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do Rio Preto, SP, Brazil (c.pessoa@unesp.br)

Jarne D. Ribeiro
Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas
Gerais, IFSULDEMINAS, Rua Mario Ribola 409, Penha II, 37903-358,
Passos, MG, Brazil (jarne.ribeiro@ifsuldeminas.edu.br)

(Received 1 July 2020; accepted 28 July 2021)

Motivated by the definition of rigid centres for planar differential systems, we
introduce the study of rigid centres on the center manifolds of differential systems on
R

3. On the plane, these centres have been extensively studied and several interesting
results have been obtained. We present results that characterize the rigid systems on
R

3 and solve the centre-focus problem for several families of rigid systems.
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1. Introduction

Consider the following planar system

ẋ = −y + P (x, y), ẏ = x + Q(x, y), (1.1)

where P,Q are real analytic functions in x, y without constant and linear terms,
which implies that the origin is an equilibrium point.

The centre-focus (or centre) problem, originally defined for (1.1) in the polyno-
mial setting, consists of obtaining conditions on the coefficients of the system to
distinguish when the origin is either a focus or a centre. It is one of the main and
oldest problems in side of the qualitative theory of ordinary differential equations
and has been the subject of intensive research (see [6, 36] and references therein).
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Rigid centres on the center manifold of tridimensional differential systems1059

We recall that an equilibrium point p is a centre if all orbits sufficiently closed to
it are periodic, and p is a focus if there is a neighbourhood V of p such that all the
orbits by points of V \ {p} spiral either in forward or in backward time to p.

The study of the period function and isochronicity is another important area of
research related to system (1.1). We say that the origin of system (1.1) is isochronous
centre if it is a centre and the period function, i.e. the function that associates to each
periodic orbit its minimal period, defined in a small enough neighbourhood of the
origin is constant. The study of isochronicity probably started before the develop-
ment of the differential calculus. In the XVI century, Galileo Galilei considered this
problem when studying the classical pendulum. After, in XVII century, Huygens
studied the cycloidal pendulum [15]. This pendulum has isochronous oscillations
in opposition to the classical one. Huygens applied his results to the construction
of clocks. However, only in the second half of the last century the isochronicity
of centres of planar polynomial vector fields have been extensively studied, see
[5, 16, 27].

A particularly important class of isochronous centres are those which rotate
around the origin with the constant angular speed (see e.g. [10, 12, 28]). Cen-
tres with this property are referred to as rigid centres. In this case the centre-focus
problem is equivalent to the isochronicity problem and this is one of the reasons
why several authors have been interested for this type of centres. Probably, the
easiest way to formally define the rigid centres is by making reference to polar
coordinates. We say that system (1.1) is a rigid system, if in polar coordinates
(x, y) �→ (r cos θ, r sin θ) it takes the form

ṙ = cos θP (r cos θ, r sin θ) + sin θQ(r cos θ, r sin θ),

θ̇ = 1.
(1.2)

The emphasis in expression (1.2) is only on the angular speed, which in the rigid
systems is constant. Note that unitary angular speed (θ̇ = 1) is a consequence of the
normalized framework (1.1). Moreover, system (1.2) is equivalent to a generalized
Abel differential equation, see [7]. This is another reason to study this type of
systems. If the origin is a centre of system (1.1), and it is rigid, then we say that
the origin is a rigid centre. In [1] the authors find conditions for a rigid system to
have an analytical commutator, and so they are able to solve the centre problem for
several families of rigid systems. Collins, in [8], obtained explicit algebraic formulas
that solve the centre problem for a particular class of rigid systems. Collins also
solved the centre problem for polynomial cubic rigid systems, see [9]. The existence
and uniqueness of limit cycles of rigid systems also are subjects of great interest,
see e.g. [21, 22].

In this paper, we deal with tridimensional systems having a centre on the center
manifold at the origin. Therefore, consider the following tridimensional system

ẋ = −y + P (x, y, z), ẏ = x + Q(x, y, z), ż = −λz + R(x, y, z), (1.3)

where λ �= 0 and P , Q, R are analytic in x, y and z without constant and linear
terms, which implies that the origin is an equilibrium point. Following the centre
manifold theorem, for every k ∈ N, there exists a local two-dimensional Ck invariant
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manifold Wc tangent to z = 0 at the origin. In general, the invariant manifold Wc

is neither unique nor analytic.
The concept of centre for system (1.3) extends naturally due to the existence of

centre manifold in the vicinity of the origin. This problem has been the subject
of several recent papers. In [14] the authors describe an algorithm to solve the
centre problem for system (1.3) on the center manifold and they prove that to fixed
value of λ the set of systems of form (1.3), with P , Q and R polynomials, having
a centre on the local center manifold at the origin corresponds to a variety in the
space of admissible coefficients. The authors of [4] prove that the origin of system
(1.3) is a centre on the center manifold if and only if there exists a local analytic
inverse Jacobi multiplier. Using Lie algebra techniques, in [18], the authors obtain
a criterion for the origin to be a focus or a centre for systems of the form (1.3),
and for it to be linearizable. In [19] the authors prove that it is possible to bound
the cyclicity of centres at the origin of system (1.3) and in [20] the same authors
provide upper bounds on the cyclicity of centres on center manifolds in the well-
known Lorenz family, and also in the Chen and Lü families. The centre problem on
the center manifold for Lü family is solved in [31] and for the Moon-Rand family
is studied in [24, 32]. Partial results about the centre problem on center manifolds
for quadratic families, i.e. for systems of the form (1.3) with P , Q and R quadratic
polynomials, were obtained in [23]. Mahdi in [29] partially solves the centre problem
on center manifolds for quadratic systems of the form (1.3) obtained from a third-
order differential equation. In [30] the authors complete this study and, for the first
time in the literature, they propose a new hybrid symbolic-numerical approach to
solve the centre problem.

We focus on studying the rigid systems in R
3. More precisely, we studying the

centre-focus problem to the systems of the form

ẋ = −y + xF (x, y, z), ẏ = x + yF (x, y, z), ż = −λz + R(x, y, z). (1.4)

This system restricted to a center manifold is rigid. Moreover, in cylindrical coor-
dinates, their orbits rotate around the z-axis with the constant angular speed. In
fact, if system (1.3), in cylindrical coordinates, has constant angular speed, then it
has the form above (see proposition 2.4). However, there are systems of the form
(1.3) which, when restricted to a center manifold, are rigid, but cannot be written
in the form (1.4) (see proposition 2.6).

Motivated by the results of Conti [10] on the characterization of the rigid centres
for homogeneous rigid systems on the plane, we divided the study of the systems of
the form (1.4) in two class, homogeneous rigid systems and non-homogeneous rigid
systems. The paper is structured as follows.

In § 2 we introduce the rigorous definitions of rigid systems in R
3 and rigid systems

in R
3 by cylindrical coordinates and we characterized these types of systems through

normal forms (see propositions 2.3, 2.4 and corollary 2.5). We also showed that these
definitions are not equivalents (see proposition 2.6).

In § 3 we study the homogeneous rigid systems, i.e. systems of the form (1.4) with
F = Fn and R = Rm, where Fn and Rm are homogenous polynomials of degree n
and m, respectively. We prove that se Rm(x, y, 0) ≡ 0 or ∂Fn/∂z ≡ 0, then the
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origin of system (1.4) is a centre if and only if
∫ 2π

0
Fn(cos θ, sin θ, 0)dθ = 0 (see

propositions 3.1 and 3.2).
Assuming the hypothesis ∂Rm/∂z ≡ 0, in § 4, we classify the centres of systems

of the form (1.4) with F = Fn and R = Rm, where Fn and Rm are homogenous
polynomials of degree n and m, for the follows cases:

• n = 1 and m = 2;

• n = 1, m = 3, 4 and λ = 1;

• n = 2, m = 2, 3 and λ = 1.

