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In a channel flow with a sudden expansion, whether for three-dimensional (3-D) pipe
and channel flows, or for two-dimensional (2-D) channel flow, it is known that increasing
the Reynolds number beyond a critical value Rec induces a symmetry breaking Pitchfork
bifurcation. The linear stability analysis of the symmetric steady solution enables the Rec

to be determined efficiently and thus the influence of the expansion ratio (ER), defined
as the ratio between upstream and downstream diameter regarding the expansion, to
be explored. In this study, we investigate the behaviour of the flow after 2-D sudden
expansions while varying the ER and the inlet flow profile, e.g. corresponding to a
transition profile between a plug and a Poiseuille flow that could be reached for a flow after
a sudden constriction upstream. Results demonstrate that imposing a plug flow at the inlet
gives a higher Rec than any other profile and that the concomitant recirculation zones are
shorter. We show that these results can be rationalized using basic convection–diffusion
arguments.

Key words: computational methods, bifurcation, transition to turbulence

1. Introduction

In the context of continuous crystallisation processes, the authors have experimentally
evidenced that introducing a flow restriction in a tubular micro-channel influences the
nucleation rate, such as in the production of crystals of pharmaceutical ingredients (Rimez
et al. 2018; Rimez, Debuysschère & Scheid 2019). The same kind of flow restriction has
been used by Park, Song & Jung (2009) to sort particles in suspension, whereas Chang
et al. (2010) used a sudden expansion to sort blood components. Restrictions have also
been used in heat exchangers (Zohir, Abdel Aziz & Habib 2011), combustion systems
and reactors (Hallett & Gunther 1984) and in other microfluidic devices (Kadivar &
Farrokhbin 2017). Due to the appearance of such geometry in industries and laboratories,
the behaviour of flow after a sudden expansion has already been widely studied as for
pipe flow (3-D cylindrical) (Back & Roschke 1972; Latornell & Pollard 1986) than for
channel flows (2-D and 3-D) (Tsai et al. 2006; Dagtekin & Unsal 2011). It is well known
that the shear layer after an expansion separates from the wall and creates a recirculation

† Email address for correspondence: bscheid@ulb.ac.be
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FIGURE 1. (a) Streamlines obtained for an expansion ratio: ER = D/d = 3 and Re = 100 with
the inlet velocity profile corresponding to a Poiseuille flow, Xr corresponding to the recirculation
length; (b) definition of the geometry, d and D the inlet and outlet widths of the channel, L its
length, � the upstream length (§ 2.3). The grey area corresponds to the computational domain.

zone of length Xr (figure 1a) before reattaching to the wall further downstream. For both
pipe flow (Mullin et al. 2009; Sanmiguel-Rojas & Mullin 2012) and 2-D channel flow
(Battaglia et al. 1997; Drikakis 1997; Battaglia & Papadopoulos 2005; Fani, Camarri &
Salvetti 2012; Qian et al. 2016), it was found that increasing the Reynolds number (Re)
beyond a critical Reynolds value (Rec) induces a symmetry breaking of the recirculation
zones developed after the expansion. This transition corresponds to a Pitchfork bifurcation.
Realizing a linear stability analysis of such a system enables an efficient determination of
the Rec, and thus allows the effect of the expansion ratio (ER = D/d), defined as the ratio
between the downstream width (D) and the upstream width (d) of the sudden expansion,
to be explored.

It has been shown that Rec is affected by the rheological behaviour of the fluid in the
case of non-Newtonian fluids (Mishra & Jayaraman 2002; Ternik 2009). In this study, we
investigate another ingredient that might influence the stability of the flow after a 2-D
sudden expansion, namely the shape of the inlet velocity profile. Indeed, it is known that
for velocity profiles that deviate from a parabolic shape, an increase in the critical Reynolds
number for the occurrence of turbulence in straight channel is observed (Potter 1971). But
to the best of our knowledge, the influence of the inlet velocity profile on critical Reynolds
number for the symmetry breaking of the flow pattern in sudden expansions has never
been studied. In this paper we focus on transition profiles, arising at the outlet of a local
restriction (Durst & Loy 1985), such as those used in our previous crystallization set-up
(Rimez et al. 2018, 2019), even though only in a 2-D configuration.

