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Turbulent thermal convection
over grooved plates
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Politecnico di Bari, DIMeG and CEMeC, Via Re David 200, 70125, Bari, Italia

(Received 5 September 2005 and in revised form 17 November 2005)

Direct numerical simulations of thermal convection over grooved plates are presented
and discussed, in comparison with the standard flat-plate case, in order to gain a
better understanding of the altered near-wall dynamics and of the enhancement of
the heat transfer. The simulations are performed in a cylindrical cell of aspect-ratio
(diameter over cell height) Γ = 1/2 at fixed Prandtl number Pr =0.7 with the Rayleigh
number Ra ranging from 2 × 106 to 2 × 1011. The results show an increase of heat
transfer, or in non-dimensional form the Nusselt number Nu, when the mean thermal
boundary-layer thickness becomes smaller than the groove height, in agreement with
earlier experimental investigations available from the literature. The present increase,
however, results in a steeper power law of the Nu vs. Ra law rather than a simple
upward shift of the Nu law of the flat plate. This finding agrees with some studies,
but it is at variance with others. Possible causes for this difference are discussed with
the help of an electrical analogy.

1. Introduction
The classical Rayleigh–Bénard problem, in which heat transfer occurs via a fluid

between two horizontal flat plates at different temperatures, has been investigated for
more than a century (Bénard 1900; Rayleigh 1916) because of the many practical
applications involving heat fluxes mediated by a fluid. Theoretical (see Siggia 1994 for
a comprehensive review and Grossmann & Lohse 2000 for more recent literature),
experimental (Castaing et al. 1989; Cioni, Ciliberto & Sommeria 1997; Chavanne et al.
1996, 2001; Niemela et al. 2000; among many others) and numerical (Kerr 1996;
Verzicco & Camussi 2003) studies have addressed several aspects of the problem
although the main concern has always been the scaling law of the heat transfer. The
problem can be simply formulated by finding the relation Nu = Nu(Ra) where the
Nusselt number Nu is the non-dimensional heat flux and the Rayleigh number Ra is
the non-dimensional temperature difference between the plates (precise definitions of
Nu and Ra are given in the following sections). Although it is now clear (Grossmann
& Lohse 2000, 2001) that a simple power law cannot fit the relation Nu= Nu(Ra),
solutions have often been proposed in the form Nu= ARaβ and several studies have
been devoted to the refinement or explanation of particular values of A and β .

One of the aims of applied research is to investigate the possibility of increasing the
heat transfer for a given temperature difference or in other words increasing A and/or
β in the relation Nu= ARaβ; this would lead in industry to more compact and efficient
cooling and heating devices, in turn yielding energy savings and reduced costs. Few
experimental and numerical studies have shown that an effective way of enhancing the
heat flux is to use rough surfaces instead of smooth ones (Prasolov 1961; Fujii, Fujii &
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Takeuchi 1973; Anderson & Bohn 1986; Amin 1991, 1993; Shen, Xia & Tong 1996;
Du & Tong 1998, 2000; Ciliberto & Laroche 1999; Roche et al. 2001; Sudhakar &
Arakeri 2005) and this observation has motivated the comprehension of the heat trans-
fer mechanisms in the presence of surface roughness. Understanding heat transport
over non-smooth surfaces also has important implications in geophysics and meteoro-
logy where the topography of the ground and its texture are known to produce relevant
changes in the heat and momentum fluxes (Sini, Anquetin & Mestayr 1996). The study
of thermal convection over rough surfaces is also interesting for the comprehension
of heat transfer over smooth surfaces since every boundary becomes rough below
a threshold scale and any Rayleigh–Bénard experiment aiming at investigating very
high Rayleigh-number regimes (like the ‘ultimate’ one indicated by Kraichnan 1962)
will eventually have to contend with the irregular surface of the plates.

Some of the older studies (Prasolov 1961; Fujii et al. 1973) considered the heat
transfer around rough circular cylinders since they were motivated by the degradation
of heat exchanger performance caused by the fouling of the tubes. Prasolov (1961)
showed that in the turbulent range (105 � Ra � 3 × 106), artificial pyramidal roughness
could increase the heat transfer coefficient of a horizontal cylinder in air up to a factor
of two. Fujii et al. (1973), in contrast, used vertical cylinders in water and several
roughness shapes, always finding a negligible effect on the local heat transfer.

The numerical studies by Amin (1991, 1993) considered, respectively, vertical and
horizontal isothermal surfaces and in both cases the top and bottom boundaries were
ribbed with periodic rectangular elements. For the case of vertical isothermal plates,
Amin found a reduction of the heat transfer, especially for aspect ratios of the domain
larger than one. On the other hand, for the case of horizontal isothermal surfaces,
the wall roughness increased the heat transfer up to a maximum of 57 %; all these
simulations, however, were performed on two-dimensional domains, therefore, they
cannot be directly compared to three-dimensional flows.

In the recent literature only a few experimental (Shen, Xia & Tong 1996; Du &
Tong 1998, 2000; Ciliberto & Laroche 1999; Roche et al. 2001; Sudhakar & Arakeri
2005; Qiu, Xia & Tong 2005) and theoretical (Villermaux 1998) papers have dealt
with thermal convection over non-smooth plates and again the emerging scenario is
far from being clear (figure 1). In fact, Shen et al. (1996) using rough surfaces made
of a regular square array of identical pyramids, found that only the prefactor A, in
the relation Nu= ARaβ , was affected by the wall roughness and it increased by about
20 % when the thermal boundary-layer thickness (λθ � h/(2Nu)) became smaller than
the roughness height (δ). Du & Tong (2000) obtained essentially the same results even
if using pyramids heights δ = 9 mm (to be compared with δ = 3.2 mm of Shen et al.
1996), in an otherwise identical geometry the increase of A was 76 % instead of
20 %. Ciliberto & Laroche (1999) produced rough surfaces by gluing glass spheres
over copper plates; the spheres had different diameters δ, within a range δm � δ � δM ,
distributed according to an algebraic probability density function (p.d.f.) P (δ) ∼ δ−ξ

with 1 � ξ � 2. Once again, the wall roughness was effective only when the thermal
boundary layer was thinner than the maximum height δM and the exponent β could
be augmented up to a maximum of β = 0.45 for ξ = 1. In the case of a single sphere
diameter (δ), the exponent β was unaffected but the numerical prefactor A decreased
when λθ < δ. For all cases, mono disperse and multiple sphere diameters, the value of
the Nusselt number was always smaller than the corresponding value for the flat plate.
The experiment of Roche et al. (2001) used axisymmetric V-shaped grooves on the
horizontal plates and on the sidewall. Also in this case the heat transfer was affected
only when λθ decreased below the roughness height, but in this case, the exponent
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Figure 1. Compensated Nusselt versus Rayleigh numbers for different experiments of thermal
convection over non-flat plates (only the range of Rayleigh numbers affected by the wall
roughness is shown); the factor Ra−0.3 has no particular meaning except that of reducing the
scatter among the different data. (a) Du & Tong (2000) for Γ = 0.5, (b) Shen et al. (1996) for
Γ = 0.5, (c) Roche et al. (2001), (d) Ciliberto & Laroche (1999) for roughness distribution with
ξ = 1 and (e) Ciliberto & Laroche (1999) for ξ = 2. The data of Ciliberto & Laroche (1999)
have been obtained in a rectangular tank for an aspect ratio Γ = 2.

β was increased up to the value β = 0.51 possibly indicating the Kraichnan (1962)
ultimate regime. In this case, the effect of the wall roughness was mainly intended
to alter the dependence of the viscous sublayer thickness on the Rayleigh number
and therefore to neutralize the logarithmic correction factor of the power law in the
Kraichnan regime.

Sudhakar & Arakeri (2005) used water as the working fluid and a rectangular
tank with a bottom brass plate with straight V-shaped grooves while the upper
boundary was a free surface. Their experimental procedure yielded a flow whose
mean temperature increased in time, the increase, however, occurred on a time scale
much longer than that of the flow unsteadiness which therefore could be treated
as quasi-steady. The authors report that ‘for small temperature differences’ the heat
transfer was the same for the smooth and grooved plates, whereas on increasing
the temperature difference, the heat flux over the rough plate became larger. The
different behaviours are consistent with the thinning of the thermal boundary layer
for increasing Ra and the eventual crossover with the roughness height, although
quantitative data are not given to verify this conjecture. Another interesting result
of Sudhakar & Arakeri (2005) is that the heat transfer increase occurs through an
increase of the exponent β which is different from the results of Du & Tong (2000).