In the case n = 2, m = 3 and λ = 1, we have used modular arithmetic to do the
study and so we are not sure if the classification is complete, but we conjecture that
yes. Excluding the hypothesis ∂Rm/∂z ≡ 0, we obtain several families of centres for
the case n = 1, m = 2 and λ = 1. These families were also obtained using modular
arithmetic and, as in the previous case, we are not sure if are all the families of
centres, although we believe so. We complete § 4 classifying the centres of the case
n = m = 2, λ = 1 and F2 = R2.

In § 5 we consider non-homogeneous rigid systems. More precisely, we study some
systems of the form (1.4) where F is a polynomial in a unique variable, i.e. the
variable z, and R is a homogenous polynomial in three or two variables. This study
was motivated by interesting results obtained in [12, 28] for the equivalent cases
in the plane.

2. Rigid systems in R
3

Similarly as in the R
2, the most natural way to define rigidity is by expressing the

system restricted to a center manifold in polar coordinates.

Definition 2.1 (rigid systems in R
3). We say that the tridimensional system (1.3)

is rigid if its restriction to a center manifold by the origin, in the polar coordinates,
has the form (1.2). Moreover, if the origin is a centre on the center manifold, then
we say that the origin is a rigid centre.

The above definition is not very practical for computations, since to study rigid
centres in R

3 we have the additional difficulty of restricting system (1.3) to a center
manifold. For to avoid this task, we will introduce a subclass of rigid systems.

Definition 2.2 (rigid systems in R
3 by cylindrical coordinates). We say that

the tridimensional system (1.3) is rigid by cylindrical coordinates if, in cylindrical
coordinates (x, y, z) �→ (r cos θ, r sin θ, z), it assumes the following form

ṙ = cos θP (r cos θ, r sin θ, z) + sin θQ(r cos θ, r sin θ, z),

θ̇ = 1,

ż = −λz + R(r cos θ, r sin θ, z).

(2.1)
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The right-hand expressions of the first and third equations in (2.1) are irrelevant
to the definition. The emphasis is in the second equation of (2.1), it shows that the
orbits of the system rotates around the z-axis with the constant angular speed.

We will see that the above definitions are not equivalent (see proposition 2.6).
In fact the rigid systems in R

3 by cylindrical coordinates are a subclass of rigid
systems in R

3.
The following propositions characterize systems (1.3) that are rigid and rigid by

cylindrical coordinates.

Proposition 2.3. System (1.3) is rigid if and only if its restriction to a center
manifold by the origin takes the following canonical form

ẋ = −y + xF (x, y), ẏ = x + yF (x, y), (2.2)

where F is a Ck map, defined in a small enough neighbourhood of origin, for any
1 � k < ∞.

Proof. In polar coordinates (x, y) �→ (r cos θ, r sin θ), system (2.2) can be written as

ṙ = rF (r cos θ, r sin θ), θ̇ = 1.

Thus by definition the system is a rigid system.
Now we show the converse. By the centre manifold theorem, for every k ∈ N,

there exists a two-dimensional Ck invariant manifold Wc tangent to z = 0 at the
origin and so Wc is locally the graphic of a Ck map z = h(x, y) (see theorem 3.2.1
in p. 127 of [26]). Hence, system (1.3) restricted to Wc takes the form

ẋ = −y + P̃ (x, y), ẏ = x + Q̃(x, y), (2.3)

where P̃ (x, y) = P (x, y, h(x, y)) and Q̃(x, y) = Q(x, y, h(x, y)). In polar coordinates
system (2.3) becomes

ṙ = cos θ P̃ (r cos θ, r sin θ) + sin θ Q̃(r cos θ, r sin θ),

θ̇ = 1 +
1
r

[
cos θ Q̃(r cos θ, r sin θ) − sin θ P̃ (r cos θ, r sin θ)

]
.

(2.4)

By the rigidity assumption applied to system (1.3) (i.e. θ̇ = 1), we immediately
obtain of (2.4) that

1
r

[
cos θ Q̃(r cos θ, r sin θ) − sin θ P̃ (r cos θ, r sin θ)

]
= 0. (2.5)

In the (x, y) coordinates equation (2.5) is written as

xQ̃(x, y) − yP̃ (x, y) = 0. (2.6)

Equation (2.6) implies that yP̃ (0, y) = 0, that is P̃ (0, y) = 0. Using Hadamard’s
lemma (see [3]), there exists a Ck map F (x, y) such that P̃ (x, y) = xF (x, y).
Similarly, we obtain Q̃(x, y) = yG(x, y), where G is a Ck map. Thus, from
(2.6), we readily obtain xy(G(x, y) − F (x, y)) = 0, i.e. G(x, y) = F (x, y). Therefore,
P̃ (x, y) = xF (x, y) and Q̃(x, y) = yF (x, y), which proves the proposition. �
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Proposition 2.4. System (1.3) is rigid by cylindrical coordinates if and only if it
takes the following canonical form

ẋ = −y + xF (x, y, z), ẏ = x + yF (x, y, z), ż = −λz + R(x, y, z), (2.7)

where F is an analytic map.

Proof. In cylindrical coordinates (x, y, z) �→ (r cos θ, r sin θ, z), system (2.7) can be
written as

ṙ = rF (r cos θ, r sin θ, z), θ̇ = 1, ż = −λz + R(r cos θ, r sin θ, z),

thus by definition the system is a rigid system.
Now we show the converse. In cylindrical coordinates system (1.3) takes the form

ṙ = cos θ P (r cos θ, r sin θ, z) + sin θ Q(r cos θ, r sin θ, z),

θ̇ = 1 +
1
r

[
cos θ Q(r cos θ, r sin θ, z) + sin θ P (r cos θ, r sin θ, z)

]
,

ż = −λz + R(r cos θ, r sin θ, z).

(2.8)

By the rigidity assumption applied to system (1.3) (i.e. θ̇ = 1), we immediately
obtain of (2.8) that

1
r

[
cos θ Q(r cos θ, r sin θ, z) + sin θ P (r cos θ, r sin θ, z)

]
= 0. (2.9)

In the (x, y, z) coordinates equation (2.9) is written as

xQ(x, y, z) − yP (x, y, z) = 0. (2.10)

Equation (2.10) implies that yP (0, y, z) = 0, i.e. P (0, y, z) = 0. Therefore, there
exists an analytic map F such that P (x, y, z) = xF (x, y, z). Similarly, we obtain
Q(x, y, z) = yG(x, y, z), where G is analytic. Thus, from (2.10), we readily obtain
xy(G(x, y, z) − F (x, y, z)) = 0, i.e. G(x, y, z) = F (x, y, z). Therefore, P (x, y, z) =
xF (x, y, z) and Q(x, y, z) = yF (x, y, z), which proves the proposition. �

The following corollary is a straightforward consequence of the proofs of the above
propositions.

Corollary 2.5. Consider system (1.3). Then

(a) this system is rigid if and only if xQ(x, y, z) − yP (x, y, z) ≡ 0 with z =
h(x, y), where h is the local expression of an invariant center manifold Wc;

(b) this system is rigid by cylindrical coordinates if and only if xQ(x, y, z) −
yP (x, y, z) ≡ 0.