The analyses realized in this study consist of considering various transition velocity
profiles from plug to Poiseuille flows and simulating with direct numerical simulation
(DNS) the behaviour of the recirculation length Xr for several ER and Re in order to
determine the Rec for each condition. Linear stability analysis (LSA) has been realized
using various inlet profiles to validate the results obtained with time dependent simulation
and to extend the parametrical analysis at lower computational cost. Finally, the length
of the recirculation zone has been correlated to the convection–diffusion transport of
momentum.
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2. Methodology

The geometry of the problem along with the Cartesian coordinate system (x ′, y′)
are given in figure 1. For the two approaches, DNS and LSA, the variables are made
dimensionless using umean , the mean velocity, ρu2

mean, the pressure scale where ρ is the
density, d the upstream width of the 2-D channel and d/umean the timescale. The meshes
used for the modelling are available in § 2.4, and convergence tests have been performed
to validate them.

2.1. Direct numerical simulation
The 2-D fluid behaviour is modelled using the dimensionless Navier–Stokes and
continuity equations for incompressible fluids:

∂u
∂t

+ (u · ∇)u + ∇p − 1
Re

Δu = 0, (2.1)

∇ · u = 0, (2.2)

where u = (u, v) with u and v the velocities in the x and y directions, t the time, p the
pressure field and Re = umeand/ν the Reynolds number with ν the kinematic viscosity. A
no-slip boundary condition is imposed at the walls

u = 0, (2.3)

the inlet velocity is set as function of y,

u(0, y) = f ( y) ∀y ∈ [−1/2 < y < 1/2] (2.4)

and a free outflow is set at the outlet, x = L̄, with L̄ = L/d,

p − 1
Re

∂x u = 0 and ∂xv = 0. (2.5a,b)

These equations are solved using the open source DNS code Nek5000 based on the spectral
elements method (SEM) and using seventh-order polynomials (P7–P5) discretization
(Fischer, Lottes & Kerkemeier 2008). Because we are looking for stationary solutions,
the convergence criterion to stop the simulations is ||ut − ut−Δt||/Δt < 10−7, where Δt
is the time step. The dimensionless length of a recirculation zone, X̄r, is defined as the
downstream distance from x = 0 at which the wall shear stress ∂yu is zero. In order to
capture the asymmetry, for each expansion ratio, the procedure is two-fold: (i) obtain a
stationary asymmetric solution by choosing a value of Re sufficiently large to be beyond
Rec and by imposing as initial condition a forcing of sufficiently large amplitude to ensure
the asymmetry; (ii) use the preceding solution as an initial solution and run simulations by
decreasing the Reynolds number until symmetric solutions are recovered, indicating that
Rec has been reached. Rec has been defined as the average Reynolds number within the
interval for which a symmetry breaking was observed.

2.2. Linear stability analysis
Following classical linear stability theory, the flow variables (u, p) are characterized by
their steady base flow conterparts (ub, pb) such that

(ub · ∇)ub + ∇pb − 1
Re

Δub = 0, (2.6)
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∇ · ub = 0, (2.7)

closed by the same boundary conditions (2.3)–(2.5a,b). The flow is also characterized by
its unsteady perturbed part and can therefore be decomposed as

u(x, y, t) = ub(x, y) + εũ(x, y) eσ t, (2.8)

p(x, y, t) = pb(x, y) + εp̃(x, y) eσ t, (2.9)

where ε � 1 is a small order parameter, ũ and p̃ are the complex perturbations and σ is
the complex eigenvalue. By substituting (2.8) and (2.9) into (2.1) and (2.2) and linearizing
with respect to ε, we obtain

σ ũ + (ũ · ∇)ub + (ub · ∇)ũ + ∇p̃ − 1
Re

Δũ = 0, (2.10)

∇ · ũ = 0, (2.11)

together with the inlet and walls boundary conditions,

ũ = 0, (2.12)

and the outlet condition,

p̃ − 1
Re

∂x ũ = 0 and ∂x ṽ = 0. (2.13a,b)

