21−c1c2+c22≤X1/3

(
X1/3

π
√

3c
+ O

(
X1/6

c1/2

))
. (5.4)

Let r3(n) = #{(s, t) ∈ Z2 : n = s2 − st + t2}. Observe that∑
n≤Y

r3(n) = #{(s, t) ∈ Z2 : s2 − st + t2 ≤ Y } =
πY√

3
+ O(Y 1/2).
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Indeed, the middle term above is precisely the number of integral points inside the ellipse defined
by the inequality s2 − st + t2 ≤ Y . We then have, for any α > 0,∑

c21−c1c2+c22≤Y

(c2
1 − c1c2 + c2

2)
−α =

∑
n≤Y

r3(n)
nα

= Y −α
∑
n≤Y

r3(n) +
∫ Y

1

∑
n≤t r3(n)
tα+1

dt

=
πY 1−α

√
3

+
∫ Y

1

(
π√
3tα

+ O

(
1

tα+1/2

))
dt.

The values we require to evaluate (5.4) are α = 1 and α = 1/2, giving the term

X1/3 log X

4
+ O(X1/3).

However, we must remember to impose the condition that s2 − st + t2 �≡ 0 (mod 3), which
introduces a factor of 2/3 to the main term. Hence, we obtain the asymptotic form

X1/3 log X

6
+ O(X1/3). (5.5)

The cases corresponding to (3.4) and (3.6) correspond to the inequalities

(c2
1 − c13c2 + 9c2

2)(s
2 − st + t2) ≤ X1/3/3 (5.6)

and
(c2

1 − c13c2 + 9c2
2)(s

2 − st + t2) ≤ X1/3, (5.7)

respectively. However, there are now additional congruence relations that must be satisfied by
c1, c2, s, t as indicated in Theorem 1.2. For the second case we must have c1 �≡ 0 (mod 3) and
s2 − st + t2 �≡ 0 (mod 3). These conditions introduce a factor of 4/9. This gives that there are

X1/3 log X

3
+ O(X1/3) (5.8)

possibilities in this case. Finally, in the third case we apply the same congruence restrictions,
resulting in the estimate

X1/3 log X + O(X1/3). (5.9)

Thus, we see that

MBS(X) =
1
12

(2 + 4 + 12)X1/3 log X + O(X1/3)

=
3X1/3 log X

2
+ O(X1/3),

as desired.

6. Some algebraic consequences

In this section, we record some nice algebraic consequences of the methods we develop in this
paper which may be of independent interest. First, we give another proof of the following well-
known theorem in algebraic number theory.

Theorem 6.1. The 3-torsion part of narrow class groups of quadratic fields are in one-to-one
bijection with maximal, irreducible nowhere totally ramified cubic rings.
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6.1 Proof of Theorem 6.1
Let R2,R3 denote the GL2(Z)-equivalence classes of binary quadratic and cubic forms, respec-
tively. We show that the map φ3,2 : R3 → R2 sending a binary cubic form F to its Hessian
covariant HF induces a bijection between the two objects in the theorem. Indeed it is well
known that GL2(Z)-classes of binary cubic forms with square-free discriminant precisely corre-
spond to rings of integers of cubic fields which are nowhere totally ramified, and GL2(Z)-classes
of binary quadratic forms correspond to ideal classes of quadratic fields.

Let F be a binary cubic form with integer coefficients. As Δ(HF ) = −3Δ(F ), it follows that F
has square-free discriminant only if HF is primitive. For a given binary quadratic form g(x, y) =
ax2 + bxy + cy2 with co-prime integer coefficients and non-zero discriminant, we have that an
element F = Fa3,a2 ∈ Vg(C) with integer coefficients given in Proposition 3.1 has discriminant
equal to

Δ(Fa3,a2) =
g(a2,−3a3)2(4ac − b2)

3a4
.

We now apply an element of GL2(Z) to g (respectively, F ) to replace a with a prime p repre-
sentable by g which does not divide Δ(g). The prime p can be interpreted as representing the
narrow class associated to g. Moreover, we see that Δ(F ) can be square-free only if g represents
p2 as well.