It is obvious that if system (1.3) is rigid by cylindrical coordinates, then it is
rigid in R

3. However, the next proposition shows that definitions 2.1 and 2.2 are
not equivalent. In fact the rigid systems in R

3 by cylindrical coordinates are a
subclass of rigid systems in R

3.
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Proposition 2.6. The system

ẋ = −y + x2 + xy + xz + yz + z2, ẏ = x + xy + xz + y2 + yz + z2,

ż = −z + xz + yz + z2, (2.11)

is rigid, but is not rigid by cylindrical coordinates. Moreover, the origin is a centre
of it on the center manifold.

Proof. Note that z is a common factor on the right side of the last equation of
system (2.11). Therefore, the plane z = 0 is invariant by the flow generated by
system (2.11) and so it is a center manifold of this system. System (2.11) restricted
to plane z = 0 is given by

ẋ = −y + x2 + xy, ẏ = x + xy + y2.

This system is rigid and has the following first integral

H(x, y) =
x2 + y2

(1 − x + y)2
,

which it is defined in the origin. Thus, system (2.11) is rigid and has a centre on
the center manifold.

Now, system (2.11) is not rigid by cylindrical coordinates, because

xQ(x, y, z) − yP (x, y, z) = x2z + xz2 − y2z − yz2 �≡ 0,

where P (x, y, z) = x2 + xy + xz + yz + z2 and Q(x, y, z) = xy + xz + y2 + yz +
z2. �

Remark 2.7. For some cases, the centre-focus problem in center manifolds of rigid
system in R

3 by cylindrical coordinates is exactly the same problem to rigid system
in R

2. For instance, when R in (2.7) satisfies R(x, y, 0) ≡ 0, i.e. when we can write
R(x, y, z) = zR̃(x, y, z) with R̃ ∈ R[x, y, z]. In this case z = 0 is a center manifold
and system (2.7) restricted to it becomes

ẋ = −y + xF (x, y, 0), ẏ = x + yF (x, y, 0),

where F (x, y, 0) ∈ R[x, y] is a polynomial without a constant term. Thus, the results
about rigid systems in R

2 are naturally extended to this class of rigid system in R
3.

Another class of rigid systems in R
3 by cylindrical coordinates which the results

about centre-focus problems are naturally extensions of the results in the plane are
systems of form (2.7) with (∂F/∂z)(x, y, z) ≡ 0, i.e. when we can write F (x, y, z) =
F (x, y) with F ∈ R[x, y]. In this case the two first equations in system (2.7) are
uncoupled with the last one and so, system (2.7) restricted to any center manifold
is given by

ẋ = −y + xF (x, y), ẏ = x + yF (x, y).
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3. Homogeneous rigid systems in R
3

Consider the following system

ẋ = −y + xFn(x, y, z), ẏ = x + yFn(x, y, z), ż = −λz + Rm(x, y, z), (3.1)

where Fn, Rm ∈ R[x, y, z] are homogenous polynomial in x, y, z of degree n � 1,
and m � 2, respectively. System (3.1) are called homogeneous rigid systems. In this
section we will prove some propositions about these systems.

The next two prepositions are motivated by well-known results that characterize
the centres of planar homogenous rigid system, see e.g. [10, 11].

Proposition 3.1. Consider system (3.1) with Rm(x, y, 0) ≡ 0. Then system (3.1)
has a rigid centre at the origin if and only if∫ 2π

0

Fn(cos(s), sin(s), 0)ds = 0.

Proof. By remark 2.7 the plane z = 0 is the center manifold by the origin of system
(3.1). Hence, restricted to plane z = 0, system (3.1) in polar coordinates x = ρ cos θ,
y = ρ sin θ becomes

ρ̇ = ρn+1Fn(cos θ, sin θ, 0), θ̇ = 1.

The above system is equivalent to the differential equation

dρ

dθ
= Fn(cos θ, sin θ, 0)ρn+1.

As Fn is not constant, separating the variables ρ and θ of this equation, and
integrating between 0 and θ we get that its solution satisfies

ρ(θ)n =
ρ(0)n

1 − nρ(0)n
∫ θ

0
Fn(cos(s), sin(s), 0)ds

.

Hence, the origin is a centre in a center manifold to system (3.1) with n � 1 and
Rm(x, y, 0) ≡ 0, if and only if∫ 2π

0

Fn(cos(s), sin(s), 0)ds = 0.

Observe that, if n is odd, the above integral is always zero. This completes the
proof of the proposition. �

Proposition 3.2. Consider system (3.1) with (∂Fn/∂z)(x, y, z) ≡ 0, i.e.
Fn(x, y, z) = Fn(x, y) is a homogeneous polynomial in the variables x, y. Then
system (3.1) has a rigid centre at the origin if and only if∫ 2π

0

Fn(cos(s), sin(s))ds = 0.
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Proof. By remark 2.7, system (3.1) restricted to a center manifold at origin is given
by

ẋ = −y + xFn(x, y), ẏ = x + yFn(x, y). (3.2)

Hence, in polar coordinates x = ρ cos θ, y = ρ sin θ, system (3.2) becomes

ρ̇ = ρn+1 Fn(cos θ, sin θ), θ̇ = 1,

which is equivalent to the differential equation

dρ

dθ
= Fn(cos θ, sin θ)ρn+1.

As in the proof of previous proposition, the solution of this equation with initial
condition ρ(0) = ρ0 is

ρ(θ) =
ρ0(

1 − nρn
0

∫ θ

0
Fn(cos(s), sin(s))ds

)1/n
.

(3.3)

Now, system (3.1) have a periodic orbit by the point (ρ0, 0, z0) if and only if ρ(2π) =
ρ0. Hence, by equation (3.3), we have that∫ 2π

0

Fn(cos(s), sin(s))ds = 0.

Here z0 = h(ρ0, 0), where z = h(x, y) is a local expression of center manifold.
Observe that, if n is odd, the above integral is always zero. This completes the
proof of the proposition. �

In the study of centre-focus problem for homogeneous rigid systems in R
3,

the above propositions given us two centre conditions. The first centre con-
ditions are the value parameters from system (3.1) such that Rm(x, y, 0) ≡
0 and

∫ 2π

0
Fn(cos(θ), sin(θ), 0)dθ = 0. The second centre conditions are the

value parameters from system (3.1) such that (∂Fn/∂z)(x, y, z) ≡ 0 and∫ 2π

0
Fn(cos(θ), sin(θ))dθ = 0. We call this conditions of elementary centre condi-

tions for homogeneous rigid systems (or simply elementary centre conditions when
there is no confusion with others types of rigid systems).

4. Centre problem for some classes of homogeneous rigid systems in R
3

In this section we study the centres at the origin on the center manifold of some
class of homogeneous rigid systems in R

3. For do this, we summarize the method
described in [14] (see also [29, 30, 32]) for studying the centre problem on a center
manifold for vector fields in R

3.
Consider system (1.3), the Lyapunov centre theorem states that this system has a

centre at the origin on the center manifold if and only if the system has an analytic
first integral defined in the origin of the form H(x, y, z) = x2 + y2 + · · · , where the
dots mean higher order terms (see [2, 14]). In what follows we consider that P ,
Q and R in (1.3) are polynomials. We start by introducing the complex variable
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u = x + iy. Therefore, the first two equations in (1.3) are equivalent to the unique
equation u̇ = iu + · · · . Adding to this equation its complex conjugate, changing ū
(where as usual ū denote the conjugate of u) by v, thinking in v as an independent
complex variable, and substituting z by w, we obtain the following complexification
of system (1.3):

u̇ = iu +
n∑

p+q+r=2

apqru
pvqwr,

v̇ = −iv +
n∑

p+q+r=2

bpqru
pvqwr,

ẇ = βw +
n∑

p+q+r=2

cpqru
pvqwr,

(4.1)

where bqpr = āpqr and the cpqr are such that
∑n

p+q+r=2 cpqru
pūqwr is real for all

u ∈ C and w ∈ R. Denote by X the new vector field associated with system (4.1)
on C

