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DISPERSION ESTIMATES FOR POISSON AND TWEEDIE MODELS

BY 
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ABSTRACT 

As a consequence of pointing out an ambiguity in Renshaw (1994), we show 
that the Overdispersed Poisson model cannot be generated by random independ-
ent intensities. Hence Pearson’s chi-square-based estimate is normally unsuitable 
for GLM (Generalized Linear Model) log link claim frequency analysis in 
insurance. We propose a new dispersion parameter estimate in the GLM 
Tweedie model for risk premium. This is better than the Pearson estimate, if  
there are suffi ciently many claims in each tariff  cell. Simulation results are 
given showing the differences between it and the Pearson estimate.
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1. MODEL AND PERSPECTIVES FOR CLAIM FREQUENCY 

1.1. Model

In GLM log link theory for claim frequency, the ODP (Overdispersed Poisson) 
model is used. In this theory tariff  cells u are combinations of  categorical 
covariates, called arguments. Let Nu be the number of  claims occurring in 
tariff  cell u during some period of time. The mean and variance of Nu depend 
on an exposure eu, namely

A. E[Nu ] = nu eu

B. Var[Nu ] = fnu eu

Here nu, called claim frequency, is multiplicative in the arguments. That is, nu 
is a product of a base constant and a factor for each argument. The number 
f  ≥  1 is an unknown constant called the dispersion parameter. The same 
number applies for all u and for any time period regardless of length. This 
means that Var[N ]  =  fE[N ] for any claim number N. For pure Poisson f  =  1, 
while the case f  >  1 is denoted overdispersion.
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Three basic assumptions are made in this GLM theory, namely 

1) Independence between insurance policies 
2) Independence between disjoint time intervals (independent increments)
3) Exposure homogeneity 

See e.g. Ohlsson & Johansson (2010), section 1.2. These assumptions imply the 
linear dependence of variance on exposure in B above. Without the independ-
ent increments property B is hard to justify. Time heterogeneity can be brought 
back to time homogeneity by the concept of operational time. It is just that the 
assumption 3) is convenient for avoiding unnecessarily complicated notation.

In section (6.2.4) of  McCullagh & Nelder (1989) the x2-based Pearson 
f-estimate is suggested. Renshaw (1994) applies GLMs to multiplicative models 
in insurance. The Pearson estimate (2.16) of f is there denoted g. Let 

n  =  number of tariff  cells 
r  =  n:o of free parameters = 1 + Sarguments [(n:o of classes per argument) – 1]
nu  =  estimate of the claim frequency nu in the GLM Poisson log link model.

The number of  degrees of  freedom is n  –  r, denoted n in Renshaw (1994). It 
holds 

 u
u nr 1

u ung ( ) /e eu

n

u1

2

= - -
-

=

n
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d n/  (1)

1.2. Generalized Poisson

Consider the Generalized Poisson case u = ui 1 iN ZuA
=/ . Here Au is Poisson and 

independent of Zui. The Zui are, for a specifi c u, IID positive integer random 
variables. They count claims occurring at the same time from the same cause. 
This is an ODP model, provided that f = E[Z2

u1] / E[Zu1] is the same for differ-
ent u. Assume that the Zs can be observed directly. Then it will follow from 
sections 3 and 4, by specializing the Tweedie model to p  =  1, that the simple 
quotient uiui,u i ,u i/Z Z2/ /  is preferable to the Pearson estimate g. If  direct 
observation is not possible, and if  we wrongly assume that the Zui claims occur-
ring at the same time arrive in an ordinary Poisson process, then it is wrong to 
use the dispersion parameter f  =  1. The Pearson estimate is then useful.

Cases in insurance where the Zs cannot be observed directly are rare. For 
example regarding claims from storm damage, great care is traditionally taken 
to ascertain direct observability by identifying simultaneous claims arising 
from the same cause (storm). The practical actuarial handling in insurance, 
for the purpose of variance estimates, is to add the claim amounts Xuij associ-
ated with Zui to a sum Xui  =  1j= Xuij

uiZ/  per time point. Then these simultaneous 
claims count as a single claim. So we retrieve the pure Poisson process with 
f  =  1 for claim occurrences.
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1.3. Random independent claim frequencies

Another mechanism to generate ODP is suggested in Renshaw (1994), section 3. 
Namely that claims are generated by processes that are Poisson, conditional 
on random independent claim frequencies lu. In A and B above then nu = 
E[lu]. However, that the ODP model seems to follow from Renshaw’s calcula-
tions is due to an ambiguity, described in the next section. The ambiguity gives 
rise to the apparent paradox that random claim arrival rates generate ODP 
processes with f  >  1 having the independent increments property, while time-
homogeneous unit-step jump processes with independent increments are pure 
Poisson, see Parzen (1962), 4-2. In straightening out the ambiguity we can see 
that the asymptotic theory for confi dence intervals in the GLM ODP log link 
theory cannot be applied to the random intensities case. This theory presupposes 
that Var[Nu  / eu ]  =  fnu  / eu "  0 as eu " 3. But this is not so with random inten-
sities, see (2) below.

