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We survey the main results on computability and totality in Scott–Eršov-domains as well as

their applications to the theory of functionals of higher types and the semantics of

functional programming languages. A new density theorem is proved and applied to show

the equivalence of the hereditarily computable total continuous functionals with the

hereditarily effective operations over a large class of base types.

1. Introduction

This paper studies the following different concepts of computability on partial and total

continuous functionals of finite types:

(1) Definability by a program in a functional language,

(2) Effective continuity, and

(3) Computability via a recursive transformation of codes (effective operations).

For (3) to make sense the hereditarily effective versions of the hierarchies have to be

considered. Although apparently fundamentally different in nature, these concepts turn

out to be equivalent provided in (1) an appropriate language is chosen. Plotkin has shown

the equivalence of (1) and (2) on the partial continuous functionals with respect to the

language PCF augmented by the parallel conditional and the parallel ∃ (Plotkin 1977).

Normann proved the corresponding equivalence for the total continuous functionals and

pure PCF (without parallel facilities) (Normann 1998a). The equivalence of (2) and (3) is

due to Ersov for the partial and the total case (Eršov 1977), and for the partial case a

similar result was given in Constable and Egli (1976).

Following Eršov (1977), we define the partial and total continuous functionals in the

framework of effective Scott–Eršov-domains. Eršov showed that his total continuous

functionals are isomorphic to those defined in Kleene (1959) and Kreisel (1959), and that

domain-theoretic computability (that is, concept (2)) corresponds to recursive countability

(that is, having a recursive associate). The domain-theoretic approach not only allows

for a very elegant definition of the continuous functionals, but also gives deeper insights

into the phenomena being studied. In fact, most of the results mentioned so far rest

on quite general theorems on computability and totality in domains. For instance, the

density of the total continuous functionals used in Normann’s proof is an instance of

a general domain-theoretic theorem (Berger 1993), and Eršov’s results are instances of

domain-theoretic generalizations of the well-known Myhill–Shepherdson Theorem (GMS)
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and Kreisel–Lacombe–Shoenfield Theorem (GKLS) (Eršov 1977; Berger 1993). The main

new result of this paper follows this line. We prove a density theorem for abstract domains

with totality generalizing the corresponding theorem in Berger (1993) and, also, a recent

result of Normann’s showing density for the total continuous functionals over the reals

(Normann 1998b). In fact, our proof is inspired by Normann’s proof. Using GMS and

GKLS, we conclude that (2) and (3) are also equivalent for the partial and total continuous

functionals over the reals. The equivalence of (1) and (2) for these functionals has been

shown in Escardó (1996b) using a version of PCF, called Real PCF, extended by the

parallel ∃. The corresponding problem for the total continuous functionals over the reals

and Real PCF (without ∃) seems to be open.

We will also briefly discuss extensions of the partial and total continuous functionals to

dependent and transfinite types (Palmgren and Stoltenberg-Hansen 1990; Normann 1993;

Berger 1999). The equivalence of (2) and (3) for these types has been shown in Normann

and Waagbø (1997) using results from Berger (1999).

2. Computability in Scott–Eršov-domains

In this section we prove the equivalence of the concepts (1), (2), and (3) discussed in the

introduction for the partial continuous functionals.

In order to fix notation we recall some basic definitions concerning domains, mainly

following Griffor et al. (1993). By a Scott–Eršov-domain we mean a partially orderd set

(D,v) that is:

— Directed complete, that is, every directed set A ⊆ D has a least upper bound
⊔
A ∈ D

(the set A is directed if A 6=6 and ∀x, y ∈ A∃z ∈ A(x, y v z)).
— Algebraic, that is, for every x ∈ D the set {x0 ∈ D: x0 compact and x0 v x} is directed

and has x as its least upper bound (x0 ∈ D is compact if for every directed set A ⊆ D
such that x v ⊔A we have x0 v y for some y ∈ A).

— Countably based, that is, the set of compact elements is countable.

— Bounded complete, that is, every non-empty bounded subset of D has a least upper

bound in D.

— Equipped with a least element, usually denoted ⊥.