Villermaux (1998) derived a theoretical model for the heat transfer assuming that
the changes were essentially produced in proportion to the covering area of a sheet
having uniform thickness λθ and laying over the rough surface. This yielded a power
law Nu ∼ Raβ+β(df −2) with df the fractal dimension of the surface roughness that, for a
typical value of df = 2.1 (Feder 1988; Villermaux 1998), would give a 10 % increase in
the exponent with respect to the smooth plate. For the particular case of a roughness
with a single length scale δ, the surface is not fractal (df = 2) and the exponent is the
same as for the smooth plate; for λθ � δ, however, there is a sudden increase of the
covering area giving an analogous increase in the heat transfer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

97
85

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006009785


310 G. Stringano, G. Pascazio and R. Verzicco

Apart from the common finding that the surface roughness, becomes active only
when the thermal boundary layer is thinner than a representative roughness height,
a clear picture does not emerge from the above papers. In fact, in agreement with
Villermaux (1998), for a ordered periodic roughness, Shen et al. (1996), Du & Tong
(2000) and Ciliberto & Laroche (1999) found β to be unaffected, whereas Roche et al.
(2001) report an increase of β up to β = 0.51. On the other hand, Shen et al. (1996)
and Du & Tong (2000) both observed Nu to be larger than the reference flat-surface
value (an increase of A) while Ciliberto & Laroche (1999) reported smaller Nusselt
numbers. Indeed, the work by Ciliberto & Laroche (1999) is the only one that could
be compared with the prediction for fractal surfaces of Villermaux (1998) even if
the poorly conducting glass spheres of the former and the ideal perfectly conducting
surfaces in the model of the latter make the comparison unlikely. On the other hand,
the hypothesis of Villermaux (1998) that Nu increases only according to the coverage
area of the thermal boundary layer does not find complete experimental confirmation
in Du & Tong (2000) who observed the tip of the rough elements to be active points
for the release of thermal plumes. The change in the dynamics was quantitatively
confirmed by a Nusselt number increase of 76 % which could not be explained only
in terms of area variation that at most could amount to 41 %.

A possible difference among the mentioned studies could be the thermal
conductivity of the plates (copper for Roche et al. 2001, brass for Shen et al. 1996
and Du & Tong 2000 and copper with glass spheres for Ciliberto & Laroche 1999)
which is already known to play a non-negligible role for smooth surfaces (Chillà et al.
2004; Verzicco 2004; Brown et al. 2005) and the effect could be exacerbated in the
presence of rough elements. The shape of these elements, on the other hand, is
also very different since Ciliberto & Laroche (1999) used spheres, Shen et al. (1996)
and Du & Tong (2000) had a square array of pyramids and Roche et al. (2001)
used axisymmetric V-shaped grooves. Other differences are the Prandtl number, the
cell aspect-ratio and cell shape that can all work together to give slightly different
results. Another cause of concern is the Rayleigh-number variation within each
experiment; in fact, except for Roche et al. (2001) (in which anyway the Prandtl
number changed from Pr= 0.7 to Pr= 4.9 over eleven decades of Ra), none of the
mentioned experiments spanned more than two decades of Ra within the same set-up.
Considering that sometimes part of this range is occupied by the Nusselt-number
transition across λθ = δ, it becomes difficult to distinguish among different power
laws over short ranges of Ra; this is particularly true in those experiments where
the roughness height is not mono disperse since, as noted by Roche et al. (2001), a
transition spread over several roughness heights might mimic an increased exponent.

These considerations motivated us in performing a detailed study of thermal
convection over non-smooth plates within highly controlled conditions and over a
wide range of Rayleigh numbers (five decades). We have performed, in particular,
direct numerical simulations under the ideal condition of infinite thermal conductivity
of the plates with single-height V-shaped axisymmetric grooves. This was done in an
attempt to isolate first the effect of the non-smooth geometry and to compare the
near-wall dynamics with that occurring over flat surfaces. The effect of the finite
conductivity of the plates in the presence of grooved plates is under investigation and
it will be presented in a forthcoming paper.

As an aside, we wish to stress that concerning the near-wall turbulence, Jiménez
(2004) suggests that a boundary behaves as a rough surface when the height δ

is of the order of, or smaller than, λv/50, where λv is the viscous boundary-layer
thickness, since in this case the effect of the roughness is limited to the viscous
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Figure 2. Perspective sketch of the cell and detail of the groove geometry.

and the buffer layers while the logarithmic region survives. In contrast, when the
roughness is bigger, its effect extends across all the boundary layer, little is left of the
original wall dynamics and the flow tends to ‘see’ the rough element as an obstacle.
In thermal convection, the additional scale λθ should also be considered, nevertheless,
since in the papers mentioned, the Prandtl number 0.7 � Pr � 5, λθ and λv are of the
same order of magnitude and neither in the experimental study nor in the present
numerical simulations does the condition λv/δ � 50 apply. This is the reason why we
preferred in the title the word ‘grooved’ instead of ‘rough’ which is more commonly
used.

2. Numerical method
In this paper, we simulate the flow developing in a cylindrical cell vertically confined

by grooved plates, the lower being hotter than the upper (respectively, at temperatures
Th and Tc). The flow is bounded laterally by a smooth adiabatic sidewall and all the
surfaces are no-slip. The grooves of the horizontal plates are V-shaped with a tip angle
of 90◦ and with height δ (figure 2). For all the simulations, the value δ = 0.025h has
been used since it is very close to the value of Du & Tong (2000) for an analogous cell
and, in addition it conveniently fixes the transition λθ = δ within our range of Rayleigh
numbers (see § 2.1). The cell has a diameter-over-height aspect ratio Γ = d/h = 1/2
implying that the upper and lower plates are paved by N = 5 axisymmetric grooves
(figure 2).

The numerical method is essentially the same as Verzicco & Orlandi (1996),
Verzicco & Camussi (2003) and Verzicco (2004) where details of the numerical method
and validation tests are described. The code solves the Navier–Stokes equations with
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the Boussinesq approximation

Du
Dt

= −∇p + θẑ +

(
Pr

Ra

)1/2

∇2u, ∇ · u = 0, (2.1a, b)

Dθ

Dt
=

1

(PrRa)1/2
∇2θ, (2.1c)

where ẑ is the axial unity vector pointing in the opposite direction with respect
to gravity, u the velocity vector, p the pressure and θ the non-dimensional
temperature. The equations have been made non-dimensional using the free-fall
velocity U =

√
gα�h, the base-to-base distance between hot and cold plates h and

their temperature difference �= Th − Tc, therefore the Rayleigh and Prandtl numbers
are, respectively, Ra = gα�h3/(νk) and Pr= ν/k with g the acceleration due to gravity,
α the isobaric thermal expansion coefficient, ν the kinematic viscosity and k the
thermal diffusivity of the fluid. The non-dimensional temperature θ is defined as
θ = (T − Tc)/� so that 0 � θ � 1.

The above equations have been written in a cylindrical coordinate frame and
discretized on a staggered mesh by central second-order accurate finite-difference
approximations. The time advancement of the solution is obtained by a hybrid low-
storage third-order Runge–Kutta scheme. The algebraic system resulting from the
discretized equations (2.1) has been solved by a fractional-step procedure with the
elliptic equation inverted using trigonometric expansions in the azimuthal direction
and the FISHPACK package (Swartzrauber 1974) for the other two directions.
OpenMP directives in the code allowed the use of multi-processor shared-memory
computers which turned out to be mandatory for the three-dimensional high-Rayleigh-
number computations. An immersed boundary procedure (Fadlun et al. 2000) was
already implemented in (2.1a) by Verzicco (2002) in order to solve momentum
and temperature fields over different portions of the computational domain. In
the present study, the immersed boundary procedure (IB) has been extended also
to the temperature equation thus allowing the imposition of the temperature
boundary condition directly on the wet surface of the grooved plates. Details about
the implementation of the immersed boundary procedure, its second-order spatial
accuracy and fields of application can be found in Fadlun et al. (2000) and Iaccarino &
Verzicco (2003). Here it suffices to mention that the main advantage consists of
solving flows bounded by arbitrarily complex geometries without resorting to body-
conformal grids and therefore essentially with the same ease and efficiency of flows
as in simple geometries. This technique has already been validated in many different
contexts, however, since the IB extension to the temperature field is a new feature
of the present numerical code, an additional validation test has been performed.
In particular, after having computed an axisymmetric simulation at Pr= 0.7 and
Ra = 2 × 108 in a standard flat-plate cylindrical cell with a body-fitted mesh, the same
simulation has been repeated over an extended domain with the flat plates mimicked
by the IB method. The computational domains with a mean temperature field are
reported in figure 3, showing a very good agreement of the results and a similar
agreement was obtained for the Nusselt number resulting in Nu= 38.49 ± 0.75 and
Nu= 39.21 ± 0.95, respectively, for the body-fitted and IB calculations.