1.4. Superpositions of many independent point processes

On the other hand, in collective claim frequency analysis of mass consumer 
insurance one can apply a general limit theorem for superpositions (sums) of 
point processes by Grigelionis (1963). This theorem states that under weak 
conditions the superposition of many independent unit-step claim occurrence 
processes, each one contributing a small part to the total, is approximately 
Poisson. This holds even for random intensities. For instance, when analyzing 
a portfolio of 60,000 customers with variances of the same order of magnitude, 
the introduction of  60,000 random independent intensities for conditional 
Poisson processes is an unnecessary complication. For practical purposes, the 
pure Poisson assumption will give the same results.

1.5. Random intensities in bonus/malus analysis

The analysis of individual customer claim frequencies for bonus/malus purposes 
is another matter. There the model of random intensities, G-distributed for con-
venience, is useful.

1.6. Macroscopic fl uctuations

Observed claim frequencies are often found to fl uctuate more from year to 
year than what follows from the Poisson assumption. This holds also for mass 
consumer insurance. This is due to macroscopic variables (e.g. crime waves, 
business cycles, the weather) affecting large parts of the portfolio in the same 
way. Here the assumption 1) of independence between policies does not hold. 
So, for analyzing collective claim frequencies in mass consumer insurance, the 
model of random independent claim frequencies gives no help.

For analyzing price relativities, our 25-year experience with practical pricing 
is that it is mostly best to condition with respect to these macroscopic variables. 
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Thereby we retrieve the Poisson process (although time-heterogeneous). It is 
seldom feasible to model how the effects of the macroscopics differ between 
tariff  cells. Relying on e.g. theft expert judgments is better than augmenting 
the mathematical model.

2. RENSHAW’S AMBIGUITY ON RANDOM INTENSITIES 

Independent response variables Yu are defi ned in Renshaw (1994) for tariff  
cells u. For claim frequency analysis claim numbers Nu, exposures eu and (pos-
sibly stochastic) claim rates lu are introduced. On p. 271 line 8 in Renshaw 
(1994) the responses are defi ned as Yu  =  Nu. On p. 272 line 23 the notation
is changed to Yu  =  Nu  / eu. Renshaw writes “Focus on the weighted Poisson 
responses Yu (=  Nu / eu ) with Yu  +  Poi(lu ) so that

(3.2) E(Yu ) = E{E(Yu | lu )}   =   E(lu ),

  Var(Yu ) = E{Var(Yu | lu )}  +  Var{E(Yu | lu )}

and hence

(3.3) Var(Yu ) = E(lu ) + Var(lu ).”

Both parts of (3.2) are correct. Assuming Yu | lu +  Poi(lu ), then (3.3) is also 
correct. But this assumption is not, unless eu = 1, consistent with the defi nition 
Yu  =  Nu / eu  and not with the word “weighted”. Because on p. 271, lines 4-7, Nu 
was defi ned as a random claim number, with realization nu, such that Nu | 
lu +  Poi(eu lu ). Hence there is an ambiguity as to what Yu is. The defi nition 
given for Nu and the subsequent defi nition Yu  =  Nu  / eu are necessary for an 
investigation using (3.2) of whether the ODP model holds for random intensi-
ties. Adhering to these defi nitions, we will show that (3.3) must be corrected. 
A crucial factor 1 / eu is missing in the fi rst term of  the right side of  (3.3). 
A corrected version of (3.3) is as follows.