The problem is an eigenvalue problem where σ = λ+ iω, where λ is the growth rate and ω
is the pulsation. Equations are discretized by a finite element method (FEM) using P2–P1
Taylor–Hood elements. Meshes and matrices are generated with the software FreeFem++.
The base-flow described by (2.6)–(2.7) is solved with no symmetry condition with a
Newton–Raphson iterative method, and the solution of the linear system is computed via
the Unsymmetric Multifrontal sparse LU Factorization PACKage (UMFPACK) (Fani et al.
2012; Hecht 2012). The flow is linearly stable when the real parts of all eigenvalues are
negative (λ < 0) and unstable when at least one of them is positive (λ > 0). The leading
global mode, defined as the global mode with the largest growth rate, is investigated
to determine the global stability of the base flow. Figure 2(a) shows the growth rate
increases of the leading global mode while the Reynolds number increases for an ER
of 15 with a plug flow as inlet velocity. Similar to § 2.1, the critical Reynolds number
(Rec) is, here, defined as the average Reynolds number in the interval where the real part
of the leading eigenvalue is positive. For example, in figure 2(a), the growth rate of the
leading mode for Re = 16.050 is negative and is positive for Re = 16.083; the critical
Reynolds number is then set as Rec = 16.067 ± 0.017. Figure 2(b) depicts the streamwise
(ũ) and the cross-stream (ṽ) velocity perturbations and the pressure perturbation (p̃) of the
leading global mode at Re = 20. The streamwise velocity perturbation and the pressure
perturbation are anti-symmetric regarding the y axis, and the cross-stream velocity is
symmetric. In all the following results (see § 3), we noticed neither the appearance of
a second unstable global mode nor the appearance of non-zero pulsation.

2.3. Parametrization of the inlet velocity profile
Since we are interested in studying the influence of the inlet velocity profile on the flow
stability in a 2-D sudden expansion, we first model the flow in a straight channel of finite
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FIGURE 2. (a) Growth rate (λ) of the leading global mode obtained with the LSA for ER = 15
with a plug flow as inlet velocity; (b) perturbation for Re = 20 for the velocity in the streamwise
direction (ũ), in the cross-stream direction (ṽ) and the pressure field (p̃).

length � where a plug flow is imposed at the inlet. Thereafter, we equalized the convection
time with the diffusion time:

�

umean
� d2

ν
→ �

d
� umeand

ν
= Re. (2.14)

From this equality, the dimensionless channel length �/d, corresponding to the
development length of the velocity profile, can be rescaled with the Reynolds number and
defined as k = �/(dRe). This parameter means that for two different Reynolds numbers
(Re1 and Re2), the flow profiles are equivalent while �1/(dRe1) = �2/(dRe2). The validity
of this hypothesis (see appendix A) is shown to be satisfied for Re � 333. As a result,
for the following analysis, the profiles obtained at Re = 400 are represented in figure 3.
These profiles are then imposed at the inlet of the sudden expansion such as schematized
in figure 1. Even though the theoretical k value for a Poiseuille flow should correspond to
infinity, we used the value k = 0.045, which corresponds to the rescaled dimensionless
distance from the inlet at which the discrepancy between the central velocity and the
theoretical central velocity of a Poiseuille velocity profile is less than 1 % to parametrize
(3.2). This k value is comparable to the one obtained in the literature (Lautrup 2011).

2.4. Meshes
For both DNS and LSA, the computational domains are built with an inlet of width 1,
an outlet of width ER and a length of 50 – i.e. long enough to ensure that the results are
independent of this length.

The DNS mesh has 120 elements along the flow direction with a ratio of 1.01. In the
cross-flow direction, the channel is divided in three parts where the meshes are built
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FIGURE 3. Velocity profiles at the rescaled downstream development length k = �/(dRe) in a
straight channel for Re = 400.

