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In this paper we prove that the best constant in the Sobolev trace embedding
H1(Ω) ↪→ Lq(∂Ω) in a bounded smooth domain can be obtained as the limit as ε → 0
of the best constant of the usual Sobolev embedding H1(Ω) ↪→ Lq(ωε, dx/ε), where
ωε = {x ∈ Ω : dist(x, ∂Ω) < ε} is a small neighbourhood of the boundary. We also
analyse symmetry properties of extremals of the latter embedding when Ω is a ball.

1. Introduction

The main goal of this paper is to obtain the best Sobolev trace constant for a given
domain as the limit of the usual Sobolev constant in small strips near the boundary
of the domain when the width of the strip tends to zero.

We consider a bounded smooth (C2 is sufficient for our arguments) domain Ω ⊂
R

N and we deal with the best constant of the Sobolev trace embedding H1(Ω) ↪→
Lq(∂Ω). For every critical or subcritical exponent, 1 � q � 2∗ = 2(N − 1)/(N − 2),
we have the Sobolev trace inequality: there exists a constant C such that

C

( ∫
∂Ω

|v|q dS

)2/q

�
∫

Ω

(|∇v|2 + v2) dx

for all v ∈ H1(Ω). The best Sobolev trace constant is the largest C such that the
above inequality holds, that is,

Tq = inf
v∈H1(Ω)\H1

0 (Ω)

( ∫
Ω

|∇v|2 + v2 dx

)/( ∫
∂Ω

|v|q dS

)2/q

. (1.1)
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For subcritical exponents, 1 � q < 2∗, the embedding is compact, so we have the
existence of extremals, i.e. functions where the infimum is attained. These extremals
can be taken to be strictly positive in Ω̄ and smooth up to the boundary. If we
normalize the extremals with ∫

∂Ω

|u|q dS = 1, (1.2)

it follows that they are weak solutions of the problem

−∆u + u = 0 in Ω,

∂u

∂ν
= Tq|u|q−2u on ∂Ω,

⎫⎪⎬
⎪⎭ (1.3)

where ν is the unit outward normal vector. In the special case q = 2, (1.3) is a linear
eigenvalue problem of Steklov type [14]. In the rest of this paper we will assume
that the extremals are normalized according to (1.2).

As we have mentioned, we want to see how the best trace constant, Tq, can be
obtained as the limit of the usual Sobolev constant for some subdomains. To this
end, let us consider the subset of Ω,

ωε = {x ∈ Ω : dist(x, ∂Ω) < ε}.

Notice that this set has measure |ωε| ∼ ε|∂Ω| for small values of ε. For sufficiently
small σ � 0 we can define the ‘parallel’ interior boundary Γσ = {y−σν(y), y ∈ ∂Ω},
where ν(y) denotes the outward unitary normal at y ∈ ∂Ω. Note that Γ0 = ∂Ω.
Then, we can also look at the set ωε as the neighbourhood of Γ0 defined by

ωε = {x = y − σν(y), y ∈ ∂Ω, σ ∈ (0, ε)} =
⋃

0<σ<ε

Γσ

for sufficiently small ε, say 0 < ε < ε0. We also define Ωδ = {x ∈ Ω : dist(x, ∂Ω) >
δ} and for δ small we have that ∂Ωδ = Γδ.

Let us consider the usual Sobolev embedding associated to the set ωε, that is,

H1(Ω) ↪→ Lq

(
ωε,

dx

ε

)
.

We have normalized the size of ωε by taking dx/ε as measure in ωε. In this case the
embedding is continuous for exponents q such that 1 � q � 2∗ = 2N/(N − 2). Note
that 2∗ = 2N/(N − 2) is larger than 2∗ = 2(N − 1)/(N − 2). The best constant
associated to this embedding is given by

Sq(ε) = inf
v∈H1(Ω)

( ∫
Ω

|∇v|2 + v2 dx

)/(
1
ε

∫
ωε

|v|q dx

)2/q

. (1.4)

For q < 2∗, by compactness, the infimum is attained. The extremals, normalized
by

1
ε

∫
ωε

|u|q dx = 1 (1.5)

https://doi.org/10.1017/S0308210506000813 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000813


Sobolev trace constant 225

are weak solutions of

−∆u + u =
Sq(ε)

ε
χωε

(x)|u|q−2u in Ω,

∂u

∂ν
= 0 on ∂Ω,

⎫⎪⎪⎬
⎪⎪⎭ (1.6)

where χωε
denotes the characteristic function.