The fi rst term of the right side of the second part of (3.2):

 Var[Nu | lu ] = eu lu

 Var[Yu | lu ] = Var[Nu  / eu  | lu ] = eu lu  / eu
2 = lu  / eu

 E[Var[Yu | lu ]]   =   E[lu ]  / eu

The second term of the right side of the second part of (3.2):

 E[Yu | lu ]   =   E[Nu / eu | lu ]   =   eu lu  / eu   =   lu

 Var[E[Yu | lu ]]   =   Var[lu ] (as correctly given in (3.3))
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and hence 

 Var[Yu ]   =   Var[Nu / eu ]   =   E[lu ]  / eu  +  Var[lu ] (2)

 Var[Nu ]   =   eu
2 Var[Yu ]   =   eu E[lu ]  +  eu

2  Var[lu ]

 Var[Nu ]  / E[Nu ]   =   1 + eu Var[lu ]  /  E[lu ] (3)

Expression (2) does not  " 0 as eu " 3, unless Var[lu ]   =   0.
From the correction just made it follows that random intensities, while 

entailing Var[N ]  >  E[N ] for any claim number N, does not give the ODP 
model, since this model assumes that the left side of eq. (3) is a constant f, 
the same for all u. If  the lu are IID, the expression (3) would be larger for 
larger exposures eu. Renshaw’s expression (3.3) together with mistaking Yu for 
Nu (the fi rst defi nition of Yu ), on the other hand, implies the same constant f 
for all u in the left side of eq. (3).

3. NEW DISPERSION PARAMETER ESTIMATE IN TWEEDIE’S RISK

PREMIUM MODEL 

3.1. Model

In the Tweedie model for risk premiums with exponent p, the assumptions 1), 
2) and 3) of section 1.1 are supposed to be true. In addition to the defi nitions 
of section 1.1, let

Xui (i  = 1,  …, Nu) = independent claim amounts, distributed as Xu1 in class u

Su  =  1 Xi= ui
uN/

tu  =  E[Su / eu ] = risk premium 

tu = estimate of the risk premium tu in the GLM Tweedie log link model 

The model is the following. For f  ≥  1, the same for all u and for any time 
period,

   Var[Su ] = feu E[Su / eu ] 
p  or equivalently  Var[Su / eu ] = fE[Su / eu ] 

p / eu (4)

See Jørgensen & Paes de Souza (1994). As pointed out by Venter (2007), sec-
tion 4.1, the link between claim frequency and claim severity is problematic in 
this model. The Pearson estimate is 

 u ur 1
ug ( ) /t te eu

n

u

u
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=
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-d n/  (5)
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3.2. New dispersion parameter estimate

If  the claim occurrence processes are unit-step (one claim at a time) they are 
pure Poisson, as follows from the preceding sections. So, assuming unit-step, 
g does not have an advantage by catching a possible overdispersion in the 
claim occurrence processes. A f-estimate utilizing that the claim occurrence 
processes are Poisson is useful, i.e. sometimes better than g. (An appropriate 
measure of goodness is the mean square deviation of the estimate from f.) 
We propose such an estimate. It will be better if  there are suffi ciently many 
claims in all tariff  cells that have claims.

From (4) we get

 f   =   eu
p – 1 E[Su ]

– p  Var[Su ]

The mean and variance of these Compound Poisson distributions are

 E[Su ]   =   E[Nu ]  E[Xu1]  Var[Su ]   =   E[Nu]  E[X 2u1]

Hence for any u this is the (problematic) link between frequency and severity:

 f   =   eu
p – 1 E[Nu ]

– p  E[Xu1]– p  E[Nu ]  E[X 2u1]   =   E[Nu  / eu ]
1– p  E[Xu1]– p  E[X 2u1]

This suggests a u-specifi c f-estimate 

   S Xu
u u

p

u

u u u-

N u u/ /X X1 1
u u ui i

i
u u i

i

1

1 1

1

1
= =

i

N N N

N N
= = =

ep- pg e e
-2 2

_ f f _i p p i9 C/ / /  (6)

which will converge a. s. to f when eu " 3 as time " 3. The gu are independent,
so a linear combination 1u= au u

n g/  with au  ≥  0 and 1u= a 1u =
n/  can give a

better estimate than any single gu. The standard solution for this situation, 
which gives the estimate the smallest variance, is au  ?  1  /  Var[gu ]. Here Var[gu ] 
must be estimated, which is diffi cult to do exactly. We have attempted approxi-
mations for large E[Nu ]. The resulting f-estimate was only marginally better 
than the estimate below in expression (8), when all expected numbers of claims 
E[Nu ]  =  nu eu per tariff  cell were large (the limiting case eu " 3). And when
nu eu were small, then it was worse, even for p  =  1.

