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ABSTRACT

We consider the conditional mean risk allocation for an insurance pool, as
defined by Denuit and Dhaene (2012). Precisely, we study the asymptotic
behavior of the respective relative contributions of the participants as the total
loss of the pool tends to infinity. The numerical illustration in Denuit (2019)
suggests that the application of the conditional mean risk sharing rule may pro-
duce a linear sharing in the tail of the total loss distribution. This paper studies
the validity of this empirical finding in the class of compound Panjer–Katz
sums consisting of compound Binomial, compound Poisson, and compound
Negative Binomial sums with either Gamma or Pareto severities. It is demon-
strated that such a behavior does not hold in general since one term may
dominate the other ones conditional of large total loss.
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1. INTRODUCTION

In this paper, we consider the conditional mean risk allocation of independent
losses, as defined by Denuit and Dhaene (2012). According to this rule, each
participant to an insurance pool contributes the conditional expectation of the
loss brought to the pool, given the total loss experienced by the entire pool.
The properties of the conditional mean risk allocation have been studied in
Denuit (2019), and the present study originates from the empirical findings in
the numerical illustration contained in that paper.

From a theoretical point of view, we investigate the relative behavior of
the conditional expectations of random variables given their sum, when the
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realization of the sum tends to infinity. Conditions are given under which one
of the following two cases occurs:

Case (i) The conditional expectations are asymptotically in fixed, positive
proportions to each other (the “linear” case).

Case (ii) One of the random variables dominates, the conditional expectations
of the others being asymptotically vanishingly small with respect to
this one.

This research question is investigated for the class of compound Panjer–Katz
sums consisting of compound Binomial, compound Poisson, and compound
Negative Binomial sums. This class of distributions is central to actuarial math-
ematics so that the results derived in this paper are of wide applicability in
insurance studies. As far as severities are concerned, we consider the heavy-
tailed case with regularly varying tails. In particular, the Pareto law belongs to
this class of distributions. We also discuss a light-tailed case where severities
obey the Gamma distribution. Since the Gamma distribution is the prototype
example of light-tailed distribution, widely used in theory as well as in actuarial
applications (also in compound Poisson sums, giving rise to the Tweedie distri-
bution), this choice appears to be relevant for our investigation. Independence
is assumed in all cases.

Since all standard severity models correspond to absolutely continuous
probability distributions, the present paper naturally concentrates on this
situation. We nevertheless also consider the particular setting of the numeri-
cal illustration proposed by Denuit (2019), that is, compound Poisson sums
with integer-valued claim severities. This is because these empirical findings
motivated the present study.

The remainder of this paper is organized as follows. Section 2 provides the
reader with economic motivation for the study conducted in the present paper
by demonstrating its relevance for peer-to-peer (P2P) insurance. The problem
under investigation is also properly positioned there, relative to the existing
literature. In Section 3, we recall the connection of the conditional mean risk
sharing rule with the size-biased transform. Section 4 derives the size-biased
transforms and the conditional mean risk sharing of compound Panjer–Katz
sums. In this paper, we favor direct reasoning specific to compound Panjer–
Katz sums to recover their respective size-biased transforms. These results
can be found in Denuit (2020), where they are derived by means of general
results about size-biasing sums andmixtures. Sections 5 and 6 study the asymp-
totic linearity of the conditional mean risk allocation in the case of severities
with regularly varying tails or obeying the Gamma distribution, respectively.
Compared to other papers dealing with tails of sums of independent random
variables, we must deal here first with non-identically distributed random vari-
able and second with probability density functions and not tail probabilities.
Section 7 goes back to the empirical findings in the numerical illustration
proposed by Denuit (2019) that motivated the present paper. Specifically, we
consider independent compound Poisson losses with integer-valued severities.
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We establish that the application of the conditional mean risk sharing principle
produces a linear allocation in the tail of the total loss distribution when claim
severities possess the same, finite upper endpoint to their support. Since a com-
mon finite upper endpoint to the support of claim severities can be obtained
with the help of an excess-of-loss protection, this result appears to be particu-
larly interesting for applications. But it is also shown there that the conditional
mean risk sharing may fail to produce an asymptotically linear allocation. This
is the case when the finite upper endpoints of the respective supports differ. For
the case when the severities are heterogeneous with unbounded support, we
provide an example where severities follow Logarithmic distribution showing
that the asymptotic linearity does not hold in general.

All proofs are gathered in appendix. The following notation is adopted
throughout the text. For two positive functions g1 and g2 defined in a neigh-
borhood of infinity, we write g1 ∼ g2 provided limx→∞ g1(x)/g2(x)= 1 and we
write g1 = o(g2) provided limx→∞ g1(x)/g2(x)= 0. We use =d to denote equality
in distribution for two random variables. Independence is assumed through-
out this text, among severities and frequencies involved in the sums, as well as
between sums.

2. MOTIVATION

The paper aims at contributing to the rich literature on risk sharing and risk
allocation that are both core topics in actuarial science. After Karl Borch’s
seminal contribution, many papers have been devoted to risk sharing. We refer
the interested reader to the reviews by Aase (1993, 2002). Within this vast
topic, we concentrate on P2P insurance schemes where participants share their
respective losses, reviving the ancestral compensation mechanism consisting
in using the contributions of the many to balance the misfortunes of the few.
See, for example, Abdikerimova and Feng (2019) and the references therein.
The conditional mean risk sharing rule appears to be a very convenient way to
distribute retained losses among participants, as shown by Denuit (2019).

Consider n participants to a P2P insurance pool, numbered i= 1, 2, . . . , n.
Each of them faces a risk Xi. By risk, we mean a nonnegative random vari-
able representing a monetary loss. In the remainder of this paper, we assume
that X1,X2, . . . ,Xn are independent and we adopt the notation S=∑n

i=1 Xi

for the total risk of the pool. In a risk pooling scheme, each participant con-
tributes ex-post an amount hi(s), where s=∑n

i=1 xi is the sum of the realizations
x1, x2, . . . , xn of X1,X2, . . . ,Xn.

In the design of the scheme, it is important that the sharing rule repre-
sented by the functions hi is both intuitively acceptable and transparent. In
that respect, the conditional mean risk sharing (or allocation) h∗

i proposed by
Denuit and Dhaene (2012) seems to be particularly attractive. Recall that this
allocation is defined as

h∗
i (S)=E[Xi|S], i= 1, 2, . . . , n. (2.1)
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In words, participant i must contribute the expected value of the risk Xi

brought to the pool, given the total loss S. Clearly, the conditional mean risk
sharing (2.1) allocates the full risk S as we obviously have

n∑
i=1

h∗
i (S)=

n∑
i=1

E[Xi|S]= S

so that the sum of participants’ contributions covers the entire loss S.
In the expected utility setting, every risk-averse decision-maker prefers

h∗
i (S) over the initial risk Xi so that the conditional mean risk sharing rule
appears to be beneficial to all participants (as an application of Jensen’s
inequality). Conditions for Pareto-optimality have been provided by Denuit
and Dhaene (2012).

The present paper investigates the question whether the respective relative
contributions of the n participants tend to stabilize when the total loss of the
pool increases, or equivalently if there exist constants δi, i= 1, 2, . . . , n, such
that

δi > 0 for all i and
n∑
i=1

δi = 1

and

h∗
i (s)=E[Xi|S= s]∼ δis for i ∈ {1, 2, . . . , n}. (2.2)

When the total loss gets large, it can thus be shared among participants accord-
ing to the proportions δi when Equation (2.2) holds true. This is case (i) as
referred to in the introductory section of this paper. As it can be expected,
certain symmetry relations must hold between the random variables under
consideration for Equation (2.2) to be valid.

It is worth to mention that Furman et al. (2018) investigated a related
problem. Precisely, these authors studied conditions ensuring that the identity
h∗
i (s)= δis holds true for some δi depending on the means of the risks under con-
sideration (see Theorem 3.2 in that paper). Compared to Furman et al. (2018),
we only require asymptotic linearity in (2.2).