Our main result is the following.

Theorem 1.1. Let Ω be a bounded C2 domain and let Tq and Sq(ε) be the best
Sobolev constants given by (1.1) and (1.4).

(i) For critical or subcritical q, 1 � q � 2∗ = 2(N − 1)/(N − 2), we have

lim
ε→0

Sq(ε) = Tq. (1.7)

Moreover, for subcritical q, 1 � q < 2∗ = 2(N − 1)/(N − 2), the extremals of Sq(ε)
normalized according to (1.5) converge strongly (along subsequences) in H1(Ω) and
in Cβ(Ω), for some β > 0, to an extremal of (1.1),

lim
ε→0

uε = u0 strongly in H1(Ω) and in Cβ(Ω).

In the critical case, q = 2∗ = 2(N − 1)/(N − 2), the extremals of Sq(ε) converge
weakly (along subsequences) in H1(Ω) to a limit, u0, that is a weak solution of (1.3).
This convergence is strong in H1(Ω) if and only if the limit verifies

∫
∂Ω

uq
0 = 1 and

in this case u0 is an extremal for T2∗ .

(ii) For supercritical q, 2∗ = 2(N − 1)/(N − 2) < q < 2∗ = 2N/(N − 2), we have

lim
ε→0

Sq(ε) = 0. (1.8)

A reference closely related to this work is [1], in which the authors consider
concentrated reactions near the boundary in an elliptic problem. They prove that
the solutions converge to a solution of a problem with a non-homogeneous flux
condition at the boundary. Our results can be viewed as a complement of the
results of [1], since here we deal with (nonlinear) eigenvalue problems when the
reactions are concentrated near the boundary (see the right-hand side of (1.6)).

Next, we look at the symmetry for extremals of (1.4) in the special case when Ω
is a ball, Ω = B(0, R). In this case we prove the following result.

Theorem 1.2. Let Sq(ε) be the best Sobolev constant given by (1.4) with Ω =
B(0, R).

(i) For 1 � q � 2 and for every R, ε > 0, the extremals of (1.4) in a ball are radial
functions that do not change sign. In particular, there exists a unique non-negative
extremal of (1.4) satisfying (1.5).

(ii) For 2 < q < 2∗ = 2(N − 1)/(N − 2), there exist 0 < R0 � R1 < ∞ such that:

(a) for 0 < R � R0 and ε small (possibly depending on R) the extremals of (1.4)
are radial;
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226 J. M. Arrieta, A. Rodŕıguez-Bernal and J. D. Rossi

(b) for R � R1 and ε small (possibly depending on R) the extremals of (1.4) are
not radial.

Remark 1.3. As a consequence of our results, we find that extremals for the
Sobolev trace embedding in small balls are radial. For symmetry results of extremals
of Sobolev inequalities see, for example, [6, 7] and references therein. Also, for ref-
erences concerning Sobolev trace embeddings we refer the reader to [2,5,8–10] and
references therein.

2. Proof of theorem 1.1

This section is devoted to the proof of theorem 1.1. First, we prove that the Sobolev
trace constant is continuous as a function of the domain. We believe that this result
is interesting for itself.

Lemma 2.1. Let Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}. Then the function

δ → Tq(Ωδ)

is continuous at δ = 0.

Proof. Consider a sufficiently small fixed ε0 > 0. For all 0 < δ < ε0, let us consider
a smooth increasing function ψδ such that ψδ(0) = δ, ψδ(s) = s for all s � ε0 and
ψδ(s) → s as δ → 0 in C1([0,∞)). Now we take the diffeomorphism

Aδ : Ω → Ωδ,

Aδ(x) =

{
y − ψδ(s)ν(y) for x = y − sν(y), with y ∈ ∂Ω, s ∈ (0, ε0),

x for x ∈ Ω \ ω̄ε0 .