2.1. Grid resolution and convergence checks

In every direct numerical simulation all the flow scales up to the smallest must be
captured by an adequate grid resolution and in turbulent thermal convection these are
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(a)

(b)

Figure 3. Time-averaged isothermal lines for axisymmetric simulations at Pr =0.7 and
Ra = 2 × 108; the plotting stride between the contours is �θ = 0.04. (a) simulation on the
body fitted mesh, (b) simulation with the immersed boundary method. The grey lines in the
background are the grid (only every other line is plotted for clarity).

the Kolmogorov (η) and the Batchelor scales (ηθ ), in the bulk, and the viscous (λu) and
thermal (λθ ) boundary-layer thicknesses close to the plates or other solid boundaries.
Grötzbach (1983) gives an estimate for the Kolmogorov scale η/h � π(Pr/RaNu)1/4

from integral quantities while the relation λθ/h= 1/(2Nu) is commonly adopted for
the thermal boundary layer: both of them can be used once a reliable correlation for
Nu(Ra) is available. For ηθ and λu different relations should be employed. However,
since in this study the Prandtl number is O(1), it results in η � ηθ and λθ � λu,
therefore assessing the grid resolution for η and λθ is representative also for the other
scales.

Verzicco & Camussi (2003) used the experimental fit Nu= 0.124Ra0.309 from
Niemela et al. (2000) to estimate a priori η and λθ and they verified from direct
measurements that the estimates were accurate enough for the determination of the
grid resolution requirements. For the present problem, however, the same relations
should be used with caution because a reliable correlation Nu(Ra) is not available and
the formula λθ/h= 1/(2Nu) has been tested only for flat-plate flows. An additional
issue of the near-wall resolution is that, in the IB context, the grooved plate does
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r

z

Figure 4. Example of mesh in a vertical meridional plane, with an enlargement of a
particular groove element.

not lie over a coordinate surface. This requires that a fine spatial resolution must be
maintained in the whole groove region and that the grid spacing is equally fine in
the vertical and radial directions (figure 4). On account of these considerations, the
only truly reliable test to assess the quality of the results is a grid refinement check in
which a flow is simulated with different grids and the results are checked against each
other. Unfortunately, owing to the large computational cost of the three-dimensional
simulations, the grid refinement of each case was not possible. As an alternative, we
have performed most of the checks over axisymmetric cases, namely two-dimensional
simulations over a vertical meridional (r, z)-plane, for which the CPU time is not
a limiting factor. As an example, the flow at Ra = 2 × 109 has been computed on
the grids 201 × 317 and 301 × 519 in the radial and vertical directions obtaining,
respectively, the Nusselt numbers Nu = 63.94±4.05 and 64.85±3.6; for the azimuthal
resolution we used the same values as in Verzicco & Camussi (2003) since from
preliminary low-Ra three-dimensional simulations (and as it could have been argued
from the axisymmetric geometry of the grooves) no extra azimuthal resolution was
required with respect to the flows over flat plates. As a final check, we selected the case
at Ra =2 × 108 which is inexpensive enough to be run on different grids and we have
directly verified the above criteria; in particular, we have used the grids 97 × 151 × 209
and 129 × 201 × 301 obtaining, respectively, Nu= 45.88 ± 3.05 and Nu =45.57 ± 3.35.

According to some ongoing multiple sensor measurements in the bulk of the
flow performed by P. Tong (personal communication) there is the possibility that a
resolution comparable to that of the thermal boundary layer is necessary even in
the bulk in order to resolve all the temperature scales; this would clearly make the
numerical simulation of thermal convection unfeasible since the ratio of the bulk-to-
wall grid size can also be 1000 in the high end of Ra. We believe, however, that once
a plume is released from the plate it undergoes a diffusion process that progressively
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Ra Nθ × Nr × Nx �min/h �max/h
λθ

h
=

1

(2Nu)

η

h
= π

[ Pr

(RaNu)

]1/4

T

2 × 106 65 × 65 × 171 3.4 × 10−3 8 × 10−3 4.7 × 10−2 4.2 × 10−2 100
2 × 107 97 × 151 × 209 8 × 10−4 9.8 × 10−3 2.6 × 10−2 2.04 × 10−2 110
2 × 108 97 × 151 × 209 8 × 10−4 9.8 × 10−3 1.1 × 10−2 9.30 × 10−3 125
2 × 109 129 × 201 × 317 5.5 × 10−4 5.3 × 10−3 4.3 × 10−3 4.14 × 10−3 125
2 × 1010 129 × 301 × 519 3.2 × 10−4 4.4 × 10−3 1.8 × 10−3 1.88 × 10−3 125
2 × 1011 193 × 401 × 701 2.3 × 10−4 3.8 × 10−3 7.9 × 10−4 8.57 × 10−4 50

Table 1. Computational parameters of the simulations, all the computations are at Pr = 0.7.
Nθ , Nr and Nz are, respectively, the number of nodes in the azimuthal, radial and vertical
directions, T is the duration of each run in large-eddy-turnover time units. λθ is the mean
thermal boundary-layer thickness and η the estimated Kolmogorov scale. Nu is computed a
posteriori from the simulations. �min and �max are, respectively, minimum and maximum grid
spacing.

increases its size making it unlikely that structures in the bulk and at the wall require
the same resolution. Nevertheless, the amount of diffusion depends on the flow regime
(viscous or turbulent diffusion) and on the Rayleigh and Prandtl numbers, therefore
for particular flow conditions it might happen that thermal plumes reach the bulk
with little change in dimensions with respect to their formation. For example in
high Prandtl flows (Pr � 5), the temperature field has a reduced diffusivity while for
moderate Rayleigh numbers (Ra � 1010), the turbulent diffusivity might not be much
stronger than viscous diffusion; in these conditions indeed thermal plumes in the bulk
might be similar to those of the wall region and the above resolution requirements
might be necessary. This should be verified by ad hoc numerical tests that, however,
are beyond the scope of the present paper in which the Prandtl number is kept fixed
to Pr = 0.7.

Some details of the numerical parameters are summarized in table 1 that, compared
with the analogous table of Verzicco & Camussi (2003) evidence, for a given Ra, an
increase in the number of grid points by a factor 4; the total computational overhead,
however, amounts to more than a factor of 10 upon considering that a finer mesh
requires a proportionally smaller time step. Given the very rapid increase of the
computational requirements with the Rayleigh number, we had to resort to parallel
computing at Ra = 2 × 109 and on account of the available computational resources
the simulations could be scaled up to Ra = 2 × 1011.

In order to obtain converged statistics, each simulation was run for at least 100
large-eddy-turnover times (T � 2h/U ) which turned out to be enough at least for
second-order statistics such as r.m.s. profiles and spectra. The run at Ra =2 × 1011

was the only exception because of its very high computational cost; in particular,
it was run for 50 large-eddy-turnover times only to obtain a reliable value of the
Nusselt number. It is worth mentioning that in an experimental set-up like that
of Du & Tong (2000) at Ra = 109 a time of 100T corresponds to about 1.7 h; in
the experiment they found that this time is adequate for first-order statistics, like
the Nusselt number, while more than 8 h were necessary in order to pin down the
error bar of second-order statistics (P. Tong, personal communication). Du & Tong
(2000), however, obtained their statistics from single-point measurements and they
could only average their data in time; for the present numerical simulations, in
contrast, simultaneous measurements over several points in homogeneous regions are
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Figure 5. (a) Nusselt number as a function of the Rayleigh number for the three-dimensional
cases at Pr = 0.7: �, smooth plates; �, grooved plates. (b) The same as (a) for the Nusselt
number compensated with Ra−0.37. In (a) also the error bars are reported, they are, however,
generally smaller than the symbol size. The results for smooth plates are from Verzicco &
Camussi (2003).

carried out and the data averaging can be performed also among different probes. In
particular, about 400 numerical probes as described in Verzicco & Camussi (2003)
are placed within the computational domain, half of which are in the bulk of the flow
and the remaining equally distributed between hot and cold boundary layers. The
latter, in turn, are positioned over the tips and the throats of the grooves so that each
type of measurement can benefit from the averaging of about 50 different probes.

