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SUMMARY
In this paper, we investigate the problem of measuring
the shape of a continuum robot manipulator using visual
information from a fixed camera. Specifically, we capture
the motion of a set of fictitious planes, each formed by four
or more feature points, defined at various strategic locations
along the body of the robot. Then, utilizing expressions for
the robot forward kinematics as well as the decomposition of
a homography relating a reference image of the robot to the
actual robot image, we obtain the three-dimensional shape
information continuously. We then use this information to
demonstrate the development of a kinematic controller to
regulate the manipulator end-effector to a constant desired
position and orientation.

KEYWORDS: Continuum robots; Computer vision; Shape
estimation.

1. Introduction
Conventional robotic manipulators are designed as a
kinematic chain of rigid links that bend at discrete joints
to achieve a desired motion at its end-effector. These rigid-
link robots have a limited number of joints, and all the joints
are actuated by devices such as motors. The maneuverability
and flexibility of such devices are limited by the number of
actuated joints in them. In contrast, continuum robots1 are
robotic manipulators that draw inspiration from biological
appendages like elephant trunks and squid tentacles, and can
bend anywhere along the length of their body. In theory,
they have infinite mechanical degrees of freedom (DOF), so
that their end-effector can be positioned at a desired location
while concurrently satisfying work-space constraints such as
tight spaces and presence of obstacles. However, from an
engineering perspective, an important implication of such a
design is that although such devices have a high kinematic
redundancy, they are infinitely underactuated. A variety of
bending motions must be generated with only a finite number
of actuators. While there has been considerable progress in
the area of actuation strategies for such robots,1 the dual
problem of sensing the configuration of such robots has
been a challenge. From a controls perspective, a reliable
position controller would require an accurate position sensing
mechanism. However, internal motion sensing devices such
as encoders cannot be used to determine either the shape

* Corresponding author. Email: c.vilas@gmail.com

or the end-effector position of a continuum robot, since
there is no intuitive way to define links and joints on such a
device. A literature survey reveals that a few indirect methods
have been proposed by researchers to estimate the shape
of continuum robots, such as models2,3 that relate internal
bellow pressures in fluid-filled devices, or change in tendon-
length in tendon driven devices, to the position of the end-
effector. However, these methods do not have accuracies
comparable to position sensing in rigid link robots because of
the compliant nature of continuum devices. For example, in a
tendon-driven continuum robot, due to coupling of actuation
between sections, various sections of the robot can potentially
change shape without the encoders detecting a change in
tendon length or tension. Motivated by a desire to develop an
accurate strategy for realtime shape sensing in such robots,
Hannan and Walker4 implemented simple image processing
techniques to determine the shape of the Elephant Trunk ro-
botic arm at Clemson University, where images from a fixed
camera were used to reconstruct the curvatures of various
sections of the robot. This technique was only applicable
to the case where the motion of the arm was restricted to a
plane orthogonal to the optical axis of the camera. The paper,
however, demonstrated conclusively that there is a large
difference in curvature measurements obtained from indirect
cable measurements as compared to vision-based strategy,
and hence, the information obtained from ad hoc indirect
shape measurement techniques is indeed questionable.

Vision-based techniques for shape sensing are appealing,
if they can be used to reconstruct the 3D pose of the robot
without applying any conditions that constrain the maneuver-
ability of the robot. It can be shown that the correspondence
between images of feature points lying on a plane, as obtained
from two different cameras, is a collineation,5 and given the
matrix of collineation, the position and orientation of the
second camera and the plane can be recovered relative to
the first camera. In lieu of images from a second camera,
given a single reference image of the plane and a knowledge
of its (reference) orientation relative to the coordinate frame
of a single camera, new images of the moving plane captured
by the camera can be compared with this reference image
to determine the changing position and orientation of the
plane relative to the camera. Exploiting this technique, Chen
et al.6 presented the development of a kinematic controller
for robot manipulators using visual feedback from a single
fixed camera. In this paper, we follow a similar approach
with regard to modelling the motion of various sections of a
continuum robot relative to a fixed camera. Specifically, from
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a decomposition of the homography and from the equations
describing the forward kinematics of the robot,7 we show
that the curvatures that define the shape of various sections
of the robot can be fully determined. This is the primary
contribution of this paper. We then make use of the various
kinematic control strategies for hyperredundant robots that
have appeared in the robotics literature in the past8–10 to
develop a kinematic controller that accurately positions the
robot end-effector to any desired position and orientation
by using a sequence of images from a single external video
camera.