3. Now the existence of a first integral H(x, y, z) = x2 + y2 + · · · for a system
(1.3) is equivalent to the existence of a first integral of the form

H(u, v, w) = uv +
∑

j+k+l=3

vjklu
jvkwl

for system (4.1).
By computing the coefficients of XH = 〈X,∇H〉 and equating them to zero, we

investigate the existence of a first integral H for a system (4.1). Denoting by gk1k2k3

the coefficient of uk1vk2wk3 in XH, except when (k1, k2, k3) = (k, k, 0) for a positive
integer k, we can solve in a unique way for vk1k2k3 the equation gk1k2k3 = 0 in terms
of the known quantities vαβγ such that α + β + λ < k1 + k2 + k3. Hence, if gkk0 = 0
for all k ∈ N a formal first integral H exists. When the coefficient gkk0 is non-zero
an obstruction to the existence of the formal series H occurs. Such coefficient is
called the kth focus quantity.

The focus quantities g110 = 0 and g220 are determined in a unique way, but the
others depend on the choices made for vkk0, k ∈ N, k � 2. Once such computations
are made, H is determined and satisfies

XH(u, v, w) = g220(uv)2 + g330(uv)3 + · · · .

It follows that if for one choice of the vkk0 at least one focus quantity is non-zero, the
same is true for every other choice of the vkk0. A sufficient and necessary condition
for the existence of a centre on the center manifold is to vanish all focus quantities,
otherwise we have a focus (see [14]).

Theorem 4.1. Consider system (3.1) with (∂Rm/∂z)(x, y, z) ≡ 0, i.e. system

ẋ = −y + xFn(x, y, z), ẏ = x + yFn(x, y, z), ż = −λz + Rm(x, y), (4.2)

where Fn(x, y, z) =
∑

j+k+l=n ajklx
jykzl and Rm(x, y) =

∑
j+k=m bjkxjyk.
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(a) If n = 1 and m = 2, system (4.2) has a centre at the origin on the center
manifold if and only if a001 = 0 or b20 = b11 = b02 = 0.

(b) If λ = n = 1 and m = 3, 4, system (4.2) has a centre at the origin on the
center manifold if and only if a001 = 0 or bjk = 0 for all j, k ∈ N with
j + k = 3, 4.

(c) If λ = 1, n = 2, and m = 2, system (4.2) has a centre at the origin on the
center manifold if and only if a200 = −a020 and a101 = a011 = a002 = 0 or
a200 = −a020 and b20 = b11 = b02 = 0.

(d) If λ = 1, n = 2, m = 3, and a200 = −a020, a101 = a011 = a002 = 0 or a200 =
−a020, b30 = b21 = b12 = b03 = 0, then system (4.2) has a centre at the origin
on the center manifold.

Proof. First we prove statement (a). Using the method described above, we have
that the first focus quantity associated with origin of system (4.2) is

g220 =
a001(b20 + b02)

λ
.

Therefore, a001 = 0 or b02 = −b20 are necessary conditions to have a centre at the
origin on the center manifold of system (4.2). Note that a001 = 0 is also sufficient,
because it is an elementary centre condition by proposition 3.2.

Now, assume that a001 �= 0 and b02 = −b20. First we suppose that a100 = a010 =
0. In this case g220 = 0 and the second focus quantity is

g330 = −a2
001

(
4b2

20 + b2
11

)
2λ (λ2 + 4)

.

So b20 = b11 = b02 = 0 is a necessary condition to have a centre at the origin on
the center manifold of system (4.2). It is also a sufficient condition, because it is an
elementary centre condition by proposition 3.1.

If a2
100 + a2

010 �= 0, we can assume that system (4.2) is given by

ẋ = −y + x(y + z), ẏ = x + y(y + z), ż = −λz + b20x
2 + b11xy − b20y

2. (4.3)

Otherwise, we do the change of variables

x =
a010

a2
100 + a2

010

X +
a100

a2
100 + a2

010

Y,

y = − a100

a2
100 + a2

010

X +
a010

a2
100 + a2

010

Y, z =
1

a001
Z. (4.4)

The first focus quantity g220 of system (4.3) is zero and the next four gkk0,
k = 3, 4, 5, 6, can be easily computed (their expressions are too lengthy and we omit
them here), for instance using software of symbolic computations like Maple [33] or
Mathematica [37] (see the appendix from [32] for a Mathematica code for comput-
ing the focus quantities). We have that the focus quantities gkk0, k = 3, 4, 5, 6 are
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rational expressions and the Groebner basis of the ideal generated by its numerators
is given by the polynomials:

{b2
11

(
4b2

20 + b2
11

)
, b20b11

(
4b2

20 + b2
11

)
, (2b20 − b11)(2b20 + b11)

(
4b2

20 + b2
11

)
,

− (4b2
20 + b2

11

)
(23b20 − 3b11λ), b20

(
λ2 + 4

) (
4b2

20 + b2
11

)
,

− 308b3
20 + 116b2

20λ
2 + 476b2

20 − 77b20b
2
11 − 24b20λ

2 − 96b20

+ 29b2
11λ

2 + 119b2
11 + 4b11λ

3 + 16b11λ,

− 1024b3
20λ − 492b2

20b11 + 24b2
20λ

3 + 96b2
20λ − 256b20b

2
11λ + 36b20b11λ

2

+ 144b20b11 − 123b3
11, 308b3

20 − 132b2
20λ

2 − 492b2
20 + 77b20b

2
11 + 4b20λ

4 + 52b20λ
2

+ 144b20 − 33b2
11λ

2 − 123b2
11}.

The above polynomials are all null if and only if b20 = b11 = 0. By proposition 3.1,
this is an elementary centre condition for system (4.3) and so it has a centre at the
origin on the center manifold if and only if b20 = b11 = 0. This complete the proof
of statement (a).

To prove statement (b), as in statement (a), we also distinguish the three cases
{a001 = 0}, {a001 �= 0, a100 = a010 = 0} and {(a2

100 + a2
010)a001 �= 0}. By proposi-

tion 3.2, a001 = 0 is an elementary centre condition for system (4.2) (with λ = n =
1) and so it has a centre at the origin on the center manifold. When a100 = a010 = 0
and a001 �= 0, we have that for n = 1 and m = 3 the three first focal quantities are
g220 = g330 = 0 and

g440 = − 3
160

a2
001

(
56b2

30

5
+ (b30 + b12)2 +

(
13b30√

5
+
√

5b12

)2

+ (b21 + b03)2

+
(√

5b21 +
13b03√

5

)2

+
56b2

03

5

)
.

In this case system (4.2) has a centre at the origin on the center manifold if and
only if b30 = b21 = b12 = b03 = 0, because it is an elementary centre condition by
proposition 3.1. Now, for n = 1 and m = 4 the two first focal quantities are g220 = 0
and

g330 =
1
4
a001(3b40 + b22 + 3b04).

Hence, b22 = −3(b40 + b04) is a necessary condition to have a centre at the origin
on the center manifold of system (4.2) in this case. Assuming this last condition, it
follows that the next two focal quantities are g440 = 0 and

g550 = − a2
001

1360
(64b2

40 + 32(3b40 − 2b04)2 + 10b2
31 + 63(b31 + b13)2 + 10b2

13 + 224b2
04).