Observe that if y ∈ ∂Ω and 0 < s < ε0, then x = y − sν(y) ∈ ωε0 . Moreover, Aδ is
also a diffeomorphism when restricted to the boundary,

Aδ : ∂Ω → ∂Ωδ.

This diffeomorphism has bounded derivatives and, furthermore,

lim
δ→0

‖DAδ(x) − I‖ = 0 (2.1)

uniformly in Ω̄. Here I ∈ Mn×n is the identity matrix.
Therefore, we can change variables with

u(x) = v(Aδ(x))

for x ∈ Ω or x ∈ ∂Ω. This induces a map denoted, similarly, by

Aδ : H1(Ω) �→ H1(Ωδ),

which is a diffeomorphism. Moreover, we see that the following diagram is commu-
tative:

H1(Ω) ��

Aδ

��

Lq(∂Ω)

Aδ

��
H1(Ωδ) �� Lq(∂Ωδ).

(2.2)
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Therefore, from (2.1), we obtain

C1(δ)
∫

Ω

|∇u|2 + u2 dx �
∫

Ωδ

|∇v|2 + v2 dx � C2(δ)
∫

Ω

|∇u|2 + u2 dx,

where Ci(δ) → 1 as δ → 0.
In a similar way, we get

C1(δ)
∫

∂Ω

|u|q dS �
∫

∂Ωδ

|v|q dS � C2(δ)
∫

∂Ω

|u|q dS, (2.3)

with Ci(δ) → 1 as δ → 0.
From the previous inequalities we obtain that there exist two constants K1, K2

such that Ki(δ) → 1 as δ → 0 and

K1(δ)Tq(Ω) � Tq(Ωδ) � K2(δ)Tq(Ω).

The desired continuity is proved.

The next result shows that the traces on ∂Ωδ also behave continuously as δ → 0.
In order to do this, we first figure out a device that allows us to compare traces
taken on different surfaces close to the boundary of Ω. For this, observe that, for
any q � 2∗, we can define the mapping

γδ : H1(Ω) → Lq(∂Ωδ) ←→ Lq(∂Ω).

Here the first arrow denotes traces and the second denotes the diffeomorphism
induced by A−1

δ as in (2.2).
Then, we have the following result which, in particular, complements some results

in [1].

Lemma 2.2. Denoting by γ the trace operator on ∂Ω, we have

lim
δ→0

γδ = γ in Lq(∂Ω)

uniformly on compact sets of H1(Ω) if q = 2∗ or in L(H1(Ω), Lq(∂Ω)) if q < 2∗.
In particular, for q � 2∗, if uε is a bounded sequence in H1(Ω), then

1
ε

∫
ωε

|uε|q

is also bounded.
Moreover, if uε → u0 strongly in H1(Ω) and q � 2∗, then∫

∂Ωδ(ε)

|uε|q dS →
∫

∂Ω

|u0|q dS (2.4)

as δ(ε) → 0 and

1
ε

∫
ωε

|uε|q dx →
∫

∂Ω

|u0|q dS (2.5)

as ε → 0.
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Proof. If q � 2∗ and uε is a bounded sequence in H1(Ω), using the co-area formula
and the fact that the gradient of the distance to the boundary has length 1, we
write

1
ε

∫
ωε

|uε|q dx =
1
ε

∫ ε

0

∫
∂Ωδ

|uε|q dS dδ

� 1
ε

∫ ε

0
Tq(Ωδ)−q/2‖uε‖q

H1(Ωδ) dδ

� sup
δ∈[0,ε]

[Tq(Ωδ)−q/2]‖uε‖q
H1(Ω),

which is bounded using lemma 2.1 and the fact that the sequence uε is bounded
in H1(Ω).

Note that if q < 2∗, there exists some 0 < s < 1, such that

γδ : H1(Ω) ↪→ Hs(Ω) → Lq(∂Ωδ) ←→ Lq(∂Ω).

