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Wall temperature and bluntness effects on
hypersonic laminar separation at a compression
corner
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This paper describes a numerical investigation on the effects of wall temperature
and leading-edge bluntness on hypersonic laminar separation induced by a finite-span
compression corner. The flow conditions were: Mach number 9.66; Reynolds number
1.34 × 106 per metre; and stagnation temperature 3150 K. The wall to stagnation
temperature ratio (sw) varied from 0.095 to 0.333 and was thus in the subcritical range
as per the classification of Brown et al. (J. Fluid Mech., vol. 220, 1990, pp. 309–337). Two
leading-edge bluntnesses of 40 µm and 200 µm were used in the investigation. Numerical
solutions were obtained using a compressible Navier–Stokes solver and compared with
triple-deck solutions obtained using the numerical method of Cassel et al. (J. Fluid
Mech., vol. 300, 1995, pp. 265–285). Separation was induced by ramp angles of 10◦
and 20◦, which produced near incipient and large separations. The scaled angles, which
increased with wall to stagnation temperature ratio, were not sufficient to induce secondary
separation in the main recirculation region. Two regimes of shock interference were
identified depending on the wall temperature ratio. The corner instability in the form
of a stationary wave-packet identified by Cassel et al. (J. Fluid Mech., vol. 300, 1995,
pp. 265–285) for scaled angles α ≥ 3.9 was investigated but is shown to be a numerical
artefact of the algorithm rather than having any physical basis. Increasing both the wall
temperature ratio and blunting increased the separation length. And there is an equivalence
between cooling the wall and reducing bluntness both leading to a reduced separation
length.

Key words: high-speed flow, boundary layer separation, hypersonic flow

† Email address for correspondence: dieexbr17@gmail.com

© The Author(s), 2021. Published by Cambridge University Press 922 A1-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

47
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:dieexbr17@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.474&domain=pdf
https://doi.org/10.1017/jfm.2021.474
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1. Introduction

Hypersonic vehicles, such as space planes and space capsules, re-entering Earth or
entering the atmosphere of distant planets, sustain prolonged thermal loads on both
external and internal surfaces. When models of such vehicles are tested in a ground-based
facility, for example, a wind tunnel or a shock tunnel, the model surface is generally
‘cold’, that is, the surface temperature is a very small fraction of the reservoir or recovery
temperature. Theoretical works on boundary layers and viscous effects, however, more
often than not assume an adiabatic wall. It is only recently that wall or surface temperature
effects (hence heat flux), which significantly influence hypersonic flows, have received
adequate attention.

Wall temperature effects are thus a significant issue in the design of experiments
dealing with high-enthalpy hypersonic flows. Depending on the type of facility, the wall
temperature of the experimental model can be considerably different from that of a
hypersonic vehicle in actual flight. Such a drawback is common in experiments carried out
in high-enthalpy impulse facilities, for example, shock or gun tunnels. In such facilities,
the test times are short, typically a few milliseconds, so that the surface temperature of
the model has insufficient time to reach the adiabatic or recovery temperature. The model
temperature, under these conditions, remains close to the room or ambient temperature
and so is not an accurate reflection of high-temperature effects on the surface that
exist in flight. These effects, such as boundary layer transition, flow separation, surface
catalycity, and chemical and thermal non-equilibrium, can have severe consequences
on the controllability and stability of the vehicle. A well-known example is the Space
Shuttle pitch anomaly, where real gas and viscous effects required the flap deflection to be
increased to 16◦ instead of the predicted 7◦ because those predictions were based on ‘cold’
tunnel data (Brauckmann, Paulson & Weilmuenster 1995). This is an example to illustrate
the importance of replicating, as much as possible, flight conditions in ground-based
facilities.

One of the early important papers to consider wall temperature effects on shock-induced
separation was by Gadd (1957a,b). Gadd showed that for a laminar boundary layer, the
separation pressure is unaffected by wall heating or cooling. His second observation was
that pressure gradients are sharper with wall cooling and slowly varying with wall heating.
The length of the interaction region was shown to vary as T−3/2

w . Nielsen, Lynes &
Goodwin (1966) confirmed the independence of the separation pressure with respect to
the wall temperature, but the interaction extent varied with wall temperature with an index
n ≈ 1.3. The temperature range examined by Nielsen et al. (1966) was much greater than
that by Gadd (1957a,b). Both the Gadd (1957a,b) and Nielsen et al. (1966) studies were
restricted to supersonic Mach numbers.

Recently, there has been a renewed interest in the wall temperature effects arising
out of hypersonic research. Marini (2001) investigated the wall temperature effects on
a shock/boundary layer interaction (SBLI) and the separation induced by a compression
ramp in laminar hypersonic flow with a sharp leading-edge. The investigation included
both numerical simulations as well as experimental data from various sources. The Mach
and Reynolds number ranges were 6–14 and 2.36 × 105–4 × 106 per metre, respectively.
The wall to stagnation temperature ratio (Tw/T0) ranged between 0.17 and 0.46. Both
two-dimensional and axisymmetric hollow cylinder flare geometries were studied. The
corner/flare angles of 10◦ and 15◦ were considered. The results, in general, showed that
heating the wall increased the susceptibility to separation as a result of the increased
boundary layer thickness as well as the less full profile, and once separated, heating
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Laminar hypersonic separation

increased the separation length. Cooling had the opposite effect. Separation was largest
with an adiabatic wall, as expected. The investigation highlighted the importance of
heating the experimental models in wind tunnel facilities and not placing undue reliance on
cold tunnel data. The two-dimensional finite-span effects were seen to be quite significant
in the presence of separation and, once separation occurred, the separation size reduced
towards the spanwise direction. Overall, both peak pressure and heating reduced with
finite-span. With the hollow cylinder flare model, the flow remained two-dimensional
when transverse curvature effects were small over the cylinder up to separation but post
separation and towards reattachment, the flow no longer remained two-dimensional with
cross-flows resulting in higher plateau pressures but lower peak pressure and lower peak
heat flux.

Another notable contribution on wall temperature effects in a laminar hypersonic SBLI
with separation is the experimental investigation by Bleilebens & Olivier (2006), who
pre-heated a compression corner model of finite-span to obtain varying wall to stagnation
temperature ratios from 0.193 to 0.553. The corner angle was 15◦. The unit Reynolds
number range was approximately one to nearly nine million. The nominal Mach number
was 8. The main conclusions were that the separation size increased with an increase
in the wall temperature ratio. Another observation was that transition took place in the
separated shear layer before reattachment but this did not affect the size of the separation
bubble. The experimental data showed that separation bubble scaling could be achieved
reasonably well by modifying the adiabatic wall correlation of Katzer (1989). Another
correlation based on Katzer (1989) has recently been used by Chang et al. (2021) for an
impinging shock SBLI on a heated flat plate in a Mach 7 high-enthalpy hypersonic flow.
They found that the correlation of Bleilebens & Olivier (2006) for a heated compression
ramp at hypersonic Mach numbers was not quite applicable to an impinging shock SBLI.
This was attributed to higher shock strengths in their experiments.

In the same vein as Bleilebens & Olivier (2006), Wagner et al. (2017) conducted an
experimental investigation using a two-dimensional finite-span compression ramp model
by pre-heating only the upstream flat plate and not the ramp surface. A small gap was
left at the hinge line and it was assumed that the unheated ramp surface did not affect
the interaction process. The main purpose of the experiment was to study the state of
the boundary layer before interaction by changing the leading-edge bluntness from sharp
to 200 µm thickness. The wall to stagnation temperature ratio varied from 0.1 to 0.3.
The Mach and unit Reynolds numbers were 7.4 and 6.65 × 106 per metre, respectively.
The ramp angles were 15◦ and 30◦. It was shown that both a sharp leading-edge and
increasing the wall temperature had a destabilising effect on the boundary layer prior to
interaction, while blunting the leading-edge had a stabilising effect. There were several
deficiencies in their investigation that were not addressed, mainly finite-span effects, which
were highlighted by discrepancies between their two-dimensional numerical simulations
and experimental data, and the assumption that the unheated ramp surface had no effect
on the interaction process.