3. Results
3.1. Heat transfer measurements

As mentioned in § 1, the most evident effect produced by the grooved plates is an
increase of the heat transfer that in non-dimensional form is expressed by the Nusselt
number. This is confirmed also by the present results (figure 5) showing that after a
threshold Rayleigh number Rath, the heat transfer with the grooved plates increases
with a steeper power law than the flat-plate counterpart. Since the computation of
the Nusselt number with the grooved plates implies some non-trivial choices, a short
discussion follows in order to clarify the meaning and the effects of the various
variables. Integration of (2.1c) between the lower grooved plate and a generic section
S at height z yields: ∫

Sw

∇θ · n dS =

(√
RaPr uzθ − ∂θ

∂z

)
z

S, (3.1)

where Sw is the wet surface of the grooved plate, S = πd2/4 is the cross-sectional area
of the cell and the operator ( ) implies an average over a constant height section. Since
the left-hand side of equation (3.1) is the heating power Φ flowing from the lower plate
into the fluid, the Nusselt number is given by the heat flux normalized by the cross-
section S, namely Nu = Φ/S ≡ (

√
RaPr uzθ − ∂θ/∂z)z. Other quantities implied in the

Nusselt number definition are implicitly included in the non-dimensional definition of
(2.1c); these are in particular the total temperature difference � and the base-to-base
distance between the plates h. It is worth mentioning that the use of the base-to-base
height h follows the convention adopted by Du & Tong (2000) this, however, is only
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one among several possibilities given by different heights. For example the tip-to-tip
height would be hT = 0.95h and the volume-averaged height hV = V/S = 0.975h with

V = πd2h/4 −
∑5

i=1 2πδ3(2i − 1) the volume of fluid contained in the cell. It is easy to

show that from Nu = ARaβ , dβ/β = [(1 − 3β)/ ln Nu](dh/h) results which in the low
end of Ra gives at most dβ/β = 0.15 % (with Nu= 10, β = 2/7 and dh/h= 0.05) and
in the high end of Ra dβ/β = −0.36 % (with Nu =1000, β = 1/2 and dh/h= 0.05). On
the other hand, Du & Tong (2000) have shown that dA/A= (1 − 3β) dh/h is, at most,
of the order of 1 % thus indicating that the corrections are clearly too small to be
appreciated by any experimental or numerical measurement and that the particular
definition of h is not a critical issue. As an aside, we note that if β =1/3 then dβ/β ≡ 0
and dA/A ≡ 0 implying that the relation Nu =ARaβ is completely unaffected by h;
this is the classical argument by Malkus (1954).

Another factor deserving a comment is that the wet surface of the plate is Sw while
the Nusselt number is normalized by the cross-sectional area of the cylindrical cell S.
Since for the present geometry it results in Sw =

∑10
i=1

√
2πδ2(2i − 1) =

√
2S � 1.41S it

could be argued that the heat transfer enhancement is simply due to the increase of
wet area. Should this be the case, the Nusselt number variation would be bounded
by the increase of wet area and it would consist of an upward shift of the Nu versus
Ra relation without any change in the power law exponent. In contrast, Du & Tong
(2000) obtained a 76 % increase of heat transfer with an augmented wetted area of
only 41 % while Roche et al. (2001) measured a β = 0.51 power law over one and
half Ra-decades in a configuration that, using smooth plates, had a power law with
β = 0.39.

For the present numerical simulations, the results are given in figure 5 where
it is shown that the heat transfer with grooved plates initially is similar to that
with smooth plates, but eventually follows a power law with an increased exponent
(Nu ∼ Ra0.37). The crossing with the flat-plate data occurs at Rath � 4 × 107 that,
computing an ‘average’ thermal boundary-layer thickness by the relation λθ = h/(2Nu),
yields λθ/h � 2.20 × 10−2 � δ/h; once more this confirms that the plate asperities
enhance the heat transfer when they are not buried below the thermal boundary
layer. In § § 3.2 and 3.3, we will analyse the flow changes produced by the non-smooth
plates and in § 4 these results will be discussed and compared with similar cases from
the literature.

It should be stressed that the value Rath � 4 × 107 should be taken with caution since
it was obtained by linearly connecting the points of the simulations and computing
the crossing of the segments. On account of the error bars, it can be assumed that
the crossover of the flows occurs in the range 2 × 107 � Ra � 9 × 107, this, however,
does not alter the previous conclusions.

It is worth mentioning that the results of figure 5 as well as all the other simulations
performed in this study have been obtained at Pr = 0.7. The main reason for this
choice is that in order to be able to distinguish the effects of the grooved plates in
otherwise ideal conditions, we needed to compare the results against similar ideal
flows with smooth plates. The papers by Verzicco & Camussi (2003) and Verzicco
(2003) have in fact been obtained for flat plates in a cylindrical cell of aspect-ratio
Γ = 1/2 at Pr = 0.7 for the same range of Rayleigh numbers and therefore are the
best candidates for such a comparison. Of course this value of the Prandtl number is
different from that of the experiments in water (Shen et al. 1996; Ciliberto & Laroche
1999; Du & Tong 2000) and this might cause differences in the flow dynamics. It has
been observed, however, that many flow features and especially the Nusselt number
become essentially independent of Pr when the latter exceeds a threshold of about
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(b)(a)

Figure 6. Instantaneous temperature field in a vertical section at Pr = 0.7 and Ra = 2 × 1010

(close-up of the hot boundary layer); (a) smooth plate, (b) grooved plate. The grey scale ranges
from θ = 1 (darkest grey) to θ =0.35.
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Figure 7. Time histories of temperature sampled inside the thermal boundary layer at a
distance z/h = λθ /2 from the hot surface, Pr = 0.7 and Ra = 2 × 1010. (a) smooth plate, (b) tip
of the grooved plate, (c) throat of the grooved plate.

0.35 (Verzicco & Camussi 1999) thus making possible the comparison of the present
simulations with the experiments in water.

3.2. Near-wall dynamics

As shown in the paper by Du & Tong (2000), the presence of asperities on the plate
surface dramatically changes the plume emission and therefore the heat transfer.
Their findings can be summarized by figure 6 showing typical plume emissions
from smooth and grooved plates. In the first case, the plume eruption is a purely
buoyancy-driven phenomenon while in the second, the presence of grooves favours
the flow separation at the sharp edges thus enhancing the plume generation and
fixing in space the location of the emission. The described behaviour is shown in
figure 7 where representative time series at a fixed distance from the wall z/h = λθ/2
are reported for the flat and the grooved plates; in the latter case, the signals are
separately sampled over the tips and in the throats in order to stress the different
dynamics. The cold spikes in the signals indicate the plume shedding since they
evidence the ‘cold’ fluid from the bulk sweeping the hot plate and replacing the
thermal plumes that have been released immediately before. It can be seen that in the
case of the smooth plate, the plumes are released less frequently than over the tips
of the grooved plate. In the throat, in contrast, the fluid is basically stagnant and the
signal is characterized by a higher mean temperature and a reduced fluctuation level.
Occasionally, however, large intense events occur and they are the intermittent rising
of bubbles of hot fluid that have gained enough heat after a long residence time in
the throat. While the signals of figure 7 represent only a small time window of the
whole simulation and only for a single-point measurement, the collective near-wall
behaviour can be appreciated from figure 8 which includes all the probes placed
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Figure 8. Probability density functions of temperature inside the hot plate temperature
boundary layer: · · · , smooth wall; −−−−, tip of the grooved plate; - - - - , throat of the
grooved plate. (a) Pr = 0.7 and Ra = 2 × 107, (b) Pr = 0.7 and Ra = 2 × 1010.

within the thermal boundary layer (about 50) and for the whole duration of the
computations. The presence of large tails on the left evidences the cold fluid from the
bulk replacing the shed plume while their increased probability indicates the enhanced
shedding frequency. The mean x-value of the histograms yields the mean temperature
of the point that, given the fixed wall temperature and distance of the probes from
the surface, indicates also the local heat transfer. The described features are present
before and after the transitional Rayleigh number, although in the latter case they
are more pronounced. In particular, at Ra = 2 × 107, mean and r.m.s. temperature are,
respectively, θ = 0.850 and σ =0.060 for the flat plate while they result in θ =0.931
and σ = 0.041 in the throat of the groove and θ = 0.792 and σ = 0.097 over the tip.
At Ra = 2 × 1010, the same quantities assume the values θ =0.832 and σ = 0.098 for
the flat plate, θ =0.946 and σ = 0.051 in the throat and θ =0.784 and σ = 0.122 over
the tip. Apart from the different values, however, the most distinctive feature of the
flow before and after Rath is the frequency of the plume shedding over the tips that,
in the latter case, is strongly enhanced.