In a similar fashion, if q = 2∗, we take s = 1.
For any fixed u ∈ Hs(Ω), from (2.3), we have that these operators converge to

the usual trace on ∂Ω, that is

lim
δ→0

γδ(u) = γ(u).

Moreover, we have
‖γδ‖L(Hs(Ω),Lq(∂Ω)) � C,

uniformly on δ. Hence, from the Banach–Alouglu–Bourbaki lemma, we get

lim
δ→0

γδ = γ

uniformly on compact sets of Hs(Ω).
In addition, if uε → u0 strongly in H1(Ω),

lim
ε→0

∫
∂Ω

|γε(uε)|q dS =
∫

∂Ω

|u0|q dS,

which, combined with (2.3), gives (2.4).
On the other hand, to obtain (2.5) we write

1
ε

∫
ωε

|uε|q dx =
1
ε

∫ ε

0

∫
∂Ωδ

|uε|q dS dδ.

Since for every δ < ε,
∫

∂Ωδ
|uε|q and

∫
∂Ω

|u0|q are uniformly close, we obtain (2.5).

Remark 2.3. The only property that we have actually used in the proof of the
previous results is (2.1). Therefore, both lemmas above remain true for any family
of domains Ωδ such that there exists a diffeomorphism Aδ : Ω �→ Ωδ with Aδ :
∂Ω �→ ∂Ωδ such that (2.1) holds. Also note that in lemma 2.2 the conclusions
remain true for q < 2∗ under the weaker assumption of convergence in Hs(Ω) for
s < 1 but sufficiently close to 1.
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Proof of theorem 1.1. We first prove (1.7) for critical or subcritical exponents, i.e.
1 � q � 2∗ = 2(N − 1)/(N − 2). Given k > 0, let us take a regular function uk such
that

Tq +
1
k

�
( ∫

Ω

|∇uk|2 + u2
k dx

)/( ∫
∂Ω

uq
k dS

)2/q

.

By the regularity of uk, from lemma 2.2 (see also [1]), we have, for a fixed k,

lim
ε→0

1
ε

∫
ωε

uq
k dx = lim

ε→0

1
ε

∫ ε

0

∫
Γs

uq
k dS ds =

∫
∂Ω

uq
k dS.

Therefore, using uk as test in (1.4) and taking limits we get

lim sup
ε→0

Sq(ε) � Tq +
1
k

.

Letting k → ∞ we obtain
lim sup

ε→0
Sq(ε) � Tq. (2.6)

Now let us prove that for q � 2∗ we have

lim inf
ε→0

Sq(ε) � Tq. (2.7)

For this, note that, for u ∈ H1(Ω), using the restriction to Ωδ, we obtain( ∫
∂Ωδ

|u|q dS

)2/q

� 1
Tq(Ωδ)

‖u‖2
H1(Ωδ) � 1

Tq(Ωδ)
‖u‖2

H1(Ω).

Integrating for δ ∈ (0, ε), we obtain

1
ε

∫
ωε

|u|q dx =
1
ε

∫ ε

0

∫
∂Ωδ

|u|q dS dδ �
(

1
ε

∫ ε

0

dδ

(Tq(Ωδ))q/2

)
‖u‖q

H1(Ω).

Thus, we have obtained (
1
ε

∫ ε

0

dδ

(Tq(Ωδ))q/2

)−2/q

� Sq(ε). (2.8)

This fact, together with the continuity of the map

δ → Tq(Ωδ),

proved in lemma 2.1, gives (2.7).
From (2.6) and (2.7) we obtain (1.7), i.e.

lim
ε→0

Sq(ε) = Tq.

Now we turn our attention to the convergence of extremals in the subcritical case
q < 2∗. Let us consider uε an extremal of Sq(ε) normalized by

1
ε

∫
ωε

|uε|q dx = 1. (2.9)
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Hence, for ε small, using (2.6), we obtain

‖uε‖2
H1(Ω) = Sq(ε) � Tq + 1.