Thus, in this case, system (4.2) has a centre at the origin on the center manifold
if and only if b40 = b31 = b22 = b13 = b04 = 0. Because, by proposition 3.1, it is an
elementary centre condition. Finally, in the case a2

100 + a2
010 �= 0 and a001 �= 0, we

can suppose that a100 = 0 and a010 = a001 = 1 in system (4.2) (with λ = n = 1),
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otherwise we do the change of variables (4.4). For n = 1 and m = 3 we have to
compute six focal quantities gkk0, k = 2, . . . , 7. It follows that g220 = 0 and the
next five are too lengthy and we omit them here. The Groebner basis of the ideal
generated by gkk0, k = 3, . . . , 7 is given by the polynomials

{b2
03, 4b12 + 3b03, 4b21 − 3b03, b30}.

We conclude that in this case system (4.2) has a centre at the origin on the cen-
ter manifold if and only if b30 = b21 = b12 = b03 = 0, because it is an elementary
centre condition by proposition 3.1. Now, when n = 1 and m = 4, we have to com-
pute seven focal quantities gkk0, k = 2, . . . , 8. As in previous case, g220 = 0 and the
next six are too lengthy and we omit them here. The Groebner basis of the ideal
generated by gkk0, k = 3, . . . , 8, is given by the polynomials

{b2
04, b13 − 5b04, b22 + 3b04, b31 − 3b04, b40}.

Hence, in this case, system (4.2) has a centre at the origin on the center manifold
if and only if b40 = b31 = b22 = b13 = b04 = 0. Because, by proposition 3.1, it is an
elementary centre condition. This complete the proof of statement (b).

To prove statement (c) we distinguish the two cases a101 = a011 = 0 and a2
101 +

a2
011 �= 0. Consider the first case, i.e. a101 = a011 = 0. The first two focus quantities

associated with system (4.2) with λ = 1, n = 2, and m = 2 are

g220 = a200 + a020, g330 =
1
20

a002

(
2
(
b2
20 + b2

02

)
+ (3b20 + 3b02)2 + b2

11

)
. (4.5)

Therefore, by the above expressions and propositions 3.1 and 3.2, we have only
elementary centre conditions and so the proof of statement (c) of the theorem in
the case a101 = a011 = 0 it follows.

In the second case, i.e. a2
101 + a2

011 �= 0, we can suppose that a101 = 0 and a011 = 1
in system (4.2) with λ = 1 and n = 2. Otherwise, we do the change of variables

x =
a011

a2
101 + a2

011

X +
a101

a2
101 + a2

011

Y, y = − a101

a2
101 + a2

011

X +
a011

a2
101 + a2

011

Y, z = Z.

(4.6)

For m = 2 the first two focus quantities associated with system (4.2) also are given
by (4.5). Hence, we must have a200 = −a020 and, if a002 �= 0, b20 = b11 = b02 = 0.
As in previous cases we have a centre on the center manifold. Now, if a002 = 0, the
next focus quantity is

g440 =
1
40
(−4b2

20 − (3(b20 + b02) + b11)2
)

Thus, we have that b20 = 0 and b11 = −3b02 are necessary conditions to have a
centre. Assuming these last conditions, the Groebner basis of the ideal generated
by the next three focus quantities gkk0, k = 5, 6, 7, is given by the polynomials{

b4
02, a2

020b
2
02, b2

02(36a110 + 35a020)
}

.

By the same argument used in previous cases, we conclude the proof o statement (c).
The proof of statement (d) is a straightforward consequence of propositions 3.1, 3.2,
i.e. we have the two elementary centre conditions. �
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Remark 4.2. We were unable to prove that the conditions of statement (d) of
theorem 4.1 are necessary and sufficient for system (4.2) with λ = 1, n = 2, m = 3
has a centre at the origin on the center manifold. However we believe that these are
indeed the necessary and sufficient conditions. As in statement (c) of the theorem,
the strategy for a possible proof consists of distinguishing the two cases a101 =
a011 = 0 and a2

101 + a2
011 �= 0. For the first case i.e. a101 = a011 = 0, the first three

focus quantities associated with system (4.2) with λ = 1, n = 2, and m = 3 are

g220 = a200 + a020, g330 = 0,

g440 =
1
80

a002

(
20b2

30

3
+
(

7b30√
3

+
√

3b12

)2

+
(√

3b21 +
7b03√

3

)2

+
20b2

03

3

)

− 3
4
(a200 + a020)

(
(a200 − a020)2 + a2

110

)
.

Therefore, the conditions of statement (d) of theorem 4.1 are necessary and suffi-
cient for, in this case, system (4.2) has a centre at the origin on the center manifold.
Because, by the above expressions and propositions 3.1 and 3.2, we have only
elementary centre conditions.

In the case a2
101 + a2

011 �= 0, by the change of variables (4.6), we can suppose that
a101 = 0 and a011 = 1 in system (4.2) with λ = 1 and n = 2. Now, even calculat-
ing the first twelve focus quantities, we were unable to obtain the necessary and
sufficient conditions to have a centre on the center manifold. However, using the
computer algebra system Singular (see [25]), we obtain the decomposition over a
field of characteristic 32 003 of the radical of the ideal generated by the first eight
focus quantities I = 〈g220, . . . , g990〉 into an intersection of prime ideals (see p. 42
of [36] and [14, 29, 30, 32, 34, 35]). This decomposition consists of the following
two ideals:

I1 = 〈a200 + a020, b21, b12, b03, b30 + 10668b21 + 10668b12 + b03〉,
I2 = 〈a200 + a020, b2

12 + 9b2
03, 10 667a020b12 + a110b03, a110b12 + 6a020b03,

a2
110 + 4a2

020, b21 + 3b03, b30 + 10668b21 + 10668b12 + b03〉.

Since 10 667 ≡ −2/3 (mod 32 003) and 10 668 ≡ 1/3 (mod 32 003), we obtain

I1 =
〈
a200 + a020, b21, b12, b03, b30 +

1
3
b21 +

1
3
b12 + b03

〉
,

I2 =
〈
a200 + a020, b2

12 + 9b2
03, −2

3
a020b12 + a110b03, a110b12 + 6a020b03,

a2
110 + 4a2

020, b21 + 3b03, b30 +
1
3
b21 +

1
3
b12 + b03

〉
.

Studying the zeros of the generators from above ideals, we obtain the condition
a200 = −a020 and b30 = b21 = b12 = b03 = 0. Thus it is likely that the conditions
of statement (b) of theorem 4.1 are necessary and sufficient for system (4.2) with
λ = 1, n = 2, m = 3 has a centre at the origin on the center manifold.
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We do a similar study for the systems given by (3.1) when (∂Rm/∂y)(x, y, z) ≡ 0,
i.e. for Fn(x, y, z) =

∑
j+k+l=n ajklx

jykzl and Rm(x, z) =
∑

j+k=m bjkxjzk. When
n = 1 and m = 2, we have that the first focus quantities is g220 = a001b20/λ and so
the only conditions of centres are the elementary. For λ = 1, n = 1, and m = 3, the
only centre conditions are also the elementary. In fact, computing the first seven
focus quantities we have that g220 = 0 and using the computer algebra system
Singular, we obtain the decomposition of the radical of the ideal generated by the
six focus quantities I = 〈g330, . . . , g880〉 into an intersection of the following prime
ideals 〈a001〉 and 〈b30〉. Now, for λ = 1, n = 2 and m = 2, the computations are more
hard and we were unable to solve the centre-focus problem in this case. However we
also believe that in this case the only centre conditions are the elementary. More
precisely, we have that g220 = a200 + a020 and as {b20 = 0, a200 + a020 = 0} is one of
the elementary centre conditions, we can distinguish the cases {a020 = −a200, b20 �=
0} and b20b11 �= 0. In the first case we have that g330 = 11a002b