This paper is organized as follows. Section 2 introduces
the forward kinematics for the robot. In Section 3, we illu-
strate how a homography-based approach can be used to
continuously reconstruct the three-dimensional pose of the
continuum robot, utilizing the two-dimensional images from
a fixed camera. In Section 4, we use this information to
develop a kinematic controller that regulates the end-effector
of the robot to any desired constant reference position and
orientation. Section 5 provides simulation results. Conclud-
ing remarks are presented in Section 6.

2. Continuum robot kinematics
The kinematics of a conventional, rigid-link, industrial robot
can be conveniently described as a function of joint angles
and link lengths using the standard Denavit–Hartenberg
convention.15 This is a systematic method of assigning
orthogonal coordinate frames to the joints of the robot, such
that the relative position and orientation between frames
along the kinematic chain can be obtained as a product
of homogeneous transformation matrices. In comparison,
continuum robots resemble snakes or tentacles in their
physical structure, and due to their continuous and curving
shape, there is no intuitive way to define links and joints on
them. The concept of curvature, pioneered by Chirikjian and
Burdick11 and appearing in the work of other researchers
in the area of continuum robotics,12,13 is a natural way
to describe the kinematics of a continuum robot. One
such continuum robot is the Clemson Elephant Trunk,14

which is composed of 16 two-DOF joints divided into four
sections, each section designed to bend with a constant planar
curvature. Every section is cable driven, and can be actuated
such that it defines a different orientation of the plane of
its curvature relative to its preceding section. Due to the
rigid nature of the joints, torsion is not possible within a
section.

Based on the work by Hannan,14 and further refined
by Jones,7 the fundamental idea behind development of
kinematics for an individual section of this robot is to fit a
virtual conventional rigid-link manipulator to its continuous
curvature, and develop relationships utilizing the well-
established Denavit–Hartenber procedure. Consider the sth
section of the robot. Using basic geometry, the kinematics
of a 2D planar curve of arc length ls and curvature ks can
be described by three coupled movements—rotation by an
angle θs , followed by a translation xs , and a further rotation
by angle θs , as shown in Fig. 1. Here, xs ∈ R

3 is the position
vector of the endpoint of the curve relative to its initial

Fig. 1. A planar curve.

point, and

θs = ksls

2
(1)

‖xs‖ = ls

θs

sin(θs). (2)

After treating the two rotations in the curve as discrete
rotational joints and the translation as a coupled discrete pris-
matic joint, the standard Denavit–Hartenberg procedure15

can be applied to obtain the forward kinematics for the curve.
Thus, the homogeneous transformation matrix for the planar
curve, denoted by Asp ∈ R

4×4, can be obtained as14

Asp =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(ksls) − sin(ksls) 0
1

ks

{cos(ksls) − 1}

sin(ksls) cos(ksls) 0
1

ks

sin(ksls)

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ . (3)

The out-of-plane rotation of the section relative to the
preceding plane can be modelled as an additional rotational
joint with rotation of angle φs about the initial tangent of
the curve (see Fig. 1). However, a rotation about the initial
tangent results in incorrect orientation of the frame defined at
the other end of the curve, since the body of the robot cannot
experience torsion. Therefore, in order to cancel out this tor-
sion, the frame defined at the distal end of the curve is finally
rotated by −φs . Hence, for the 3D case, the forward kinemat-
ics for the sth section of the continuum robot can be obtained
from the following homogeneous transformation matrix