Therefore, the sequence uε is bounded in H1(Ω) and we can extract a subsequence
(that we still denote by uε) such that

uε ⇀ u0 weakly in H1(Ω),

uε → u0 strongly in L2(Ω),
uε → u0 strongly in Hs(Ω) for all s < 1,

uε → u0 strongly in Lq(∂Ω),
uε → u0 almost everywhere in Ω.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.10)

Now we claim that ∫
∂Ω

|u0|q dS = 1. (2.11)

To prove this note that, as we have

1 =
1
ε

∫
ωε

|uε|q dx =
1
ε

∫ ε

0

∫
∂Ωδ

|uε|q dS dδ

from the integral mean-value theorem, there exists 0 � δ(ε) � ε such that∫
∂Ωδ

|uε|q dS = 1.

Now, from the convergence of uε to u0 in Hs(Ω), valid for 0 < s < 1, we conclude
that ∫

∂Ω

|u0|q dS = 1

(see remark 2.3). This completes the proof of the claim.
Bearing this in mind, we have

Tq �
( ∫

Ω

|∇u0|2 + u2
0 dx

)( ∫
∂Ω

|u0|q dS

)q/2

� ‖u0‖2
H1(Ω) � lim inf

ε→0
‖uε‖2

H1(Ω)

� lim sup
ε→0

‖uε‖2
H1(Ω) = lim sup

ε→0
Sq(ε) = Tq.

Therefore,
lim
ε→0

‖uε‖H1(Ω) = ‖u0‖H1(Ω).

In particular, the convergence of the norms implies that the extremals of Sq(ε)
normalized according to (2.9) converge strongly in H1(Ω) to an extremal of (1.1),

lim
ε→0

uε = u0 strongly in H1(Ω),

which satisfies (2.11).
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Now, let us prove that we have convergence in Cβ(Ω), for some β > 0. To this
end we will use some results from [1] that describe the behaviour of solutions of
linear elliptic equations with concentrated potentials.

Denote by Vε(x) = Sq(ε)uq−2
ε so that uε is a solution of the problem

−∆uε + uε =
1
ε
χωεVεuε in Ω,

∂uε

∂ν
= 0 on ∂Ω.

First, note that as q is subcritical we can choose r > N − 1 such that

1
ε

∫
ωε

|Vε|r dx =
Sq(ε)r

ε

∫
ωε

|uε|(q−2)r dx � C,

with C independent of ε. Indeed, as uε is uniformly bounded in H1(Ω), from
lemma 2.2 for any θ � 2(N − 1)/(N − 2), we have

1
ε

∫
ωε

|uε|θ dx � C.

Now, we just write θ = (q − 2)r and use the fact that q < 2(N − 1)/(N − 2) (this
implies that (q − 2) < 2/(N − 2)) to obtain (q − 2)r � 2(N − 1)/(N − 2) for some
r > N − 1.

Moreover, since Sq(ε) → Tq, uε → u0 in H1(Ω) and q is subcritical, we have that

1
ε

∫
ωε

Vεφ dx →
∫

∂Ω

V0φ dS

for any smooth function φ, where V0(x) = Tqu
q−2
0 (x). Hence, u0 satisfies

−∆u0 + u0 = 0 in Ω,

∂u0

∂ν
= V0u0 on ∂Ω.

With all this at hand, we can apply [1, theorem 3.1 and corollary 3.2], which guar-
antee the convergence in the Hölder norm Cβ(Ω), for some β > 0.

In the critical case q = 2∗ we also obtain a uniform bound in H1(Ω) for the
extremals uε of Sq(ε). Therefore, we can extract a subsequence such that (2.10)
holds. Passing to the limit in the weak form of (1.6), we find that the limit u0 is a
weak solution of (1.3). However, due to the lack of compactness, we cannot ensure
that u0 verifies

∫
∂Ω

|u0|q = 1 in this case.
To finish the proof of the theorem it remains to show (1.8) in the supercritical

case 2∗ = 2(N − 1)/(N − 2) < q < 2∗ = 2N/(N − 2). To see this, assume that
0 ∈ ∂Ω and consider

u(x) = |x|−λ,

where we choose λ such that u ∈ H1(Ω), i.e. λ < (N−2)/2. Now we choose λ = λ(q)
such that ∫

∂Ω

|u|q dS = +∞,
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that is, λ � (N − 1)/q, which is possible since q > 2∗. We observe that with this
choice we have

lim
ε→0

1
ε

∫
ωε

|u|q dx = +∞.