We will assume in addition that all Scott–Eršov-domains in consideration are coherent,

which means that a non-empty subset is bounded whenever all of its two element

subsets are bounded. Although all results presented in this paper also hold without

this assumption, many notions have an easier definition and some proofs become less

clumsy when coherence is assumed. The set of compact elements of a Scott–Eršov-

domain D is denoted by D0. The Scott-topology on D is generated by the basic open

sets {x ∈ D: x w x0}, where x0 ∈ D0. The elements x, y ∈ D are called consistent, written

x ↑ y, if {x, y} is bounded in D. Clearly, this is the case if, and only if, x and y cannot be

separated by disjoint neighbourhoods.

A Scott–Eršov-domain D is effective if it is endowed with a numbering ν0: N → D0,

called effectivation, such that

1 The sets {(n, m) | ν0n v ν0m}, and {(n, m) | ν0n ↑ ν0m} are decidable.
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2 There is a recursive function f: N ×N → N such that ν0f(n, m) = ν0n t ν0m whenever

ν0n ↑ ν0m.

An element x ∈ D is called computable if the set {n | ν0n v x} is recursively enumerable.

We let Dcomp denote the set of computable elements of D.

Convention: In the following, effective Scott–Eršov-domains will simply be called domains.

We will let the letters D,E, F range over domains.

Basic examples of domains are the flat domains N⊥ := N ∪ {⊥} and B⊥ := B ∪ {⊥}
(B = {tt, ff}) of partial integers and boolean values. We will also consider the domain R of

partial reals. R is the ideal completion of the partial order

IQ := {[a, b] | a ∈ {−∞} ∪Q, b ∈ Q ∪ {+∞}, a 6 b},
where Q is the set of rational numbers. The ordering on IQ corresponds to reverse

inclusion of closed intervals, that is, [a, b] v [a′, b′] iff a 6 a′ and b′ 6 b. The elements

of R are downward closed directed subsets A ⊆ IQ (ideals). The ordering on R is set

inclusion. An ideal A ∈ R that is ‘converging’ (that is, δ(A) := inf{b− a | [a, b] ∈ A} = 0)

represents in a natural way the real number r := sup{a | [a, b] ∈ A} = inf{b | [a, b] ∈ A}.
It is well known that domains and continuous functions form a cartesian closed

category. A continuous function between domains is called effectively continuous if it is a

computable element of the function space.

The cartesian closed subcategory generated by the domains N⊥ and B⊥ is usually called

the hierarchy of partial continuous functionals of finite types. The objects of this category

are a family of domains Dρ, where

Dι := N⊥, Do := B⊥, Dρ×σ := Dρ × Dσ, Dρ→σ := Dρ → Dσ.

From now on τ will refer to one of the base types ι and o. For brevity we will ignore

product types.

The notion of an effective operation (that is, concept (3)) refers to a standard num-

bering ν: N → Dcomp of the computable elements of a domain (D,v, ν0) called principal

constructivation. It always exists and is characterized up to recursive equivalence by the

conditions:

1 The set {(n, m) | ν0n v νm} is recursively enumerable.

2 There is a recursive function g: N→ N such that ν0n = νg(n) for all n.

3 For any other numbering ν ′: N → Dcomp satisfying (1) and (2) there is a recursive

function h: N→ N such that ν ′n = νh(n) for all n.

For example, a principal constructivation of the domain N⊥ is ν: N → N⊥, defined by

ν〈n, m〉 := {n}m, where 〈., .〉: N2 → N is some primitive recursive pairing function and {.}.
is partial recursive function application.

An effective operation between domains is a function F:Dcomp → Ecomp that is tracked

by some recursive function f: N → N, that is, F(νn) = µf(n) for all n ∈ N, where ν and

µ are the principal constructivations of D and E. Note that in this definition F is not

required to be continuous.

It is easy to see that a continuous function between domains is effectively continuous
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iff its restriction to computable arguments is an effective operation. Therefore, in order

to prove the equivalence of the computability concepts (2) and (3) it remains to show

that every effective operation is continuous. The latter follows from domain-theoretic

generalizations of two theorems from elementary recursion theory. They establish a

surprising connection between recursion theory and topology. Their generalization to

domain theory is due to Eršov (1977).