As =
[
Rs

s−1 t ss−1

0 1

]
(4)

where

Rs
s−1 =

⎡
⎢⎣1+ cos2(φs)cks sin(φs) cos(φs)cks

sin(φs) cos(φs)cks cos(ksls)-cos2 (φs)cks

sin(ksls) cos(φs) sin(ksls) sin(φs)

− cos(φs)sin(ksls)
− sin(φs)sin(ksls)
cos(ksls)

⎤
⎦ (5)
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t ss−1 =

⎡
⎢⎢⎢⎣

1
ks

cos(φs)cks

1
ks

sin(φs)cks

1
ks

sin(ksls)

⎤
⎥⎥⎥⎦ (6)

and cks(t) = cos(ksls) − 1. The matrix As in (4) transforms
the coordinates of a point defined in the coordinate frame Fs

at the end of the sth curved section to the coordinate frame
Fs−1 defined at the end of the (s − 1)th section. In the above
equations, Rs

s−1 ∈ SO(3) and t ss−1 ∈ R
3 define, respectively,

the rotation matrix and translation vector between the frames
Fs and Fs−1. Thus, for the entire robot with four sections,
the homogeneous transformation matrix can be calculated as

T 4
0 = A1A2A3A4. (7)

From (7), the end-effector position and orientation in the task-
space of the robot, denoted by p(t) ∈ R

6, can be written as

p = f (q) (8)

where f (q) ∈ R
6 denotes the forward kinematics, and

q(t) ∈ R
8 denotes the joint-space variables for the robot

defined as

q(t) = [φ1 k1 φ2 k2 φ3 k3 φ4 k4]T (9)

where φi(t) and ki(t) are the out-of-plane rotation and the
curvature, respectively, for the ith section.

Based on (8), a differential relationship between the end-
effector position and the joint-space variables can be defined
as7

ṗ = J (q)q̇ (10)

where J (q) � ∂f (q)

∂q
∈ R

6×8 is called a Jacobian matrix,

and q̇(t) ∈ R
8 denotes the joint-space velocity vector. Note

here that the determination of the Jacobian matrix requires
knowledge of the joint-space vector q(t). In Section 3, we
describe how q(t) can be constructed from images of feature
points along the manipulator as obtained from the fixed
camera.

3. Joint variables extraction

3.1. Camera space coordinates of feature points
Since a video camera is our position feedback device, we
must develop a geometric relationship between the 3D world
in which the robot resides and its 2D projection in the
image plane of the camera. To this end, we define an inertial
coordinate system I, whose origin coincides with the center
of a fixed camera (see Fig. 2). For the sake of simplicity, we
assume that the origin of the inertial frame I also coincides
with the origin of the robot base frame. At the end of sth
section of the robot, consider a transverse plane πs defined by
four noncollinear target points denoted by Osi ∀i = 1, 2, 3, 4
such that the origin of the previously defined coordinate
systemFs lies in πs . We also consider a fixed transverse plane

Fig. 2. Coordinate frame relationships.

denoted by π∗
s , (with four noncollinear target points denoted

by O∗
si ∀i = 1, 2, 3, 4) and a coordinate system F∗

s , which
are defined when the end of the sth section is at a reference
position and orientation relative to the fixed camera (i.e., π∗

s

and F∗
s are defined by a reference image of the robot). Note

that this reference image doesnot necessarily represent the
desired position to which we want to regulate the end-effector
of the robot. The 3D coordinates of the target points Osi, O

∗
si ,

denoted by m̄si(t), m̄∗
si ∈ R

3 in πs and π∗
s , respectively, are

expressed in the inertial coordinate system I as

m̄si � [xsi ysi zsi ]T (11)

m̄∗
si � [x∗

si y∗
si z∗

si ]T. (12)

We define the normalized Euclidean coordinates, denoted by
msi(t) and m∗

si ∈ R
3 for the above target points as

msi � m̄si

zsi

=
[
xsi

zsi

ysi

zsi

1
]T

(13)

m∗
si � m̄∗

si

z∗
si

=
[
x∗

si

z∗
si

y∗
si

z∗
si

1
]T

. (14)