If one loss, X1 say, dominates, then the conditional expectations of
the others may become asymptotically negligible with respect to this one,
that is,

h∗
1(s)∼ s and h∗

j (s)= o(s) for j ∈ {2, . . . , n} (2.3)

holds true. Formula (2.3) corresponds to case (ii) as referred to in the introduc-
tory section of this paper. It suggests that the upper layer should be borne by
only one participant in the pool. This implies that pooling is not effective for
that upper layer. If Equation (2.3) holds true, then pooling is only meaningful
up to a certain level and reinsurance is needed beyond that level.
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Let us now explain why Equations (2.2) and (2.3) are relevant for appli-
cations to P2P insurance. Linear risk sharing rules have often been applied to
allocate losses among members of a P2P community. Such rules are of the form

hlini (S)=E[Xi]+ ai (S−E[S]) , i= 1, 2, . . . , n,

where
∑n

i=1 ai = 1. Clearly, a linear risk sharing scheme allocates the full risk S
and satisfies the fairness constraint E[hlini (S)]=E[Xi] for i= 1, . . . , n. With hlini ,
participants agree to pay the pure premium E[Xi] and to divide deviations of
S from the total pure premium E[S] (positive or negative) in proportion to the
coefficients ai.

Remark 2.1. Linear risk sharing rules hlini are fair in the sense that the expected
values of participants’ original risks Xi are equal to the expected values of their
share in the pool. Another sense of fairness has been considered by Bühlmann
and Jewell (1979) based on market value (assuming that there exists a liquid
insurance market). The corresponding linear risk sharing rules have the same
form than hlini except that expectations are taken under a market pricing measure
rather than under the real-world measure. See, for example, Schumacher (2018)
for a contribution on linear risk sharing that is fair in terms of market value.

As an example of linear rule, participants may agree to take a fixed percent-
age of the total loss S, in accordance with the expected values of the risks they
bring to the pool compared to the total expected loss, that is,

hpropi (S)=E[Xi]+ E[Xi]
E[S]

(S−E[S])= E[Xi]
E[S]

S.

This rule, referred to as the proportional risk sharing rule, has often been
applied in the context of P2P insurance. However, volatility is not accounted
for because participants i1 and i2 with E[Xi1 ]=E[Xi2 ] contribute equally to the
total loss even if the respective variances V [Xi1 ] and V [Xi2 ] strongly differ.

With linear sharing rules, the same proportion ai of the total losses S is allo-
cated to each participant, whatever the realization of S. In the case investigated
by Furman et al. (2018) recalled above, such linear rules are perfectly appropri-
ate. If Equation (2.2) holds true, then linearity remains relevant even for large
realizations of S but the coefficients δi may differ from the assumed ai. On
the contrary, under Equation (2.3), linear risk sharing rules depart from the
conditional mean risk allocation. This means that when the pool experiences
large losses, the application of the assumed proportions ai leads to individual
contributions that do not reflect the expected contribution of Xi given S. As
an extreme situation, for a loss X1 at most equal to b, say, we might end up
with hlin1 (S)> b when S gets large, whereas h∗

1(S) always stays smaller than b.
This questions the relevance of linear risk sharing rules in adverse scenarios. Of
course, the upper layer of S is generally (re-)insured because of the limited risk-
bearing capacity of the P2P community. The results derived in this paper then
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suggest that the price of the stop-loss protection for the upper layer should not
be distributed among participants according to the same proportions ai defin-
ing hlini . Notice that under Equation (2.3), the price of the upper layer should be
borne by only one participant to the pool so that there is no point in forming a
pool for that upper layer and risk transfer is required beyond a certain level.

It is well known that

X1,X2, . . . ,Xn are independent and identically distributed ⇒ h∗
i (s)=

s
n
.

(2.4)

Thus, the conditional mean risk sharing is linear and δi = 1
n in this case. The

rule h∗
i extends this uniform allocation to heterogeneous losses. As a particular

case of the results derived in this paper, we will discuss the homogeneous case
(2.4) to recover this trivial situation (to some extent). It is interesting to point
out that Equation (2.4) is the key argument to derive Panjer recursive formula;
see, for instance, the proof of Theorem 3.5.1 in Kaas et al. (2008).

3. CONDITIONAL MEAN RISK SHARING RULE AND SIZE-BIASED
TRANSFORM

The size-biased transform appears to be useful to study the conditional mean
risk sharing rule, as pointed out in Denuit (2019). Given a nonnegative random
variable X with distribution function FX and strictly positive expected value
E[X ], define X̃ with distribution function

P[X̃ ≤ t]= E
[
XI [X ≤ t]

]
E[X ]

,

where I [ · ] denotes the indicator function (equal to 1 if the event appearing
within the brackets is realized, and to 0 otherwise). Then, X̃ is said to be a
size-biased version of X , and the operator mapping the distribution function
FX of X to the distribution function FX̃ of X̃ is called the size-biased transform.
Henceforth, we assume that X and X̃ are mutually independent.

The size-biased transform can be traced back to the late 1960s in the sta-
tistical literature. It has proven to be useful in the study of risk measures after
the pioneering work by Furman and Landsman (2005, 2008) and Furman and
Zitikis (20008a, 2008b). The size-biased transform is an example of weighted
distribution. Initially developed in order to unify various sampling distribu-
tions when the chance of being recorded by an observer varies, weighted
distributions are closely related to weighted risk measures and weighted capital
allocation rules. See Furman and Zitikis (2009) for an overview. Among these
weighted distributions, the size-biased or length-biased one corresponds to the
identity weight function.

Compound sums with absolutely continuous severities have a probabil-
ity mass at 0 and possess a probability density function over (0,∞). Such
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a distribution is said to be zero-augmented, and it appears to be relevant
to examine the effect of size-biasing in this case. Assume that X is a zero-
augmented risk, that is, it is equal to 0 with probability P[X = 0]> 0 or strictly
positive with probability P[X > 0] and possesses the probability density func-
tion fX |X>0 over (0,∞). Then, X̃ is a strictly positive random variable with
probability density function

fX̃ (x)= xfX |X>0(x)
E[X |X > 0]

. (3.1)

See, for example, Property 2.1 in Denuit (2019).
Let us now give the reason why size-biasing appears to be useful in relation

with the conditional mean risk sharing. Consider independent, zero-augmented
risks X1,X2, . . . ,Xn with positive expectations. Let X̃1, X̃2, . . . , X̃n be their cor-
responding size-biased versions, assumed to be independent and independent
of X1,X2, . . . ,Xn. It is proved in (Denuit, 2019, Proposition 2.2 (iii)) that, for
any s> 0,

E[Xi|S= s]= E[Xi] fS−Xi+X̃i (s)∑n
j=1 E[Xj] fS−Xj+X̃j (s)

s. (3.2)

If the random variablesX1,X2, . . . ,Xn are identically distributed, then the ratio
appearing in (3.2) is equal to 1/n and we recover (2.4).

Considering (3.2), we see that to study the asymptotic behavior of h∗
i (s) as

s is large, we must deal with probability density functions of sums of indepen-
dent random variables for large values and not with survival functions. The
literature on this topic is, however, limited in extreme value theory. The main
contributions are found in Tauberian theory.

4. SIZE-BIASED TRANSFORM AND CONDITIONAL MEAN RISK SHARING
WITHIN THE COMPOUND PANJER–KATZ FAMILY

4.1. Compound Binomial sums

Assume that the loss Xi brought by participant i to the insurance pool can be
represented as

Xi =
Ni∑
k=1

Ci,k with Ni ∼Binomial(νi, pi), i= 1, 2, . . . , (4.1)

where νi is a positive integer, pi ∈ (0, 1), and where the claim severities Ci,k are
positive, absolutely continuous, distributed as Ci, all these random variables
being independent.

The next result gives the size-biased transform of compound Binomial
distributions; its proof can be found in Appendix A.
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Proposition 4.1. The size-biased version of the compound Binomial random
variable X =∑N

k=1 Ck with N ∼Binomial(ν, p) and claim severities Ck that are
positive, absolutely continuous, independent, and identically distributed as C,
all these random variables being independent, is given by X̃ =d

∑N ′
k=1 Ck + C̃,

where N ′ ∼Binomial(ν − 1, p), and where N ′, C1, C2, . . ., Cν−1 and C̃ are
mutually independent.

Proposition 4.1 allows us to deal with the situation where each participant
to the insurance pool brings a loss of the form (4.1). To this end, let Ii,1, Ii,2,...,
Ii,νi be independent Bernoulli distributed random variables with common mean
pi and independent of Ci,1, Ci,2,..., Ci,νi . Then,

Xi =d

νi∑
k=1

Yi,k, where Yi,k = Ii,kCi,k.