Theorem 1 (Generalized Rice–Shapiro Theorem). Let U ⊆ Dcomp be such that the set

{n | νn ∈ U} is recursively enumerable. Then U is an open subset of Dcomp (with respect

to the relativized Scott-topology).

The proof of this theorem uses Markov’s principle.

Theorem 2 (Generalized Myhill–Shepherdson Theorem). Every effective operation between

domains is continuous (with respect to the relativized Scott-topologies).

This can be used to show that the hierarchy of effectively continuous partial functionals

coincides with the hierarchy of effective operations based on a principal constructivation

of N⊥ (Berger 1990).

Theorem 3. The effective partial continuous functionals and the partial effective operations

over N are effectively isomorphic.

Now we turn our attention to the concepts (1) and (2). It is well known that the

partial continuous functionals form a model for the functional programming language

PCF (Plotkin 1977) and also for Kleene’s schemes (S1–S9).

The following theorem is due to Platek (1966) and Plotkin (1977).

Theorem 4. On the partial continuous functionals PCF-definability and (S1–S9) com-

putability coincide, but are weaker than domain theoretic computability.

Hence equivalence of (1) and (2) does not hold for PCF and (S1–S9). The reason for this is

that PCF is unable to define such simple functions as the parallel or, POR: B⊥ → B⊥ → B⊥
returning tt as soon as one of its argument is tt (whereas the other may be undefined, that

is, ⊥) (Plotkin 1977). This can be remedied by either restricting the continuous functionals

to some ‘sequential’ fragment (Milner 1977), or extending PCF. Plotkin showed how to

do the latter (Plotkin 1977). He proved that besides POR only one further functional

∃: (N→ B⊥)→ B⊥ is needed, defined by ∃(f) = tt if f(n) = tt for some n ∈ N, and ∃(f) = ff

if f(⊥) = ff.

Theorem 5. The partial continuous functionals definable in PCF+POR+∃ are precisely

the computable ones in the domain-theoretic sense.

Escardó introduced Real PCF (Escardó 1996a),which is PCF extended by a base type for

the partial real numbers. He interpreted it in a corresponding extension of the partial

continuous functionals by the domain R of partial reals. In Escardó (1996a) he extended

Plotkin’s result to this situation.
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Theorem 6. In Real PCF+∃ every effectively continuous functional over the partial reals

is definable.

To be precise, Escardó works with continuous domains, but, since these are retracts

of domains, it is fairly obvious how to translate his results to our framework. The

corresponding problem for the total continuous functionals over the reals and Real PCF

(without ∃) seems to be open.

3. Totality

The total continuous functionals are defined in Eršov (1977) as follows. For every type ρ

define Dρ ⊆ Dρ by

Dι := N, Do := B, Dρ→σ := {f ∈ Dρ→σ|f[Dρ] ⊆ Dσ},
and define equivalence relations =ρ on Dρ by

x =τ y :⇔ x = y, f =ρ→σ g :⇔ ∀x ∈ Dρf(x) =σ g(x).

Then the total continuous functionals are the equivalence classes of the Dρ. From the fact

that Dρ is dense in Dρ (see below) it follows that for x, y ∈ Dρ
x =ρ y ⇔ x ↑ y.

Hence, =ρ is preserved by application, that is, application on the quotient structure is

well-defined. Instead of the types N⊥ and B⊥ with total elements N and B, other domains

D and selected subsets D could also be used as base types. The resulting hierarchy Dρ will

then be called total continuous functionals over D. Furthermore, the function space can be

hereditarily restricted to computable elements:

D
comp
ρ→σ := {f ∈ Dρ→σ | f computable and f[D

comp
ρ ] ⊆ Dcomp

σ }.
We will call this the hereditarily computable total continuous functionals over D

In this section we establish general conditions on (D,D) under which the construction

of the (hereditarily computable) total continuous functionals over (D,D) is possible. In

particular, we will be interested in proving the crucial density property in all types.