2
20/20 and so a002 =

0. Hence, it follows that g440 = −(b2
20/40)(9a2

011 + (3a101 + 2a011)2) and so a101 =
a011 = 0. Therefore, we have the second elementary centre condition. Now, in the
case b20b11 �= 0, we can suppose that b20 = b11 = 1, otherwise we do the following
change of variables (x, y, z)T = A(X,Y,Z)T with A = (cjk)3×3, where cjk = 0 if
j �= k, c11 = c22 = 1/b11, and c33 = b20/b2

11. Thus, even calculating the first nine
focus quantities, we were unable to obtain the necessary and sufficient conditions
to have a centre on the center manifold. However, using the computer algebra
system Singular, we obtain the decomposition over a field of characteristic 32 003
of the radical of the ideal generated by the seven focus quantities Ĩ = 〈g330, . . . , g990〉
into an intersection of prime ideals. This decomposition consists only of the ideal
〈a101 + 14225a011 + 14226a002, a011, a002〉. Therefore, we have only the elementary
centre conditions.

The case (∂Rm/∂x)(x, y, z) ≡ 0 was not considered because it is equivalent, by
the change of variables (x, y, z) �→ (y, x, z), the previous one.

The above results lead us to the conjecture that, if in system (3.1) Rm is
a homogeneous polynomial in two variables, the centre conditions are only the
elementary.

An interesting class of homogeneous rigid systems in R
3 are the systems of the

form (3.1) with n = 1 and m = 2. Unfortunately this case seems to be computa-
tionally intractable. But we obtain some partial results in next theorem. Moreover,
in this case, there are centre conditions that are not elementary.

Theorem 4.3. Consider system (3.1) with n = 1, m = 2, and λ = 1, i.e. system

ẋ = −y + xF1(x, y, z), ẏ = x + yF1(x, y, z), ż = −z + R2(x, y, z), (4.7)

where F1(x, y, z) = a100x + a010y + a001z and R2(x, y, z) = b200x
2 + b110xy +

b101xz + b020y
2 + b011yz + b002z

2. If one of the following conditions

(a) a001 = 0,

(b) b200 = b110 = b020 = 0,

(c) a100 = a010 = 0, b101 = b011 = 0, b002 = 2a001, and b020 = −b200,
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(d) b101 = 2a100 + a010, b020 = −b200, b011 = −a100 + 2a010, and b002 = 2a001,

(e) b101 = 2a100, b020 = −b200, b011 = 2a010, b002 = 2a001, and (a2
100 − a2

010)
(b200 − b110) + a100a010(b110 + 4b200) = 0,

(f) b200 =
a100a010(b002 − a001)

a2
001

, b110 =
(a2

100 − a2
010)(a001 − b002)

a2
001

,

b101 =
b002(a100 + a010) − a010a001

a001
, b020 =

a100a010(a001 − b002)
a2
001

, and

b011 =
b002(a010 − a100) + a100a001

a001
,

holds, then system (4.7) has a centre at the origin on the center manifold.

Proof. Observe that a001 = 0 is an elementary centre condition. Then, in this
case, system (4.7) has a centre at the origin on the center manifold. This proves
statement (a).

In what follows we will assume that a001 �= 0. We distinguish two cases a100 =
a010 = 0 and a2

100 + a2
010 �= 0. If a100 = a010 = 0, computing the first six focus quan-

tities and using the computer algebra system Singular, we obtain the decomposition
of the radical of the ideal generated by these focus quantities I = 〈g220, . . . , g770〉
into an intersection of prime ideals. This decomposition consists of the following
four ideals

I1 = 〈a001〉, I2 = 〈b200, b110, b020〉, I3 = 〈b200 + b020, 2a001 − b002, b101, b011〉,
I4 = 〈b200 + b020, b

2
101 + b2

011, b
2
110 + 4b2

020, b110b101 + 2b020b011, b110b011 − 2b101b020〉.
Studying the zeros of the generators from above ideals, we obtain the four set
of zeros {a001 = 0}, {b200 = b110 = b020 = 0}, {b101 = b011 = 0, b002 = 2a001, b020 =
−b200} and {b200 = b110 = b101 = b020 = b011 = 0}. Note that b200 = b110 = b020 = 0
is an elementary centre condition and so, in this case, system (4.7) has a centre at
the origin on the center manifold. As a001 �= 0, remains to check the condition
b101 = b011 = 0, b002 = 2a001, and b020 = −b200. Denote by X the vector field asso-
ciated with system (4.7) in this case. We have that Xf = kf , where Xf = 〈X,∇f〉,
f(x, y, z) = z − h(x, y), k(x, y, z) = 2a001 − 1, and

h(x, y) =
1
5

(b200 − b110)x2 +
1
5

(4 b200 + b110)xy +
1
5

(b110 − b200)y2.

Therefore, f = 0 is an invariant algebraic surface of X and k is its cofactor (see
p. 215 from [13]). Note that the plane xy is the tangent plane of f = 0 at the origin
and so the center manifold is given by the graphic of z = h(x, y). Hence, denoting
by X |z=h(x,y) the vector field X restricted your center manifold at the origin (i.e.
X |z=h(x,y) is obtained substituting z = h(x, y) in the first two equations of (4.7)),
we have that (X |z=h(x,y))V = (div X |z=h(x,y)) V , where

V (x, y) = a001
2(4 b200 + b110)2x4 − 4 a001

2(b200 − b110)(4 b200 + b110)x3y

+ 4 a001
2(b200 − b110)2x2y2 − 10 a001 (4 b200 + b110)x2

+ 20 a001 (b200 − b110)xy + 25.
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Thus V is an inverse integrate factor of X |z=h(x,y) and as V (0, 0) �= 0, it follows
that the origin is a centre of X |z=h(x,y), i.e. the origin is a centre on the center
manifold of system (4.7) in this case (see [17] for more details). This concludes the
proof of statement (c).

If a2
100 + a2

010 �= 0, doing the change of variables (4.4), we can write system (4.7)
with F1 = F̃1 and R2 = R̃2, where F̃1(x, y, z) = y + z and R̃2(x, y, z) = b̃200x

2 +
b̃110xy + b̃101xz + b̃020y

2 + b̃011yz + b̃002z
2. The expression of the b̃ijk are omitted

for simplicity. In this case the first focus quantities is g220 = b̃200 + b̃020. Thus, we
have b̃020 = −b̃200 and even calculating the next nine focus quantities, we were
unable to obtain the necessary and sufficient conditions to have a centre on the
center manifold. However, using the computer algebra system Singular, we obtain
the decomposition over a field of characteristic 32 003 of the radical of the ideal
generated by the next six focus quantities Ĩ = 〈g330, . . . , g770〉 into an intersection
of prime ideals. This decomposition consists of the following six ideals:

Ĩ1 = 〈b̃2
101 + b̃2

011 − 2b̃101 − 4b̃011 + 5, 16 001b̃110b̃101 + b̃200b̃011 − 2b̃200

− 16 001b̃110, b̃200b̃101 − 16 001b̃110b̃011 − b̃200 − b̃110, b̃2
200 + 8001b̃2

110〉,
Ĩ2 = 〈b̃2

101 + b̃2
011 − 2b̃101 − 6b̃011 + 10, 16 001b̃110b̃101 + b̃200b̃011 − 3b̃200

− 16 001b̃110, b̃200b̃101 − 16001b̃110b̃011 − b̃200 + 16 000b̃110, b̃2
200 + 8001b̃2

110〉,
Ĩ3 = 〈b̃200, b̃110〉, Ĩ4 = 〈b̃101−, b̃011 − 2, b̃002 − 2〉,
Ĩ5 = 〈b̃200 − b̃110, b̃101, b̃011 − 2, b̃002 − 2〉,
Ĩ6 = 〈b̃200, b̃110 − b̃002 + 1, b̃101 − b̃002 + 1, b̃011 − b̃002〉.