Seen through the camera, each of the points Osi and O∗
si

in task space will also have projected pixel coordinates,
expressed in terms of I denoted by usi(t), vsi(t) ∈ R, and
u∗

si , v
∗
si ∈ R, that are respectively defined as elements of psi(t)

and p∗
si ∈ R

3 as

psi = [usi vsi 1]T p∗
si = [u∗

si v∗
si 1]T. (15)

The projected pixel coordinates of the target points are related
to their normalized Euclidean coordinates by the pin-hole
camera model,16 such that

psi = Amsi p∗
si = Am∗

si (16)

where A∈ R
3×3 is a known, constant, and invertible intrinsic

camera calibration matrix that is explicitly defined as17

A =

⎡
⎢⎢⎣

f ku −f kv cot(θ) uo

0
f kv

sin(θ)
vo

0 0 1

⎤
⎥⎥⎦ (17)
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where uo, vo ∈ R denote the pixel coordinates of the principal
point (i.e., the image center that is defined as the frame-buffer
coordinates of the intersection of the optical axis with the
image plane), ku, kv ∈ R represent camera scaling factors,
θ ∈ R is the angle between the axes of the imaging elements
(CCD) in the camera, and f ∈ R denote the focal length of
the camera.

3.2. Euclidean reconstruction
In order to develop a relationship between the coordinate
system I defined at the center of the fixed camera and
the coordinate system Fs defined at the end of the sth
section of the robot, we define Rs(t) ∈ SO(3) as the rotation
matrix between Fs and I, and xs(t) ∈ R

3 as the translation
vector between Fs and I, ∀s = 1, 2, 3, 4. Similarly, let
x∗

s ∈ R
3 be a constant translation vector between F∗

s and
I, and R∗

s ∈ SO(3) be the constant known rotation matrix
between F∗

s and I. As also illustrated in Fig. 2, n∗
s ∈ R

3

denotes a constant normal to the reference plane π∗
s expressed

in the coordinates of I, and the constant distance d∗
s ∈ R from

I to plane π∗
s along the unit normal is given by

d∗
s = n∗T

s m̄∗
si . (18)

Note that Osi and O∗
si represent the same feature point at

different geometric locations, and when expressed in the
object reference frames Fs and F∗

s , they have the same
coordinates. Exploiting this fact, and based on the geometry
between the coordinate frames Fs , F∗

s and I depicted in
Fig. 2, we can arrive at the following relationships

m̄si = xs + RsOsi (19)

m̄∗
si = x∗

s + R∗
s Osi . (20)

After solving Eq. (20) for Osi and substituting the resulting
expression into Eq. (19), the following relationships can be
obtained

m̄si = x̄s + R̄sm̄
∗
si (21)

where R̄s(t) ∈ SO(3) and x̄s(t) ∈ R
3 are the new rotational

and translational variables, respectively, defined as

R̄s = Rs(R
∗
s )T x̄s = xs − R̄sx

∗
s . (22)

After utilizing Eq. (18), the relationship in Eq. (21) can now
be expressed as

m̄si =
(

R̄s + x̄s

d∗
s

n∗T
s

)
m̄∗

si . (23)

After utilizing Eqs. (13) and (14), we obtain the following
relationship in terms of normalized Euclidean coordinates of
the feature points

msi = z∗
si

zsi︸︷︷︸
(

R̄s + x̄s

d∗
s

n∗T
s

)
︸ ︷︷ ︸m∗

si

αsi Hs

(24)

where αsi(t) ∈ R is the depth ratio, and Hs(t) ∈ R
3×3 denotes

the Euclidean homography between the coordinate systems
Fs and F∗

s . Given the relationships in Eq. (16), the above
relationship can be written in terms of pixel coordinates of
the target points in each plane as

psi(t) = αsi (AHA−1)︸ ︷︷ ︸ p∗
si

Gs

(25)

where Gs(t) ∈ R
3x3 is called the projective homography.