Proceeding as in the proof of Proposition 4.1 (see Appendix A), we have that

X̃i =d

νi−1∑
k=1

Yi,k + Ỹi,νi

where Yi,1, Yi,2, . . ., Yi,νi−1 and Ỹi,νi are mutually independent. Using
the fact that Ỹi,νi = dC̃i, where C̃i is assumed to be independent of all Yi,k, we
get from (3.2) that

E [Xi|S= s]= E [Xi] fS−Yi,νi+C̃i (s)∑n
j=1 E

[
Xj

]
fS−Yj,νj+C̃j (s)

s. (4.2)

Now, assume that C1,C2, . . . ,Cn are identically distributed. Then,
C̃1, C̃2, . . . , C̃n are also identically distributed. Assume also that p1 = ...= pn.
Then, (4.2) allows us to write

E[Xi|S= s]= νi

ν•
s, (4.3)

where ν• = ν1 + . . .+ νn. The representation (4.3) shows that the conditional
mean risk sharing rule is linear in this case with slopes δi = νi/ν•. This result can
be related to (2.4) by considering the independent and identically distributed
random variable Yi,k.

Remark 4.2. In the limiting case pi = 1, we recover sums with deterministic num-
bers of terms, that is, losses Xi of the form Xi =∑νi

k=1 Ci,k. Identity (4.2) then
becomes

E [Xi|S= s]= E [Xi] fS−Ci,νi+C̃i (s)∑n
j=1 E

[
Xj

]
fS−Cj,νi+C̃j (s)

s. (4.4)
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4.2. Compound Poisson sums

Assume that the loss Xi brought by participant i to the insurance pool can be
represented as

Xi =
Ni∑
k=1

Ci,k with Ni ∼ Poisson(λi), i= 1, 2, . . . , (4.5)

where the claim severities Cik are positive, absolutely continuous, distributed
as Ci, all these random variables being independent.

Proposition 4.3. The size-biased version of the compound Poisson random vari-
able X =∑N

k=1 Ck with N ∼Poisson (λ) and claim severities Ck that are positive,
absolutely continuous, independent and identically distributed as C, all these ran-
dom variables being independent, is given by X̃ =d X + C̃, where X and C̃ are
mutually independent.

The proof of Proposition 4.3 is given in Appendix B. It can be seen there
that Panjer formula can be invoked for compound Poisson sums with abso-
lutely continuous severities, in order to recover the corresponding size-biased
transform derived in Denuit (2020) from general results about size-biasing
compound sums.

For eachXi in (4.5), using the fact that X̃i is distributed asXi + C̃i, where the
size-biased version C̃i of Ci is independent of Xi, we get from (3.2) that

E [Xi|S= s]= E [Xi] fS+C̃i (s)∑n
j=1 E

[
Xj

]
fS+C̃j (s)

s. (4.6)

Assume thatC1,C2, . . . ,Cn are identically distributed. Then, C̃1, C̃2, . . . , C̃n

are also identically distributed and (4.6) allows us to write

E[Xi|S= s]= λi

λ•
s, (4.7)

where λ• = λ1 + . . .+ λn. The representation (4.7) shows that the conditional
mean risk sharing rule is linear in this case with slopes δi = λi/λ•. It is interesting
to compare (4.7) to (2.4) by considering λ1, . . . , λn as proper volume measures.

4.3. Compound Negative Binomial sums

Assume that the loss Xi brought by participant i to the insurance pool can be
represented as

Xi =
Ni∑
k=1

Ci,k with Ni ∼Negative Binomial(ξi, βi), i= 1, 2, . . . , (4.8)
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withNi obeying the Negative Binomial(ξi, βi) distribution with positive param-
eters βi and ξi, that is,

P[Ni = k]= β
ξi
i

(1+ βi)ξi+k
�(ξi + k)
k!�(ξi) , k= 0, 1, 2, . . .

and where the claim severitiesCi,k are positive, absolutely continuous, indepen-
dent and distributed as Ci, all these random variables being independent.

Proposition 4.4. The size-biased version of the compound Negative Binomial
random variable X =∑N

k=1 Ck with N ∼Negative Binomial(ξ , β) and claim sever-
ities Ck that are positive, absolutely continuous, independent and identically
distributed as C, all these random variables being independent, is given by
X̃ =d X + C̃ +Z, where Z is a compound Negative Binomial sum

∑M
k=1 C

′
k with

M ∼Negative Binomial(1, β) and C′
k distributed as Ck, all these random variables

being independent.

The proof of Proposition 4.4 is given in Appendix C. As for the compound
Poisson case, it is based on Panjer recursive formula.

For each Xi of the form (4.8), using the fact that X̃i is distributed as
Xi + C̃i +Zi, where the size-biased version C̃i of Ci and Zi are independent
of Xi, we get from (3.2) that

E [Xi|S= s]= E [Xi] fS+C̃i+Zi (s)∑n
j=1 E

[
Xj

]
fS+C̃j+Zj (s)

s. (4.9)

Assume thatC1,C2, . . . ,Cn are identically distributed. Then, C̃1, C̃2, . . . , C̃n

are also identically distributed. If β1 = ...= βn, then (4.9) allows us to write

E[Xi|S= s]= ξi

ξ•
s, (4.10)

where ξ• = ξ1 + . . .+ ξn. The representation (4.10) shows that the conditional
mean risk sharing rule is linear in this case with slopes δi = ξi/ξ•. The compari-
son with (2.4) is again instructive, by introducing proper volume measures.

5. SEVERITIES WITH REGULARLY VARYING TAILS

Let us now refine the results derived in Section 4 by adding some informa-
tion about claim severities. In this section, we assume that claim severities have
decreasing densities and regularly varying tails. This corresponds, for instance,
to severities obeying the Pareto distribution. Precisely, we assume in this sec-
tion that the loss Xi brought by participant i to the insurance pool can be
represented as

Xi =
Ni∑
k=1

Ci,k, (5.1)
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where Ni is a counting random variable, the claim severities Ci,k are positive,
absolutely continuous, distributed as Ci, all these random variables being inde-
pendent. Moreover, we assume that the tail functions F̄Ci defined as F̄Ci (t)=
P[Ci > t] satisfy

F̄Ci (x)∼ x−αiLi (x) , (5.2)

where Li( · ) are slowly varying functions and αi > 1 for i= 1, ..., n. We refer
the reader to Embrechts et al. (1997) for a description of this class of distri-
butions and further bibliography on the topic. The following result establishes
the large-loss behavior of the conditional mean risk sharing rule in that case.

Proposition 5.1. Assume that Ci have decreasing densities fCi and that Ni are
random variables such that there exist εi > 0 with E

[
eεiNi

]
<∞, i= 1, 2, . . . , n.

The following results then hold true:

(i) If α1 = ...= αn = α and Li (x)∼ ciL (x) with ci > 0 for i= 1, ..., n, then

E [Xi|S= s]∼ E[Ni]ci∑n
j=1 E[Nj]cj

s for i ∈ {1, 2, . . . , n}.

(ii) If α1 <min{α2, ..., αn}, then
E [X1|S= s]∼ s and E

[
Xj|S= s

]= o (s) for j ∈ {2, . . . , n}.

The proof of Proposition 5.1 is given in Appendix D. Proposition 5.1
applies in particular when Ni is a positive integer, or obeys the Binomial
distribution, the Poisson distribution, or the Negative Binomial distribution.
Proposition 5.1 thus covers compound Panjer–Katz sums when severities have
decreasing densities and tails satisfying (5.2), as in the Pareto case for instance.

In addition to cases (i) and (ii) considered in Proposition 5.1, it is possi-
ble to encounter situations where several αi parameters are equal and equal
to the minimum of these parameters. For instance, we might have α1 = α2 <

min{α3, ..., αn} and Li (x)∼ ciL (x) with ci > 0 for i= 1, 2. In this case, the
respective relative contributions of the n participants satisfy

E [Xi|S= s] ∼ E[Ni]ci∑2
j=1 E[Nj]cj

s for i ∈ {1, 2},

E [Xi|S= s] = o (s) for i ∈ {3, . . . , n}.
When claim severities are heavy-tailed, we see from Proposition 5.1 that

only severities matter for (2.2) to hold as long as the number of terms Ni has a
finite moment generating function in a neighborhood of the origin. This is gen-
erally the case when the tails of compound sums are studied. See, for instance,
Robert and Segers (2008) and the references therein.
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6. GAMMA-DISTRIBUTED SEVERITIES

In Section 5, we have considered heavy-tailed severities. In this section, we
consider a light-tailed case, and we assume that Ci follows the Gamma(αi, τi)
distribution, with positive parameters αi and τi, i= 1, 2, . . . , n. Precisely, the
probability density function of Ci is given by

fCi (x)=
τ
αi
i

� (αi)
xαi−1 exp (−xτi) , x≥ 0.