Here 8001 ≡ 1/4 (mod 32 003) , 16 000 ≡ −3/2 (mod 32 003), and 16 001 ≡ −1/2
(mod 32 003). The set of zeros of the generators of Ĩ3 is {b̃200 = b̃110 = 0}. Hence, as
in the previous case, b̃200 = b̃110 = b̃020 = 0 implies that system (4.7) has a centre
at the origin on the center manifold. This concludes the proof of statement (b).

Studying the set of zeros from other ideals above, we obtain the following sets of
conditions

(i) b̃020 = −b̃200, b̃101 = 1, b̃011 = b̃002 = 2,

(ii) b̃020 = −b̃200, b̃110 = b̃200, b̃101 = 0, b̃011 = b̃002 = 2,

(iii) b̃020 = −b̃200, b̃200 = b̃020 = 0, b̃101 = b̃110 = b̃002 − 1, b̃011 = b̃002.

Conditions (i), (ii) and (iii) correspond to conditions (d), (e) and (f) from
proposition, on the set of the original parameters, respectively.

Consider system (4.7) with F1 = F̃1, R2 = R̃2, and condition (i). In this case sys-
tem (4.7) has two invariant algebraic surfaces f1 = 0 and f2 = 0, where f1(x, y, z) =
x2 + y2, f2(x, y, z) = (1 − b̃110)x2 + 2b̃200xy − 2x − 2z + 1, and k(x, y, z) = 2y + 2z
is the cofactor of both curves. Therefore, H = f1/f2 is a first integral of system
(4.7), i.e. XH ≡ 0, where X denotes the vector field associated with the system
(see p. 219 of [13] for more details). Moreover, the Taylor series of H in the origin

https://doi.org/10.1017/prm.2021.46 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.46


Rigid centres on the center manifold of tridimensional differential systems1075

has the form H(x, y, z) = x2 + y2 + · · · . So, by theorem 3 of [14] (see also [2]), we
have a centre at the origin on the center manifold. This proves statement (d).

Now for system (4.7) with F1 = F̃1, R2 = R̃2, and satisfying condition (ii) the
associated vector field X has an invariant algebraic surface given by f(x, y, z) =
z − h(x, y) with cofactor k(x, y, z) = 2y + 2z − 1, where h(x, y) = b̃200xy. As the
plane xy is the tangent plane of f = 0 at the origin, it follows that the center
manifold is given by the graphic of z = h(x, y). Hence, denoting by X |z=h(x,y)

the vector field X restricted your center manifold at the origin, we have that the
planar system associated with X |z=h(x,y) is invariant by the change of variables
(x, y, t) �→ (x,−y,−t). i.e. X |z=h(x,y) is reversible. Therefore, we have a centre at
the origin on the center manifold, what proves statement (e).

Finally, consider system (4.7) with F1 = F̃1, R2 = R̃2, and condition (iii). First
we suppose that b002 �= 0. In this case system (4.7) has two invariant algebraic
surfaces, f1 = 0 and f2 = 0, where f1(x, y, z) = x2 + y2 and f2(x, y, z) = −b002x −
b002z + 1 with respective cofactors k1(x, y, z) = 2y + 2z and k2(x, y, z) = b002y +
b002z. Therefore, H = f1/(f2)(2/b002) is a first integral of system (4.7). If b002 = 0,
as in the previous case, system (4.7) has the invariant algebraic surface, f1 = 0
and an exponential factor g(x, y, z) = e2x+2y (see p. 217 of [13]), with respective
cofactors k1 and kg = −k1. Therefore, G = f1g is a first integral of system (4.7).
Moreover, the Taylor series of H and G in the origin has the form x2 + y2 + · · · .
As in the previous case, we have a centre at the origin on the center manifold. This
proves statement (f) and complete the proof of proposition. �

Another interesting class of homogeneous rigid systems in R
3 are the systems of

the form (3.1) with n = m and Fm = Rn. In the next theorem we consider the case
m = 2. Observe that the centre conditions are only the elementary.

Theorem 4.4. Consider system (3.1) with n = m = 2, λ = 1 and F2 = R2, i.e.
system

ẋ = −y + xF2(x, y, z), ẏ = x + yF2(x, y, z), ż = −z + F2(x, y, z), (4.8)

where F1(x, y, z) = a200x
2 + a110xy + a101xz + a020y

2 + a011yz + a002z
2. Then

system (4.8) has a centre at the origin on the center manifold if and only if one of
the following conditions

(a) a200 = a110 = a020 = 0,

(b) a020 = −a200 and a101 = a011 = a002 = 0,

holds.

Proof. Computing the first six focus quantities and using the computer algebra
system Singular, we obtain the decomposition of the radical of the ideal generated
by the six focus quantities I = 〈g220, . . . , g770〉 into an intersection of prime ideals.
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This decomposition consists of the following three ideals

I1 = 〈a200 + a020, a110, a020〉, I2 = 〈a200 + a020, a101, a011, a002〉,
I3 = 〈a200 + a020, a

2
101 + a2

011, a
2
110 + 4a2

020, a110a101

+ 2a020a011,−2a101a020 + a110a011〉.

Note that the conditions of statements (a) and (b) belong to the set of zeros of the
generators from above ideals. Therefore, they are necessary for the origin to be a
centre of system (4.8) on the center manifold. Now, by the propositions 3.1 and 3.2
they are also sufficient. �

5. Centre problem for some classes of non-homogeneous rigid systems
in R

3

In this section we consider some systems of the form (2.7) where F is a polynomial in
the variable z and R is a homogenous polynomial in three or two variables. Observe
that if z is a common factor of R or F ≡ 0 we have that the origin is a centre on the
center manifold. In this case we call this conditions of elementary centre conditions
for these systems. The study of this type of systems was motivated by general
results obtained for some families of rigid systems in the plane, i.e. systems of the
form (2.2) such that F is a polynomial of one variable or product of polynomials
of one variable. More precisely, in [12, 28] the authors obtain a very simple bases
for the ideal generated by the focal quantities.

Theorem 5.1. Consider system

ẋ = −y + xF (z), ẏ = x + yF (z), ż = −z + R2(x, y, z). (5.1)

where F (z) =
∑9

j=1 ajz
j and R2(x, y, z) = b200x

2 + b110xy + b101xz + b020y
2 +

b011yz + b002z
2.

(a) Assume that a2 = a4 = a5 = · · · = a9 = 0 (i.e. F (z) = a1z + a3z
3), then sys-

tem (5.1) has a centre at the origin on the center manifold if and only if either
a1 = a3 = 0 or b200 = b110 = b020 = 0 or b101 = b011 = a3 = 0, b002 = 2a1,
and b020 = −b200.

(b) Assume that a1 = a3 = a5 = a7 = a9 = 0 (i.e. F (z) is an even function), then
system (5.1) has a centre at the origin on the center manifold if and only if
either a2 = a4 = a6 = a8 = 0 or b200 = b110 = b020 = 0.

(c) Assume that b110 = b020 = b011 = 0 (i.e. R2(x, y, z) = R2(x, z) is a homo-
geneous polynomial of degree 2 on the variables x, z), then system (5.1)
has a centre at the origin on the center manifold if and only if either
a1 = · · · = a9 = 0 or b200 = 0.