There have been several theoretical/numerical studies on wall temperature effects
on SBLI-induced separation. These started with Brown, Cheng & Lee (1990) and
then followed by Kerimbekov, Ruban & Walker (1994), Cassel, Ruban & Walker
(1996), Shvedchenko (2009), Neiland, Sokolov & Shvedchenko (2009) and Egorov,
Neiland & Shredchenko (2011). Brown et al. (1990) modified the triple-deck-based
interaction equation to take into account wall temperature effects. They also classified wall
temperature effects into subcritical (Tw/T0 � T∗

w/T0), transcritical (Tw/T0 = O(T∗
w/T0))
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and supercritical (Tw/T0 � T∗
w/T0). Here T∗

w/T0 is a critical wall temperature ratio which
is purely a function of hypersonic viscous interaction, the specific heat ratio γ and
properties of the upstream boundary layer. The authors solved the modified interaction
equation numerically and showed that cooling has a strong effect in drastically reducing
upstream influence and in reducing the extent of separation. The triple-deck-based Brown
et al. (1990) approach was followed by Kerimbekov et al. (1994), who analysed the effects
of strong wall cooling, wherein the interaction was shown to be mainly between the main
deck and the outer deck (inviscid/inviscid). The wall cooling effect was classified in terms
of the Neiland number N, wherein N � 1 defines strong cooling (supercritical), N = O(1)

moderate cooling (transcritical) and N � 1 indicates very little cooling (subcritical). A
subsequent paper by Cassel et al. (1996) followed a similar approach as Kerimbekov et al.
(1994) and showed that strong cooling (N � 1) has a stabilising effect and subcritical
cooling (N � 1) has a destabilising influence on the boundary layer. Their conclusion that
separation can be completely eliminated by strong wall cooling is, however, shown to be
contrary to earlier evidence (Nielsen et al. 1966) as well as the later observations of Brown
et al. (1990). While in the paper by Cassel et al. (1996) it is stated that ‘sufficient level of
wall cooling eliminates separation altogether’, Brown et al. (1991) state (p. 336 of their
paper) ‘contrary to common belief, examination of available numerical results indicate
that separation cannot be prevented or delayed effectively by merely lowering the wall
temperature but the thickness and the length scale of the lower deck and hence upstream
influence are drastically reduced.’ The evidence from Nielsen et al. (1966) shows that even
at Tw/Tad < 0.133, separation is not completely eliminated though the interaction length
goes nearly to zero. Mention may also be made here of the work by Seddougui, Bowles &
Smith (1991), who specifically discussed the effects of wall cooling but with emphasis on
stability and transition. They concluded that moderate cooling has a destabilising effect on
a compressible boundary layer.

Recently, some Navier–Stokes based numerical simulations of large-scale separated
flows with wall temperature effects have been published: Neiland et al. (2009);
Shvedchenko (2009); Egorov et al. (2011); and Khraibut et al. (2017). These studies
consider not only effects of wall temperature on primary separation but also the
development of secondary separation. A similarity parameter, also called a scaled angle,
based on the geometric ramp angle α∗, is defined as (Stewartson 1970)

α = α∗

C1/4λ1/2

(
Re

M2 − 1

)1/4

, (1.1)

which includes the effect of viscosity through Chapman–Rubesin constant C, wall-shear
constant λ, along with Mach and Reynolds numbers. This parameter is based on triple-deck
scales, as explained by Stewartson (1975) and Rizzetta, Burggraf & Jenson (1978) as
well as by Korolev, Gajjar & Ruban (2002). Some authors have used slightly different
versions of this parameter, for example, Shvedchenko (2009) and Neiland et al. (2009)
define the scaled angle as α∗Re1/4, while Egorov et al. (2011) define the scaled angle
as α∗(Re/(M2 − 1))1/4. In this paper, we have used the Stewartson–Rizzetta definition
for consistency. In general, it is found that separation size and occurrence of secondary
separation is dependent on the value of the scaled angle and the wall temperature ratio.
With the increase in both, separation size increases and further increase in both eventually
promotes secondary separation, and with still further increase, fragmentation of secondary
separation into multiple vortices. Shvedchenko (2009), Egorov et al. (2011) and Khraibut
et al. (2017) delineate the various separation stages when the above flow features develop.
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In terms of the present definition of the scaled angle, steady primary separation appears
at α ≤ 2 and secondary separation develops at 3 ≤ α ≤ 4 (Gai & Khraibut 2019). Suffice
to say that primary separation occurs at a lower value of the scaled angle with a hotter
wall while secondary separation occurs at a higher scaled angle when the wall is hotter.
Results from Egorov et al. (2011) also show that in the case of primary separation, the
scaled angle changes very little with changes in Mach number for an adiabatic wall while
it increases with Mach number for a cold wall. The difference in the value of the scaled
angle also increases with the increase in Mach number. In the case of secondary separation
with the adiabatic wall, there is a slight decrease in the scaled angle with the increase in
Mach number. With the cold wall, the same trend is seen but the rate of decrease is even
smaller.

Effects of small bluntness on shock-induced separation at hypersonic Mach numbers
has been investigated extensively in the past and in recent years. The bluntness effect is
critical from a practical point of view because in the fabrication of experimental models,
for example, the leading-edge sharpness is restricted by manufacturing limitations. Earlier
studies of bluntness effects were largely related to transition in boundary layers from
laminar to turbulent (Moeckel 1957; Nagamatsu, Sheer & Wisler 1966; Softley 1969;
Stetson 1979). Studies related to bluntness effects on pressure, skin-friction and heat
transfer in both attached and separated flows have also been conducted, for example,
Bertram (1954), Bertram & Henderson (1958), Cheng et al. (1961), Holden (1971),
Stollery (1972), and in recent years, Mason & Lee (1994), Smith & Khorrami (1994),
Mallinson, Gai & Mudford (1996), Marini (1998), Borovoy, Skuratov & Struminskaya
(2008), Borovoy et al. (2014), John & Kulkarni (2014), Khraibut, Gai & Neely (2019) and
Mallinson, Mudford & Gai (2020).

An important breakthrough in the analysis of bluntness effects was the introduction
of a similitude parameter β, by Cheng et al. (1961), which combined the effects of both
viscous interaction and bluntness in hypersonic flow. Thus β = χ̄ε/κ

2/3, where χ̄ε is the
modified viscous interaction parameter, which takes into account viscous effects, and κ is
a parameter describing the bluntness effect. While Cheng et al. (1961) used this parameter
to analyse bluntness and boundary layer displacement effects on flat plates at zero and
non-zero incidence, Holden (1971) successfully used this parameter to delineate the flow
separation on flat plate/ramp geometry. Later, Mallinson et al. (1996) and Khraibut et al.
(2019) analysed bluntness effects using this same parameter. Khraibut et al. (2019), in
particular, showed that for ‘small’ bluntness (as defined later), the results were opposite
to those found by Holden (1971). In another recent paper, Chuvakhov et al. (2017) studied
the effects of small bluntness on separation in a two-dimensional finite-span compression
corner flow and found that when the bluntness to flat plate length ratio (t/L) is less than
approximately 0.015, the separation length increases with increase in bluntness, which is
in agreement with the findings of Khraibut et al. (2019). This is also in agreement with the
theoretical analysis by Lagrée (1991).

In the following, § 2 presents a brief description of the theoretical aspects, in particular,
the triple-deck approach, where it is shown how wall temperature and bluntness effects
can be included in the interaction equation. Section 3 describes the flow configuration.
Section 4 deals with the numerical methodology in which both N–S simulations, using
the solver US3D, and the triple-deck equations using the algorithm of Cassel, Ruban &
Walker (1995), based on the method of Ruban (1978), are discussed. Section 5 presents
various results for both N–S simulations and triple-deck solutions (§§ 5.1 and 5.2) and § 6
discusses these results in detail. Finally, conclusions are drawn in § 7.
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2. Theoretical considerations

2.1. Asymptotic structure of a supersonic boundary layer over an adiabatic wall
Figure 1 shows the structure of a supersonic boundary layer over an adiabatic wall as
outlined by the triple-deck theory. The dimensional coordinates x∗ and y∗ are normalised
by the length L of the flat plate from the leading-edge to the corner so that x = O(1) and
y = O(ε4) in the usual boundary layer structure described by the Blasius equation, where
ε = Re−1/8 is the scaling parameter in the triple-deck theory, and Re is the Reynolds
number based on the flat plate length and free stream conditions and is assumed to be
infinitely large. The boundary layer is disturbed by a small pressure perturbation of the
order of O(ε2), which is independent of the agent producing the disturbance by virtue of
the ‘free-interaction’ concept (Chapman, Kuehn & Larson 1958; Neiland 1969; Stewartson
& Williams 1969). The reaction of the boundary layer to this pressure disturbance is
such that it can be divided into three regions or ‘decks’, where the flow is governed by
different governing equations. The main deck, where the flow is inviscid and rotational,
has a wall-normal extension of the order of O(ε4). The lower deck, where the flow is
viscous and incompressible, is of the order of O(ε5). The upper deck is of the order of
O(ε3) and can be described by Ackeret or Prandtl–Glauert equations.