It is worth mentioning that similar features have been observed also by Du & Tong
(2000) that, however, had to account for the non-uniform temperature of the plates
owing to the finite (although high) thermal conductivity of the plate material (brass).
Talking about the upper cold plate they say: ‘Unlike the smooth surface, the rough
surface is no longer isothermal under uniform heating. . . . This non–uniform boundary
layer dynamics destroys the surface homogeneity and produces a higher surface temp-
erature at the tip.’ Another important factor is that the used thermistor had a core
with a diameter of 0.29 mm with a layer of glass coating of 0.1mm thickness therefore
the local temperature measurement were strongly influenced by the mean temperature
inside the boundary layer (P. Tong personal communication). Despite these differences,
the near-wall dynamics is captured well by the measurements of Du & Tong (2000)
and the agreement with the present results is remarkable.

The altered boundary-layer dynamics is another distinctive feature of the grooved
plates and some of the details for the mean and r.m.s. temperature vertical profiles are
given in figures 9 and 10. As could be argued already from the previous discussion,
the wall temperature gradient, and therefore the local heat transfer, is the most
intense at the tips while it attains the minimum value in the throats. Here the profiles
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Figure 9. Vertical profiles of mean temperature for the lower hot grooved plate at Pr =0.7:
−−−−, Ra = 2 × 1010; - - - - , Ra = 2 × 109; –·–, Ra = 2 × 108; · · ·, Ra = 2 × 107. (a) profiles in the
throats, (b) profiles over the tips. ζ is the vertical distance from the solid surface, the horizontal/
dotted line is the maximum height of the grooves.
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Figure 10. Vertical profiles of r.m.s. temperature fluctuations for the lower hot grooved plate
at Pr = 0.7: −−−−, Ra = 2 × 1010; - - - - , Ra = 2 × 109; –·–, Ra = 2 × 108; · · ·, Ra = 2 × 107.
(a) profiles in the throats, (b) profiles over the tips. ζ is the vertical distance from the solid
surface, the horizontal dotted line is the maximum height of the grooves.

show a change of shape when the Rayleigh number crosses the transitional value;
this is particularly evident from the r.m.s. profiles of figure 10(a) showing that when
the main r.m.s. peak goes below the groove height δ, a secondary peak develops
at z = δ and this is produced by the unsteady interaction between the secondary
recirculation inside the groove and the external mean wind (figure 11). Assuming the
position of the r.m.s. temperature peak as the thickness of the thermal boundary
layer, it is possible to draw the thickness distribution over a groove as shown in
figure 12. The profiles have been averaged in the azimuthal direction, in time and
over the 5 grooves in order to obtain a single representative thickness distribution
for each Rayleigh number. As already argued in several papers, only when the mean
thermal boundary-layer thickness, estimated as λθ =h/(2Nu), becomes smaller than
the groove height δ the heat flux is enhanced with respect to the flat-plate case.
It is also significant that when the same thickness (namely, that obtained by the
position of the r.m.s. temperature peak) is distributed over the groove, it coincides
for most of the surface with the local thermal boundary-layer thickness λθ computed
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(b)(a)

Figure 11. Streamlines on a vertical section to evidence the secondary recirculations inside
the grooves (closeup of the lower hot grooved plate); (a) Ra = 2 × 107, (b) Ra = 2 × 1010.

λθ

λθ

(a) (b)
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Figure 12. Radial profiles of a ‘typical’ groove of the thermal boundary-layer thickness
at Pr = 0.7: (a) Ra = 2 × 107, (b) Ra = 2 × 108, (c) Ra = 2 × 109 and (d) Ra = 2 × 1010. - - - - ,
geometry of the groove; −−−−, thermal boundary-layer thickness; · · ·, line at a constant distance
h/(2Nu) from the groove surface with Nu taken from figure 5.

as the position of the r.m.s. temperature fluctuation peak; this implies that despite
the different flow dynamics, the heat transfer is quite uniform over the groove surface
suggesting that the plumes released from the tips essentially collect the fluid heated
along the sides of the grooves. As an aside we note that, since both the Nusselt
number and the boundary-layer thickness are computed from the same data but over
different quantities, the coincidence of λθ with the factor h/(2Nu) can be regarded as
a cross-validation for the computation of the Nusselt number.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

97
85

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006009785


322 G. Stringano, G. Pascazio and R. Verzicco

 0.10  0.15
 0

 0.025

 0.050

 0

 0.025

 0.050

 0.10  0.15

0

 0.025

 0.050

 0.10  0.15

λu

0

 0.025

 0.050

 0.10  0.15

λu

(c) (d)

r r

(a) (b)

Figure 13. Radial profile of a ‘typical’ groove of the viscous boundary layer thickness at
Pr = 0.7: (a) Ra = 2 × 107, (b) Ra = 2 × 108, (c) Ra = 2 × 109 and (d) Ra = 2 × 1010. - - - - ,
geometry of the groove, −−−−, viscous boundary layer thickness.

The fact that according to figure 12 the thermal boundary-layer thickness is constant
over the groove surface seems to contradict the idea that the plumes are released
mainly from the tips of the grooves. However, since it results in λθ < λv , the heat
transfer on the sides of the groove is essentially diffusive while convection only occurs
at the tip where temperature and vertical velocity fluctuations are correlated.

It is worth mentioning that the local thermal boundary-layer thickness has been
computed as the distance from the wall of the r.m.s. temperature peak in the vertical
direction while the heat transfer is proportional to the wall normal temperature
gradient. Since the wall normal is always at an angle of φ = π/4 with respect to the
vertical direction, the local specific heat transfer can be estimated as κ(�/2)/(λθ cosφ)
where κ is the thermal conductivity of the fluid and the factor �/2 is due to the
fact that only half of the total temperature difference � is supported by each
thermal boundary layer. On the other hand, the wet area of the plate is Sw = S/ cosφ

therefore the surface-averaged heat transfer normalized by the purely conductive
value (κ�S/h), or in other words the Nusselt number, yields again the relation
λθ/h= 1/(2Nu) which is confirmed from the results of figure 12.

The viscous boundary layers, computed from the peak position of the r.m.s. profiles
for the velocity component parallel to the conducting wall, are shown in figure 13 and
they behave similarly to the thermal ones with the only relevant difference that they
thicken around the tips instead of becoming thinner. The reason is that the velocity
parallel to the wall also contains a vertical component that is reinforced by the plume
emission. In other words, the tips of the grooves anchor the vertical jets formed by the
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Figure 14. Maps of the correlation 〈u′
zθ

′〉 averaged in time and in the azimuthal direction.

(a) Ra = 2 × 107, (b) Ra =2 × 108, (c) Ra = 2 × 109, (d) Ra = 2 × 1010. In order to maintain the
same range at different Rayleigh numbers the correlation has been normalized according to

the following expression
√

RaPr 〈θ ′u′
z〉/Nu.

sequence of emitted plumes. The flow here has a strong vertical unsteadiness which
produces intense velocity fluctuations, in turn thickening the viscous boundary layer.
Of course, the discussed phenomenon can occur only if thermal plumes are effectively
emitted from the tips, which implies Ra >Rath. For smaller Rayleigh numbers, the
grooves lie just inside the boundary layers, producing negligible effects in the near-wall
(figure 13a) and external flow (figure 11a).