If all feature points in a section lie on the same plane, the
distances d∗

s defined in Eq. (18) is the same for all feature
points in that section. In this case, the collineation Gs(t)
is defined upto the same scale factor, and hence, one of
its elements can be set to unity without loss of generality.
Given the images of at least four coplanar features psi(t) on
each plane πs and the images of the corresponding reference
features p∗

si in π∗
s , we can solve the linear set of equations18

in Eq. (25) to determine Gs(t) and αsi(t). If more than four
feature points can be tracked on each plane, least-squares
solution may be used to arrive at an estimate for Gs(t). If
the points Osi are not coplanar, then the estimation of G(t)
is a nonlinear problem that requires at least eight feature
points and can be computed, for example, by using the virtual
parallax algorithm.17 Since the camera calibration matrix A

in Eq. (17) is known, Hs(t) can be obtained from Gs(t)
for each section of the manipulator. By utilizing various
techniques,5,19 Hs(t) can be decomposed into rotational and
translational components as in Eq. (24). Specifically, the rota-
tion matrix R̄s(t) can be computed from the decomposition of
Hs(t). The rotation matrix Rs(t), defining the orientation of
the end of the sth section of the robot relative to the camera
fixed frame I, can then be computed from R̄s(t) by using
Eq. (22) and the fact that R∗

s is known a priori.
Since Rs(t) is a rotation matrix between I andFs , it can be

viewed as a composition of two rotational transformations: a
rotational transformation from frame I to Fs−1, followed by
a second rotational transformation from Fs−1 to Fs . Hence,
we can progressively compute Rs

s−1(t) in Eq. (5) (i.e., the
rotation matrix from one section of the robot to the next), as15

Rs
s−1 = (Rs−1)TRs, ∀s = 1, 2, 3, 4. (26)

From Eq. (4), the joint-space variables for the sth section
can, hence, be determined as

ks = 1

ls
cos−1

([
Rs

s−1

]
33

)

φs = sin−1

([
Rs

s−1

]
32

sin(ksls)

)
(27)

where ls ∈ R is the known arc length of the section, and
the notation [·]xy denotes a matrix element at row x and
column y. With the knowledge of all the joint variables q(t)
as computed from Eq. (27), T 4

0 of Eq. (7), and consequently,
the Jacobian J (q) of Eq. (10) can now be calculated online.

Remark 1 We assume that the constant rotation matrix R∗
s

is known. This is a mild assumption, since we assume that
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the robot can be set to a known reference configuration, or
that the constant rotation matrix R∗

s can be obtained a priori
using various methods (e.g., a second camera, Euclidean
measurements, etc.).

4. Task-space kinematic controller
The control objective is the regulation of the end-effector
of the manipulator to a desired position and orientation,
denoted by pd ∈ R

6. Note that this desired configuration of
the robot may be available as an image, and the technique
described in the previous sections may be applied to compute
pd. The mismatch between the desired and actual end-
effector Cartesian coordinates is the task-space position error,
denoted by e(t) ∈ R

6, and given as

e � p − pd. (28)

Utilizing the velocity kinematics in Eq. (10), and the fact
that ṗd = 0, the open-loop error dynamics for e(t) can be
expressed as

ė = J q̇. (29)

The kinematic control input q̇(t) is designed10 as

q̇ = −J+βe + (I8 − J+J )g (30)

where β ∈ R
6×6 is a diagonal positive definite gain matrix,

In ∈ R
n×n denotes the n × n identity matrix, and J+(q)

denotes the pseudoinverse20 of J (q), defined as

J+ � J T(JJ T)−1. (31)

In Eq. (30), g(t) ∈ R
8 is a bounded auxiliary signal that

is constructed according to a sub-task control objective
such as obstacle avoidance. For example, if the joint-space
configuration that avoids an obstacle in the manipulator’s
work space is known to be qr , then g(t) can be designed as

g � γ (qr − q) (32)

where γ ∈ R is a positive gain constant. While designing
q̇(t) in the manner of Eq. (30), we make the assumption
that the minimum singular value of the Jacobian, denoted
by σm, is greater than a known small positive constant
δ > 0, such that max{‖J+(q)‖} is known a priori and all
kinematic singularities are avoided. Note that J+(q) satisfies
the following equalities