We propose the following weights, appropriately larger for cells with more 
claims,

 S jS
1

/a /u u u j j
j

n

u
1

=

-

=

e epe
p

e_ _fi i p/  (7)

so that our proposed new f-estimate, converging almost surely to f when 
eu " 3, is 
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3.3. Dispersion parameter estimate for Overdispersed Poisson

For the Overdispersed Poisson model p  =  1 the expression (8) specializes to 
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Here g0  =  U2  /U1 with U1  =  un
iu 11 Xui
N
== //  and U2  =  u

ui
n

11
N Xu i==

2// . If  the 
total number of claims uu 1

n
= N/  is moderately large, then with high probabil-

ity U1  .  E[U1 ] and U2  .  E[U2 ]  =  fE[U1 ]. Hence g0 is a good estimate for 
p  =  1, even if  every tariff  cell has at most one claim. That is not true for p  >  1, 
as is shown by the simulation result Case 4 of the next section. If  we let all
Xui = 1 in addition to p = 1, we get Var[Nu ]  =  fE[Nu ] as in section 1.1. Then 
g0 simplifi es to 1, as it should.

4. COMPARISON OF DISPERSION PARAMETER ESTIMATES

IN THE TWEEDIE MODEL 

4.1. Remarks on estimate properties

First a few remarks on the differences between the x2 Pearson type estimate
g and our new estimate g0. We consider g as written in expression (5). 
Generalizations are possible by subdivision of the time interval covered by the 
analysis in several intervals and/or by taking individual policy periods as the 
summands in (5). However, a practical consideration against that is that 
 seasonal variations in claim frequency will enlarge the estimate undesirably. 
Policies will have renewal dates scattered over the year and will often have less 
than yearlong time periods that would be parts of a generalized g, particularly 
if  calendar year is an argument. Retrieving time homogeneity from heteroge-
neity by operational time might not be feasible.

We can then list these differences which argue for our new estimate.

  (i) g is not defi ned for only one argument. In contrast g0 is.

(ii) g uses only the aggregated data Su, leading to unnecessarily large variance 
of g. This is analogous to using only the between-cell variation and throw 
away the within-cell variation in ANOVA (analysis of variance). In con-
trast g0 uses also the sums of squares X 2ui.
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On the other hand, for p  >  1 the following point argues for the Pearson esti-
mate g.

(iii) g works well when there are so many tariff  cells that each one has only a 
few claims, while g0 does not for p  >  1. With more than, say, 15 argu-
ments, there will typically be at most one claim in a tariff  cell. The almost 
sure convergence when eu " 3 as time  " 3 described above does not 
apply to this situation.

But then again, when each tariff  cell has at most one claim and at most one 
(partial) policy period, seasonal variations will enlarge g undesirably.

4.2. Simulation results

Secondly the results of a simulation study. We generated independent Poisson 
claim numbers Nu and independent G-distributed claims Xui with mean aqu and 
variance aqu

2. For all cases we set a = 1. Multiplicative claim frequencies and 
mean claims obeying the Tweedie assumptions were used. For each of  six 
cases, we give here results of fi ve simulated samples and subsequent observa-
tions of the two estimates (pairwise on the same sample). GLM Tweedie log 
link equation solutions were made for each sample, since the Pearson estimate 
requires this, by expression (5). The observations are given as percentages of 
the true value. The latter is unimportant in itself  in this context. The fi ve 
observation pairs give interesting information on the pros and cons of the two 
estimates. 

p = 1 (ODP)

CASE 1. n = 4 826 809. u 1= u
n N/  . 2 400 000.  Typical Nu = 1, if  > 0. 

g and g0 have mean f and almost the same small variance.

CASE 2. n = 216. u 1= u
n N/  . 20 000. Typical Nu . 100.

100 g / f 103  106  103   97  105 
100 g0 / f  99  100  100  100  100 

CASE 3. n = 27. u 1= u
n N/  . 8 000. Typical Nu . 300. 

100 g / f 145  138  205  182  113 
100 g0 / f 100  101  100  101  100 

p = 1.5 (Tweedie)

CASE 4. n = 4 826 809. u 1= u
n N/  . 550 000. Typical Nu = 1, if  > 0.

100 g / f 100  100  100  101  100 
100 g0 / f  52     51   53   51   51 
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CASE 5. n = 216. u 1= u
n N/  . 74 000. Typical Nu . 350.

100 g / f  84   93   98  114  114 
100 g0 / f 100  100  100   99  100 

CASE 6. n = 27. u 1= u
n N/  . 8 000. Typical Nu . 300.

100 g / f 120  132  112  126  36 
100 g0 / f 102  101  102  101  97 
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