Gamma distributions are prototype examples of light-tailed distributions. They
have been widely applied in practice, because they belong to the exponential
dispersion family to which the Generalized Linear Model machinery applies
and also because, together with the Poisson distribution, they are the building
blocks to the Tweedie distribution that is often used in insurance studies. This
explains why results established in that particular setting remains relevant for
applications.

The following results cover compound Panjer–Katz sums with severi-
ties obeying the Gamma distribution. Proposition 6.1 considers compound
Binomial sums, Proposition 6.2 compound Poisson sums, and Proposition 6.4
compound Negative Binomial sums. Each time, item (ii) refers to the situa-
tion where (2.2) holds true, whereas item (i) identifies the situation where (2.3)
applies. Some comments are given to discuss all possible situations.

Proposition 6.1. Assume that the loss Xi brought by participant i to the insurance
pool is of the form (4.1) with Ci ∼Gamma(αi, τi). The following results then hold
true.

(i) If τ1 <min{τ2, ..., τn}, then
E [X1|S= s]∼ s and E

[
Xj|S= s

]= o (s) for j ∈ {2, . . . , n}.
(ii) If τ1 = ...= τn = τ , then

E [Xi|S= s]∼ νiαi∑n
j=1 νjαj

s for i ∈ {1, 2, . . . , n}.

The proof of Proposition 6.1 is given in Appendix E. To get (2.2) in the
compound Binomial case with Gamma-distributed severities, we thus see that
all the parameters τi must be equal. If one of them differs from the others, then
we switch to (2.3) and the conditional expectation of the loss with the smallest
τi dominates the others.

In addition to cases (i) and (ii) considered in Proposition 6.1, it is possi-
ble to encounter situations where several τi parameters are equal and equal
to the minimum of these parameters. For instance, we might have τ1 =
τ2 <min{τ3, ..., τn}. In this case, the respective relative contributions of the n
participants satisfy
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E [Xi|S= s] ∼ νiαi∑2
j=1 νjαj

s for i ∈ {1, 2},

E [Xi|S= s] = o (s) for i ∈ {3, . . . , n}.
Proposition 6.2. Assume that the loss Xi brought by participant i to the insurance
pool is of the form (4.5) with Ci ∼Gamma(αi, τi). The following results then hold
true.

(i) Assume that τ1 = ...= τn. If α1 >max{α2, ..., αn}, then
E [X1|S= s]∼ s and E

[
Xj|S= s

]= o (s) for j ∈ {2, . . . , n}.
(ii) Assume that τ1 = ...= τn and α1 = ...= αn. Then,

E [Xi|S= s]= λi

λ•
s for i ∈ {1, 2, . . . , n}.

The proof of Proposition 6.2 is given in Appendix F. Compared to the com-
pound Binomial case considered in Proposition 6.1, we see from Proposition
6.2 that we must impose stronger constraints on the Gamma parameters αi and
τi to get (2.2) in the compound Poisson case with Gamma-distributed severities
as all the parameters αi must be equal, not only the parameters τi. If not, then
we switch to (2.3) and the conditional expectation of the loss with the largest
αi dominates the others. Clearly, if the parameters τi are not equal then (2.2)
cannot hold so that all cases are covered.

Remark 6.3. Since Ci follows the Gamma(αi, τi) distribution, the random
variables Xi in Proposition 6.2 obey the Tweedie distribution. Precisely, the
probability density function of each Xi|Xi > 0 is given by

fXi |Xi>0 (x)=
e−λi

1− e−λi exp (−xτi) x
−1rαi

(
λiτ

αi
i x

αi
)
with rα (x)=

∞∑
j=1

1
j!� ( jα)x

j.

Proposition 6.4. Assume that the loss Xi brought by participant i to the insurance
pool is of the form (4.8) with Ci ∼Gamma(αi, τi). The following results then hold
true.

(i) Assume that τ1 = ...= τn = τ , α1 = ...= αn = α and β1 >max{β2, ..., βn}.
Then,

E [X1|S= s]∼ s and E
[
Xj|S= s

]= o (s) for j ∈ {2, . . . , n}.
(ii) Assume that τ1 = ...= τn = τ , α1 = ...= αn = α and β1 = ...= βn. Then,

E [Xi|S= s]= ξi

ξ•
s for i ∈ {1, 2, . . . , n}.
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The proof of Proposition 6.4 is given in Appendix G. Compared to the
compound Binomial and compound Poisson cases, the conditions imposed on
the parameters are even stronger in the compound Negative Binomial case.
The Gamma parameters αi and τi, as well the Negative Binomial parameters
βi, must be equal for all participants to get (2.2) in the compound Negative
Binomial case withGamma-distributed severities. If not, then we switch to (2.3)
and the conditional expectation of the loss with the largest βi dominates the
others. Clearly, if the parameters αi and τi are not equal, then (2.2) cannot hold
so that all cases are covered.

Compared to the heavy-tailed case considered in Section 5 where only claim
severities mattered for (2.2) to hold, Proposition 6.4 also imposes conditions on
the Negative Binomial parameters to get asymptotic linearity.

7. DISCUSSION FOR COMPOUND POISSON WITH DISCRETE SEVERITIES

In this section, we consider the situation investigated in the numerical illustra-
tion proposed by Denuit (2019) that motivated the present study. The aim is to
explain the empirical findings in that paper and to provide preliminary results
in the discrete case (that appear to be of independent interest).

In this section, we assume that the loss Xi brought by participant i to the
insurance pool is of the form (4.5) where the claim severities Ci,k are val-
ued in {1, 2, 3, . . .}. Based on the classical Panjer recursive formula, Denuit
(2019) established that the conditional mean risk allocation for independent
compound Poisson sums X1, . . . ,Xn in (4.5) is given by

E[Xi|S= s]= E[Xi]P[S+ C̃i = s]∑n
j=1 E[Xj]P[S+ C̃j = s]

s. (7.1)

In the particular case where C1,C2, . . . ,Cn are identically distributed, so that
C̃1, C̃2, . . . , C̃n are also identically distributed, (7.1) allows us to see that (4.7)
is still valid.

7.1. Heterogeneous claim severities with bounded support

Assume that the claim severities are bounded but not identically distributed
among compound Poisson sums. The following result shows that the condi-
tional mean risk sharing is asymptotically linear in the case where the severities
Ci have a common finite upper endpoint to their support. The weights δi will
be, however, different than those in the case (4.7) of homogeneous severities,
that is, λi/λ•.

Proposition 7.1. Consider independent compound Poisson losses of the form (4.5)
where the support of Ci is {1, 2, . . . , bi} for some bi <∞, so that P[Ci = bi]> 0
for all i= 1, 2, . . . , n. The following results then hold true.
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(i) If b1 = b2 = . . .= bn = b, then

E[Xi|S= s]∼ λiP[Ci = b]∑n
j=1 λjP[Cj = b]

s for i ∈ {1, 2, . . . , n}.

(ii) If b1 >max{b2, . . . , bn}, then
E [X1|S= s]∼ s and E

[
Xj|S= s

]= o (s) for j ∈ {2, . . . , n}.

The proof of Proposition 7.1 is given in Appendix H. We see from (i) that
(2.2) holds true if all severities have the same, finite upper endpoint to their
support. If not, (ii) indicates that (2.2) is no more valid and the share for
participant with the largest finite upper endpoint to the support dominates.

Notice that, when claim severities are identically distributed, bi = bj = b and
P[Ci = b]=P[Cj = b] for all i and j. The limiting result in Proposition 7.1(i) is
in accordance with (4.7). The proportions λi/λ• still apply asymptotically if
bi = bj = b and P[Ci = b]=P[Cj = b] for all i and j, as in the numerical exam-
ple described in Denuit (2019, Section 6.1) where the claim severities put the
same probability mass 0.3 on b= 4. To be precise, there were four participants
(n= 4) with respective claim severities C1, C2, C3, and C4 such that C1 and
C3 are identically distributed, with probability masses 0.1, 0.2, 0.4, and 0.3 on
1, 2, 3, and 4, whereas C2 and C4 are identically distributed, with probability
masses 0.15, 0.25, 0.3, and 0.3 on 1, 2, 3, and 4. Hence, we get from item (i) in
Proposition 7.1 that

E[Xi|S= s]∼ λi

λ•
s for i ∈ {1, 2, 3, 4} in this example,

and the asymptotic behavior thus coincides with (4.7) established for homoge-
neous severities. It is worth to stress that the respective shares E[Xi|S= s]/s do
not converge to E[Xi]/E[S] as erroneously suggested in Denuit (2019) based on
the numerical illustration contained in that paper.