Further evidence of the altered boundary-layer dynamics is stressed by the r.m.s.
peaks of figure 10(b) whose value increases monotonically with Ra. This behaviour
is different from the smooth plate (Verzicco & Camussi 2003) where the r.m.s.
temperature peak remains constant with a Rayleigh number at least up to Ra ≈ 1012

where a laminar/turbulent boundary-layer transition seems to occur (Chavanne et al.
1997; Niemela & Sreenivasan 2003). The altered level of temperature fluctuations at
the groove tip, combined with the geometrically induced flow separation, enhances
the correlation 〈θ ′u′

z〉 which is the convective heat transfer. Figure 14 shows the
maps of this correlation for different Rayleigh numbers. Following the definition of
the Nusselt number of equation (3.1) the correlations are normalized according to√

RaPr <θ ′u′
z > /Nu so that the flows at different Rayleigh numbers can be compared

within the same range of values. We have preferred this normalization with respect
to the more classical 〈θ ′u′

z〉/(〈θ ′〉〈u′
z〉) because the latter would range between 0 and

1 for every Rayleigh number and would not allow us to appreciate the relative
contribution to Nu of the correlation 〈θ ′u′

z〉 as a function of Ra. Figure 14 confirms
that for Ra < Rath, the surface grooves lie below the thermal boundary layer and the
stagnant fluid inside the grooves partially insulates the large-scale recirculation from
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Figure 15. The same as figure 14 at Ra = 2 × 1010: (a) flow with smooth plates,
(b) flow with grooved plates.

the heated (or cooled) surface (figure 11a); this effect makes up for the increased
wet area and the resulting Nusselt number assumes a value approximately equal to
that of the smooth plate. In contrast, when Ra >Rath, the thermal boundary layer
is thin enough for the grooves to protrude into the large-scale flow; in this case, the
interaction of the secondary recirculations with the mean wind (figure 11b) contributes
to the total heat transport while the additional activity over the tips determines the
extra heat flux.

The positive effect of the grooves on the heat transfer is particularly evident from
figure 15 where a comparison at the same Ra with the smooth-plate case is performed.
Since the large-scale flow sweeps the plates via the mean wind, the plumes released
from the smooth surface are initially dragged horizontally and only eventually in the
vertical direction when the mean current is bent to follow the sidewall. The convective
heat transfer, however, is sensitive only to the vertical velocity and therefore it is
relevant only in the second phase when part of the heat carried by the plumes is
already lost to the ambient fluid by diffusion; this scenario is very close to that
proposed by Kadanoff (2001) in his famous cartoon. On the other hand, the presence
of grooves allows the direct injection of the plumes in the vertical direction, which
therefore contribute, from their generation, to the convective heat transport. In other
words, in addition to enhancing the plume generation, the grooves increase their
vertical penetration into the mean flow thus augmenting the heat flux. This is better
understood when considering that, owing to impermeability, the vertical velocity of a
plume released from a flat plate initially can only increase as the square of the wall
distance, whereas from a grooved plate, this restriction does not apply because the
wall-normal direction is not vertical. This effect is presumably maximized when the
large-scale recirculation is absent since the plume released vertically keeps rising owing
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Figure 16. (a) The Nusselt number as a function of the Rayleigh number for the axisymmetric
flows at Pr = 0.7: �, smooth plates; �, grooved plates. (b) The same as (a) for the Nusselt
number compensated with Ra−0.5. The data for the flat plates are from Verzicco (2003).

to buoyancy, without any deviation. This might be the case for the axisymmetric flow
when a single large recirculation completely filling the cell obviously cannot develop
(Verzicco 2003); within this scenario the Nusselt number of figure 16 that in the
presence of grooves increases faster than the three-dimensional flow, is consistent with
the proposed argument. In addition we note that the Nu vs. Ra relation eventually
attains the 1/2 power law which was observed by Roche et al. (2001) for a similar
groove geometry (although distributed also on the sidewall), but within a higher
Rayleigh-number range (1012 � Ra � 5 × 1013). According to Stringano & Verzicco
(2006) in this range of Rayleigh numbers, and for a Γ = 1/2 cylindrical cell, the mean
flow should be absent or at least strongly weakened and the initial plume dynamics
might have similarities with the axisymmetric flow. This consideration, however, is
only speculative and deserves further investigation since at high Rayleigh numbers,
the boundary layers are known to undergo a transition from a laminar to a turbulent
regime (Chavanne et al. 1997; Niemela & Sreenivasan 2003) which clearly cannot
occur in an axisymmetric flow.

3.3. Bulk dynamics

The flow dynamics in the bulk essentially agrees with the description of Du &
Tong (2001) who report an increased level of fluctuations due to the enhanced
plume emission from the grooved plates. This is confirmed by the probability density
function of temperature and vertical velocity shown in figure 17. In particular, before
the transition (Ra < Rath) neither the shape nor the fluctuation level is affected by
the plate grooves while, in contrast, for Ra >Rath the probability density functions
preserve their shape although the fluctuations increase in magnitude. This is confirmed
by figure 18 showing the collapse onto a unique curve when each p.d.f. is rescaled by
its r.m.s. value. The dependence of the r.m.s. fluctuations on the Rayleigh number is
shown in figure 19 for velocity and temperature and in both cases it is observed that
they increase only when Ra > Rath. This is consistent with the scenario proposed in
§ 3.2 with the grooved plates insulated by a layer of stagnant fluid before the transition
and the tips enhancing the frequency of the plume shedding for Ra >Rath.

Similar indications are given by the spectra of figure 20 which show the same
slopes and shapes at every Rayleigh number except for the augmented fluctuation
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Figure 17. Probability density functions of (a, c) temperature and (b, d) vertical velocity in
the bulk of the flow. −−−−, grooved plates; - - - - , smooth plates. (a, b) Ra = 2 × 107,
(c, d) Ra = 2 × 1010.

10–4

10–2

10–4

10–2

100

–4 –2 0 2 4 –4 –2 0 2 4

pd
f(

θ
)σ

pd
f(

u z
)σ

u

(θ – θ)/σ (uz – uz)/σu

(a) (b)

Figure 18. Probability density functions normalized by the r.m.s. of (a) temperature and
(b) vertical velocity at Ra= 2 × 1010 in the bulk of the flow. −−−−, grooved plates; - - - - ,
smooth plates.
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Figure 19. Root mean square of (a) temperature and (b) vertical velocity as function of Ra
in the bulk of the flow. �, grooved plates; �, smooth plates.
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Figure 20. Spectra of (a, c) temperature and (b, d) vertical velocity in the bulk of the flow.
−−−−, grooved plates; - - - - , smooth plates. (a, b) Ra = 2 × 107, (c, d) Ra = 2 × 1010. The straight
line in (c) is the slope −7/5, while in (d) it is −5/3.

level beyond the transition. It is worth mentioning that, as noted by Verzicco &
Camussi (2003) and Camussi & Verzicco (2004), the slope of the inertial part of the
temperature spectra is −7/5 while that of the velocity is −5/3; is seems, therefore,
that the temperature follows the Bolgiano dynamics while the velocity evolves
according to the standard Kolmogorov scenario. This apparent contradiction is
solved when considering that the Bolgiano dynamics emerges only when the Bolgiano
length LB is smaller than the integral scale Li (respectively, Lu and Lθ for velocity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

97
85

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006009785


328 G. Stringano, G. Pascazio and R. Verzicco

10–3

10–2

108  1010

�ε� 

Ra

10–3

10–2

 108  1010

Ra

�N�

(a) (b)

Figure 21. (a) Kinetic energy and (b) temperature variance dissipation rates as a function of
the Rayleigh number. �, smooth plates; �, grooved plates. The dotted line in (a) is the slope
β − 1/2 � − 0.2 with β computed from the smooth-plate data of figure 5.

and temperature fields) and only within the range of scales Li � � � LB . Verzicco &
Camussi (2003) and Camussi & Verzicco (2004) have shown, by direct computation
of the quantities from the three-dimensional data fields, that for the present problem
it results in LB <Lθ and LB >Lu thus justifying the different scalings of the spectra.
The difference between Lθ and Lu can be intuitively understood considering that
the integral scale is the length at which the forcing occurs. In the Rayleigh–Bénard
problem, the horizontal plates are kept at different temperatures, therefore, the
temperature forcing occurs at a scale of the order of their distance Lθ ≈ h which is
the largest in the flow. In contrast, the forcing of the velocity field depends on the
structure of the mean flow and its dynamics which are both Ra dependent. Another
intuitive interpretation was given by Grossmann & Lohse (1991) who suggested that
the main effect of the temperature is to put potential energy into the generation of
a large-scale mean flow, the kinetic energy of which cascades down to the smaller
scales according to the classical Richardson and Kolmogorov mechanism. On the
other hand, the temperature fluctuations still drive vertical velocity fluctuations and
this makes the temperature an active scalar that therefore undergoes the Bolgiano
dynamics.