The asymptotic structure, as described above, was first devised independently by
Stewartson & Williams (1969) and Neiland (1969). The analysis reduces the number of
equations required to model the interaction between the boundary layer and the pressure
perturbation. The relevant equations are the incompressible flow equations of the lower
deck

∂u
∂x

+ ∂v

∂y
= 0, (2.1a)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ ∂2u
∂y2 , (2.1b)

and the ‘interaction law’, which links the pressure change with the growth of the lower
deck through the Ackeret formula

p = −dA
dx

+ df
dx

, (2.2)

where A(x) represents the displacement thickness of the subsonic region and f (x) describes
the body shape. The system of equations is closed by the boundary conditions

u → y + A, when y → ∞, (2.3a)

u = v = 0, when y → 0, (2.3b)

u → y, when x → −∞. (2.3c)

2.2. Wall temperature and bluntness effects
For the case of a hypersonic boundary layer over an adiabatic wall, the interaction law
was obtained by Neiland (1970) using the tangent-wedge approximation, an approach
followed by Stewartson (1975), Gajjar & Smith (1983) and Smith & Khorrami (1991). Wall
temperature effects were taken into account by Brown et al. (1990) and Neiland (1973)
using different approaches, which generated two different lines of thought. It should be
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Upper deck

Main deck

Lower deck

ε3

α∗ ~ ε2

ε4

ε5

Figure 1. Asymptotic structure of a boundary layer approaching the corner according to the triple-deck
theory.

pointed out, however, that it has been shown that the approach of Neiland (1973) applies
to a more general set of flow conditions. In Brown et al. (1990), (2.2) is modified as

1
σ

p + dp
dx

= −dA
dx

, (2.4)

where σ is given as

σ =
(

s∗
w

sw

)4ω+2

, (2.5)

where ω is the viscosity–temperature index, sw is the wall to stagnation temperature ratio
sw = Tw/T0 and s∗

w is the critical wall temperature ratio, defined as

s∗
w ∼ T∗

w

T0
∼

[
λ5γ −1/2

(
γ − 1

2

)−2

χ̄

]1/(4ω+2)

, (2.6)

where λ is the normalised wall shear of the undisturbed boundary layer, γ is the specific
heat ratio of air and χ̄ is the hypersonic viscous interaction parameter χ̄ = M3√C/ReL.
Assuming a Blasius boundary layer λ = 0.332, γ = 1.4 and ω = 0.5, σ takes the form
(Khraibut et al. 2017)

σ ∼ 0.085χ̄s−4
w , (2.7)

which indicates that σ increases with decreasing wall temperature.
According to Brown et al. (1990), the flow is termed subcritical when s∗

w/sw � 1,
transcritical when s∗

w/sw ∼ O(1) and supercritical when s∗
w/sw � 1.

It should be noted that these expressions are valid for small values of χ̄ . The
expression (2.7) shows that σ increases with decreasing wall temperature for fixed χ̄ .
Correspondingly, the scaled angle decreases as s2

w. It shows σ to be in the subcritical
to transcritical range. Indefinitely decreasing sw cannot completely eliminate separation
but it does substantially reduce the upstream influence (Brown et al. 1990). This is in
contrast to Nielsen et al. (1966), who concluded that in cold wall supersonic flow, upstream
influence could be eliminated when the wall-to-stagnation temperature ratio was less than
approximately 0.115.

Just as the wall temperature effect is an additional term to the simple interaction law
((2.2)), one can include the effect of bluntness into the interaction law. It has been
suggested by Lagrée (1991) that the effect of ‘small’ bluntness can be described in terms
of a small parameter η, which is proportional to the leading-edge bluntness t∗ normalised
by a characteristic length L (such as the flat plate upstream of a compression corner) and
inversely proportional to the upper-deck scale ε3L. Lagrée (1991) assumes that the entropy
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Re∞ ReL M∞ T0 U∞ ρ∞ T∞
(m−1) (K) (m s−1) (kg m−3) (K)

1.34 × 106 1.07 × 105 9.66 3150 2503 0.006 165

Table 1. Free stream conditions (Park et al. 2010).

layer formed by blunting the leading-edge is small, which he calls the ‘fourth’ deck. This
is the region between the upper or the main deck and the outer inviscid region. Lagrée
(1991) calls the combined entropy layer/boundary layer as one and the lower viscous layer
as the second of the two-layer fluid. He then assumes that disturbances from the lower
viscous layer are transmitted to the upper layer. This also implies that ∂p/∂y ≈ 0. He then
proposes the interaction law

p + η

(
dp
dx

)
= −dA

dx
, (2.8)

where η � 1 and the second term of the left-hand side takes into account the effect of
blunting. See the paper by Lagrée (1991) for details.

Thus for highly cooled walls (subcritical), the main deck contribution dominates over
the lower viscous layer with the interaction between the outer entropy layer (the fourth
deck) and the main deck of the boundary layer also dominating over the lower viscous
layer. The combined effect of these two phenomena of cooling and bluntness on flow
separation will be described in § 6.4.

3. Flow condition and model configurations

The flow condition, named Condition E herein, has been extensively used previously
(Park, Gai & Neely 2010; Khraibut et al. 2017; Prakash et al. 2019). The details
are given in table 1. The wall temperatures chosen for this study are Tw = 300, 450,

600, 750, 900, 1050 K, which give wall-to-stagnation temperature ratios sw = Tw/T0 =
0.095, 0.143, 0.191, 0.238, 0.286, 0.333. The critical wall temperature ratio is T∗

w/T0 =
0.7, so the boundary layer is subcritical for all cases according to the criteria of Brown
et al. (1990) and Cheng (1993).

The dimensions of the finite-span compression corner, named ‘finite-span model’
(FSM) hereafter, are given in figure 2. The upstream fetch (L) from the leading-edge,
taken as the origin (x = 0), to the corner was 80 mm and the ramp length 100 mm. The
Reynolds number based on the flat plate length is therefore ReL = 1.07 × 105. The ramp
angles were 10◦ and 20◦. These angles were chosen to produce near incipient (Neuenhahn
& Olivier 2012) and large separation. The leading-edge is considered ‘sharp’ when its
diameter is 40 µm, and ‘blunt’ when it is 200 µm. The bevel angle is 20◦ for both
leading-edge thicknesses. The flow on the centreline of the finite-span model can be
considered two-dimensional if the aspect ratio (span/length) of the model is larger than
one (Holden 1967; Mallinson, Gai & Mudford 1997). The span of the model is chosen to
be 200 mm, which provides an aspect ratio of 2.5. A symmetry boundary condition was
imposed at the midspan, so that only half of the model had to be reproduced. The model is
placed 25 mm away from the outer stream to reproduce the flow spillage that takes place
on the side of the model.

922 A1-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

47
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.474


Laminar hypersonic separation

Symmetry plane

Leading-edge

Flow

Flat-plate

Ramp

Outer stream

10
0

100

25

2
0
°

2
0
°

3

R0.1, 0
.02

L = 80
y∗

x∗
z∗

O 1
0
°

Figure 2. Dimensions of the finite-span model (FSM). Units in mm. Only half of the model is illustrated.

Tw (K) sw α (10◦) α (20◦)

300 0.095 1.86 3.72
450 0.143 1.92 3.85
600 0.190 1.97 3.94
750 0.238 2.01 4.01
900 0.286 2.04 4.07
1050 0.333 2.06 4.13

Table 2. Scaled angles obtained with (3.1).

The pressure gradient induced by a compression corner against a laminar boundary layer
is modelled in triple-deck theory with the scaled angle (Stewartson 1970) defined as

α = α∗Re1/4
L

C1/4λ1/2β1/2 , (3.1)

where C ≈ (T/T∞)−1/3 is the Chapman–Rubesin constant, λ = 0.332 is the Blasius
constant and β = √

M2 − 1. To evaluate the effects of wall temperature with scaled angle,
we used Cw ≈ (Tw/T∞)−1/3, so that, corresponding to our wall-to-stagnation temperature
ratios, Cw = 0.82, 0.72, 0.65, 0.60, 0.57, 0.54. Table 2 gives the scaled angle for each of
the conditions considered. The physical angles were chosen so as to obtain scaled angles
that predict incipient (α > 1.57) and large (α ≈ 4) separation regimes.

4. Numerical set-up

4.1. Navier–Stokes calculations
The US3D code developed at the University of Minnesota (Nompelis & Candler 2014;
Candler et al. 2015) is used for the present numerical study. It has been extensively

922 A1-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

47
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.474


D. Exposito, S.L. Gai and A.J. Neely

Grid N1 N2 N3 Z1 Z2

Nx 673 1938 2750 1938 1938
Ny 350 350 350 350 350
Nz — — — 25 50

Table 3. Grid cells used in this study.

validated for hypersonic simulations (Drayna, Nompelis & Candler 2006; Holden et al.
2013; Candler, Subbareddy & Brock 2014). Both perfect and real gas equations can be
solved under the N–S formulation, with either explicit or implicit time integration.

The finite volume formulation is employed by the solver (Wright, Candler & Bose 1998).
The fluxes are computed with the modified Steger–Warming flux vector splitting method
(Candler et al. 2015) and second-order spatial accuracy is achieved with the monotonic
upstream-centred (MUSCL) scheme. The limiter of Osher (Nompelis & Candler 2014)
has been employed.

Data parallel line relaxation (DPLR) allows for fast and stable convergence of the
results (Wright et al. 1998). Implicit time integration is employed here to use large
Courant–Friedrichs–Lewy (CFL) numbers to achieve steady-state results.

Viscosity is modelled with Blottner viscosity fits (Blottner, Johnson & Ellis 1971) using
Wilke’s mixing rule (Wilke 1950). Thermal conductivity is obtained with the Eucken
relation (Candler et al. 2015). The wall is assigned a no-slip boundary condition and the
boundaries downstream of the model are modelled as outlets. The flow is assumed to be
continuum and laminar.