The proof is complete.

Remark 2.4. Observe that, in the critical case, using a sequence of minimizers and
subsequences if necessary, we have uε → u0 weakly in H1(Ω) and Sε(q) → Tq. Also,
we have

‖u0‖2
H1(Ω) � lim inf

ε→0
‖uε‖2

H1(Ω) � lim sup
ε→0

‖uε‖2
H1(Ω) = lim sup

ε→0
Sq(ε) = Tq

and

Tq �
( ∫

Ω

|∇u0|2 + u2
0 dx

)( ∫
∂Ω

|u0|q dS

)q/2

.

Hence, if u0 is a minimizer, then
∫

∂Ω
|u0|q dS � 1. Conversely, if

∫
∂Ω

|u0|q dS � 1,
then the argument above shows that this integral is actually equal to 1 and u0 is
a minimizer. Moreover, in such a case, we obtain the convergence of the H1(Ω)
norms and, hence, the strong convergence in this space.

Thus, u0 is a minimizer if and only if
∫

∂Ω
|u0|q dS = 1, which in turn is equivalent

to the strong convergence.
Also, in the critical case it may then be the case that one obtains (1.5) and∫

∂Ω
|u0|q dS < 1.

3. Proof of theorem 1.2

We divide the proof of theorem 1.2 into several lemmas. Throughout this section
we take Ω = B(0, R), except in the next result.

Lemma 3.1. Let Ω be arbitrary. Then for any 1 � q � 2 and any ε > 0, every
extremal is of constant sign. Moreover, there exists a unique positive extremal
of (1.4), normalized according to (1.5).

Proof. Note that non-negative extremals of (1.4) are indeed positive solutions of
(1.6), i.e. when normalized as in (1.5), they satisfy

−∆u = f(x, u) = a(x)uρ − u in Ω,

∂u

∂ν
= 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (3.1)

where

a(x) =
Sq(ε)

ε
χωε

(x) � 0 and ρ = q − 1.

Also note that, from (1.4), non-negative extremals exist, since the absolute value
of an extremal is an extremal.

Now, we use an argument from [15] (see also [12, 13]). Note that if q < 2, then
ρ < 1. Hence, if x ∈ Ω \ ω̄ε we have f(x, u) = −u � C(x)u + D(x) if we take
C(x) = −1 and D(x) = 0.
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On the other hand, if x ∈ ωε, for sufficiently small δ, Young’s inequality yields

f(x, u) � (δ − 1)u + β

[
Sq(ε)
δρε

]1/(1−ρ)

for some constant β > 0 and we can take C(x) = δ − 1 and

D(x) = β

[
Sq(ε)
δρε

]1/(1−ρ)

.

In summary,

C(x) = δχωε(x) − 1, D(x) = β

[
Sq(ε)
δρε

]1/(1−ρ)

χωε(x)

and, for u > 0 and x ∈ Ω, we have

f(x, u) � C(x)u + D(x).

Note that, for sufficiently small δ, the semigroup generated by ∆ + C(x) in Ω with
Neumann boundary conditions decays exponentially. Then, since D ∈ L∞(Ω), we
see from [12,15] that there exists a solution of (3.1) which is maximal in the sense of
pointwise ordering. In particular, it is non-zero since it bounds above in a pointwise
sense any normalized positive extremal.