7.2. Heterogeneous claim severities with Logarithmic distribution

It is tempting to deduce from Proposition 7.1(i) that the result remains valid let-
ting b tend to infinity. The following example of heterogeneous claim severities
with unbounded support shows that it is not necessarily the case. Specifically,
assume that Ci obeys the Logarithmic distribution with parameter pi, that is,

P[Ci = k]= −1
ln (1− pi)

pki
k
, k= 1, 2, . . . .

The corresponding size-biased transform is given by

P[C̃i = k]= (1− pi)pk−1
i , k= 1, 2, . . . ,
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that is, C̃i obeys the Geometric distribution with parameter 1− pi. The next
result shows that the application of the conditional mean risk sharing rule fails
to deliver a linear sharing in the tail of the total loss distribution if the severities
Ci are not identically distributed.

Proposition 7.2. Consider independent compound Poisson losses of the form (4.5)
where Ci obeys the Logarithmic distribution with parameter pi, i= 1, 2, . . . , n. If
p1 >max{p2, ..., pn}, then

E [X1|S= s]∼ s and E
[
Xj|S= s

]= o (s) for j ∈ {2, . . . , n}.

The proof of Proposition 7.2 is given in Appendix I.

ACKNOWLEDGMENTS

The authors thank three anonymous Referees and an Associate Editor for their
numerous constructive comments which greatly helped to significantly improve
this paper compared to an initial version. We are also grateful to Ricardas
Zitikis for interesting exchanges on the topic and for sharing his unpublished
note entitled “Risk capital allocations when the portfolio size is not fixed.”

REFERENCES

AASE, K.K. (1993) Equilibrium in a reinsurance syndicate; existence, uniqueness and characteri-
zation. ASTIN Bulletin, 23, 185–211.

AASE, K.K. (2002) Perspectives of risk sharing. Scandinavian Actuarial Journal, 2002, 73–128.
ABDIKERIMOVA, S. and FENG, R. (2019) Peer-to-Peer multi-risk insurance and mutual aid.

Available at SSRN: https://ssrn.com/abstract=3505646.
BALKEMA, A.A., KLÜPPELBERG, C. and STADTMÜLLER, U. (1995) Tauberian results for

densities with Gaussian tails. Journal of the London Mathematical Society, 51, 383–400.
BALKEMA, A.A., KLÜPPELBERG, C. and RESNICK, U. (1999) Domains of attraction for

exponential families and asymptotic behaviour of Laplace transforms. Working paper.
BARNDORFF-NIELSEN, O.E. and KLÜPPELBERG, C. (1992) A note on the tail accuracy of

the univariate saddlepoint approximation. Annales de la Faculté des sciences de Toulouse:
Mathématiques, 1, 5–14.

BINGHAM N.H., GOLDIE C.M. and TEUGELS J.L. (1987) Regular Variation. Cambridge:
Cambridge University Press.

BÜHLMANN,H. and JEWELL,W.S. (1979) Optimal risk exchanges.ASTINBulletin, 10, 243–262.
DENUIT, M. (2019) Size-biased transform and conditional mean risk sharing, with application to

P2P insurance and tontines. ASTIN Bulletin, 49, 591–617.
DENUIT, M. (in press) Size-biased risk measures of compound sums. North American Actuarial

Journal. doi: 10.1080/10920277.2019.1676787
DENUIT, M. and DHAENE, J. (2012) Convex order and comonotonic conditional mean risk

sharing. Insurance: Mathematics and Economics, 51, 265–270.
EMBRECHTS, P., KLÜPPELBERG, C. and MIKOSCH, T. (1997) Modelling Extremal Events for

Insurance and Finance. Springer-Verlag Berlin Heidelberg.
FURMAN, E. and LANDSMAN, Z. (2005) Risk capital decomposition for a multivariate depen-

dent gamma portfolio. Insurance: Mathematics and Economics, 37, 635–649.

https://doi.org/10.1017/asb.2020.23 Published online by Cambridge University Press

https://ssrn.com/abstract=3505646
https://doi.org/10.1080/10920277.2019.1676787
https://doi.org/10.1017/asb.2020.23


LARGE-LOSS BEHAVIOR OF CONDITIONAL MEAN RISK SHARING 1109

FURMAN, E. and LANDSMAN, Z. (2008) Economic capital allocations for non-negative portfo-
lios of dependent risks. ASTIN Bulletin, 38, 601–619.

FURMAN, E., KUZNETSOV, A. and ZITIKIS, R. (2018) Weighted risk capital allocations in the
presence of systematic risk. Insurance: Mathematics and Economics, 79, 75–81.

FURMAN, E. and ZITIKIS, R. (2008a) Weighted risk capital allocations. Insurance: Mathematics
and Economics, 43, 263–269.

FURMAN, E. and ZITIKIS, R. (2008b) Weighted premium calculation principles. Insurance:
Mathematics and Economics, 42, 459–465.

FURMAN, E. and ZITIKIS, R. (2009)Weighted pricing functionals with applications to insurance:
An overview. North American Actuarial Journal, 13, 483–496.

KAAS, R., GOOVAERTS, M.J., DHAENE, J. and DENUIT, M. (2008) Modern Actuarial Risk
Theory Using R. New York: Springer.

PANJER, H. (1981) Recursive evaluation of a family of compound distributions. ASTIN Bulletin,
12, 22–26.

ROBERT, C.Y. and SEGERS, J. (2008) Tails of random sums of a heavy-tailed number of light-
tailed terms. Insurance: Mathematics and Economics, 43, 85–92.

SCHUMACHER, J.M. (2018) Linear versus nonlinear allocation rules in risk sharing under
financial fairness. ASTIN Bulletin, 48, 995–1024.

WITHERS, C.S. and NADARAJAH, S. (2011) On the compound Poisson distribution.
Kybernetica, 47, 15–37.

WITHERS, C.S. and NADARAJAH, S. (2013) Saddlepoint expansions in terms of Bell polynomi-
als. Integral Transforms and Special Functions, 24, 410–423.

MICHEL DENUIT (Corresponding author)
Institute of Statistics, Biostatistics and Actuarial Science - ISBA
Louvain Institute of Data Analysis and Modeling - LIDAM
UCLouvain
Louvain-la-Neuve, Belgium
E-Mail: michel.denuit@uclouvain.be

CHRISTIAN Y. ROBERT
Laboratory in Finance and Insurance - LFA
CREST - Center for Research in Economics and Statistics
ENSAE
Paris, France
E-Mail: chrobert@ensae.fr

APPENDIX A. PROOFS OF THE RESULTS

A. Proof of Proposition 4.1

Define Yk = IkCk, where I1, I2, ..., Iν are independent Bernoulli distributed random vari-
ables with common mean p, that is, P[Ik = 1]= 1−P[Ik = 0]= p for k= 1, 2, . . . , ν. Clearly,

X =d

ν∑
k=1

Yk.
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We know (see, e.g., Corollary 3.2 in Denuit, 2020) that the size-biased version of a sum
Z=∑ν

k=1 Dk, where ν is a positive integer and the random variables D1,D2, . . . ,Dν are
nonnegative, independent and all distributed as D, is given by Z̃=d

∑ν−1
k=1 Dk + D̃, where

D1,D2, . . . ,Dν−1 and D̃ are mutually independent. Therefore,

X̃ =d

ν−1∑
k=1

Yk + Ỹν ,

where Y1, Y2, . . ., Yν−1 and Ỹν are mutually independent. The announced result then
follows since C̃ =d Ỹν and

∑N′
k=1 Ck =d

∑ν−1
k=1 Yk.

B. Proof of Proposition 4.3

The random variable X obeys a mixture of a Dirac distribution at 0 with probability e−λ
and a continuous distribution over (0,∞) with probability density function

fX |X>0 (x)= e−λ
1− e−λ

∞∑
k=1

λk

k! f
∗k
C (x)

with probability 1− e−λ, where f ∗k
C is the probability density function of the sum C1 + . . .+

Ck. Considering (3.1), the probability density function of the size-biased version X̃ of X is
given by

fX̃ (x)=
1− e−λ
λE [C]

xfX |X>0(x).