Direction Position of the ith node i n ER a

2 5.5
xi 50

(
i
n

)1.3

i = 0, . . . , n 50a2 2.4 5.3
2.6 5.1

yi −
(

1
2

− ER
2

) (
1 − i

n

)1.3

+ 1
2

i = 0, . . . , n 2(ER − 1)a2 3 5

1
2

− i
n

i = 0, . . . , n a2 3.5 4.7

(
1
2

− ER
2

) (
i
n

)1.3

− 1
2

i = 0, . . . , n 2(ER − 1)a2 4 4.5
6 4
8 3.7

TABLE 1. Left: Mesh used for the LSA, position (xi, yi) of the ith node for i between 0 and n the
total number of node in one direction. Right: value of the constant a for the different expansion
ratios ER.

according to the Chebyshev nodes theory ((2.15), where yi is the position of the ith node).
The central zone, which has the same width as the inlet, contains 11 elements. The two
other zones at each side of the central one each contain 16 elements and have a width
(ER − 1)/2.

yi = 1
2
(a + b) + 1

2
(b − a) cos

(
2i − 1

2n

)
; (i = 1, . . . , n). (2.15)

The mesh used for the LSA is described in table 1, where the positions (xi, yi) of the ith
node are described as a function of ER and a constant a varying with ER. For the two
analyses, DNS and LSA, the convergence of the meshes have been validated by increasing
the number of elements which induced no differences, respectively, for the length of the
recirculation zones and for the eignevalues.
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FIGURE 4. Pitchfork bifurcations obtained by DNS for the length (X̄r) of the recirculation zones
for (a) ER = 2 and (b) ER = 3 for inlet velocity profiles going from plug flow to Poiseuille flow,
as parametrized by k. Dashed lines are the unstable recirculation lengths for the two extreme
profiles.

3. Results

3.1. Flow behaviour
The DNS modelling was carried out for different profiles characterized by their k
parameters, including the two limit cases (Poiseuille and plug flows) and for two
values of ER = 2 and ER = 3. Figure 4 shows Pitchfork bifurcations, indicating that the
dimensionless recirculation length (X̄r) at both sides of the channel do not have the same
size when the Reynolds number is above the critical value, Rec. The two cases (a) and (b)
show an increase of Rec with the decrease of k. It can be seen that the slope before the
supercritical Pitchfork bifurcation decreases when k is decreased, meaning that at a fixed
Reynolds number, the reattachment length X̄r is always shorter for a plug flow than for a
Poiseuille flow at the inlet.

3.2. Critical Reynolds number
On extending the LSA to other ER (2.4, 2.6, 3.5, 4, 6, 8, 15) and profiles (k = 0.00632
and k = 0.03304), figure 5(a) shows that the critical Reynolds numbers decrease when ER
is increased (see appendix B for the raw data). Comparing the critical Reynolds numbers
obtained in the linear stability analysis at ER = 2 and ER = 3 with the ones obtained with
DNS (figure 4) indicates that the results are in agreement. To rationalize these results, we
define a δ(k) factor in order to correlate the Rec(ER, k) for a given ER and for a known
k profile with the critical Reynolds numbers for a plug flow (RePl

c ) and a Poiseuille flow

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.912


909 A13-8 R. Debuysschère and others

0

0

0.2

0.4

0.6

0.8

1.0

0

100

200

300

0 0.02 0.04 0.06 0.08 0.10

δ = 0

δ = 1

0.12

1/ERm

Rec

ER = 2
ER = 2.4
ER = 2.6
ER = 3
ER = 3.5
ER = 4
ER = 6
ER = 8
Eq. (3.2)

Eq. (3.3)
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FIGURE 5. (a) Critical Reynolds numbers as a function of the expansion ratio ER, calculated
with the LSA for inlet velocity profiles varying from a plug flow to a Poiseuille flow; (b) values
of the δ factor as function of the rescaled dimensionless distance k. The dotted line is a fitting by
the least square method (see text).