As already mentioned, for Ra > Rath, the effect of the grooves is to increase the
energy of the fluctuations at all scales which shown in figure 20 results in an
upward shift of the spectra; this, however, implies also an increase of the dissipation
which is shown more clearly by a shift to the right of the dissipative range of
the same spectra. This point is in figure 21 where both temperature variance and
kinetic energy dissipation rates, respectively, 〈N〉 and 〈ε〉, are computed from the
spatial gradients of the three-dimensional temperature and velocity fields. In more
detail, given the non-dimensional form of the equations (2.1) it follows from the
definitions 〈ε〉 = 〈|∇u|2〉

√
Pr/Ra and 〈N〉 = 〈|∇θ |2〉/

√
RaPr where the operator 〈. . .〉

implies averages over the fluid volume and in time. Figure 21 shows that before the
transition, both 〈N〉 and 〈ε〉 assume similar values for the smooth and the grooved
plates, but for Ra >Rath, the dissipations for the grooved plates are always the largest.
This result seems to disagree with Du & Tong (2001) who computed some quantities
related to the dissipations and they found them to follow a unique law for the smooth
and rough plates. It must be noted, however, that the results by Du & Tong (2001)
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Figure 22. Normalized (a) kinetic energy and (b) temperature variance dissipation rates as
functions of the Rayleigh number. �, smooth plates; �, grooved plates. −−−−, the Nu vs. Ra
relations for grooved and · · ·, for smooth plates of figure 5.

were obtained from single-point measurements in the bulk and therefore they cannot
be taken as representative for the whole cell. In fact, Verzicco & Camussi (2003)
have shown that most of the temperature variance dissipation rate 〈N〉 is within the
wall region while the bulk contribution becomes negligible as the Rayleigh number
increases.

As an aside we note that 〈N〉 and 〈ε〉 are related to the Nusselt number by

rigorous relations that in the present non-dimensional form read 〈N〉 = Nu/
√

RaPr

and 〈ε〉 =(Nu−1)/
√

RaPr; this suggests that different values for the dissipations imply
different values also for the Nusselt number which is what is obtained in figure 5.
In particular, assuming Nu ∼ Raβ it follows that 〈N〉 ∼ Raβ−1/2 and 〈ε〉 ∼ Raβ−1/2 (the
latter for Nu � 1). The slope in figure 21(a) is given by the power law Raβ−1/2 with
β computed from the smooth-plate data of figure 5. Since the dissipation for the
grooved case decreases less rapidly with Ra, we can conclude that β increases for
the grooved plates when Ra > Rath which is a further confirmation of the results of
figure 5.

Similar conclusions come from figure 21(b), even if the decrease of 〈N〉 is slightly too
steep with respect to the power law Raβ−1/2; although the reason for this discrepancy
was not found, we can argue that it is due to difficulties in the computation of 〈N〉
at the boundaries, especially for the grooved case when the plate surface does not
lie along a coordinate surface. This is confirmed by figure 22 where 〈N〉 and 〈ε〉 are
rescaled in such a way as to give the Nusselt number; although the agreement for 〈ε〉 is
better than for 〈N〉 in both cases, the results are consistent with the above arguments.
We wish to stress, however, that this problem pertains only to the post-processed
quantity 〈N〉 and it does not affect the flow computation which never requires 〈N〉
during the simulation of the flow dynamics.

4. Discussion and conclusions
In this paper, we have presented direct numerical simulations of three-dimensional

confined thermal convection in the presence of grooved plates. In agreement with
analogous experimental studies, it has been found that the heat transfer is enhanced
when the mean thermal boundary-layer thickness λθ becomes smaller than the
roughness height δ and this condition yields a threshold Rayleigh number Rath

which must be exceeded if the use of grooved plates is to be advantageous for the
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heat transfer. In particular, it was shown that if the heat transfer is expressed through
Nu= ARaβ , the grooved plates produce an increase of the exponent up to β ≈ 0.37
to be compared with the value β ≈ 0.31 of the flat plates. Indeed, in Verzicco &
Camussi (2003), it was shown that for the smooth plates, the exponent β is ≈ 2/7 for
Ra < 109 and β ≈ 1/3 for Ra > 109; the value β ≈ 0.31 therefore should be considered
only an average slope in the range 2 × 107 � Ra � 2 × 1011 investigated in the present
paper.

It has been shown that the reason for the Nusselt number increase is the
enhancement of plume emission from the tips of the grooves which strongly increases
the correlation 〈θ ′u′

z〉, or in other words the convective heat transfer, already in the
immediate vicinity of the plates. This is different from the flat-plate case where, in
the same region, the heat transfer is mainly a diffusive phenomenon (see figure 15).
This implies that the increase of the Nusselt number is not a trivial effect due to
the increase of wet area, but rather to a complete change of the near-wall dynamics.
As an aside, we note that increasing the contact area between a solid and a fluid is
already a common practice in industry where finned surfaces are employed for the
cooling of mechanical and electronic components.

Despite the different geometry of the rough elements and the experimental
difficulties of Du & Tong (2000, 2001), the present results are in remarkable agreement
with their findings especially for what concerns the near-wall dynamics and the
mechanism for the enhancement of the plume formation.

The reason for the increased emission of plumes from the tips of the grooves can
be easily understood by making an analogy of the static thermal problem with an
electrical one. In particular, if the temperature difference �θ is in analogy with the
potential difference �V , the local heat flux φ with the current density I and the thermal
conductivity of the fluid κ with the inverse of the electrical resistivity of the medium
σ , the emission of a thermal plume is analogous to a ‘spark’ (because the heat field
is analogous to the electric field). The analogy, however, remains valid only up to
the point where the spark is released because immediately after, the medium crossed
by the spark is ionized and this does not have any thermal analogue. Since in the
present paper the grooved plates have been considered as perfectly conducting, their
surface temperature is strictly constant. For an electrically superconducting material,
this would imply that the surface potential is strictly constant and the potential field
(figure 23a) is easily obtained by solving ∇2V = 0 in the domain of interest. It is then
evident that the maximum potential gradient (or the electric field) is over the tip which
becomes the preferred location for the generation of a spark. This is the well-known
‘wedge effect’ which is the principle underlying the functioning of the lightning rods.
If now we think of the equipotential lines of figure 23(a) as isothermal lines it is clear
that the maximum temperature gradient is over the tip and this forces the strongest
local heat flux (the plume formation) to occur in the same place. (It should be stressed
that the analogy is not complete since the equation for the potential is ∇2V = 0 while
that for the temperature field is ∂θ/∂t + u · ∇θ = k∇2θ . However, in the immediate
vicinity of the tip, with the surface temperature strictly constant also in time we can
assume that the unsteady term is negligible. In addition, as shown in figure 13, the
viscous boundary layer thickens around the tip which allows us to assume u ≈ 0; in
this context, the two equations assume the same form. The same extension, however,
is not correct for the whole domain of figure 23 since we have previously shown that
in the presence of wedges, the convective heat transport is enhanced, suggesting that
the presence of a nonlinear term would amplify the described effects and make the
thermal depletion problem of figure 23(b) even more severe.)
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V = V0 V = V0

(a) (b)

Figure 23. Isopotential lines over a two-dimensional wedge for (a) zero electrical resistance
of the wedge, (b) electrical resistance of the wedge ten times smaller than that of the outer
medium. Both problems have been solved for the steady state, imposing a total potential
difference �V = 10 between the lower and upper boundary (the latter outside of the figure)
and with zero normal derivatives on the lateral walls.

The phenomenology is similar in the case of a wedge with a finite (although small)
electrical resistivity which is analogous to a grooved plate with a finite (although
large) thermal conductivity. In figure 23(b) it is observed, however, that the interface
between the two media is no longer an equipotential (isothermal) surface causing
the weakening of the wall-normal potential (temperature) gradient and, therefore,
the local current density (heat flux). An additional point to be noted is that the
intensification of the wall-normal gradients is the strongest where the curvature is the
highest, thus suggesting that the wedge effect is strongly dependent on the shape of
the interface. This is particularly true if, instead of a prismatic wedge, a pyramid or
a cone is considered because, in the latter cases, also the direction orthogonal to the
wedge of figure 23 has a curvature that further intensifies the electric field over the tip;
this is usually referred to as the ‘point effect’ which is stronger than the wedge effect.