Define

g (x)=
(
1− e−λ

)
fX |X>0 (x) .

We know from Panjer (1981) that

g (x)= λe−λfC (x)+ λ

x

∫ x

0
yfC (y) g (x− y) dy.

Therefore,

xg (x)= λE [C] e−λ xfC (x)
E [C]

+ λE [C]
∫ x

0

yfC (y)
E [C]

g (x− y) dy,

and it follows that

fX̃ (x) = e−λfC̃(x)+
(
1− e−λ

) ∫ x

0
fC̃(y) fX |X>0 (x− y) dy

= e−λfC̃(x)+
(
1− e−λ

)
fX+C̃|X>0 (x)

= fX+C̃ (x) .

This ends the proof.
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C. Proof of Proposition 4.4

The random variable X obeys a mixture distribution: a Dirac distribution at 0 with prob-
ability P[N = 0]= βξ / (1+ β)ξ and a continuous distribution over (0,∞) with probability
density function

fX |X>0 (x)= 1
P[N ≥ 1]

∞∑
k=1

P[N = k] f ∗k
C (x) ,

with probability P[N ≥ 1]. Considering (3.1), the probability density function of the size-
biased version X̃ of X is given by

fX̃ (x)=
βP[N ≥ 1]
ξE [C]

xfX |X>0(x).

Define

g (x)=P[N ≥ 1] fX |X>0 (x) .

We know from Panjer (1981) that

g (x)= 1
1+ β

(
ξ

βξ

(1+ β)ξ
fC (x)+

∫ x

0

(
1+ (ξ − 1)

y
x

)
fC (y) g (x− y) dy

)
,

which gives

xg (x) = ξ

1+ β
E [C] P[N = 0]

xfC (x)
E [C]

+ ξ

1+ β
E [C]

∫ x

0

yfC (y)
E [C]

g (x− y) dy

+ 1
1+ β

∫ x

0
fC (y) (x− y) g (x− y) dy.

Then,

ξE [C]
β

fX̃ (x) = ξE [C]
1+ β

P[N = 0] fC̃(x)+
ξE [C]
1+ β

∫ x

0
fC̃(y)g (x− y) dy

+ 1
1+ β

ξE [C]
β

∫ x

0
fC (y) fX̃ (x) (x− y) dy,

and it follows that

fX̃ (x) = β

1+ β
P[N = 0] fC̃(x)+

β

1+ β
P[N ≥ 1]

∫ x

0
fC̃(y) fX |X>0 (x− y) dy

+ 1
1+ β

∫ x

0
fC (y) fX̃ (x) (x− y) dy.

This finally shows that

fX̃ (x)=
β

1+ β
fX+C̃ (x)+

1
1+ β

fX̃+C (x) .
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Denoting as LX (t) the Laplace transform of X , we deduce from the previous equation that

LX̃ (t) = β

1+ β
LX+C̃ (t)+

1
1+ β

LX̃+C (t)

= β

1+ β
LX (t)LC̃ (t)+

1
1+ β

LX̃ (t)LC (t)

= LX (t)LC̃ (t)
β/(1+ β)

(1−LC (t) /(1+ β))

= LX (t)LC̃ (t)LZ (t) ,
which ends the proof.

D. Proof of Proposition 5.1

We know from (Embrechts et al., 1997, Theorem A3.20) that

F̄Xi (x)∼E [Ni] F̄Ci (x) .

Since the density function fCi is a decreasing function, the density function

fXi |Xi>0 (x)=
∞∑
k=1

P [Ni = k] f ∗k
Ci (

x)

is also a decreasing function. We then deduce from (Embrechts et al., 1997, Theorem A3.7)
that

fXi |Xi>0 (x)∼
1

P [Ni > 0]
E [Ni] αix−αi−1Li (x) .

Moreover, from (3.1), we also have

fX̃i (x)=
xfXi |Xi>0(x)
E[Xi|Xi > 0]

∼ 1
E [Ci]

αix−αiLi (x) ,

and by Karamata’s theorem,

F̄X̃i (x)∼
1

E [Ci]
αi

αi − 1
x−αi+1Li (x) .

We now consider separately the two cases (i) and (ii) in Proposition 5.1.
Considering (i), assume that α1 = ...= αn = α and Li (x)= ciL (x) with ci > 0 for i=

1, ..., n. We have that

F̄S−Xi+X̃i (x)∼ F̄X̃i (x)∼
ci

E [Ci]
α

(α − 1)
x−α+1L (x) .

Since fS−Xi+X̃i is an ultimately decreasing function, we deduce that

fS−Xi+X̃i (x)∼
ci

E [Ci]
αx−αL (x) .

The announced result then follows from (3.2).
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Turning to (ii), assume that α1 <min{α2, ..., αn}. Since the random variable X̃1 has a
regularly varying tail with index α1 − 1<α1, we have that

F̄S−X1+X̃1
(x)∼ F̄X̃1

(x)∼ 1
E [C1]

α1

(α1 − 1)
x−α1+1L1 (x) .

For j ∈ {2, . . . , n}, we have

F̄S−Xj+X̃j (x) ∼

⎧⎪⎨⎪⎩
O
(
x−α1L1 (x)

)
if α1 <αj − 1

αj
E[Cj]

(
αj−1

)x−αj+1Lj (x) if α1 >αj − 1

= o
(
F̄S−X1+X̃1

)
,

and we deduce that

F̄S−Xj+X̃j (x)= o
(
F̄S−X1+X̃1

(x)
)
.

Since fS−Xj+X̃j , j ∈ {1, . . . , n} are ultimately decreasing functions, we deduce that

fS−Xj+X̃j (x)= o
(
fS−X1+X̃1

(x)
)

for j ∈ {2, . . . , n},

and the announced result follows.

E. Proof of Proposition 6.1

E.1. Sums with deterministic numbers of terms
Before considering compound Binomial sums, we start with the limiting case considered
in Remark 4.2, that is, with sums comprising deterministic numbers of terms. Losses
X1,X2, . . . ,Xn are thus of the form Xi =∑νi

k=1 Ci,k for some positive integers νi and
Ci,k ∼Gamma(αi, τi), all the random variables being independent. We establish the validity
of Proposition 6.1 in this limit case.

For (i), note that Xi ∼Gamma(νiαi, τi) and X̃i ∼Gamma(νiαi + 1, τi) for all i ∈
{1, . . . , n}. Since τ1 <min{τ2, ..., τn}, we deduce from Example 7.32 in Balkema et al. (1999)
that

fS−X1+X̃1
(x)∼ fX̃1

(x)
∏

j=2,...,n

MXj

(
τ−1
j

)
,

and that, for i> 1,

fS−Xi+X̃i (x)∼ fX1 (x)MX̃i

(
τ−1
i

) ∏
j=2,...,n,j �=i

MXj

(
τ−1
j

)
.

The announced result follows immediately.
For (ii), since Xi ∼Gamma(νiαi, τ) and X̃i ∼Gamma(νiαi + 1, τ) for all i ∈ {1, . . . , n}

with τ = τ1 = ...= τn, we have

S−Xi + X̃i ∼Gamma

⎛⎝ n∑
j=1

νjαj + 1, τ

⎞⎠ .
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The result then follows from (3.2) and by noting that E [Xi]= νiαi/τ .

E.2. Compound Binomial case
As in Section 4.1, we denote N ′

i ∼Binomial(νi − 1, pi) and X̃i =∑N′
i

k=1 Ci,k + C̃i for i=
1, . . . , n. We define

Ai,m1,...,mn = {N1 =m1, ..,Ni−1 =mi−1,N
′
i =mi,Ni+1 =mi+1, ...,Nn =mn}.

For (i), given the event Ai,m1,...,mn , we have

X̃i ∼Gamma ((mi + 1)αi, τi) ,

and for j �= i

Xj ∼ Gamma
(
mjαj, τj

)
if mj ≥ 1,

Xj = 0 if mj = 0.

From the proof of the validity of Proposition 6.1 for sums with deterministic numbers of
terms (see Section E.1), we deduce that there exist positive constantsDi, i= 1, ..., n for which
we must have

fS−X1+X̃1
(x) ∼ D1x

ν1α1 exp (−xτ1)
fS−Xi+X̃i (x) ∼ Dixν1α1−1 exp (−xτ1) for i= 2, . . . , n,

since

fS−Xi+X̃i (x)=
ν1∑

m1=0

...
νi−1∑
mi=0

...
νn∑

mn=0

P[Ai,m1,...,mn ] fS−Xi+X̃i |Ai,m1,...,mn (x) .