(RePo
c ) at the inlet:

Rec(ER, k) � δ(k)[RePl
c (ER) − RePo

c (ER)] + RePo
c (ER). (3.1)

By plotting the function δ(k) in figure 5(b), a smooth decrease of the value of δ from
1 (plug flow) to 0 (Poiseuille flow) is observed for increasing k. This relation has been
fitted using the least squares method and by imposing two cross points at k = 0 (δ = 1)
and k = 0.045 (δ = 0) corresponding to the two limit profiles, which gives

δ = β

kn + γ
+ ζ, (3.2)

where n = 0.785, γ = 0.012, β = (γ 0.03n + γ 2)/(0.03n) = 0.014 and ζ = 1 − β/γ =
−0.136. Such a curve is useful to predict the critical Reynolds number for each rescaled
dimensionless k and ER, by using only the Rec for the two limit profiles (Poiseuille and
plug flows), which are given in table 2.

It is interesting to note that the critical Reynolds numbers can also be approximated as
a function of the expansion ratio and the inlet flow profile,

Rec = κ
1 + δ

ERm
+ ξ, (3.3)

where m = 3.06, κ = 1298.39 and ξ = 15.74 are fitting parameters. This correlation
has been drawn in figure 5(a) for the two inlet limit cases, namely Poiseuille and plug

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.912


Flow stability in a symmetric channel expansion 909 A13-9

ER RePo
c RePl

c

2 170 357
2.4 95 198
2.6 77 157
3 57.0 107.5
3.5 44.25 75.25
4 36.75 57.50
6 24.125 32.375
8 19.375 24.375
15 13.729 16.067

TABLE 2. Critical Reynolds numbers for the Pitchfork bifurcation depending on the inlet
velocity profile (Poiseuille or plug flows) and the expansion ratio ER.

flow profiles, for which δ is respectively equal to zero and one. Interestingly, when one
extrapolates the values for the plug flow (δ = 1) at ER = 1, it appears that the value of
Rec = 2613 is close to 2700, i.e. the value for the laminar to turbulent transition in a
straight channel as referenced in the literature (Morini 2004; Wang et al. 2012).

3.3. Scaling for the length of the recirculation zones
Figure 4 shows that the slope of the recirculation length below the critical Reynolds
numbers depends on the profile. While extending the computation to ER = 4, 6 and 8
by DNS, the same trends have been obtained (see figure 6a). With the aim of finding a
scaling law for this observation, we then proceed by assuming that the slope variations can
be rationalized using a convection–diffusion argument. For that purpose, we introduce the
non-dimensional parameter α, a function of k, which describes a fraction of the distance d
in addition to the step height (h) through which lateral diffusion of momentum has to take
place as schematized in figure 7 in dimensionless form. The associated time scale can thus
be written as

tν � (h + αd)2

ν
. (3.4)

By inspection of the velocity profiles, we have found that α is correlated to the previously
set parameter δ by δ = 1 − 2α. Therefore, δ corresponds to the central non-dimensional
distance (see figure 7) over which the velocity profile is almost flat (see figure 8b), while
α characterizes the complementary non-dimensional distance over which the velocity
variations take place. Equalizing this lateral diffusion time scale and the convection time
regarding the development length (Xr) of the recirculation, yields

Xr

umean
∝

[
h + (1 − δ)

2
d
]2

ν
, (3.5)

or in dimensionless form and by using h = (D − d)/2,

X̄r ∝ Re (ER − δ)2 = Re∗. (3.6)

Using the δ factors established in § 3.2, both the recirculation lengths obtained before
the Pitchfork bifurcations (figure 6b) and their slopes (inset of figure 6a) are seen to
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FIGURE 6. (a) Recirculation length obtained before the Pitchfork bifurcation for ER = 2, 3, 4,
6 and 8 for different inlet velocity profiles going from plug to Poiseuille flow profiles; the inset
depicts the square root of the slopes as a function of the expansion ratio and the δ parameter.
(b) Collapse of the recirculation lengths as a function of the rescaled Reynolds, Re∗ obtained in
(3.6).

h

α

δ/2

1
2

2

(0, 0)

Convection length
Diffusion length

X̄r

ER

FIGURE 7. Definition of the dimensionless parameters α and δ influencing the establishment of
the recirculation zone where X̄r and h̄ are the dimensionless recirculation length and height, and
ER is the expansion ratio.

collapse for all the ER and entry profiles studied. It must be noted that this collapse of
data points in figure 6(b) does not go through (0, 0), which is in good agreement with the
results of Khodaparast, Borhani & Thome (2014), which show the nonlinear behaviour of
the recirculation length at low Reynolds numbers, due to the effect of the non-negligible
streamwise diffusion of momentum (see also appendix A).
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FIGURE 8. (a) The y-derivative of the streamwise velocity component (b) in black-dashed
region of size δ (schematized in red) where the momentum diffusion is considered as negligible.