Now, the proof concludes by showing that, in fact, (3.1) has a unique solution,
which follows from the fact that

f(x, u)
u

=
a(x)
u1−ρ

− 1

is non-increasing for u > 0 and strictly decreasing on a set of positive measure.
Indeed, let ϕ be the maximal positive solution of (3.1) and 0 < ψ � ϕ any other
solution. Then, multiplying the equation satisfied by ϕ by ψ, and multiplying that
for ψ by ϕ, subtracting and integrating by parts in Ω, we have

0 =
∫

Ω

f(x, ϕ)
ϕ

ϕψ −
∫

Ω

f(x, ψ)
ψ

ϕψ =
∫

Ω

(
f(x, ϕ)

ϕ
− f(x, ψ)

ψ

)
ϕψ.

Now, since ψ � ϕ we obtain that

f(x, ϕ)
ϕ

− f(x, ψ)
ψ

� 0

and is non-zero in a set of positive measure. Therefore, we must have ψ ≡ 0.
When q = 2 the conclusion of the lemma follows easily, since the first eigenvalue

of the elliptic problem (1.6) is simple [11]. Therefore, there exists a unique positive
eigenfunction such that (1.5) holds.

With this, if Ω = B(0, R), we get the following result, which actually proves the
first part of theorem 1.2.

Corollary 3.2. For every 1 � q � 2 and every R, ε > 0, every extremal of (1.4)
is radial and does not change sign in Ω.
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Proof. Note that in any case when q < 2 or q = 2 the absolute value of an extremal
is also an extremal. Therefore, the absolute value is a non-negative extremal and
must then coincide with the unique positive extremal. This, in turn, must be radial,
since, by uniqueness, it must coincide with any of its rotations.

The following lemma proves theorem 1.2(a).

Lemma 3.3. For 2 < q < 2∗ = 2(N −1)/(N −2) there exists R1 such that, for every
R > R1, there exists ε0 such that the extremals (1.4) are not radial for ε < ε0.

Proof. The results of [3] imply that in this case the extremals of the best Sobolev
trace constant Tq(B(0, R)) are not radial (since they develop a concentration phe-
nomena). Since the extremals for Sq(ε) converge to the extremals of Tq(B(0, R)) as
ε → 0, they cannot be radial for sufficiently small ε (possibly depending on R).

Now we finish the proof of theorem 1.2.

Lemma 3.4. For 2 < q < 2∗ = 2(N − 1)/(N − 2) there exists R0 such that, for
every R � R0, there exists ε0 such that there exists a radial extremal of (1.4) for
ε < ε0.

Proof. First, let us choose R0 in such a way that, for any R < R0, the problem

−∆u + R2u = 0 in B(0, 1),

∂u

∂ν
= R2 Tq(R)

Rβ
uq−1 on ∂B(0, 1)

⎫⎬
⎭ (3.2)

has a unique positive solution close to u0 ≡ |∂B(0, 1)|−1/q normalized with the
usual constraint

∫
∂B(0,1) uq = 1 (see [6]). Here

β =
qN − 2N + 2

q
.

Observe that the above problem is merely (1.3) (together with (1.2)) rescaled
from the ball of radius R to the ball of radius 1. Also note that, from the results
of [4], we have

lim
R→0

Tq(R)
Rβ

=
|B(0, 1)|

|∂B(0, 1)|2/q
.

Moreover, we can assume (taking R0 smaller if necessary) that, for R < R0, the
linearization of (3.2) is invertible. This can be obtained since, for small R, there is
a unique solution to (3.2) with ∫

∂B(0,1)
uq = 1

and the linearized problem is invertible at R = 0, u = 1/(|∂B(0, 1)|1/q) and then
invertible at (R, uR) for small R (see [6] for details).

Now we want to use the implicit function theorem in (1.4). To this end, let us
rescale (1.6) to the unit ball defining v(x) = Rαu(Rx), where u is the solution
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of (1.6) satisfying (1.5). If α = (N − 1)/q, we have that v satisfies

1
εR−1

∫
∆ε,R

|v|q dx = 1, (3.3)

where ∆ε,R = B(0, 1) \ B(0, 1 − εR−1) and also

−∆v + R2v = R2 Sq(ε)
RβεR−1 χε,R(x)vq−1 in B(0, 1),

∂v

∂ν
= 0 on ∂B(0, 1),

where χε,R(x) is the characteristic function of ∆ε,R. Let

S =
{

v ∈ H1(B(0, 1));
∫

∂B(0,1)
|v|q dS = 1

}
.