Abstracting from Eršov’s approach to the total continuous functionals, Normann pro-

posed the notion of a domain with totality (Normann 1997). For our purposes we will

slightly modify his definitions. A pair (D,D) where D is a domain and D is a subset of

D is called a domain with totality. The set D is called the totality on D and the elements

in D are called total. Sometimes we will refer to (D,D) simply as D as long as this does

not cause ambiguities. The totality D is called strong if the consistency relation ↑ on D is

an equivalence relation. If D is strong, then for every total x we let x := {y ∈ D | x ↑ y}
be the equivalence class of x. Furthermore, we let D := D/ ↑= {x | x ∈ D} denote the

quotient structure endowed with the quotient topology. An equivalence class x ∈ D is

called computable if it contains a computable element. More generally, if P is a property

of elements of D, then x ∈ D is said to have property P if some element of x has

property P .
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For every domain the set of its maximal elements is a strong totality. Further examples

of domains with strong totality are (as we will see) the continuous functionals over N and

B, and their hereditarily computable versions. As shown in Eršov (1975), their quotients

define the Kleene–Kreisel total continuous functionals. The computable elements of Dρ

correspond to the recursively countable functionals. The domain R of partial reals becomes

a domain with strong totality by setting R := {A ∈ R | δ(A) = 0}. The quotient space R is

homeomorphic to the reals. See Blanck (1996) and Blanck et al. (1998) for many further

examples of interesting topological spaces represented in the form D.

If (D,D) and (E, E) are domains with totality, the total elements of D → E are defined

by

D → E := D → E := {f ∈ D → E: f[D] ⊆ E}.
The elements of D → E are called total functions. However, in general, D → E will not

be strong even if D and E both are. Moreover, it is natural to consider f, g ∈ D → E as

equivalent if f(x) ↑ g(x) for all x ∈ D, but this notion of equivalence will in general not

coincide with ↑ in D → E.

This can be remedied by requiring the total elements to be dense. Note that D ⊆ D is

dense iff

∀x0 ∈ D0 ∃x ∈ D x0 v x.
One can immediately check that if D,E are domains with totality such that D is dense

and E is strong, then D → E is strong. Moreover, for f, g ∈ D → E we have f ↑ g iff

f(x) ↑ g(x) for all x ∈ D. The latter amounts to a principle of extensionality: two total

functions are identified if they are extensionally equal on total arguments, that is, for

f, g ∈ D → E we have f = g iff f(x) = g(x) for all x ∈ D, where, of course, f(x) is the

equivalence class of f(x).

We are still not satisfied, since, even if D and E are both strong and dense, D → E need

not be dense. Consider, for example, D := N⊥ with D := D, and E := N⊥ with E := N.

Both are strong and dense totalities, but D → E contains only constant functions and

hence is not dense. What is wrong here is the fact that we declared ⊥ ∈ D to be total.

To exclude this we need a property forcing the elements of D to be in some sense ‘large’.

In Berger (1993), I introduced the notion of codensity, which, together with density, was

preserved under function spaces. This solved the density problem for functionals over

discrete base types like N or B, but, unfortunately, it excluded base types like the reals,

since codensity of D implies that the quotient space D is strongly disconnected in the

sense that any two different points can be separated by clopen sets.

In the following we introduce generalizations of the notions of density and codensity

and prove a density theorem generalizing the results in Berger (1993) and also Normann’s

density theorem for the total continuous functionals over the reals (Normann 1998b). In

fact, our proof has been obtained by an analysis of Normann’s proof.