The physical interpretation of δ as the extension of the shear-free central jet region
is corroborated by plotting the position y = δ/2 on each derivative of the studied inlet
velocity profile with a black point in figure 8(a). These black points all fall within a
small grey zone corresponding to |∂u/∂y| < 0.5, meaning that the shear in the interval
[−δ/2, δ/2] is close to zero. Figure 8(b) represents these inlet velocity profiles where
the black-dashed part of dimensionless length δ(k) represents the zone where momentum
diffusion is assumed to be negligible. At both sides of the shear-free central zone, the shear
is large, and the associated vorticity is assumed to actively participate in the formation of
the recirculation zones.

4. Discussion and conclusions

Flow recirculations were studied downstream of a sudden expansion in a 2-D channel.
Those flow behaviours were analysed by DNS and by means of LSA. The two techniques
were applied on a set of inlet velocity profiles ranging from Poiseuille flow to plug flow as
limits. The intermediate profiles were parametrized by a k factor, representing the rescaled
dimensionless distance downstream of the inlet in a straight channel where a plug flow was
imposed at the inlet. Parametrized inlet profiles were then applied to different expansion
ratios ranging from 2 to 15.

First, we studied the appearance of Pitchfork bifurcations. We noticed for a decreasing
k value an increase of the critical Reynolds number at which the Pitchfork bifurcation
occurs. A correlation factor, δ, has been introduced in order to predict Rec as a function of
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the k constant and the expansion ratio. We then showed that the critical Reynolds numbers
can be approximated by means of a function of δ and ER.

Second, we pointed out that the recirculation lengths were influenced by both the inlet
flow profiles and by the expansion ratios. The length of the recirculation zones tends to
increase as the flow profile gets closer to the Poiseuille flow profile. This observation
has been correlated to momentum diffusion by means of the previously determined
dimensionless factor δ(k). This separates the inlet profile into two zones: (i) the shear-free
central region of extension δ(k), which has a negligible effect on the recirculation zones;
(ii) the two regions at either side of the central one where the shear and the associated
vorticity are significant, which then influence the recirculation zones. The introduction of
this shear-free region δ(k) into the convection/diffusion equilibrium allowed us to point
out a linear correlation between the length of the recirculation zones and the rescaled
Reynolds number Re∗, taking the momentum diffusion into account.