4.1.1. Grids
The grids for the FSM were generated first from the two-dimensional model. This baseline
grid, named ‘N2’ herein, ensured that enough nodes were distributed over the leading-edge
to have a uniform spacing of 1 µm along the wall. The cells were then expanded
downstream of the leading-edge using a hyperbolic tangent distribution. The grids around
sharp corners were smoothed out to reduce the angle between adjacent cells. The cells
in the wall-normal direction were also expanded with a hyperbolic distribution, with a
maximum first cell height of 1 µm. The total number of cells for this configuration was
Nx × Ny = 1938 × 350. To prove the grid-independence of the two-dimensional grid, a
coarse grid N1 and a fine grid N3 were defined with 673 × 350 and 2750 × 350 cells each,
respectively. The number of cells in the wall-normal direction was kept constant because
the streamwise number of cells is the critical parameter for grid convergence, as pointed
out by Reinartz et al. (2007). Grid N2 was used as baseline for the subsequent grids.

The three-dimensional grid was obtained by extruding the two-dimensional grid 100
mm in the spanwise direction, with 25 and 50 cells for grids Z1 and Z2, respectively,
and a 10 µm spacing imposed on the side of the model to capture spillage accurately.
The difference between the results obtained with both grids is discussed in the
grid-independence study. Grid Z2 was used for the remaining calculations. The far-field
was reproduced with free-stream flow 25 mm away from the side of the model, with 25
cells used to calculate this region. An isometric perspective of a coarse version of the grid
is given in figure 3.
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Symmetry

Outlet

Wall

y
x

z

Figure 3. Coarse version of the grid for the FSM with 20◦ and sharp leading-edge. Some surfaces have been
removed for better visualisation.
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Figure 4. Skin-friction (a) and heat flux (b) coefficients for two-dimensional grids N1 (blue), N2 (green) and
N3 (dark blue). N2 and N3 data collapse on all points.

4.1.2. Grid independence
Figure 4 shows the skin-friction coefficient and Stanton number distributions obtained
with two-dimensional grids for the 20◦ case with sharp leading-edge and Tw = 1050 K.
The non-dimensional coefficients of skin-friction, pressure and heat flux are defined as

Cf = τ ∗
w

1
2ρ∞U2∞

, Cp = p∗
w

1
2ρ∞U2∞

, St = q∗
w

ρ∞U∞cp(Tad − Tw)
, (4.1a–c)

where Tad is the adiabatic temperature and the superscript ∗ indicates dimensional
quantities. The skin-friction peak is slightly smaller and closer to the corner for grid N1
compared with grids N2 and N3. Grids N2 and N3 provided results that collapsed on all
points. For heat flux, all the three grids were seen to collapse on each other. Hence, it was
considered that grid convergence was achieved with grid N2.

Figure 5 shows the centreline distributions of skin-friction and heat flux coefficients
for grids Z1 and Z2. The separation bubble is slightly smaller and both the skin-friction
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Figure 5. Skin-friction (a) and heat flux (b) coefficients for three-dimensional grids Z1 (blue) and Z2 (green).

and heat flux peaks move slightly towards the corner with spanwise refinement. Because
further refinement would be expected to provide little improvement and increased
computational cost, grid Z2 was used for all three-dimensional cases. The centreline
distributions of Cf , Cp and St have been used throughout for comparison with the
triple-deck results.

4.2. Triple-deck calculations

4.2.1. Equations
One of the objectives of this paper is to compare the N–S solutions with those from
triple-deck theory. The relevant equations are

∂u
∂x

+ ∂v

∂y
= 0, (4.2a)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ ∂2u
∂y2 , (4.2b)

and the interaction law

p = −dA
dx

+ df
dx

, (4.3)

with boundary conditions

u = v = 0 at y = 0, (4.4a)

u → y + A(x, t) as → ∞, (4.4b)

u → y as x → −∞, (4.4c)

where x, y, u and v are the scaled non-dimensional streamwise and transverse dimensions
and velocities in the lower deck, respectively, with the origin at the corner, and p is the
non-dimensional pressure as defined in Rizzetta et al. (1978). The function f (x) describes
the body shape. To smooth the region at the corner, the shape function is taken as f (x) =
α/2(x + √

x2 + r2), where α is the scaled angle and r is the rounding parameter, which is
taken to equal 0.5 unless otherwise stated.
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Figure 6. Shear-stress (a) and pressure (b) distributions of supersonic flow over an adiabatic wall for different
scaled angles (Cassel et al. 1995). Blue, 1.0; green, 1.5; dark blue, 2.0; purple, 2.5; pink, 3.0; red, 3.5.

4.2.2. Numerical procedure
The numerical procedure to solve these equations was that used by Cassel et al. (1995).
Figure 6 shows the reproduction of the results of shear stress and pressure as a verification
of implementation of their scheme.

5. Results

5.1. Navier–Stokes results

5.1.1. Leading-edge region
Figure 7 shows the flow field around the leading-edge with wall temperature Tw = 300 K
and for the two leading-edge thicknesses. The bow shock is stronger with blunting, as
would be expected. The bow shock is clearly detached with the blunt leading-edge but
stays close to the tip of the model with the 40 µm leading-edge. The leading-edge shock
is also stronger with increased blunting and leaves the model at a larger angle. The shock
layer and the entropy layer were clearly distinguished in both cases.

5.1.2. Shock–shock interaction
Figure 8 shows the shock system around the domain for the 20◦ corner angle with sharp
leading-edge and Tw = 300 K. A leading-edge shock emerges from the tip of the model
and travels above and below the model. For the 20◦ case, a separation bubble sits at
the corner and generates both a separation and a reattachment shock. The leading-edge
shock coalesces with the reattachment shock at a triple-point, creating an Edney Type VI
interaction. An expansion fan emerges from the triple-point and bounces against the wall.
The same process takes place at the coalescence between the separation and reattachment
shocks, thus two expansion fans impact the wall.

The interaction of shock-waves downstream of the corner varies from case to case.
For the 10◦ angle, separation occurs for wall temperature ratios above sw = 0.238, but
the separation bubble is too small to influence the shock-wave structure significantly.
The conditions for incipient separation are considered in § 6.1. With the 20◦ angle and
both leading-edges, two types of shock interference take place. In the first type, the
leading-edge and separation shock intersect the reattachment shock separately, producing
two Edney Type VI interactions, as discussed earlier. In the second type, the leading-edge
and the separation shock merge and intersect with the reattachment shock, resulting in
a single triple-point. The second type of shock interference only takes place for the
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Figure 7. Density gradient magnitude contours close to the leading-edge of the 20◦ FSM with Tw = 300 K.
Leading-edge bluntness of 40 µm (a) and 200 µm (b).
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Figure 8. Shock structure for the 20◦ FSM with sharp leading-edge and Tw = 300 K.

hottest wall Tw = 1050 K. The cold wall Tw = 300 K manifests the first type and, as
the wall temperature increases the separation point moves upstream of the corner, and
the triple-point from the coalescence of the separation and reattachment shock moves
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Figure 9. First type of shock interference for the 20◦ FSM with sharp-leading edge (40 µm) and Tw = 300 K.
Density gradient magnitude contour (a) and skin-friction plot (b) in the shock–shock interaction region.

downstream of the corner and eventually merges with the triple-point produced by the
leading-edge and reattachment shock.

Clearly, the type of shock interference depends on the wall temperature. Figures 9 and 10
respectively show the influence of the first and second types of shock interference on the
skin-friction distribution. The skin-friction coefficient is the wall parameter most affected
because the expansion fan accelerates the flow close to the wall and increases the local
shear-stress. For the first type of shock interference, two skin-friction maxima are observed
on the ramp. They correspond to the impingement of the expansion fans that emerge from
the triple-point. In figure 9, the second expansion fan is not visible because the leading
edge shock is weak resulting in a weak expansion. In the second type of shock interference
(figure 10), only one skin-friction maximum is obtained. Again, there is a clear relationship
between the skin-friction peak and the shock structure in the interaction region.

5.1.3. Surface parameters
Figures 11–13 show N–S simulations of skin-friction, pressure and heat flux distributions
for the 10◦ finite-span model for both sharp (40 µm) and blunt (200 µm) leading-edges.
The results pertain to the symmetry plane.

Considering figure 11, which shows the skin-friction, we see that prior to interaction
upstream of the corner, the skin-friction is lower with blunting and higher with wall
temperature. This trend reverses for the wall temperature downstream of the corner
but remains the same with increased blunting. Separation seems to occur first at a
wall temperature ratio of 0.238 and increases with further increase in wall temperature.
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Figure 10. Second type of shock interference for the 20◦ FSM with sharp-leading edge (40 µm) and Tw =
1050 K. Density gradient magnitude contour (a) and skin-friction plot (b) in the shock–shock interaction
region.
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Figure 11. Skin-friction coefficient distribution at the symmetry plane of the 10◦ FSM with (a) 40 µm and
(b) 200 µm leading-edge bluntness. Cyan, sw = 0.095; blue, sw = 0.143; dark blue, sw = 0.190; dark violet,
sw = 0.238; violet, sw = 0.286; red, sw = 0.333.
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Figure 12. Pressure coefficient distribution at the symmetry plane of the 10◦ FSM with (a) 40 µm and
(b) 200 µm leading-edge bluntness. Cyan, sw = 0.095; blue, sw = 0.143; dark blue, sw = 0.190; dark violet,
sw = 0.238; violet, sw = 0.286; red, sw = 0.333.