In order to motivate the definitions below we briefly recall the definition of codensity

in Berger (1993). A totality D on a domain D is codense if for any two inconsistent

compacts x0, y0 ∈ D0 (that is, x0 6↑ y0) there is a continuous ‘test’ t:D → B⊥ that separates

x0 and y0, that is, t(x0) = tt and t(y0) = ff, and is total, that is, t[D] ⊆ B (therefore

an element x ∈ D is ‘rather large’ because t(x) is defined for ‘many’ tests t). Using
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an effectivation ν0: N → D0, we can join the separating and total tests above into one

continuous function f:D → Bω⊥ (Bω⊥ is the countably infinite product of B⊥ defined below),

by setting f(x)(〈n, m〉) := t(x), where t is the (selected) total test separating ν0n and ν0m if

ν0n 6↑ ν0m, otherwise f(x)(〈n, m〉) := tt. Clearly, f is total and sepaparating, that is, if x 6↑ y,

then f(x) 6↑ f(y). Conversely, if there is a continuous total and separating f:D → Bω⊥,

then clearly D is codense. The idea now is to replace in the situation above the domain

Bω⊥ with total subset Bω by an arbitrary domain with totality (A,A).

For any domain D we let Dω denote the set of functions s: N→ D. Ordered pointwise

this is again a domain. Any totality D on D gives rise to the totality D
ω

:= {s ∈ Dω |
s[N] ⊆ D} on Dω . D

ω
will be strong if D is. Note that because domains have a countable

base, the totality D is dense in D iff there is an s ∈ Dω such that s[N] is dense in D. We

call D effectively dense if there is a computable such s. Since we will only be interested

in effective density, when we say ‘dense’ in the following, we will always mean ‘effectively

dense’.

A continuous function f:D → E is called separating if it preserves inconsistencies, that

is, ∀x, y ∈ D (x 6↑ y ⇒ f(x) 6↑ f(y)).

Let (A,A) be a domain with totality. A totality D on a domain D is called A-dense

if A → D is dense in A → D. D is called A-codense if D → A contains a computable

separating element.

The following facts, whose simple proofs we omit, continue the motivating discussion

above and are intended to shed some light on the notions of A-density and A-codensity.

(1) D is dense iff it is Bω-dense.

(2) D is codense (in the sense of Berger (1993)) iff it is Bω-codense.

(3) If D is A-dense and A is non-empty, then D is dense.

(4) If D is A-codense and A is strong, then D is strong.

(5) If D is non-empty, then D is A
ω

-dense iff A
n → D is dense uniformly for all n ∈ N.

(6) D and (D
ω

)ω are both D
ω

-codense for every domain with totality (D,D).

For example, to prove in (6) that (D
ω

)ω is D
ω

-codense, consider the continuous function

melt: (Dω)ω → Dω , defined by melt(s)(〈m, n〉) := s(m)(n). Clearly melt is total and bijective,

in particular, separating.

Theorem 7. Let (A,A), (D,D), and (E, E) be domains with totality.

(1) If D is A-codense and E is A-dense, then D → E is A-dense.

(2) If D is dense and E and A
ω

are both A-codense, then D → E is A-codense.

Proof. (1) By assumption, there is a computable separating and total f ∈ D → A, and

A → E is dense. We have to show that A → D → E is dense in A → D → E. Using

isomorphism, it suffices to show that A × D → E is dense in A × D → E. Let h0 be

a compact element of A × D → E. We have to construct some total h ∈ A × D → E

extending h0. Since h0 is compact, there are finitely many compacts ai ∈ A0, di ∈ D0,

ei ∈ E0 (i ∈ I , I finite) such that

h0(a, d) =
⊔{ei | i ∈ I, ai v a, di v d}

for all (a, d) ∈ A× D. Define a function pair ∈ A× A → A by pair(a, b) := melt(λn.if n =
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0 then a else b). Clearly, pair is computable, total and separating. Since f is also separating,

we have for all i, j ∈ I
(ai, di) ↑ (aj , dj)⇔ pair(ai, f(di)) ↑ pair(aj , f(dj)).

By algebraicity of A, there are compacts bi v pair(ai, f(di)) (i ∈ I) such that for all i, j ∈ I
(ai, di) ↑ (aj , dj)⇔ bi ↑ bj .

Hence the function g:A→ E

g0(a) :=
⊔{ei | i ∈ I, bi v a}

is a well-defined compact in A→ E. By assumption, there is a total g ∈ A→ E extending

g0. Now define h:A× D → E by

h(a, d) := g(pair(a, f(d))).