Having demonstrated the strong influence of the inlet velocity profile on the flow
structure and stability in a 2-D sudden expansion, it could be relevant to extend these
analyses for the design of 3-D microdevices. However, while the length of the recirculation
zone obtained in the present paper for any ER and constriction length is expected to be
applicable for a 2-D axisymmetric flow, the critical Reynolds number for the Pitchfork
bifuraction is not. Sanmiguel-Rojas & Mullin (2012) and Mullin et al. (2009) demonstrated
that Rec for a pipe flow with a Poiseuille velocity profile at the inlet is much larger (ER = 2,
Rec ∼ 1139) than the one for a 2-D configuration. They also showed that the critical
Reynolds number is subject to a hysteresis phenomenon. Yet it is believed that having
a non-developed flow at the inlet of a pipe with a sudden expansion should still have a
stabilizing influence for the same reasons as those presented here for a 2-D geometry.
In 3-D geometry, other parameters may also influence the flow behaviour. Vaniershot &
Van den Bulck (2008) demonstrated that the recirculation lengths are also influenced
by upstream swirl for high Reynolds numbers, which could possibly be correlated to
the modification of the inlet velocity conditions. At the same time, Cantwell, Barkley
& Blackburn (2010) demonstrated that sudden expansions cause the amplification of
the inlet noise and Zhang & Luo (2018) demonstrated that sudden constrictions may
induce an increase of the swirl intensity, which therefore promotes mixing. All these
parameters should be in the scope of future studies and may eventually lead to help the
design of the following: (i) sorting microsystems such as those described by Kadivar &
Farrokhbin (2017), Park et al. (2009), Chang et al. (2010) or Volpe, Gaudiuso & Ancona
(2019), which may possibly be improved by controlling the size of the recirculation zones;
(ii) microreactors such as the microcrystallizer described by (Rimez et al. 2019), which
may also be improved by promoting passive mixing.
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FIGURE 9. Computed velocity profiles by DNS at k = 0.00038 (a), k = 0.0078 (b)
k = 0.01151 (c) and k = 0.01522 (d) for Re between 33.3 and 533.3 in straight channel.
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FIGURE 10. For various Reynolds numbers ranging from 33.3 to 533.3, downstream distances
k from the inlet at which the same profile is found as at a distance k|Re=400 from the reference
Reynolds number (Re = 400).

Appendix A. Profile convergence

Based on the simulations described in § 2.3, velocity profiles have been extracted for
Reynolds numbers from 33.3 to 533.3 at different rescaled downstream distances (k) from
the inlet. Figures 9(a)–9(d) show that profiles are not equivalent for an increasing Reynolds
number. One observes that the profiles collapse with Re � 333.3. Thereby, we arbitrarily
choose for reference the profiles obtained with a Reynolds number of 400. Thanks to
the least squares method, for various Reynolds numbers, we compare in figure 10 the
downstream distance k from the inlet at which the velocity profile is extracted with the
one (k|Re=400) in the case of the chosen reference (Re = 400). The curves collapse when
Re � 333.3, confirming the first observation made in figure 9. This discrepancy within the
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FIGURE 11. Correlation between ∂�∗ and Reynolds numbers for a velocity profile obtained at
the downstream dimensionless distance from the inlet k|Re=400 = 0.01522.

downstream distances for low Reynolds numbers originate from the longitudinal diffusion
of momentum. Indeed, equalizing the convection time and the longitudinal diffusion time
gives

∂�

umean
� ∂�2

ν
, (A 1)

where ∂� is the longitudinal diffusion length. It allows the dimensionless diffusion length
(∂�∗) to be described as a function of the Reynolds number

∂�∗ = ∂�

d
� ν

dumean
= 1

Re
. (A 2)

For a given Reynolds number and for a velocity profile obtained at the dimensionless
distance k from the inlet, the dimensionless distance ∂�∗ can be approximated by the
distance to recover the same velocity profile in the case of the reference Reynolds number
(Re = 400),

∂�∗ ∝ k − k|Re=400. (A 3)

Figure 11 shows this length as a function of the Reynolds number for a profile extracted at
k|Re=400 = 0.01522. It appears that this is linearly correlated to 1/Re as predicted by (A 2),
which confirms that the observed changes were due to longitudinal diffusion.

Appendix B. Data

Table 3 contains the numerical values of the critical Reynolds numbers (Rec) for the
analysed expansion ratios (ER) for various inlet velocity profiles ranging from plug flow
to Poiseuille flow as parametrized by k. The results shown have been obtained by DNS or
LSA. The values ±Δ describe the half step size used to determine Rec.
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Rec

ER Profile DNS �DNS LSA �LSA

2 Plug (k = 0) 356.7 ±3.3 356.7 ±3.3
k = 0.00186 263.3 ±3.3 290.8 ±0.8
k = 0.00334 243.3 ±3.3 244.2 ±0.8
k = 0.00632 / / 224.5 ±0.8
k = 0.01077 205 ±5 207.5 ±0.8
k = 0.01449 198.3 ±1.7 199.2 ±0.8
k = 0.01893 191.7 ±1.7 190.8 ±0.8
k = 0.03304 / / 177.3 ±0.7

