
TLP 3 (1): 61–94, January 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S1471068402001515 Printed in the United Kingdom

61

The deductive database system LDL++

FAIZ ARNI

InferData Corporation, 8200 N. MoPac Expressway, Austin, TX 78759, USA

(e-mail: farni@inferdata.com)

KAYLIANG ONG

Trilogy Inc., 5001 Plaza on the Lake, Austin, TX 78746, USA

(e-mail: kayliang.ong@trilogy.com)

SHALOM TSUR

BEA Systems, 2315 N. First Street, San Jose, CA 95131, USA

(e-mail: dicktsur@bea.com)

HAIXUN WANG

IBM T. J. Watson Research Center, 30 Saw Mill River Rd., Hawthorne, NY 10532, USA

(e-mail: haixun@us.ibm.com)

CARLO ZANIOLO

Computer Science Department, University of California, Los Angeles, CA 90095, USA

(e-mail: zaniolo@cs.ucla.edu)

Abstract

This paper describes the LDL++ system and the research advances that have enabled its

design and development. We begin by discussing the new nonmonotonic and nondeterministic

constructs that extend the functionality of the LDL++ language, while preserving its

model-theoretic and fixpoint semantics. Then, we describe the execution model and the open

architecture designed to support these new constructs and to facilitate the integration with

existing DBMSs and applications. Finally, we describe the lessons learned by usingLDL++

on various tested applications, such as middleware and datamining.

KEYWORDS: deductive databases, logic and databases, Datalog, nonmonotonic reasoning,

monotonic aggregates

1 Introduction

The LDL++ system, which was completed at UCLA in the summer of 2000,

concludes a research project that was started at MCC in 1989 in response of the

lessons learned from of its predecessor, theLDL system. TheLDL system, which

was completed 1988, featured many technical advances in language design (Naqviand

Tsur, 1989), and implementation techniques (Chimenti et al., 1990). However, its

deployment in actual applications (Tsur, 1990a, 1990b) revealed many problems and

needed improvements, which motivated the design of the new LDL++ system.

Many of these problems were addressed in the early versions of the LDL++

prototype that were built at MCC in the period 1990–1993; but other problems,

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

62 F. Arni et al.

particularly limitations due to the stratification requirement, called for advances on

nonmonotonic semantics, for which solutions were discovered and incorporated into

the system over time – until the last version (Version 5.1) completed at UCLA in

the summer of 2000.

In this paper, we concentrate on the most innovative and distinctive features of

LDL++, which can be summarized as follows:

• Its new language constructs designed to extend the expressive power of the

language, by allowing negation and aggregates in recursion, while retaining

the declarative semantics of Horn clauses,
• Its execution model designed to support (i) the new language constructs,

(ii) data-intensive applications via tight coupling with external databases, and

(iii) an open architecture for extensibility to new application domains,
• Its extensive application testbed designed to evaluate the effectiveness of de-

ductive database technology on data intensive applications and new domains,

such as middleware and data mining.

2 The language

A challenging research objective pursued by LDL++ was that of extending the

expressive power of logic-based languages beyond that of LDL while retaining

a fully declarative model-theoretic and fixpoint semantics. As many other deduc-

tive database systems designed in the 80s (Minker, 1996), the old LDL system

required programs to be stratified with respect to nonmonotonic constructs such as

negation and set aggregates (Ramakrishnan and Ullman, 1995). While stratification

represented a major step forward in taming the difficult theoretical and practical

problems posed by nonmonotonicity in logic programs, it soon became clear that

it was too restrictive for many applications of practical importance. Stratification

makes it impossible to support efficiently even basic applications, such as Bill of

Materials and optimized graph-traversals, whose procedural algorithms express sim-

ple and useful generalizations of transitive closure computations. Thus, deductive

database researchers have striven to go beyond stratification and allow negation

and aggregates in the recursive definitions of new predicates. LDL++ provides a

comprehensive solution to this complex problem by the fully integrated notions of

(i) choice, (ii) User Defined Aggregates (UDAs), and (iii) XY-stratification. Now,

XY-stratification generalizes stratification to support negation and (nonmonotonic)

aggregates in recursion. However, the choice construct (used to express functional de-

pendency constraints) defines mappings that, albeit nondeterministic, are monotonic

and can thus be used freely in recursion. Moreover, this construct makes it possible

to provide a formal semantics to the notion of User-Defined Aggregates (UDAs),

and to identify a special class of UDAs that are monotonic (Zaniolo and Wang,

1999); therefore, the LDL++ compiler recognizes monotonic UDAs and allows

their unrestricted usage in recursion. In summary, LDL++ provides a two-prong

solution to the nonmonotonicity problem, by (i) enlarging the class of logic-based

constructs that are monotonic (with constructs such as choice and monotonic aggre-

gates), and (ii) supporting XY-stratification for hard-core nonmonotonic constructs,

such as negation and nonmonotonic aggregates.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 63

These new constructs of LDL++ are fully integrated with all other constructs,

and easy to learn and use. Indeed, a user needs not to know abstract semantic

concepts, such as stable models or well-founded models; instead, the user only

needs to follow simple syntactic rules – the same rules that are then checked by

the compiler. In fact, the semantic well-formedness of LDL++ programs can be

checked at compile time – a critical property of stratified programs that was lost in

later extensions, such as modular stratification (Ross, 1994). These new constructs

are described next.