If we multiply v by an adequate constant µ in order to have w = µv ∈ S, we have

µ =
( ∫

∂B(0,1)
vq

)−1/q

and we are left with a solution of

−∆w + R2w = R2 Ã(ε)
εR−1Rβ

χε,R(x)wq−1 in B(0, 1),

∂w

∂ν
= 0 on ∂B(0, 1).

⎫⎪⎪⎬
⎪⎪⎭ (3.4)

Here

Ã(ε) = Sq(ε)
( ∫

∂B(0,1)
vq dS

)1−2/q

,

where the integral term also depends on ε through v. From (1.7) and the convergence
of the extremals in theorem 1.1, using (3.3) and lemma 2.2, we find that

Ã(ε) → Tq

as ε → 0.
Let us consider the functional

F : S × [0, ε0] �→ (H1(B(0, 1)))∗,

given by

F (w, ε)(φ) =
∫

B(0,1)
∇w∇φ dx + R2

∫
B(0,1)

wφ dx

− R2Ã(ε)
εR−1Rβ

∫
B(0,1)\B(0,1−εR−1)

wq−1φ dx.

This functional is C1 with respect to w ∈ S (since q > 2).
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Recall that we are looking for pairs (w, ε) that are solutions of F (w, ε) = 0 (these
are weak solutions of (3.4)).

To apply the implicit function theorem we need to compute

∂F

∂w
(u, 0).

First, let us compute the derivative

∂F

∂w
(w, ε)(φ)(χ) =

∫
B(0,1)

∇χ∇φ dx + R2
∫

B(0,1)
χφdx

− R2Ã(ε)
εR−1Rβ

∫
B(0,1)\B(0,1−εR−1)

(q − 1)wq−2φχdx.

Taking the limit as ε → 0 and evaluating at w = u, we obtain (by [1] or by the
results of the previous section)

∂F

∂w
(u, 0)(φ)(χ) =

∫
B(0,1)

∇χ∇φ dx + R2
∫

B(0,1)
χφdx

− R2 Tq

Rβ

∫
∂B(0,1)

(q − 1)uq−2φχdx.

This problem corresponds exactly with the linearization of (3.2) that is invertible
by our choice R < R0.

Therefore, by the implicit function theorem, we find that there exists ε0 such
that for any ε < ε0 there exists a unique solution wε ∈ S of

F (wε, ε) = 0

close to u, that is, a unique weak solution of (3.4), with

lim
ε→0

wε = u.

Since we have proved that every extremal of (1.4) tends to u as ε → 0 and we have
uniqueness of solutions of (3.4) in a neighbourhood of u, the extremals must be
radial.
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2 P. Cherrier. Problèmes de Neumann non linéaires sur les variétés Riemanniennes. J. Funct.
Analysis 57 (1984), 154–206.

https://doi.org/10.1017/S0308210506000813 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000813


Sobolev trace constant 237

3 M. del Pino and C. Flores. Asymptotic behavior of best constants and extremals for trace
embeddings in expanding domains. Commun. PDEs 26 (2001), 2189–2210.

4 J. Fernández Bonder and J. D. Rossi. Asymptotic behavior of the best Sobolev trace con-
stant in expanding and contracting domains. Commun. Pure Appl. Analysis 1 (2002),
359–378.

5 J. Fernández Bonder and J. D. Rossi. On the existence of extremals for the Sobolev trace
embedding theorem with critical exponent. Bull. Lond. Math. Soc. 37 (2005), 119–125.

6 J. Fernández Bonder, E. Lami Dozo and J. D. Rossi. Symmetry properties for the extremals
of the Sobolev trace embedding. Annales Inst. H. Poincaré Analyse Non Linéaire 21
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13 A. Rodŕıguez-Bernal and A. Vidal-Lopez. Extremal equilibria for nonlinear parabolic equa-
tions and applications. Preprint MA-UCM-2006-6, Universidad Complutense de Madrid.
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