If now we reconsider the heat transfer problem in the light of the ‘wedge effect’,
it is evident that a one-to-one comparison between different experiments is only
possible within the same plate geometry even if the knowledge of the wedge effect
provides us with a guideline for the interpretation of the differences among the
published experiments. For example, the pyramids of Du & Tong (2000) having
three-dimensional cusps, produce the highest intensification of the wall temperature
gradient and therefore the strongest plume emission. This might explain why at
Ra ≈ 103Rath, the increase of the Nusselt number is already ∼76 % with respect to
the flat-plate case whereas for the present axisymmetric grooves it is only 35 %. On
the other hand, the finite thermal conductivity of the plates of Du & Tong (2000)
(made of brass) does not guarantee a constant temperature of the surface whose
tips cool down (for the hot plate and vice versa for the cold one) under the effect
of the enhanced heat transfer. This justifies the saturation of the Nu vs. Ra power
law to a smaller exponent as a balance between the plate effect (Chillà et al. 2004;
Verzicco 2004; Brown et al. 2005) and the wall roughness. This conjecture is partly
confirmed by the observation that Du & Tong (1998) for the flat plate give the
correlation Nu= 0.17Ra0.29 that at Ra = 2 × 1011 gives Nu= 322. When this value is
corrected for the finite conductivity of the brass plates (whose thickness is assumed
5 %h), according to Verzicco (2004) we obtain Nu∞ = 423 which is very close to the
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value Nu = 447 ± 20 of figure 5. On the other hand, Du & Tong (1998) measured
for the rough plates Nu = 0.30Ra0.29 that at Ra =2 × 1011 gives Nu = 568. The same
correction now yields Nu∞ = 747 which is larger than the present value for grooved
plates Nu = 630 ± 31; should the correction be of the same order for smooth and rough
plates, this difference of the Nusselt number would confirm the previous mentioned
difference between ‘wedge’ and ‘point effect’ concerning the plume generation. We are
aware, however, that there is no reason for the plate correction to be the same for
smooth and rough plates and the previous result can only be taken as an encouraging
indication. In order to understand this point better, ad hoc numerical simulations are
being performed in which the thermal conductivity of the grooved plates is assigned
and the results are compared with the present ‘ideal’ cases.

We are aware that the above discussion is rather speculative and that only the
ongoing numerical simulations with finite thermal conductivity of the grooved plates
can confirm or confute these ideas. However, Qiu et al. (2005) repeated the experiments
of Du & Tong (2000) using pyramids directly machined from a solid copper plate
instead of attaching pyramids machined from a brass plate over another brass plate.
At ambient temperature, the thermal conductivity of pure copper is more than three
times higher than that of brass and Qiu et al. (2005) observed an exponent β = 0.35
instead of the β =0.29 of Du & Tong (2000). The value β = 0.35 is very close to
the β =0.37 our and the agreement is even more remarkable when considering the
different geometry of the plates and the Prandtl number differing by about a factor
of ten.

The results of Shen et al. (1996) are consistent with the above arguments since they
used smaller pyramids than Du & Tong (2000), in an otherwise identical geometry,
and they observed a Nusselt number increase of only 20 % beyond the transitional
Rayleigh number. This can be understood considering that a roughness of smaller
size yields a higher Rath, thus delaying the heat transfer increase. In contrast, the
Nusselt number saturation caused by the finite conductivity of the plates depends
mainly on the plate material which is the same (brass) in Shen et al. (1996) and Du &
Tong (2000).

The results by Ciliberto & Laroche (1999) obtained by gluing glass spheres of
identical diameter over copper plates gave the same Nu vs. Ra power law as the
smooth copper plates, but with a smaller absolute value of the Nusselt number. Since
a layer of glass acts as an insulator, the connection of this problem to standard
Rayleigh–Bénard convection might be questioned, nevertheless the decrease of the
Nusselt number was probably caused by the poor thermal conductivity of the glass
that completely made up for the enhanced plume emission from the top of the
spheres. The generation of plumes from the spheres, in addition, is not as intense as
in the previous experiments owing to the absence of sharp corners that produce strong
wedge effects. In the case of multiple sphere diameters, the presence of different length
scales spread the transition over a wide range of Rayleigh numbers and, as noted by
Roche et al. (2001) this might mimic an increased exponent of the Nu vs. Ra relation.
Also in this case, however, the thermal conductivity of the spheres was too small to
support the enhanced plume emission properly and the Nusselt number for the ‘rough
surface’ was consistently smaller than for the same quantity over the smooth plates.

Roche et al. (2001) used axisymmetric grooves similar to the present ones for
the plates and the sidewall and they obtained an increase of the exponent β in
the Nu vs. Ra power law up to β = 0.51. Their plates were made of oxygen-free
pure copper that according to Verzicco (2004), in the case of a smooth surface for
thicknesses of the order of 12.5 % of the plate distance h and using cryogenic gaseous
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and liquid helium as the working fluid, are supposed to be free from finite conductivity
effects up to Ra ≈ 1015. Although the presence of grooves might significantly alter
this limit, the exponent increase was observed by Roche et al. (2001) in the range
1012 � Ra � 5 × 1013, therefore, we still believe that the finite conductivity of the plates
does not affect the results. The interpretation of the results by Roche et al. (2005)
is more difficult since the same exponent β = 1/2 was found even in the case of
brass plates whose thermal conductivity was about 250 times smaller than the copper
reference plates (this value refers to the cryogenic temperatures of gaseous helium; at
ambient temperature, the brass has a thermal conductivity of 1/2 to 1/3 of that of
copper). Indeed, looking at the profiles of the surfaces (see figure 1 of Roche et al.
2005) it can be noted that the grooves are not exactly the same since in the copper
plates they have the shape of ‘rounded hills’ while for the brass plates the shape
seems to be a triangular saw tooth with a chopped top-hat tip. Given the sensitivity
of the wedge effect to the surface geometry, it could be conjectured that the absence
of sharp corners in the copper plates reduces the groove effect and this partially
makes up for the better thermal conductivity with respect to the brass plates. It is
worth mentioning, however, that the experiments by Roche et al. (2001, 2005) are the
only ones performed at Ra � 1012; in this range, the boundary layers are expected
to undergo a turbulent transition and the mean flow structure, at least in a Γ = 1/2
cylindrical cell, is known to be different from that of the lower Rayleigh-number
regimes (Stringano & Verzicco 2005). Within this scenario, it might be possible that
the effect of the wall roughness is different from what has been described in the
present paper and the results by Roche et al. (2001, 2005) cannot be discussed in a
unified way. The fact that the roughness effect might be different is also suggested
by the Nu vs. Ra relation (see figure 2 of Roche et al. 2005) showing exactly the same
relation for copper and brass plates except for a reduction, although not systematic,
of the Nusselt number for the brass plates limited to about 10 % over the whole
range of Ra. On the other hand, the motivation of Roche et al. (2001, 2005) for
using grooved plates was different from the other studies since it was intended only
to disrupt the viscous sublayer of the turbulent boundary layer in order to cancel the
logarithmic correction to the 1/2 power law of the Nu vs. Ra relation predicted by
Kraichnan (1962).

According to the above discussion, the exponent β =1/2 obtained with the axisym-
metric simulations (figure 16) might not be related to the results of Roche et al.
(2001) which were obtained in a completely different flow regime. As an aside, we
note that in the axisymmetric flow, the presence of grooves completely changes the
transition point since the heat transfer is similar to the values for the smooth plates
up to Ra ≈ 109 and then increases following the 1/2 power law, as can be seen from
the compensated data of figure 16(b). The crossing, however, occurs at Ra ≈ 7 × 109

that, using the relation λθ/h � 1/(2Nu) yields λθ/h � 5.31 × 10−3 which is about five
times smaller than δ/h. This is caused by the flow symmetry which requires for the
formation of a plume the simultaneous detachment of the thermal boundary layer
along the whole circumference of the groove. This situation is clearly an artefact of
the enforced symmetry and it is very different from the real three-dimensional flow
where, although the preferred location for the plume formation remains the tips of
the grooves, the former only covers a limited part of the groove and produce the
classical mushroom-like structure driven by buoyancy (figure 24). This observation
is fully confirmed by Sudhakar & Arakeri (2005) who report the formation of point
plumes from the tips of their V-shaped straight grooves in contrast to the line plumes
forming, in otherwise identical conditions, over smooth flat plates.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

97
85

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006009785


334 G. Stringano, G. Pascazio and R. Verzicco

Figure 24. Instantaneous snapshot of a iso-temperature surface over the lower hot grooved
plate (θ = 0.77) at Pr = 0.7 and Ra = 2 × 1010.

From the above discussion, it is evident that the interaction between the heat
transfer over non-flat plates and the thermal properties of the plate material is a key
point for the correct comparison of different experiments and for the understanding
of the heat transfer in real systems. For this reason, we are repeating the present
numerical simulations considering different thermal conductivities of the plates. The
results seem to support the present conclusions and a complete analysis will be
presented in a forthcoming paper.
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