2.1 Functional constraints

Say that we have a database containing the relations student(Name, Major, Year)

and professor(Name, Major). In fact, let us take a toy example that only has the

following facts1

student(′JimBlack′, ee, senior). professor(ohm, ee).

professor(bell, ee).

Now, the rule is that the major of a student must match his/her advisor’s major

area of specialization. Then, eligible advisors can be computed as follows:

elig adv(S, P)← student(S, Majr, Year), professor(P, Majr).

This yields

elig adv(′JimBlack′, ohm).

elig adv(′JimBlack′, bell).

However, since a student can only have one advisor, the goal choice((S), (P)) must

be added to our rule to force the selection of a unique advisor for each student:

Example 2.1

Computation of unique advisors by a choice rule

actual adv(S, P)← student(S, Majr, Yr), professor(P, Majr),

choice((S), (P)).

The goal choice((S), (P)) can also be viewed as enforcing a functional dependency

(FD) S → P on the results produced by the rule; thus, in actual adv, the second

column (professor name) is functionally dependent on the first one (student name).

Therefore, we will refer to S and P, respectively, as the left side and the right side of

this FD, and of the choice goal defining it. The right side of a choice goal cannot be

empty, but its left side can be empty, denoting that all tuples produced must share

the same values for the right side attributes.

The result of the rule of Example 2.1 is nondeterministic: it can either return a

singleton relation containing the tuple (′JimBlack′, ohm), or one containing the tuple

(′JimBlack′, bell).

1 We follow the standard convention of using upper case initials to denote variables; lower case initials
and strings enclosed in quotes denote constants.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

64 F. Arni et al.

A program where the rules contain choice goals is called a choice program. The

semantics of a choice program P can be defined by transforming P into a program

with negation, foe(P), called the first order equivalent of P . Now, foe(P) exhibits

a multiplicity of stable models, each obeying the FDs defined by the choice goals;

each such stable model corresponds to an alternative set of answers for P and is

called a choice model for P . The first order equivalent of Example 2.1 is as follows:

Example 2.2

The first order equivalent for Example 2.1

actual adv(S, P)← student(S, Majr, Yr), professor(P, Majr),

chosen(S, P).

chosen(S, P)← student(S, Majr, Yr), professor(P, Majr),

¬diffChoice(S, P).

diffChoice(S, P)← chosen(S, P′), P 6= P′.

This can be read as a statement that a professor will be assigned to a student

whenever a different professor has not been assigned to the same student. In general,

foe(P) is defined as follows:

Definition 2.1

Let P denote a program with choice rules: its first order equivalent foe(P) is obtained

by the following transformation. Consider a choice rule r in P :

r : A← B(Z), choice((X1), (Y1)), . . . , choice((Xk), (Yk)).

while

(i) B(Z) denotes the conjunction of all the goals of r that are not choice goals,

and

(ii) Xi, Yi, Z , 1 6 i 6 k, denote vectors of variables occurring in the body of r

such that Xi ∩ Yi = ∅ and Xi, Yi ⊆ Z .

Then, foe(P) is constructed from P as follows:

1. Replace r with a rule r′ obtained by substituting the choice goals with the

atom chosenr(W):

r′ : A← B(Z), chosenr(W)

where W ⊆ Z is the list of all variables appearing in choice goals, i.e.

W =
⋃

16j6k Xj ∪ Yj .
2. Add the new rule

chosenr(W)← B(Z), ¬diffChoicer(W).

3. For each choice atom choice((Xi), (Yi)) (1 6 i 6 k), add the new rule

diffChoicer(W)← chosenr(W
′), Yi 6= Y ′i

where (i) the list of variables W ′ is derived from W by replacing each A 6∈ Xi

with a new variable A′ (i.e. by priming those variables), and (ii) Yi 6= Y ′i denotes

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 65

the inequality of the vectors, i.e. Yi 6= Y ′i is true when for some variable A ∈ Yi
and its primed counterpart A′ ∈ Y ′i , A 6= A′.

Monotonic nondeterminism

Theorem 2.1

Let P be a positive program with choice rules. Then the following properties

hold (Giannotti et al., 1991):

• foe(P) has one or more total stable models.

• The chosen atoms in each stable model of foe(P) obey the FDs defined by the

choice goals.