The announced result then follows.
For (ii), given the event Ai,m1,...,mn , we have

S−Xi + X̃i ∼Gamma

⎛⎝ n∑
j=1

mjαj + (αi + 1), τ

⎞⎠ .

Therefore,

fS−Xi+X̃i (x) ∼ P[N1 = ν1, ..,Ni−1 = νi−1,N
′
i = νi − 1,Ni+1 = νi+1, ...,Nn = νn]

× τ

∑n
j=1 νjαj+1

�
(∑n

j=1 νjαj + 1
)x∑n

j=1 νjαj exp (−xτ)

=
∏n
j=1 p

νj
j

pi

τ

∑n
j=1 νjαj+1

�
(∑n

j=1 νjαj + 1
)x∑n

j=1 νjαj exp (−xτ) .

The announced result then follows from (3.2).
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F. Proof of Proposition 6.2

To prove Proposition 6.2, we first discuss the asymptotic behavior of the conditional mean
risk sharing rule for absolutely continuous risks with Gaussian tails.

F.1. Absolutely continuous risks with Gaussian tails
Suppose that the probability density functions of X1, ...,Xn are positive on an interval I that
is unbounded above. Assume further that these density functions are such that

fXi (x)∼ γi (x) e−ψi(x) as x→ ∞ for i= 1, 2, . . . , n,

where the functions ψi and γi satisfy the following conditions:

(a) the function ψi is C2 (i.e., twice differentiable);
(b) the function ψi is ultimately convex, that is, ψ ′′

i (x) > 0 for large x;

(c) the function σi defined as σi (x)=
(
ψ ′′
i (x)

)−1/2 is self-neglecting, that is,

lim
x→∞

σi (x+ tσi (x))
σi (x)

= 1 locally uniformly in t; (F.1)

(d) the function γi satisfies the condition

lim
x→∞

γi (x+ tσi (x))
γi (x)

= 1 locally uniformly in t. (F.2)

Finally, assume that τ∞ = limx→∞ ψ ′
i (x) is independent of i. The risks X1,X2, . . . ,Xn

are then said to have Gaussian tails after Barndorff-Nielsen and Klüppelberg (1992) and
Balkema et al. (1995).

We then have the following result.

Proposition A.1. Consider independent risks X1, . . . ,Xn with Gaussian tails. Assume that
lims→∞ σi (s) /s= 0 for i= 1, ..., n. Let the function qi be defined as

qi (s)=
⎛⎝ n∑
j=1

(ψ ′
j )
(−1) ◦ψ ′

i

⎞⎠(−1)

(s) .

The following results then hold true:

(i) If qi(s)∼ βiq(s) for a positive function q and some positive constants βi for i ∈ {1, . . . , n},
then

E[Xi|S= s]∼ βi∑n
j=1 βj

s for i ∈ {1, 2, . . . , n}.

(ii) If qj(s)= o(q1(s)) for j ∈ {2, . . . , n}, then
E [X1|S= s]∼ s and E

[
Xj|S= s

]= o (s) for j ∈ {2, . . . , n}.

Proof of Proposition A.1 The asymptotic behavior of the probability density function of the
sum S of risks X1,X2, . . . ,Xn with Gaussian tails is characterized in the following theorem,
taken from Barndorff-Nielsen and Klüppelberg (1992).
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Theorem A.2. (Barndorff-Nielsen and Klüppelberg, 1992). The probability density function
of S satisfies

fS (s)∼ γS (s) e−ψS(s) as s→ ∞,

where ψS is C2, ψ ′′
S (s) > 0 for large s, σS (s)=

(
ψ ′′
S (s)

)−1/2 is self-neglecting. Explicit for-
mulas for γS and ψS can be given as follows: define the function qi from ψ ′

i (qi)= τ , where
s= s (τ )= q1 + ...+ qn. Then, s is a continuous strictly increasing function of τ and s (τ ) ↑ ∞
as τ ↑ τ∞. Now one may choose

ψS (s) = ψ1 (q1)+ ...+ψn (qn)

σ 2
S (s) = σ 2

1 (q1)+ ...+ σ 2
n (qn)

and

√
2πσS (s) γS (s)=

n∏
i=1

(√
2πσi (qi) γi (qi)

)
.

Then, σS (s)=
(
ψ ′′
S (s)

)−1/2 and lims→∞ ψ ′
S (s)= τ∞.

The results stated under Proposition A.1 are then established as follows. For i= 1, ..., n,
we have

fX̃i (x)∼ γ̃i (x) e−ψi(x) as x→ ∞,

where γ̃i (x)= xγi (x) /E [Xi] and satisfies

lim
x→∞

γ̃i (x+ tσi (x))
γ̃i (x)

= 1 locally uniformly in t.

Using Theorem A.2, we deduce that

fS−Xi+X̃i (s)
fS (s)

∼ qi(s)
E [Xi]

.

The asymptotic behavior stated under (i) and (ii) are then easily deduced from (3.2).

F.2. Proof of Proposition 6.2
We are now ready to establish the validity of the results stated in Proposition 6.2.
Considering item (i), it is proved in Withers and Nadarajah (2011) that the function rα
appearing in Remark 6.3 satisfies

rα (x)∼ exp
(
(1+ α) ξx,α

) ( 1
2π (1+ α)

αξx,α

)1/2 ∞∑
j=0

ejξ−1
x,α ,
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where ξx,α = (
xα−α)1/(1+α) and the coefficient ej is given by formula (3.3) in Withers and

Nadarajah (2013). It follows that

fXi |Xi>0 (x) ∼ e−λi
1− e−λi

(
1

2π (1+ αi)
α
1−αi/(1+αi)
i

)1/2 (
λiτ

αi
i x

αi
)1/2(1+αi) x−1

× exp
(
−xτi + (1+ αi) α

−αi/(1+αi)
i

(
λiτ

αi
i x

αi
)1/(1+αi))

and

fXi |Xi>0 (x)∼ γi (x) e−ψi(x)

with

γi (x) = e−λi
1− e−λi

(
1

2π (1+ αi)
α
1+αi/(1+αi)
i

)1/2 (
λiτ

αi
i x

αi
)−1/2(1+αi) x−1

ψi (x) = xτi − (1+ αi) α
−αi/(1+αi)
i

(
λiτ

αi
i x

αi
)1/(1+αi) .

Note that ψi is C2 and ψ ′′
i (x) > 0 for large x. Moreover, the function σi (x)=

(
ψ ′′
i (x)

)−1/2

is self-neglecting, that is, (F.1) is valid. Also, the function γi satisfies condition (F.2).
Furthermore, τ∞ = limx→∞ ψ ′

i (x) is independent of i if τ1 = ...= τn = τ∞.
Now, we have

fX̃i (x)∼
x

E [Xi]
γi (x) e−ψi(x).

Moreover, S−Xi + X̃i is absolutely continuous and

fS−Xi+X̃i (s)=
∑

k=0,...,n−1
j1,...,jk∈{1,2,...,n}\i

P
[
Ai,j1,...,jk

]
fS−Xi+X̃i |Ai,j1,...,jk (s) (F.3)

with

Ai,j1,...,jk = {Xj1 > 0, ...,Xjk > 0,Xl = 0; l �= j1, ..., jk, i}.

Since

fS−Xi+X̃i (s) ∼ P [X1>0, ...,Xi−1>0,Xi+1>0, ...,Xn>0] fS−Xi+X̃i |X1>0,...,Xi−1,Xi+1,...,Xn>0
(s)

=
∏
j �=i

(1− e−λj ) fX1|X1>0 ∗ ... ∗ fXi−1|Xi−1>0 ∗ fX̃i ∗ fXi+1|Xi+1>0 ∗ ... ∗ fXn|Xn>0 (s) ,

we can use Proposition A.1 (ii) to conclude.
Turning to item (ii), we see that C1,C1, , ...,Cn are identically distributed in this case

and the result is given by (4.7).
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G. Proof of Proposition 6.4

(i) Note that C1,C1, , ...,Cn are identically distributed with distribution Gamma(α, τ).
Moreover,

MCi (t)=MC (t)= 1(
1+ τ−1t

)α .
Let κi be such thatMC (κi)= (1+ βi) and define

ν1 = 1
(1+ β1)

M ′
C (κ1) .