The peak value of skin-friction on the ramp decreases with increasing wall temperature
and increasing bluntness.

Figure 12 shows the pressure distribution for both sharp and blunt cases. Prior to
interaction upstream of the corner, pressure increases with both blunting and increasing
wall temperature. Downstream of the corner, the trend is reversed so that pressure
decreases with both blunting and increase in wall temperature. The reduced ramp pressure
with increased blunting is likely a result of loss of stagnation pressure at the leading-edge
with a stronger bow shock. There is no discernible peak in the pressure, as observed in the
skin-friction distribution.

Figure 13 shows N–S simulations of the heat flux distribution for both sharp and blunt
cases. Near the leading-edge, the wall temperature effects seem to be insignificant. At
the corner, heat transfer is lower with the higher wall temperature and increased blunting.
Both figures show the characteristic cusp-like shape at the corner indicative of attached
flow, which is unlike the skin-friction plot of figure 11 that clearly shows separation at wall
temperature ratios greater than sw = 0.238. This indicates that at higher temperatures, the
flow is incipiently separating. The peak heating on the ramp decreases with blunting.

Figures 14–16 show the skin-friction, pressure and heat flux distributions for the 20◦
finite-span model for both sharp (40 µm) and blunt (200 µm) leading-edges.

Figure 14 shows the skin-friction distribution for the finite-span model. A large
separated region stretching upstream and downstream of the corner is evident. Looking
at particular features, significant differences begin to appear from the beginning of
interaction at approximately half way from the leading-edge. The separation extent
(distance from separation to reattachment) increases with the increase in wall temperature
and also increase in bluntness. Within the separated region, the shear-stress first increases
slightly from the first minimum immediately following separation up to the corner,
whereafter it falls sharply up to the second minimum before reattachment, which is typical
of a moderate to large separated region (Gai & Khraibut 2019). It is also noted that within
this separated region, the flow is nearly independent of the wall temperature as well as
bluntness.
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Figure 13. Stanton number distribution at the symmetry plane of the 10◦ FSM with (a) 40 µm and (b) 200 µm
leading-edge bluntness. Cyan, sw = 0.095; blue, sw = 0.143; dark blue, sw = 0.190; dark violet, sw = 0.238;
violet, sw = 0.286; red, sw = 0.333.
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Figure 14. Skin-friction coefficient distribution at the symmetry plane of the 20◦ FSM with (a) 40 µm and
(b) 200 µm leading-edge bluntness. Cyan, sw = 0.095; blue, sw = 0.143; dark blue, sw = 0.190; dark violet,
sw = 0.238; violet, sw = 0.286; red, sw = 0.333.

Figure 15 shows the pressure distribution for the finite-span model. As in the 10◦ case,
the pressure before interaction upstream of the corner is increasing with blunting and
with the increase in wall temperature. The plateau pressure increases with increasing
wall temperature but is not affected significantly by bluntness. The reattachment and
peak pressures on the ramp increase with wall temperature and also seem independent
of bluntness.

Figure 16 shows the heat flux distribution for the finite-span model. Heat flux at the
separation point shows a slight increase with wall temperature. This is also true inside the
separated region except at the corner, where the trend reverses. Heat flux at reattachment
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Figure 15. Pressure coefficient distribution at the symmetry plane of the 20◦ FSM with (a) 40 µm and
(b) 200 µm leading-edge bluntness. Cyan, sw = 0.095; blue, sw = 0.143; dark blue, sw = 0.190; dark violet,
sw = 0.238; violet, sw = 0.286; red, sw = 0.333.
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Figure 16. Stanton number distribution at the symmetry plane of the 20◦ FSM with (a) 40 µm and (b) 200 µm
leading-edge bluntness. Cyan, sw = 0.095; blue, sw = 0.143; dark blue, sw = 0.190; dark violet, sw = 0.238;
violet, sw = 0.286; red, sw = 0.333.

shows a marked increase with wall temperature, but the peak heat flux decreases with wall
temperature. With increased blunting, heat flux values are similar, except that the peak heat
flux is smaller with increased blunting. The effect of the second expansion fan on the heat
flux distribution downstream of reattachment is rather weak. Both figures are consistent
with the separated region showing a well-rounded shape in the separated region and are
consistent with the observation of Gadd (1957a), where heat flux at separation is nearly
independent of wall temperature ratio and that cooling (decreasing wall temperature ratio)
makes the gradients at reattachment sharper and the separated region shorter.
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Figure 17. Shear-stress (a) and pressure (b) for the 10◦ case using the algorithm of Cassel et al. (1995), with
I = 201, J = 101, a = b = 5. Cyan, sw = 0.095; blue, sw = 0.143; dark blue, sw = 0.190; dark violet, sw =
0.238; violet, sw = 0.286; red, sw = 0.333.

5.2. Triple-deck results
Figure 17 shows the triple-deck solutions of the shear-stress and pressure obtained using
the numerical procedure of Cassel et al. (1995) for the 10◦ compression corner, assuming
a sharp-leading edge. Here, the differences in shear-stress with wall temperature, in terms
of scaled angle, are much smaller than those in figure 11 based on the N–S solver. Note
that the results in figure 17 are normalised in terms of the usual triple-deck notation.
Separation occurs at α = 1.86 (sw = 0.095) compared with the N–S solution, which shows
separation at α = 2.01 (sw = 0.286). Other significant features between the two solutions
are that post-separation, the shear-stress distribution is unlike the CFD data, which show a
maximum and then a slow reduction. This arises from shock interference effects discussed
earlier which are not captured by the triple-deck solution. It should be pointed out that a
characteristic of the triple-deck solution is that the viscous-inviscid process is modelled by
the lower-deck incompressible boundary layer equations. Absence of any shock interaction
is also evident in the investigation of the compression corner SBLI works of Korolev et al.
(2002) and Cassel et al. (1995).

Figure 17 also shows the pressure distribution for the 10◦ case according to the
triple-deck equations. Again, a comparison with N–S data of figure 12 shows that the
effect of wall temperature is stronger on the ramp with the triple-deck solution. However,
the pressures in the vicinity of the corner seem to be independent of the wall temperature
unlike the N–S data, which show a somewhat smoother rise at higher temperatures. At the
end of the ramp, while the triple-deck pressures maintain their differences (increasing
pressure with increasing wall temperatures), the N–S simulations show coalescence
independent of wall temperature.

Figure 18 shows the triple-deck solutions of shear-stress and pressure for the 20◦
compression corner. As in the 10◦ case, the differences in shear-stress with wall
temperature are smaller than those of figure 14 obtained with the N–S solver. In the
separated region, the shear-stress decreases to the first minimum, then rises at the corner,
and decreases again to the second minimum, similar to the N–S solution of figure 14.
The effect of wall temperature is felt mostly at the second minimum, which decreases
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Figure 18. Shear-stress (a) and pressure (b) for the 20◦ case using the algorithm of Cassel et al. (1995), with
I = 101, J = 51, a = b = 5. Cyan, sw = 0.095; blue, sw = 0.143; dark blue, sw = 0.190; dark violet, sw =
0.238; violet, sw = 0.286; red, sw = 0.333.

with increasing wall temperature, as in the N–S solution. No peaks are seen on the ramp
in either the shear-stress or pressure distributions. This again arises from the absence of
shock-waves in the triple-deck solution. It is interesting to note that the two shear stress
minima in the triple-deck solution are sharper than the N–S solution, especially the second
minimum. More importantly, at reattachment and after, the wall temperature seems to
have negligible effect, which is quite different than the N–S solution. In figure 18(b),
the pressures in the vicinity of the corner show much less variation with the wall
temperature compared with the N–S solution. Downstream of the corner, an increase in
wall temperature leads to an increase in the asymptotic pressure recovered on the ramp.

6. Discussion

6.1. Incipient separation
Based on experimental data obtained by various researchers (Ball 1967; Hankey 1967;
Needham 1967), it has been shown that for cold wall hypersonic flows (Tw/T0 < 1), the
incipient separation criterion can be expressed as

Mα∗
i = kχ̄1/2, (6.1)

where the constant k varies in the range 1 ≤ k ≤ 1.3. The other parameters in the above
relation are the free stream Mach number M, the incipient separation angle α∗

i that causes
separation and χ̄ is the hypersonic viscous interaction parameter.

As mentioned above, this relation is generally valid for cold surfaces. Stollery (1972)
proposed an expression for incipient separation, which includes wall temperature effects.
The expression is

Mα∗
i = k (1 − 0.5sw) χ̄1/2, (6.2)

where k is an empirical constant and sw is the wall temperature ratio. Based on
experimental data, it is suggested that k = 1.4. Although not explicitly stated, the above
relation assumes sharp leading-edge. The two leading edges being considered here can be
taken as ’nominally sharp’ in terms of the criterion proposed by Stollery in the same paper.