Observe that the foe(P) of a program with choice does not have total well-founded

models; in fact, for our Example 2.1, the well-founded model yields undefined values

for advisors. Therefore, the choice construct can express nondeterministic semantics,

which can be also expressed by stable models, but not by well-founded models.

On the other hand, the choice model avoids the exponential complexity which is

normally encountered under stable model semantics.

Indeed, the computation of stable models is NP-hard (Schlipf, 1993), but the

computation of choice models for positive programs can be performed in polynomial

time with respect to the size of the database. This, basically, is due to the monotonic

nature of the choice construct that yields a simple fixpoint computation for programs

with choice (Giannotti et al., 2001b). Indeed, the use of choice rules in positive

programs preserves their monotonic properties. A program P can be viewed as

consisting of two separate components: an extensional component (i.e. the database

facts), denoted edb(P), and an intensional one (i.e. the rules), denoted idb(P). Then,

a positive choice program defines a monotonic multi-valued mapping from edb(P)

to idb(P), as per the following theorem proven in Giannotti et al. (2001b):

Theorem 2.2

Let P and P ′ be two positive choice programs where idb(P ′) = idb(P) and edb(P ′) ⊇
edb(P). Then, if M is a choice model for P , then, there exists a choice model M ′ for

P ′ such that M ′ ⊇M.

Two concrete semantics are possible for choice programs: one is an all-answers

semantics, and the other is the semantics under which any answer will do – don’t

care nondeterminism. While an all-answers semantics for choice is not without

interesting applications (Greco and Saccà, 1997), the single-answer semantics was

adopted by LDL++, because this is effective at supporting DB-PTime problems

(Abiteboul et al., 1995). Then, we see that Theorem 2 allows us to compute results

incrementally as it is done in differential fixpoint computations; in fact, to find

an answer, a program with choice can be implemented as an ordinary program,

where the choice predicates are memorized in a table; then newly derived atoms

that violate the choice FDs are simply discarded, much in the same way as duplicate

atoms are discarded during a fixpoint computation.

Thus positive choice programs represent a class of logic programs that are very

well-behaved from both a semantic and a computational viewpoint. The same can

be said for choice programs with stratified negation that are defined next.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

66 F. Arni et al.

Definition 2.2

Let P be a choice program with negated goals. Then, P is said to be stratified when

the program obtained from P by removing its choice goals is stratified.

The stable models for a stratified choice program P can be computed using an

iterated choice fixpoint procedure that directly extends the iterated fixpoint procedure

for programs with stratified negation (Przymusinski, 1988; Zaniolo et al., 1997); this

is summarized next. Let Pi, denote the rules of P (whose head is) in stratum i, and let

Pi
∗ be the union of Pj, j 6 i. Now, if Mi is a stable model for Pi

∗, then every stable

model for Mi ∪ Pi+1 is a stable model for the program P ∗i+1. Therefore, the stable

models of stratified choice programs can be computed by modifying the iterated

fixpoint procedure used for stratified programs so that choice models (rather than

the least models) are computed for strata containing choice rules (Giannotti et al.,

1998).

The power of choice

The expressive power of choice was studied in Giannotti et al. (2001b), where it

was shown that stratified Datalog with choice can express all computations that

are polynomial in the size of the database (i.e. DB-PTIME queries (Abiteboul

et al., 1995)). Without choice, DB-PTIME cannot be expressed in stratified Datalog,

unless a predefined total order is assumed for the universe, an assumption that would

violate the genericity principle (Abiteboul et al., 1995). In terms of computational

power, non-determinism and order fulfill a similar function (Abiteboul et al., 1995);

in fact, the application of choice can also be viewed as non-deterministically and

incrementally generating a possible order on the universe – an order that is made

explicit by the predicate chain discussed in Example 2.4.

Before moving to Example 2.4, however, we would like to observe that the version

of choice supported in LDL++ is more powerful than other nondeterministic

constructs, such as the witness operator (Abiteboul et al., 1995), and an earlier

version of choice proposed in Krishnamurthy and Naqvi (1998) (called static choice

in Giannotti et al. (2001b). For instance, the following query cannot be expressed

in standard Datalog (since the query is nondeterministic) nor it can be expressed

by the early version of choice (Krishnamurthy and Naqvi, 1998) or by the witness

construct (Abiteboul et al., 1995). These early constructs express nondeterminism

in nonrecursive programs, but suffer from inadequate expressive power in recursive

programs (Giannotti et al., 2001b). In particular, they cannot express the query in

Example 2.3.

Example 2.3

Rooted spanning tree. We are given an undirected graph where an edge joining two

nodes, say x and y, is represented by the pair g(x, y) and g(y, x). Then, a spanning

tree in this graph, starting from the source node a, can be constructed by the

following program:

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 67

st(root, a).

st(X, Y)← st(, X), g(X, Y), Y 6= a, Y 6= X,

choice((Y), (X)).