JJ+ = In (33)

J (I8 − J+J ) = 0. (34)

After substituting the control input of Eq. (30) in Eq. (29),
we obtain

ė = −βe (35)

where Eqs. (33) and (34) have been utilized. Hence, e(t) is
bounded by the following exponentially decreasing envelope

‖e(t)‖ ≤ ‖e(0)‖ exp(−λt) (36)

where λ ∈ R is the minimum eigenvalue of β.

From Eqs. (28) and (36), it is clear that p(t) ∈L∞. Based
on the assumption that kinematic singularities are avoided,
J (t) is always defined and bounded. Hence, the control input
q̇(t) is bounded since J+(q) is bounded for all possible
q(t), and g(t) is bounded by the assumption. We make the
assumption that if p(t) ∈L∞, then q(t) ∈L∞. From Eq. (29)
we get ė(t), ṗ(t) ∈L∞.

5. Simulations and discussion
The primary contribution of this paper is the development
of a vision-based technique for measuring the shape of
a continuum robot, given the expressions for the forward
kinematics. For the sake of demonstration, we chose a simpler
task-space kinematic controller formulated as

q̇ = −J Tβe. (37)

Substituting this control input in the error dynamics of
Eq. (29) results in the same exponential stability result as
in Eq. (36), except that λ is now the minimum eigenvalue
of JJ Tβ. The desired task-space position of the end-effector
was selected to be

pd = [0.30 0.01 0.769 0.0 0.4 0.0]T (38)

where the first three elements in the vector denote the desired
end-effector position specified in meters, while the remaining
three elements denote the orientation defined using the Euler
angle notation in radians. The initial configuration of the
manipulator, denoted by q(t0), was selected as

q(t0) = [0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1]T (39)

which is close to the relaxed configuration of the manipulator,
where all sections lie extended along the principal axis.
Note that the joint-space configuration of the manipulator
is defined as in Eq. (9), where the units of φi(t) and
ki(t) are radians and meters−1, respectively. The diagonal
elements of feedback gain matrix β were set to 30. Based
on calibration parameters from an actual camera, the internal
camera calibration matrix A of Eq. (17) was set as

A =
⎡
⎣1268.16 0 257.49

0 1267.51 253.10
0 0 1

⎤
⎦ . (40)

The reference image of the robot was contructed from a
configuration where the robot is fully extended along its
backbone. The simulation results for task-space control,
utilizing the simplified controller of Eq. (37) and the
vision-based joint-space variable measurement described in
Section 3, are shown in Figs. 3 and 4. Figure 3 shows the time
evolution of task-space error in the positioning of the robot
end-effector, while Fig. 4 shows the joint-space trajectories.

In a real-world implementation, multiple cameras at known
positions relative to the base frame of the robot will be
required to successfully track all visual markers on the robot
and avoid problems of occlusion. Utilizing the technique
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Fig. 3. End effector position error.

Fig. 4. Time evolution of joint trajectories.

presented in this paper, it is possible to accomplish more
than just end-effector regulation. Since all joint variables
are recovered from the processing of images, a joint-level
controller may also be implemented which will enable
complete shape control of the robot (i.e., the manipulator
may be servoed to any desired shape, given an image of the
manipulator at that configuration). The result may be further
extended to shape tracking, if a video sequence of the desired
trajectory of the robot body is available.

6. Conclusions
In this paper, we presented a kinematic controller to
exponentially regulate the end-effector of a continuum robot
to a desired position and orientation, using visual feedback
from a fixed camera. By exploiting the homography-based
techniques and the known kinematics of the robot, it was
shown that the shape of the robot arm can be completely
determined through the 2D images from the camera. The

only requirement is that a reference orientation of the end
of each section of the robot must be known relative to the
camera coordinate frame.
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