(d) Assume that a5 = · · · = a9 = 0 and b101 = b011 = b002 = 0 (i.e. F (z) = a1z +
a2z

2 + a3z
3 + a4z

4 and R2(x, y, z) = R2(x, y) is a homogeneous polynomial
of degree 2 on the variables x, y), then system (5.1) has a centre at the
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origin on the center manifold if and only if either a1 = a2 = a3 = a4 = 0 or
b200 = b110 = b020 = 0.

Proof. To prove statement (a) we distinguish two cases, b101 = b011 = 0 and b2
101 +

b2
011 �= 0. In the first case, we have that the decomposition of the radical of the

ideal generated by the six focus quantities I = 〈g220, . . . , g770〉, into an intersection
of prime ideals, consists of the following three ideals

I1 =〈a1, a3〉, I2 = 〈b200 + b020, b
2
110 + 4b2

020〉, I3 = 〈a3, 2a1 − b002, b200 + b020〉.
The conditions {a1 = a3 = 0}, {b200 = b110 = b020 = 0} and {a3 = 0, b002 =
2a1, b020 = −b200} correspond to the set of zeros of the generators from above ide-
als. Therefore, they are necessary for the origin to be a centre of system (5.1) on
the center manifold. Now, {a1 = a3 = 0} and {b200 = b110 = b020 = 0} are also suf-
ficient because they are elementary centre conditions. Note that system (5.1) with
the condition {a3 = 0, b002 = 2a1, b020 = −b200} is exactly system (4.7) with the
condition (c) of theorem 4.3. Therefore, this condition is also sufficient.

When b2
101 + b2

011 �= 0, we can assume that b101 = b011 = 1. Otherwise, we do the
change of variables

x =
b101 + b011

b2
101 + b2

011

X +
b101 − b011

b2
101 + b2

011

Y, y = −b101 − b011

b2
101 + b2

011

X +
b101 + b011

b2
101 + b2

011

Y, z = Z.

In this case, the decomposition of the radical of the ideal generated by the seven
focus quantities I = 〈g220, . . . , g880〉, into an intersection of prime ideals, consists of
the two ideals I1 = 〈a1, a3, 〉 and I4 = 〈b200, b110, b020〉. As in the previous case, we
have that the origin is a centre on the center manifold.

With the hypothesis of statement (b) we can suppose that b020 = b200 in system
(5.1), otherwise we do the following change of variables

x = (b200 − b020)X − (b110 +
√

(b200 − b020)2 + b2
110)Y,

y = (b110 +
√

(b200 − b020)2 + b2
110)X + (b200 − b020)Y,

z = Z.

In this case we have that the two first focus quantities are g220 = 0 and

g330 =
1
20

a2(40b2
200 + b2

110).

If a2 �= 0, then we must have b200 = b110 = 0. Hence, we have an elementary centre
condition and so the origin is a centre on the center manifold. Now, if a2 = 0, the
next two focus quantities are g440 = 0 and

g550 = a4

(
2b4

200 +
3b2

200b
2
110

10
+

3b4
110

1600

)
.

Therefore, we must have a4 = 0 and the next focus quantities is

g660 = a6

(
2b6

200 +
3b4

200b
2
110

4
+

9b2
200b

4
110

320
+

b6
110

12800

)
.
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Hence, we have that a6 = 0 and the next two focus quantities are g770 = 0 and

g880 = a8

(
2b8

200 +
7b6

200b
2
110

5
+

21b4
200b

4
110

160
+

7b2
200b

6
110

3200
+

7b8
110

2048000

)
.

We must have a8 = 0 and so the origin is a centre on the center manifold, because
we have an elementary centre condition.

Now we will prove statement (c) of theorem. Computing the first nine focus
quantities gkk0, k = 2, . . . , 10, we have that the Groebner basis of ideal generated
by these quantities is given by {aj(b200)j}j=1,...,9. Therefore, it follows that the
origin is a centre on the center manifold if only if b200 = 0 or a1 = · · · = a9 = 0,
because these conditions are the elementary centre conditions.

Finally, we will prove statement (d) of theorem. The decomposition of the radical
of the ideal generated by the eight focus quantities I = 〈g220, . . . , g990〉, into an
intersection of prime ideals, consists of the two ideals I1 = 〈a1, a2, a3, a4〉 and I2 =
〈b200 + b020, b

2
110 + 4b020〉. Again we have only elementary centre conditions and so

the origin is a centre on the center manifold. �

Statement (c) of theorem 5.1 lead us to the conjecture that if in system (2.7) F
is given by F (z) =

∑n
j=1 ajz

j , and R is given by R(x, z) =
∑

j+k=2 bjkxjzk, then
a basis to ideal generated by its focus quantities is {aj(b20)j}j=1,...,n.

Observe that in the proof of statements (b), (c) and (d) we have only elemen-
tary centre conditions. In statement (a) we have one centre conditions that is not
elementary. In the next result we have another family of rigid systems with one
non elementary centre conditions, even with R a homogeneous polynomial in two
variables.

Theorem 5.2. Consider system (2.7) with F and R given by F (z) = a1z + a2z
2 +

a3z
3 and R(x, z) =

∑
j+k=3 bjkxjzk. Then the origin is a centre on the center

manifold if and only if either a1 = a2 = a3 = 0 or b30 = 0 or a2 = 3a2
1, a3 = 0,

b21 = b12 = 0 and b03 = 9a2
1.

Proof. We have that g220 = 0 and the decomposition of the radical of the ideal
generated by the next ten focus quantities I = 〈gkk0〉k=3,...,13, into an inter-
section of prime ideals, consists of the three ideals I1 = 〈a1, a2, a3〉, I2 = 〈b30〉
and I3 = 〈9a2

1 − b03, a3, b21, b12, 3a2 − b03〉. The conditions {a1 = a2 = a3 = 0},
{b30 = 0} and {a2 = 3a2

1, a3 = 0, b21 = b12 = 0, b03 = 9a2
1} correspond to the set

of zeros of the generators from above ideals. Note that the two first condi-
tions are elementary centre conditions and so we have a centre at the origin on
the center manifold. For the last condition, note that f1(x, y, z) = x2 + y2 and
f2(x, y, z) = 3a1b30x

2y + 2a1b30y
3 − 3a1z + 1 are invariant algebraic surfaces of

system with the cofactors k1(x, y, z) = 6a2
1z

2 + 2a1z and k2(x, y, z) = 9a2
1z

2 + 3a1z,
respectively. Hence, H = f1f

−2/3
2 is a first integral of system and the Taylor series

of H in the origin has the form x2 + y2 + · · · . Therefore, we have a centre at the
origin on the center manifold. �

https://doi.org/10.1017/prm.2021.46 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.46


Rigid centres on the center manifold of tridimensional differential systems1079

Acknowledgements
The second author is partially supported by São Paulo Research Foundation
(FAPESP) grants 18/19726-5 and 19/10269-3 and by CAPES PROCAD grant
88881.068462/2014-01. The third author is partially supported by the Instituto
Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais - IFSULDEMI-
NAS.

References

1 A. Algaba and M. Reyes. Computing center conditions for vector fields with constant
angular speed. J. Comput. Appl. Math. 154 (2003), 143–159.

2 Y. N. Bibikov. Local theory of nonlinear analytic ordinary differential equations, Lecture
Notes in Mathematics, vol. 702 (New York: Gostehizdat, 1979).

3 E. Bierstone. Differentiable functions. Bol. Soc. Brasil. Mat. 11 (1980), 139–189.
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