922 A1-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

47
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.474


D. Exposito, S.L. Gai and A.J. Neely

In the present study, two compression corner angles of 10◦ and 20◦ were chosen based
on the estimate that 10◦ would be nearer the incipient separation angle for the present free
stream conditions. The 20◦ angle was chosen to give a large separated region. Using the
incipient separation criterion above, for the lowest wall temperature of Tw = 300 K and
with a reservoir temperature of T0 = 3150 K, the incipient separation angle is α∗

i = 11.3◦.
With an adiabatic wall, the incipient angle is α∗

i = 6.77◦. These values are in excellent
agreement with those of Neuenhahn & Olivier (2012). For a 10◦ incipient separation
angle, the wall temperature ratio needs to be sw = 0.318 (Tw = 1000 K). This value is
relatively close to the incipient separation wall temperature observed for the N–S results
(wall temperature ratio between sw = 0.190 and sw = 0.238). The corresponding scaled
angle for this wall temperature is α = 2.04, which approximately agrees with the values
listed in table 3. Using the relation

Mα∗
i = αiλ

1/2χ̄1/2, (6.3)

we can rewrite Stollery’s formula as

αi = 2.43(1 − 0.5sw), (6.4)

where λ is the Blasius shear constant with λ = 0.332. We note in passing that this does
not involve the hypersonic viscous interaction parameter explicitly.

The above formula gives the scaled angle α = 2.043 for a wall temperature ratio of sw =
0.318, which corresponds to a 10◦ incipient separation angle as before. For an adiabatic
wall, this relation gives the incipient value as αi = 1.385 instead of the value of αi = 1.57
obtained by Rizzetta et al. (1978). This is because of the empirical constant k = 1.4 used
by Stollery (1972), which is based on experimental data. To yield Rizzetta’s adiabatic
value of αi = 1.57, Stollery’s constant needs to be k = 1.586. It may be pointed out here
that this adiabatic wall incipient separation value is quite close to the so called ‘true’
incipient separation value of 1.33, as quoted by Grisham, Dennis & Lu (2018) based on an
optimisation approach.

6.2. On the instability at the corner
In their triple-deck calculations, Cassel et al. (1995) observed a stationary wave-packet
located at the corner of the compression ramp for scaled angles α ≥ 3.9. They attributed
this to absolute instability as it remained stationary and did not convect downstream. It
was also found to be highly mesh-dependent. The wave-packet was invariant with respect
to shape and streamwise extent irrespective of mesh size. The corresponding velocity
profiles showed an inflection point and satisfied both Rayleigh and Fjørtoft criteria for
instability. Fletcher, Ruban & Walker (2004) further explored this instability using the
same algorithm as that of Cassel et al. (1995). They obtained steady stable solutions for
small scaled angles but for sufficiently large scaled angles, α = 3.7, absolute instability
was seen to occur. They also found that while the absolute instability was bounded for
α = 3.7, it was unbounded for α = 4.2. In addition, in the range 3.2 ≤ α ≤ 3.7, convective
instabilities were observed and were attributed to the interpolation process towards a finer
grid or to an external disturbance imposed on a steady state. Logue, Gajjar & Ruban
(2014), who analysed the supersonic compression corner problem using the unsteady
triple-deck equations, but using different numerical approaches, did not encounter this
instability problem for a range of scaled angles from 3 to as high as 7.5. Logue et al. (2014,
p. 11) conclude: ‘Our unsteady results have shown that despite using a number of different
robust numerical techniques, the precise mechanisms causing breakdown of the unsteady
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supersonic compression ramp flow, governed by the triple deck equations, still remain
unclear.’ It should, however, be pointed out in this connection that Smith (1988a,b) has
discussed the unsteady interactive boundary layer and separation breakdown at a localised
discontinuity based on the triple-deck theory.

From the above discussion, it is quite evident that the reason, whether physical or
numerical, for the spontaneous appearance of this instability at certain higher scaled angles
is still unresolved. Given that the supersonic free stream is uniform and two-dimensional,
the obvious possible reason could be the geometry of the ramp, particularly the corner
discontinuity. All the previous authors (except Smith & Khorrami 1991) assume a shape
function

f (x) = α

2

(
x +

√
x2 + r2

)
, (6.5)

where r is the so-called rounding factor introduced to smoothen the discontinuity at the
corner. All the above studies have used r = 0.5 in their computations. While they have
experimented with various mesh sizes depending on the numerical method used, there has
not been a detailed investigation of the effect of r on computations, although Cassel et al.
(1995) state that r does have significant influence on the ramp angle at which separation
first occurs (incipient separation) and that once separation occurs, its influence is minimal.
Korolev et al. (2002) point out that when separation is large and the corner is deeply
embedded in the low-velocity reverse-flow region, the differences in the results between a
sharp corner and a rounded corner become indistinguishable. To verify these assumptions,
we show some results with varying r.

The shape function influences the numerical results through coefficient d̄i (Cassel et al.
1995), which includes the second-order derivative d2f /dx2. At the corner,

d2f

dx2

∣∣∣∣∣
x=0

= 1
2

α

r
, (6.6)

where r is the non-dimensional radius at the corner.
This expression shows that d2f /dx2 is quite sensitive to the value of r for a given α and

when r � 1 would likely affect the stability of the algorithm through (6.6).
Figures 19(a) and 19(b) illustrate the effect of a small r compared with r = 0.5 used in

previous investigations for two scaled angles using a coarse mesh. We note (figure 19a)
that even with a coarse mesh, a weak wave-packet occurs for a scaled angle as low as 2.0
when a small separation has just occurred. Note that Cassel et al. (1995) observed incipient
separation at a scaled angle of 1.9 instead of 1.57 (Rizzetta et al. 1978) and attributed
this to the ‘smoothed corner.’ Therefore, it is possible that the weak wave-packet seen in
figure 19(a) arises from the effect of a small radius in a small separated region. It is also
consistent with the observation of Korolev et al. (2002), where smoothing should alleviate
the corner effect in large separated regions.

When the scaled angle is increased to 3.0 (figure 19b), the wave-packet is sharper with
larger amplitude and is firmly stationed at the corner. With both scaled angles α = 2.0 and
α = 3.0, d2f /dx2 is an order of magnitude larger than that used in earlier investigations.
Now, figure 20(a) shows the situation for α = 3.0 with I = 601, J = 101, a = b = 5 and
r = 0.05. We note that with a finer mesh, the oscillations are smoothed out considerably
and show smaller amplitudes. The same features are seen for α = 3.5 with the same
mesh and radius r. This is consistent with the observations of Fletcher et al. (2004),
who found that in the range 3.2 ≤ α ≤ 3.7, the flow was in a convectively unstable state
in the separated region in the vicinity of the corner, which they attributed principally
to the interpolation process towards a finer grid. These results would, therefore, indicate
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Figure 19. Wave-packet at the corner for the scaled angle α = 2.0 (a) and α = 3.0 (b) with non-dimensional
radius r = 0.05, with I = 101, J = 51 and a = b = 5, at t = 85.
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Figure 20. Wave-packet at the corner for the scaled angle α = 3.0 (a) and α = 3.5 (b) with non-dimensional
radius r = 0.05, with I = 601, J = 101 and a = b = 5, at t = 85.

that wave-packets at the corner seem more a manifestation of numerical difficulty, which
seems particularly sensitive to mesh size and the process of smoothing of the corner
discontinuity through the shape function. This corner singularity does not seem to have
been a serious issue in the study by Smith & Khorrami (1991), who used the shape function
f (x) = αx/[1 + exp(−qx)], where q is a large positive constant. It is also noted by these
authors that the effect of smoothing did not affect the flow field away from the vicinity of
the corner. Likewise, Rizzetta et al. (1978) also do not mention any particular difficulties
with corner singularity except to say that the singularity in shear-stress was resolved on a
length scale smaller than that of the triple deck.

To explore this problem further, we undertook a parametric study using the mesh size,
the non-dimensional radius of the corner r and the scaled angle α. Two mesh sizes (I, J) =
(101, 51) and (I, J) = (201, 51) were used. Only points in the streamwise direction were
increased, as this is shown to be critical in inducing instability (Fletcher et al. 2004).
The non-dimensional radius r was set at r = 0.05. Calculations were carried out for
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Figure 21. Evolution of the wave-packet at the corner for scaled angles (a1) α = 1.0 and (b1) α = 1.5 with
I = 101, J = 51, and (a2) α = 1.5 and (b2) α = 2.0 with I = 201, J = 51. Parameters: a = b = 5; r = 0.05;
t = 85.

1.0 ≤ α ≤ 1.5 with the coarse mesh, and the results are shown in figure 21. We see the
beginning of a wave-packet soon after α = 1 and by α = 1.5, a full wave-packet is formed.
Even at α = 1, separation is indicated. Obviously, the results are grid-dependent and
inaccurate. Interestingly, these results seem contrary to those of Cassel et al. (1995), where
no wave-packets were observed for 1.0 ≤ α ≤ 3.5 with the mesh size (I, J) = (101, 51)

but r = 0.5. With the mesh size increased to (I, J) = (201, 51), the wave-packet appears
at slightly larger scaled angles. Figure 21 shows the wave-packet with this mesh, for
1.5 ≤ α ≤ 2.0 and r = 0.05, where we see slight improvement in the results. Incipient
separation now clearly occurs around scaled angles 1.5 and 1.6, in agreement with Rizzetta
et al. (1978). A wave-packet has formed by α = 2.0. These data clearly show the strong
effect of the non-dimensional radius apart from the mesh size.