Obviously, h is continuous and total. For i ∈ I we have

h(ai, di) = g(pair(ai, f(di))) w g(bi) w g0(bi) w ei.
Hence h extends h0.

(2) By assumption, D is dense, which means that there is a computable total s ∈ Dω such

that s[N] is dense in D. Furthermore, we have computable separating and total functions

f ∈ E → A and f′ ∈ Aω → A. We define g ∈ (D → E)→ A by

g(h) := f′(f ◦ h ◦ s).
Clearly, g is computable and total. To see that g is separating, let h0 6↑ h1 in D → E. Since

s[N] is dense in D, there is n such that h0(s(n)) 6↑ h1(s(n)). Hence f(h0(s(n))) 6↑ f(h1(s(n)))

in A because f is separating. It follows that f ◦ h0 ◦ s 6↑ f ◦ h1 ◦ s. Therefore g(h0) 6↑ g(h1),

since f′ is separating.

By Facts (1), (2) and (3) listed above, this theorem generalizes the density theorem in

Berger (1993). Note also that the witnesses of density and the separating functions in the

conclusions of the theorem are defined explicitly from the corresponding objects given by

the assumptions using just case analysis on n = 0, n > 0. Hence we have the following

corollary.

Theorem 8. Let (D,D) be a domain with strong totality such that D is non-empty and

D
ω → D is dense. Then the total continuous functionals Dρ and, also, the hereditarily

computable total continuous functionals over D are domains with strong dense totalities.

Moreover, for every type ρ a dense and total sequence in Dρ can be defined explicitly

from a computable dense and total sequence in Dω → D, case analysis on n = 0, n > 0,

and a bijection from N2 to ω.

Proof. By Fact (6), we know that D and (D
ω

)ω are both D
ω

-codense. Hence, since D is

assumed to be D
ω

dense, Theorem 7 and Fact (3) imply that Dρ is D
ω

-dense and -codense

and, also, dense for every type ρ.
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In Normann (1998b) it was shown for the domain (R,R) of partial and total reals that

R
n → R is dense uniformly for all n. Fact (5) implies that R is R

ω
-dense. Hence we obtain

Normann’s density theorem in Normann (1998b).

Theorem 9. The total continuous functionals over the reals, Rρ, are dense in Rρ for all

finite types ρ.

In Normann (1998b), Normann proved a more general theorem than Theorem 9

connecting the discrete (N) and the continuous (R) case by admitting certain partial

equivalence relations different from the consistency relation ↑.
In the same spirit, D. Scott and his students A. Awodey, A. Bauer and L. Birkedal

have recently developed (Scott et al. 1998) a rather general theory of topological spaces

endowed with a partial equivalence relation (equilogical spaces), which might yield a good

framework for putting the work presented here into a more general (categorical) context.

Closing this section we state a simple but important application of density (Kreisel

1959; Schwichtenberg 1996; Berger 1993).

Theorem 10 (Effective choice principle). Let (Dρ)ρ be the hierarchy of partial continuous

functional over the integers. For all types ρ and σ there is a PCF+POR definable total

functional of type (ρ× σ → o)→ (ρ→ σ) computing for every total functional f of type

ρ× σ → o such that

∀x ∈ Dρ∃y ∈ Dσ f(x, y) = 0

a total functional g of type ρ→ σ such that

∀x ∈ Dρ f(x, g(x)) = 0.

4. Computability and totality

Now we use the results of the previous section to prove the equivalence of the computability

concepts (1), (2) and (3) for total continuous functionals.

It was proved in Gandy and Hyland (1977) that the fan-functional computing a modulus

of uniform continuity of a total type-2 functional restricted to a compact fan is definable

by Kleene’s schemata (S1–S9) (see also Normann (1980)), but in Berger (1993) it was

shown that the fan-functional is (S1–S9) definable when Kleene’s schemata are interpreted

in the partial continuous functionals. It was then conjectured that every computable total

continuous functional over the integers is (S1–S9)-computable, that is, PCF-definable.