Poiseuille (k = ∞) 170.0 ±3.3 169.2 ±0.8

2.4 Plug (k = 0) / / 198.0 ±0.75
k = 0.00186 / / 150.3 ±0.3
k = 0.00334 / / 138.3 ±0.3
k = 0.00632 / / 125.7 ±0.3
k = 0.01077 / / 115.0 ±0.3
k = 0.01449 / / 109.0 ±0.3
k = 0.01893 / / 105 ±0.3
k = 0.03304 / / 97.7 ±0.3

Poiseuille (k = ∞) / / 94.5 ±0.3

2.6 Plug (k = 0) / / 157.0 ±0.3
k = 0.00186 / / 121.7 ±0.3
k = 0.00334 / / 111.7 ±0.3
k = 0.00632 / / 101.0 ±0.3
k = 0.01077 / / 92.3 ±0.3
k = 0.01449 / / 88.3 ±0.3
k = 0.01893 / / 85.0 ±0.3
k = 0.03304 / / 79.7 ±0.3

Poiseuille (k = ∞) / / 77.3 ±0.7

3 Plug (k = 0) 109 ±2 107.7 ±0.3
k = 0.00186 85.3 ±0.7 85.7 ±0.3
k = 0.00334 79.3 ±0.7 79.0 ±0.3
k = 0.00632 / / 72.3 ±0.3
k = 0.01077 66.0 ±0.7 66.3 ±0.3
k = 0.01449 64 ±0.7 63.7 ±0.3
k = 0.01893 61.7 ±0.3 61.7 ±0.3
k = 0.03304 / / 59.0 ±0.3

Poiseuille (k = ∞) 57.0 ±1 57.0 ±0.3

3.5 Plug (k = 0) / / 75.17 ±0.17
k = 0.00186 / / 62.17 ±0.17
k = 0.00334 / / 57.83 ±0.17
k = 0.00632 / / 53.50 ±0.17
k = 0.01077 / / 50.17 ±0.17
k = 0.01449 / / 48.50 ±0.17
k = 0.01893 / / 47.17 ±0.17
k = 0.03304 / / 45.17 ±0.17

Poiseuille (k = ∞) / / 44.17 ±0.17

TABLE 3. For caption see next page.
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Rec

ER Profile DNS �DNS LSA �LSA

4 Plug (k = 0) / / 57.50 ±0.17
k = 0.00186 / / 49.17 ±0.17
k = 0.00334 / / 46.17 ±0.17
k = 0.00632 / / 43.17 ±0.17
k = 0.01077 / / 40.83 ±0.17
k = 0.01449 / / 39.50 ±0.17
k = 0.01893 / / 38.83 ±0.17
k = 0.03304 / / 37.50 ±0.17

Poiseuille (k = ∞) / / 36.83 ±0.17

6 Plug (k = 0) — — 48.625 ±0.083
k = 0.00186 / / 29.250 ±0.083
k = 0.00334 / / 28.083 ±0.083
k = 0.00632 / / 26.750 ±0.083
k = 0.01077 / / 25.917 ±0.083
k = 0.01449 / / 25.417 ±0.083
k = 0.01893 / / 24.917 ±0.083
k = 0.03304 / / 24.417 ±0.083

Poiseuille (k = ∞) / / 24.083 ±0.083

8 Plug (k = 0) / / 24.417 ±0.083
k = 0.00186 / / 22.5417 ±0.0417
k = 0.00334 / / 21.8750 ±0.0417
k = 0.00632 / / 21.1250 ±0.0417
k = 0.01077 / / 20.3750 ±0.0417
k = 0.01449 / / 20.2083 ±0.0417
k = 0.01893 / / 19.9583 ±0.0417
k = 0.03304 / / 19.5417 ±0.0417

Poiseuille (k = ∞) / / 19.3750 ±0.0417

15 Plug (k = 0) / / 16.0670 ±0.025
Poiseuille (k = ∞) / / 13.3583 ±0.021

TABLE 3 (cntd). Critical Reynolds numbers (Rec) obtained with DNS and LSA, and the half
step sizes used to determine these values.
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