To further confirm the strong influence of the shape function, we performed calculations
using the shape function used by Smith & Khorrami (1991), which yields d2f /dx2|x=0 =
αq/2.

This is quite similar to the expression obtained from the shape function used by
Cassel et al. (1995), wherein d2f /dx2|x=0 = α/2r so that q corresponds to 1/r. Thus, the
value q = 20 used by Smith & Khorrami (1991) is equivalent to r = 0.05. Repeating the
calculations with the shape function used by Smith & Khorrami (1991), we get the results
shown in figure 22 for the coarse mesh (101, 51), q = 20, and 1.5 ≤ α ≤ 2.0. It is seen that
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Figure 22. Evolution of the wave-packet at the corner with the shape function of Smith & Khorrami (1991) for
scaled angles (a1) α = 1.5 and (b1) α = 2.0 with I = 101, J = 51, and (a2) α = 2.0 and (b2) α = 2.5 with
I = 201, J = 51. Parameters: a = b = 5; r = 0.05; t = 85.

starting as a small discontinuity at α = 1.5, a fully developed wave-packet has evolved by
α = 2.0. As with the shape function of Cassel et al. (1995), the discontinuity at the corner
develops into a wave-packet with the increase in scaled angle. Figure 22 also shows results
for scaled angles from 2.0 to 2.5 but with a finer mesh (201, 51). Smith & Khorrami
(1991), using this shape function, did not encounter such a wave-packet for scaled angles
up to 6.6. Because Smith & Khorrami (1991) solved the triple-deck equations with the
same shape function but a different numerical algorithm, results obtained here appear to
arise from the particular numerical scheme of Cassel et al. (1995), which was also used in
the present instance. We believe, therefore, that there is no physical basis for the existence
of a wave-packet, as proposed in Cassel et al. (1995).

6.3. Secondary vortices
Computations were carried out with scaled angles of α = 4.5 and α = 5.0 to compare the
data with those of Korolev et al. (2002) and Smith & Khorrami (1991). The parameters
used were I = 101, J = 51, a = b = 5, r = 0.5, the domain was extended to yM = 120 and
the solutions obtained at t = 180. The coarse mesh was used to suppress any possibility of
instability at the corner (see Cassel et al. 1995) at higher scaled angles. Figures 23 and 24
show the results.
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Figure 23. Shear-stress (a) and pressure (b) for scaled angle α = 4.5, with a = b = 5, I = 101, J = 51.
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Figure 24. Shear-stress (a) and pressure (b) for scaled angle α = 5.0, with I = 101, J = 51, a = b = 5.

Considering the shear-stress (figure 23a), a large separated region with two minima is
seen, and upstream of the corner, the shear-stress is unity before decreasing as separation
is approached at x = −12.16. Correspondingly, the pressure rises from p = 0 to separation
before attaining an extended plateau (figure 23b). The shear-stress increases as the corner is
approached and is on the verge of zero, which indicates that a secondary separation is about
to occur. The second minimum immediately follows past the corner before reattachment
occurs at x = 8.49. The indication of a dip in pressure in the vicinity of the corner at the
end of the plateau is also an indication that a secondary separation is imminent (Smith
& Khorrami 1991; Korolev et al. 2002). When this occurs, the pressure gradient becomes
very large and the second minimum in shear stress follows prior to reattachment (Smith
1988b). Figure 25(a) shows velocity contours close to the corner. A large single separation
bubble is seen largely centred towards the ramp side. The results show excellent agreement
with those of Korolev et al. (2002) for α = 4.5. Agreement with the data of Smith &
Khorrami (1991) for the same scaled angle is equally good.

Figure 24 shows the results for α = 5.0. We note that apart from the larger separated
region, a secondary separation has now developed, as indicated by the positive shear-stress
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Figure 25. Velocity contours for scaled angles α = 4.5 (a) and α = 5.0 (b), with I = 101, J = 51, a = b = 5.

between x = −1.23 and x = 3.03, before reaching a sharp minimum (the second
minimum) immediately prior to reattachment. The separation and reattachment are
located at xsep = −14.29 and xreat = 9.00, respectively. Figure 24(b) shows the pressure
distribution with a large plateau and a steep drop in pressure at the end of the plateau,
which indicates the secondary separation begins slightly ahead of the corner. The
reattachment region is characterised by a sharp rise in pressure. The possible theoretical
implications of flow features, such as the appearance of the second minimum in shear
stress and the accompanying pressure gradients, are discussed by Smith (1988a,b).

Figure 25(b) shows the streamlines with velocity contours in the separated region.
Embedded within the main recirculation region is a secondary separation bubble located
along the ramp surface. Again, these results are in very good agreement with both those of
Korolev et al. (2002) and Smith & Khorrami (1991). In passing, it is interesting to note that
the secondary bubble structure and location are similar to those of Korolev et al. (2002)
but unlike the N–S-based solutions of Shvedchenko (2009) and Gai & Khraibut (2019),
where secondary bubbles are predominantly located upstream of the corner.

6.3.1. Velocity and curvature profiles in the separated region
Figures 26 and 27 show profiles of velocity and curvature (∂2u/∂y2) at locations ahead of
separation (x = −31.57), after separation (x = −4.27), at the corner (x = 0) and before
reattachment (x = 4.27) for the two scaled angles α = 4.5 and α = 5.0, respectively.
Considering the velocity profiles in figure 26(a) first, the profile ahead of separation (x =
−31.57) is seen to be linear while the two profiles in the separated region (x = ±4.27)
are typical reverse-flow profiles. The profile at the corner shows a large reverse-flow
region compared with the other two profiles. These three reverse-flow profiles give an
indication of how the separation size increases and how the velocity varies near the
surface. Figure 26(b) shows the curvature profiles and one can see inflection points for
the corner profile prior to reattachment (x = 4.27). Interestingly, the profile immediately
after separation (x = −4.27) does not show an inflection. This is similar to the observation
of Cassel et al. (1995), who found that reverse flow is possible without the appearance of
an inflection point. It is also pointed out that while Cassel et al. (1995) found no inflection
point on the corner profile for α = 3.5, in the present instance, such a profile is seen at
α = 4.5.
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Figure 26. Velocity (a) and ∂2u/∂y2 (b) profiles for α = 4.5, with I = 101, J = 51 a = b = 5. Red,
x = −31.57; green, x = −4.27; blue, x = 0; black, x = 4.27.
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Figure 27. Velocity (a) and ∂2u/∂y2 (b) profiles for α = 5.0, with I = 101, J = 51, a = b = 5. Red,
x = −31.57; green, x = −4.27; blue, x = 0; black, x = 4.27.

Figure 27 shows the velocity and curvature profiles for α = 5.0. The velocity profiles
(figure 27a) are largely similar to those of α = 4.5 except that the corner profile shows
a small positive velocity near the surface, which indicates secondary separation. We also
note that the separation is larger. Again, the curvature profiles (figure 27b) are similar to
those of α = 4.5 except that inflection points are located further away from the surface
and also that the profile at x = −4.27 shows, for the large part, ∂2u/∂y2 > 0 before going
to zero at the surface to satisfy the no-slip condition.

6.4. Wall temperature effects
Analyses by Brown et al. (1990), Kerimbekov et al. (1994) and Cassel et al. (1996)
have considered wall cooling effects on the separation using triple-deck approach.
These analyses delineate the wall temperature effects into subcritical, transcritical and
supercritical regimes, as discussed in § 2.

The triple-deck calculations from the present investigations are shown in figure 18 for
shear-stress distributions obtained for the 20◦ compression corner with I = 201, J = 101,
a = b = 5, r = 0.5.
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Figure 28. Velocity and derivative profiles for sw = 0.095 (a) and sw = 0.333 (b) at separation points
x = −7.98 and x = −10.25, for α = 3.72 and α = 4.13, respectively.

These results agree quite well with the trends seen by Cassel et al. (1996). There is
a steep drop in the shear-stress from τw = 1 to zero at separation but the fall is less
abrupt compared with that observed by Cassel et al. (1996). The separation extent also
becomes less with a decrease in wall temperature. The small increase in shear-stress in
the recirculation region near the corner shows that the increase is higher with the higher
wall-temperature, again as in the data of Cassel et al. (1996). The small oscillations
immediately before separation, observed by Cassel et al. (1996), are not seen. This is
because the cooling effects in the present instance are comparatively moderate compared
with those considered by Cassel et al. (1996). With the hotter wall, the separation increases
by nearly 21 %.

Figures 28–30 show velocity profiles and their derivatives at different locations: at
separation; at the corner (x = 0); and at reattachment, for the 20◦ case with cold (sw =
0.095) and hot (sw = 0.333) walls. Considering the profiles of the colder wall (sw =
0.095) at separation (x = −7.98), the curvature profile shows a maximum near the surface
where the velocity is changing rapidly near the surface from zero. All the three parameters
go to zero at the surface to satisfy the no-slip boundary condition. Away from the surface,
the curvature shows zero when the velocity profile is nearly linear. These features are
similar to those for the hotter wall (sw = 0.333) at x = −10.25.