Again it was Normann who in 1998 proved this conjecture (Normann 1998a), thus

showing the computation concepts (1) and (2). to be equivalent for the total continuous

functionals.

Theorem 11. Every computable total continuous functional over the integers is PCF-

definable.

Moreover, for every type ρ there is a PCF-computable functional of type (o→ o)→ ρ

computing from every enumeration of the compact approximations of total functional f

of type ρ (where this enumeration is coded as a sequence of integers) a total functional

f̂ v f.
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Normann’s proof uses the density theorem in an essential way.

In order to prove the equivalence of the computation principles (2) and (3) we have to

look for a total analogue of the generalized Myhill–Shepherdson Theorem (Theorem 2).

Several such theorems are proved in Berger (1993). They may be viewed as a generalization

of the Kreisel–Lacombe–Shoenfield Theorem (Kreisel et al. 1959). Here, we only present

one of them.

An element y of a domain is called almost maximal if it cannot be extended in two

inconsistent ways, that is, ∀y′, y′′(y v y′, y′′ ⇒ y′ ↑ y′′). Using the axiom of choice, this

can be shown to be equivalent to the property that y has precisely one maximal extension

(but we will not use this fact). For instance, the elements of a codense set are almost

maximal. Also, all elements of R are almost maximal (although R is not a codense set).

Theorem 12. Let D,E be effective domains with totality. Assume that D is effectively

dense and all elements of E are almost maximal. Then every effective operation f:D → E

can be extended to an effective (and by the generalized Myhill–Shepherdson Theorem

continuous) operation f′:D → E, in the sense that f(x) v f′(x) for all x ∈ D.

From this theorem we may deduce the equivalence of the computation concepts (2)

and (3) for many instances of total functions. For instance, it immediately entails the

well-known theorem of Ceitin and Moschovakis saying that every effective operator on

the reals is continuous. We will see that it also implies the equivalence of the hereditarily

computable total continuous functionals and hereditarily effective total operations of

finite types over a large class of base types.

To make this precise, we need the notion of a partially numbered set, introduced by

Eršov, which is a pair (S, ν) where S is a set and ν is a surjection from a subset δν ⊆ N

onto S (Eršov 1975). For example, if D is a strong totality on a domain D such that

D ⊆ Dcomp, then any principal constructivation ν of D induces a partial numbering

ν: ν−1D → D defined by νn := [νn]. An effective operation between two numbered sets

(S, ν), (T , µ) is a mapping F: S → T that is tracked by some partial recursive function f,

that is, f is defined on δν, f[δν] ⊆ δµ and F(νn) = µf(n) for all n ∈ δν. We use EO(S, T )

to denote the set of effective operations from T to S , partially numbered by Kleene

indices of tracking functions. Obviously, this corresponds precisely to the exponential in

the category PER of partial equivalence relations. Given a partially numbered set S as

base type, we define the effective operations of finite types over S by

Sτ := S, Sρ→σ := EO(Sρ, Sσ).

Starting with the base type N numbered by the identity, we obtain the hereditarily effective

operations (Troelstra 1973). If we start with N⊥ numbered by a principal constructivation,

we obtain the hereditarily partial effective operations (see Theorem 3). From Theorems 8

and 12 one can now easily derive the following theorem.

Theorem 13. Let D be a domain and set

D := {x ∈ D | x computable and almost maximal}.
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Assume that D
ω → D is dense and that there is a total computable function select ∈ D → D

such that ∀x, y ∈ D(x ↑ y ⇒ x ↑ select(x) = select(y)).

Then the hereditarily effective operations of finite type over D are effectively isomorphic

with the hereditarily computable total continuous functionals over D.

The theorem applies, for instance, to D := N and to D := R.