Since Ni ∼Negative Binomial(ξi, βi), we deduce that

MNi (t) =
(

βi/(1+ βi)(
1− et/(1+ βi)

))ξi for t< ln (1+ βi) ,

MXi (t) =
(

βi/(1+ βi)
(1−MC (t) /(1+ βi))

)ξi
for t< τ

(
(1+ βi)

−1/α − 1
)
,

MS (t) =
n∏
i=1

MXi (t) for t< τ
(
(1+ β1)

−1/α − 1
)
.

Moreover, we have

MC̃ (t) = E
[
CetC

]
E [C]

= 1
E [C]

M ′
C (t)

MZi (t) =
(

βi/(1+ βi)
(1−MC (t) /(1+ βi))

)
for t< τ

(
(1+ βi)

−1/α − 1
)
.

Let

Ui (s)= eκ1sfS+C̃i+Zi (s) ,

and

Ûi (t)= t
∫ ∞

0
e−tsUi (s) ds= t

∫ ∞

0
e−(t−κ1)sfS+C̃i+Zi (s) ds= tMS+C̃i+Zi (κ1 − t) .

Note that

MS+C̃i+Zi (κ1 − t)=MX1 (κ1 − t)MZi (κ1 − t)
M ′

C (κ1 − t)

E [C]

⎛⎝ n∏
j=2

MXj (κ1 − t)

⎞⎠ .

If i= 1 then

MS+C̃1+Z1
(κ1 − t) ∼

t↓0

(
β1/(1+ β1)

tν1

)ξ1 1
t
β1

E [C]

⎛⎝ n∏
j=2

MXj (κ1)

⎞⎠ ,
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and for i ∈ {2, . . . , n},

MS+C̃1+Z1
(t) ∼

t↓0

(
β1/(1+ β1)

tν1

)ξ1
MZi (κ1)

M ′
C (κ1)

E [C]

⎛⎝ n∏
j=2

MXj (κ1)

⎞⎠ .

It follows that

Û1 (t) ∼
t↓0 t

−ξ1
(
β1/(1+ β1)

ν1

)ξ1 ν1β1
E [C]

⎛⎝ n∏
j=2

MXj (κ1)

⎞⎠
and for i ∈ {2, . . . , n}

Ûi (t) ∼
t↓0 t

−(ξ1−1)
(
β1/(1+ β1)

ν1

)ξ1
MZi (κ1)

M ′
C (κ1)

E [C]

⎛⎝ n∏
j=2

MXj (κ1)

⎞⎠ .

By Theorem 1.7.6 in Bingham et al. (1987), we have

fS+C̃1+Z1
(s)∼ sξ1e−κ1s 1

� (1+ ξ1)

(
β1/(1+ β1)

ν1

)ξ1 ν1β1
E [C]

⎛⎝ n∏
j=2

MXj (τ1)

⎞⎠ ,

and for i ∈ {2, . . . , n}

fS+C̃i+Zi (s)∼ sξ1−1e−κ1s 1
� (ξ1)

(
β1/(1+ β1)

ν1

)ξ1
MZi (κ1)

M ′
C (κ1)

E [C]

⎛⎝ n∏
j=2

MXj (κ1)

⎞⎠ .

This ends the proof for (i).
(ii) In this case, C1,C1, , ...,Cn are identically distributed and β1 = ...= βn. So, the result

is given by (4.10).

H. Proof of Proposition 7.1

Let b∗ =max{b1, b2, . . . , bn}. We know that S obeys the compound Poisson distribution
with Poisson parameter λ• and claim severities distributed as Z, where for k= 1, ..., b∗,

P[Z= k]=
n∑
i=1

λi

λ•
P[Ci = k]. (H.1)

Panjer’s formula ensures that for s≥ b∗, we have

P[S= s]= λ•
b∗∑
k=1

k
s
P[Z= k]P[S= s− k]. (H.2)

Note thatP[S= s]> 0 for s≥ 0 sinceP[Z= k]> 0 for k= 1, ..., b∗. Let us define the sequence
(cs)s≥b∗ by

cs =P[S= s]es ln s/b∗ .
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Note that, for k= 1, ..., b∗,

P [S= s− k]= cs−ke−(s−k) ln (s−k)/b∗ ,

and that, for large s,

P [S= s− k]∼ cs−ke−s ln s/b∗ek/b∗sk/b∗ .

From (H.2), we have the following recurrence relation

cs = λ•
b∗∑
k=1

s(k−b∗)/b∗kP[Z= k]e−(s−k) ln (1−k/s)/b∗cs−k,

and, for large s, we see that

cs ∼ eλ•b∗P[Z= b∗]cs−b∗ .

Therefore, we define

ds = cs (eλ•b∗P[Z= b∗])s/b∗

and derive the following recurrence relation:

ds = λ•
b∗∑
k=1

s(k−b∗)/b∗e−(s−k) ln (1−k/s)/b∗ kP[Z= k]

(eλ•b∗P[Z= b∗])k/b∗
ds−k.

We note that, for large s,

ds ∼ ds−b∗ .

It follows that

ds ∼ ds−1,

otherwise there would be a contradiction with the previous asymptotic relation.
We deduce that, for large s,

P[S= s]
P[S= s− 1]

∼ (eλ•b∗P[Z= b∗])−1/b∗ s−1/b∗

and then

lim
s→∞

P[S= s]
P[S= s− 1]

= 0.

For every i= 1, ..., n and s≥ b∗, we obviously have

P[S+ C̃i = s]=
bi∑
k=1

P[C̃i = k]P[S= s− k].

The term dominating this sum corresponds to k= bi and we then deduce that

P[S+ C̃i = s]∼P[C̃i = bi]P[S= s− bi] for i= 1, . . . , n.
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The announced result then follows from (7.1) which gives

E[Xi|S= s]∼ E [Xi]P[C̃i = bi]P[S= s− bi]∑n
j=1 E

[
Xj
]
P[C̃j = bj ]P[S= s− bj ]

s

and ends the proof.

I. Proof of Proposition 7.2

The probability generating functions of Ci and C̃i are, respectively, given by

GCi (z) = E
[
zCi
]
= ln (1− piz)

ln (1− pi)
,

GC̃i (z) = E
[
zC̃i
]
= (1− pi)z
(1− piz)

,

with z≥ 0. Moreover, with αi = −λi/ ln (1− pi), we have

GXi (z)= e
λi

(
GCi (z)−1

)
=
(

1− pi
1− piz

)αi
,

showing that Xi is Negative Binomially distributed.
Define, for 0≤ z< 1,

AS (z)=GS (z/p1)=
n∏
i=1

GXi (z/p1) .

We have, as z ↑ 1,

AS (z)∼
(
1− p1
1− z

)α1
GS−X1

(
1
p1

)
.

In the same way, we get, as z ↑ 1,

AS+C̃1
(z) = GS+C̃1

(z/p1)∼
(
1− p1
1− z

)α1+1

GS−X1

(
1
p1

)
,

AS+C̃j (z) = GS+C̃j (z/p1)∼
(
1− p1
1− z

)α1
GS−X1

(
1
p1

)
GC̃j

(
1
p1

)
, j ∈ {2, . . . , n}.

Note that

GS+C̃1
(z)=

∞∑
k=1

P[S+ C̃1 = k]zk,

and

AS+C̃1
(z)=

∞∑
k=1

aS+C̃1
(k) zk with aS+C̃1

(k)=P[S+ C̃1 = k]p−k
1 .
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By Corollary 1.7.3 in Bingham et al. (1987), we have

aS+C̃1
(k)∼ (1− p1)

α1+1 GS−X1

(
1
p1

)
1

� (1+ α1)
kα1 ,

and

P[S+ C̃1 = k]= aS+C̃1
(k) pk1 ∼ (1− p1)

α1+1 GS−X1

(
1
p1

)
1

� (1+ α1)
kα1pk1.

In the same way, we have for j ∈ {2, . . . , n}

aS+C̃j (k)∼ (1− p1)
α1 GS−X1

(
1
p1

)
GC̃i

(
1
p1

)
1

� (α1)
kα1−1,

and

P[S+ C̃j = k]= aS+C̃j (k) p
k
1 ∼ (1− p1)

α1 GS−X1

(
1
p1

)
GC̃i

(
1
p1

)
1

� (α1)
kα1−1pk1.

The announced result then follows from identity (7.1).
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