As g represents p, it follows that p splits in Q
(√

Δ(g)
)
. We thus factor (p) = p1p2 and without

loss of generality, we assume that the ideal class corresponding to g is represented by p1. As g
also represents p2, which has the possible factorizations

(p2) = (p)(p), p2
1p

2
2, p

2
2p

2
1,

it follows that p2
1 or p2

2 must be in the same class as p1 because the first case corresponds to
imprimitive representations. Indeed, examining the congruence conditions in (3.2) shows that
the second case also cannot happen. Thus, p1, p

2
2 must lie in the same class. Note that the class

[p2] of p2 is the inverse of the class p1, whence [p1]3 = Id. This shows that g is an order-3 element
in the ideal class group of Q

(√
Δ(g)

)
. This establishes the desired bijection.

6.2 Proof of Theorem 1.4
In this subsection, we give a proof of Theorem 1.4, which asserts that all semi-stable abelian
elliptic curves have a common 2-torsion field, equal to the maximal real subfield of Q(ζ9).

The cubic polynomials we are considering take the shape

f(x) = x3 − 3(s2 − st + t2)x ± (s3 − 6s2t + 3st2 + t3), (6.1)

by Proposition 9.6 in [Coh07]. By explicit calculation, we see that the Hessian covariant of
F (x, y) = y3f(x/y) is proportional to

g(x, y) = (s2 − st + t2)x2 ± (s3 − 6s2t + 3st2 + t3)xy + (s2 − st + t2)2y2.

One then checks that

g(x, y) = u2 + uv + v2,

where

u = sx + (s2 − t2)y, v = −tx + (2st − s2)y.

Moreover, for G(x, y) = x3 + 3x2y − y3, we have

G(u, v) = (s3 − 3s2t + t3)F (x, y).
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This shows that G and F have the same splitting fields. Note that

θ0 = arccos
(−1

2

)
=

π

3
.

It then follows from Lemma 4.2 that the roots r1, r2, r3 of G(x, 1) are given by

r1 = 2 cos(θ0/3) = 2 cos
(

2π

9

)
, r2 = 2 cos

(
8π

9

)
, r3 = 2 cos

(
14π

9

)
.

These are precisely equal to ζ9 + ζ−1
9 , ζ2

9 + ζ−2
9 , ζ4

9 + ζ−4
9 , where ζ9 = exp(2πi/9) is a primitive

ninth root of unity. This completes the proof.

References

Bha04 M. Bhargava, Higher composition laws I: a new view on Gauss composition, and quadratic
generalizations, Ann. of Math. 159 (2004), 217–250.

Bha21 M. Bhargava, Galois groups of random integer polynomials and van der Waerden’s Conjecture,
Preprint (2021), arXiv:2111.06507 [math.NT].

BS15 M. Bhargava and A. Shankar, Binary quartic forms having bounded invariants, and the
boundedness of the average rank of elliptic curves, Ann. of Math. (2) 181 (2015), 191–242.

BS14 M. Bhargava and A. Shnidman, On the number of cubic orders of bounded discriminant having
automorphism group C3, and related problems, Algebra Number Theory, (1) 8 (2014), 53–88.

Bro16 G. Brookfield, Factoring forms, Amer. Math. Monthly 123 (2016), 347–362.
CD20 S. Chow and R. Dietmann, Enumerative Galois theory for cubics and quartics, Adv. Math.

372 (2020), 1–37.
CD21 S. Chow and R. Dietmann, Towards van der Waerden’s conjecture, Preprint (2021),

arXiv:2106.14593 [math.NT].
Coh07 H. Cohen, Number theory – volume II: analytic and modern tools, Graduate Texts in

Mathematics, vol. 240 (Springer, New York, 2007).
Hea12 D. R. Heath-Brown, Square-free values of n2 + 1, Acta Arith. 155 (2012), 1–13.
Hoo00 C. Hooley, On binary cubic forms: II, J. Reine Angew. Math. 521 (2000), 185–240.
Lef79 P. Lefton, On the Galois groups of cubics and trinomials, Acta Arith. 35 (1979), 239–246.
Smi99 G. W. Smith, Some polynomials over Q(t) and their Galois groups, Math. Comp. 69 (1999),

775–796.
Ste91 C. L. Stewart, On the number of solutions of polynomial congruences and Thue equations,

J. Amer. Math. Soc. (4) 4 (1991), 793–835.
vdW36 B. L. van der Waerden, Die Seltenheit der reduziblen Gleichungen und die Gleichungen mit

Affekt, Monatsh. Math. 43 (1936), 137–147.
Wei E. W. Weisstein, Cubic formula. From MathWorld—A Wolfram web resource. https://

mathworld.wolfram.com/CubicFormula.html.
Xia19 S. Y. Xiao, On binary cubic and quartic forms, J. Théor. Nombres Bordeaux 31 (2019),
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