5. Dependent domains and universes

In this paper we have focused on the type constructor→ (function space). However, some

of the work described has been extended to dependent products, dependent sums and uni-

verse operators in the sense of Martin-Löf type theory: Palmgren and Stoltenberg-Hansen

developed the notion of a dependent domain and gave a domain interpretation of a partial

type theory (Palmgren and Stoltenberg-Hansen 1990); Kristiansen and Normann used a

universe of dependent domains with dense totality to represent computations relative to

certain non-continuous functionals like 3E (Normann 1993; Kristiansen and Normann

1994); Waagbø modified Palmgren’s and Stoltenberg-Hansen’s work for interpreting (the

usual) total type theory using dependent domains with totality (Waagbø1997); abstract

density theorems for dependent types and universe operators were proved in Berger (1999);

and this was used in Waagbø (1997) to prove the equivalence of the computation concepts

(2) and (3) for functionals of dependent types over N.

Theorem 14. Normann’s well-founded hierarchy of hereditarily computable total contin-

uous functionals of dependent types and Beeson’s model of total effective operations of

dependent types (Beeson 1982) are effectively isomorphic.

6. Related work

There exists a substantial literature discussing different notions of computability for higher

types: for example, Platek (1966), Moldestad (1977), Moschovakis (1977), Gandy and Hy-

land (1977), Feferman (1977), Hyland (1979), Normann (1980) and Cook (1990). Much of

this work focuses on Kleene’s schemata (S1–S9) (Kleene 1959), which, when interpreted on

the partial continuous functionals, are equivalent to PCF (see Theorem 4). In combination

with Normann’s result mentioned above, this implies that for the total continuous func-

tionals effective continuity and (S1–S9) interpreted on the partial continuous functionals

coincide. This seems to contradict earlier results showing that (S1–S9) computability is

strictly weaker than effective continuity (cf., for example, Normann (1980)). In fact, how-

ever, it just shows that the two interpretations of (S1–S9) give rise to different notions

of computability on the total continuous functionals. This answers a question posed in

Cook (1990, p. 59).

Cook’s paper also gives an introduction to feasibility for higher type functionals, a

subject that is not touched on here, since our concepts (1), (2) and (3) are all Turing

complete in the sense that they define exactly those (partial) number theoretic functions

(represented by strict functions of type level one) that are (partial) recursive. There are

versions of (2) that induce a notion of subrecursiveness or feasibility in higher type (see,
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for example, Cook and Kapron (1990) and Bellantoni et al. (2000)), but I do not know

of any convincing approach defining subrecursiveness in higher types via restrictions of

the concepts (1) or (3).

In Plotkin (1998) it is shown how the equivalence of (1) and (2) can be used to prove full

abstraction results for functional languages with respect to the continuous denotational

semantics. In Blanck (1996), Eršov’s method of defining the total continuous functionals

within domain theory is generalized and used to define effective domain representations

for large classes of topological spaces. In Blanck et al. (1998), this theory is applied to

an analysis of continuous stream transformers. The material in Stoltenberg-Hansen and

Tucker (1999) compares effective domain representations of topological algebras with

other approaches to computability on topological spaces. The equivalence of the concepts

(2) and (3) for effective metric spaces, which was first proved in Ceı̆tin (1962) and

Moschovakis (1964), has been generalized to effective topological spaces in Spreen (1990).

Acknowledgments

I would like to thank the anonymous referees for useful hints and comments.

References

Beeson, M. J. (1982) Recursive models for constructive set theories. Annals of Pure and Applied

Logic 23 127–178.

Bellantoni, S., Niggl, K.-H. and Schwichtenberg, H. (2000) Higher type recursion, ramification and

polynomial time. To appear in Annals of Pure and Applied Logic.

Berger, U. (1990) Totale Objekte und Mengen in der Bereichstheorie, Ph. D. thesis, Mathematisches

Institut der Universität München.

Berger, U. (1993) Total sets and objects in domain theory. Annals of Pure and Applied Logic 60

91–117.

Berger, U. (1999) Continuous functionals of dependent and transfinite types. In: Cooper, S. B.

and Truss, J. K. (eds.) Models and computability, Invited papers from Logic Colloquium ’97,

Cambridge University Press 1–22.

Blanck, J. (1996) Domain representability of topological spaces, Ph. D. thesis, University of Uppsala.

Blanck, J., Stoltenberg-Hansen, V. and Tucker, J. V. (1998) Streams, stream transformers and domain
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