Considering the corner profiles for the colder wall (sw = 0.095), the velocity profile
shows a highly reverse flow and the curvature profile (∂2u/∂y2) shows a maximum near
the surface before going to zero away from the surface when the velocity variation is
nearly linear away from the surface. The vorticity ∂u/∂y profile shows negative vorticity
at the surface corresponding to the reverse-flow and crosses zero at the maximum reverse
velocity point and stays approximately constant at sufficient distance away from the
surface. In the corner profiles for the hotter wall (sw = 0.333), there are some significant
differences. First, the profiles are less full. In the velocity profile, the velocities close to the
surface are decreased and are much straighter than those for the colder wall, a feature also
noted by Cassel et al. (1995) for a higher scaled angle. This is reflected in the curvature
(∂2u/∂y2) profile being zero, unlike in the cold wall case, and there may even be an
inflection point very close to the surface (see Cassel et al. 1995). Note that both the scaled
angles for the colder and hotter walls in the present case are 3.72 and 4.13, respectively.
This is consistent with the observation of Cassel et al. (1995) that when the scaled angle
α ≤ 3.9, an inflection point is not likely even in the presence of separation.
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Figure 29. Velocity and derivative profiles for sw = 0.095 (a) and sw = 0.333 (b) at the corner x = 0, for
α = 3.72 and α = 4.13, respectively.
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Figure 30. Velocity and derivative profiles for sw = 0.095 (a) and sw = 0.333 (b) at reattachment points
x = 7.05 and x = 7.92, for α = 3.72 and α = 4.13, respectively.

The vorticity profile (∂u/∂y) shows that the vorticity at the surface is also less for the
hotter wall and changes sign further away from the surface. The zero crossing of vorticity
coincides with the maximum of the reverse-flow velocity similar to the cold wall case.

The profiles at reattachment are very similar to those at separation and the differences
between hotter and colder walls are less stark.

Noteworthy features of the curvature profiles are that ∂2u/∂y2 is mostly positive
throughout in all the cases and although velocity profiles show reverse flow, there is no
discernible inflection point even with the hotter wall.

6.5. Separation length
Figure 31(a) shows the effect of wall temperature and bluntness on separation length Ls
normalised by the flat plate length L (up to the corner). It has been shown that, in terms
of the criteria of Stollery (1972) and Lagrée (1991), both bluntness values of 40 µm
and 200 µm can be considered ’small’. However, as seen from this figure, there are
significant differences between them with the wall temperature. First, the higher bluntness
induces larger separation for a given wall temperature ratio. Second, variations with wall
temperature are nearly linear for both bluntness cases.

One of the conclusions of Katzer (1989) is that for finite Reynolds numbers, the
triple-deck theory tends to over-predict the size of the separation bubble. It is, therefore, of
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Figure 31. (a) Effect of wall temperature and bluntness on separation length (red, 40 µm; black, 200 µm).
(b) Comparison of separation length with triple-deck (blue) and N–S (black) solutions.

interest to compare the length of the separation bubble obtained from both triple-deck
and N–S solutions. Figure 31(b) shows the separation length plotted against the wall
temperature ratio sw. The bubble length, in terms of triple-deck scaling, can be determined
using the relations in Rizzetta et al. (1978) or Katzer (1989). The corresponding N–S
values were determined from the solutions described in § 5.1. It is seen that the triple-deck
separation length overpredicts the corresponding N–S values for sw ≥ 0.15 and the
difference increases substantially with the increase in wall temperature. However, for
sw ≤ 0.15, the reverse happens, that is, the triple-deck theory underpredicts the N–S value.
The reason, as pointed out by Brown et al. (1991), is that for highly cooled walls, the
lower deck dimension is drastically reduced and consequently both separation and the
upstream influence are much reduced. This is also in line with the observations of Nielsen
et al. (1966), who found that both interaction length and separation were vanishingly
small for wall temperature ratios less than 0.133. The present data are consistent with
the above observations. It should be pointed out that while the N–S data pertain to
finite Reynolds number and finite-span geometry, the triple-deck is a two-dimensional
asymptotic approximation.

6.6. Finite-span effects
The critical point theory of Legendre et al. (1977) provides a consistent language to analyse
the three-dimensional flow structure. Separation and reattachment points obtained at every
x–y-plane fall on lines named the separation and reattachment lines, respectively (Delery
1992; Babinsky & Harvey 2011). A separation node can be identified when skin-friction
lines converge towards one point, while an attachment node displays skin-friction lines
diverging from it. Figure 32 shows the pressure coefficient contours over the wall for the
20◦ finite-span model with a 40 µm leading-edge and Tw = 1050 K. The flow remains
two-dimensional at the centreline. The flow structure is similar to that reported by Rudy
et al. (1989). The separation follows a curved line from the symmetry plane towards the
edge of the model. The separation bubble is thus larger at the centreline than at the edge
of the wall. The skin-friction lines indicate significant outflow in the spanwise direction
at the side of the plate. This arises from the spillage of flow from the top of the model
towards the free stream. An attachment node can be seen close to the edge of the plate.
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Figure 32. Isometric view of wall pressure coefficient contours for the 20◦ FSM with 40 µm leading-edge
and Tw = 1050 K.

The skin-friction lines at reattachment emerge from this node and travel both downstream
and slightly towards the centreline and, like the separation line, the reattachment line is
also curved with the apex at the centreline. Far from the side of the wall, the flow on the
ramp remains two-dimensional.

The scaled angles for the 20◦ case range from α = 3.7 to α = 4.1. Two-dimensional
N–S simulations from several authors suggest the existence of secondary vortices for
this range of scaled angle values (Shvedchenko 2009; Egorov et al. 2011; Gai &
Khraibut 2019). The absence of such vortices in the present simulations might be due
to three-dimensional effects. However, the aspect ratio of the model considered here is
larger than unity, and the flow on the centreline remains two-dimensional. Furthermore,
previous triple-deck literature (Smith & Khorrami 1991; Korolev et al. 2002) does not
predict secondary vortices for scaled angles lower than α = 4.5, as shown earlier. It is
therefore unresolved as to why secondary vortices are not seen in our N–S calculations.

7. Conclusions

Wall temperature and bluntness effects can influence both the flow field structure and
surface parameters. In respect of the flow field, wall temperature influences the mode of
shock interference. For a cold wall, the leading-edge shock and separation shock intersect
the reattachment shock separately resulting in two Edney Type VI interactions with two
triple points and two expansion fans which reflect off the ramp surface. This results in two
maxima in the skin-friction distribution on the ramp surface. As the wall temperature
increases, the separation point moves upstream and the triple point, produced by the
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intersection of separation and reattachment shocks, moves downstream of the corner. This
triple point eventually merges with the triple point produced by the leading-edge and
the reattachment shocks at the hottest wall temperature considered in this study (Tw =
1050 K). As a consequence, only one maximum is seen in the skin-friction distribution on
the ramp surface. The pressure distributions show peaks and steep drops consistent with
these shock interference patterns.

Wall temperature has a significant impact on separation. The criterion of Stollery (1972)
predicts incipient separation at a wall temperature ratio of 0.318 for a 10◦ corner angle.
For the same angle, the N–S solution predicts incipient separation at wall temperature
ratio between 0.190 and 0.238 for the finite-span model. The two-dimensional triple-deck
solution for an adiabatic wall showed incipient separation to occur at a scaled angle α =
1.86, which is in good agreement with that of Cassel et al. (1995), who found incipient
separation at α ≈ 1.9 for a compression corner at supersonic Mach numbers.

Both wall temperature and bluntness increased the separation length. For sw ≥ 0.15, the
triple-deck overpredicts the N–S solution while for sw ≤ 0.15, the opposite is true. Overall,
the effect of wall temperature on separation length was found to be much greater with
triple-deck solution than that with the N–S. The effects of wall temperature and bluntness
are minimal within the separated region.

The instability at the corner in the form of a stationary wave packet noted by Cassel
et al. (1995) for scaled angles α ≥ 3.9 is shown to be a manifestation of a numerical
artefact in the algorithm, which seems to be particularly sensitive to both mesh size and
the corner shape function. With coarse mesh and small rounding radius, the wave packet
could be suppressed for scaled angles up to α = 5. The results for these scaled angles are
in excellent agreement with those of Smith & Khorrami (1991) and Korolev et al. (2002).

Results from the finite-span model (FSM) showed that three-dimensional effects are
largely confined near edges and the flow over the midspan region could be taken as
nominally two-dimensional. The flow structure compares well with the three-dimensional
solutions of Rudy et al. (1989). Secondary vortices were not observed in the present
investigation despite the fact that the scaled angles varied from 3.72 to 4.12. This is
contrary to Shvedchenko (2009) and Gai & Khraibut (2019), who observed secondary
separation for scaled angles 3 ≤ α ≤ 4. This is believed to be due to the finite span of the
model in the present investigation.
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