To illustrate the presence of multiple total choice models for this program, take a

simple graph consisting of the following arcs:

g(a, b). g(b, a).

g(b, c). g(c, b).

g(a, c). g(c, a).

After the exit rule adds st(root, a), the recursive rule could add st(a, b) and

st(a, c), along with the two tuples chosen(a, b) and chosen(a, c) in the chosen

table. No further arc can be added after those, since the addition of st(b, c) or

st(c, b) would violate the FD that follows from choice((Y), (X)) enforced through

the chosen table. However, since st(root, a) was produced by the first rule (the

exit rule), rather than the second rule (the recursive choice rule), the table chosen

contains no tuple with second argument equal to the source node a. Therefore, to

avoid the addition of st(c, a) or st(b, a), the goal Y 6= a was added to the recursive

rule.

By examining all possible solutions, we conclude that this program has three

different choice models, for which we list only the st-atoms, below:

1. st(a, b), st(b, c).

2. st(a, b), st(a, c).

3. st(a, c), st(c, b).

In addition to supporting nondeterministic queries, the introduction of the choice

extends the power of Datalog for deterministic queries. This can be illustrated by the

following choice program that places the elements of a relation d(Y) into a chain,

thus establishing a random total order on these elements; then checks if the last

element in the chain is even.

Example 2.4

The odd parity query by arranging the elements of a set in a chain. The elements of

the set are stored by means of facts of the form d(Y).

chain(nil, nil).

chain(X, Y)← chain(, X), d(Y),

choice((X), (Y)), choice((Y), (X)).

odd(X)← chain(nil, X).

odd(Z)← odd(X), chain(X, Y), chain(Y, Z).

isodd← odd(X),¬chain(X, Y).

Here chain(nil, nil) is the root of a chain linking all the elements of d(Y) – thus

inducing a total order on elements of d.

The negated goal in the last rule defines the last element in the chain. Observe that

the final isodd answer does not depend on the particular chain constructed; it only

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

68 F. Arni et al.

depends upon its length that is equal to the cardinality of the set. Thus stratified

Datalog with choice can express deterministic queries, such as the parity query, that

cannot be expressed in stratified Datalog without choice (Abiteboul et al., 1995).

The parity query cannot be expressed in Datalog with stratified negation unless

we assume that the underlying universe is totally ordered – an assumption that

violates the data independence principle of genericity (Abiteboul et al., 1995). The

benefits of this added expressive power in real-life applications follows from the

fact that the chain program used in Example 2.4, above, to compute the odd parity

query can be used to stream through the elements of a set one by one, and compute

arbitrary aggregates on them. For instance, to count the cardinality of the set d(Y)

we can write:

mcount(X, 1)← chain(nil, X).

mcount(Y, J1)← mcount(X, J), chain(X, Y), J1 = J + 1.

count(J)← mcount(X, J),¬chain(X, Y).

The negated goal in the last rule qualifies the element(s) X without a successor in

the chain, i.e. X for which ¬chain(X, Y) holds for all Ys. Therefore, count is defined

by a program containing (and stratified with respect to) negation; thus, if count

is then used as a builtin aggregate, the stratification requirement must be enforced

upon every program that uses count.

However, if we seek to determine if the base relation d(Y) has more than 14

elements, then we can use the mcount aggregate instead of count, as follows:

morethan14← mcount(, J), J > 14.

Now, mcount is what is commonly known as an online aggregate (Hellerstein et al.,

1997): i.e. an aggregate that produces early returns rather than final returns as

traditional aggregates. The use of mcount over count offers clear performance

benefits; in fact, the computation of morethan14 can be terminated after 14 items,

whereas the application of count requires visiting all the items in the chain. From

a logical viewpoint, the benefits are even greater, since count is no longer needed

and the rule defining it can be eliminated – leaving us with the program defining

mcount, which is free of negation. Thus, no restriction is needed when using mcount

in recursive programs; and indeed, mcount (and morethan14) define monotonic

mappings in the lattice of set-containment.

In summary, the use of choice led us to (i) a simple and general definition

of the concept of aggregates, including user defined aggregates (UDAs), and (ii)

the identification of a special subclass of UDAs that are free from the yoke of

stratification, because they are monotonic. This topic is further discussed in the next

section.

2.2 User defined aggregates

The importance of aggregates in deductive databases has been recognized for a long

time (Ross and Sagiv, 1997; Van Gelder, 1993; Kemp and Ramamohanarao, 1998).

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 69

In particular, there have been several attempts to overcome the limitations placed on

the use of aggregates in programs because of their nonmonotonic nature (Finkelstein,

1996). Of particular interest is the work presented in Ross and Sagiv (1997), where

it shown that rules with aggregates often define monotonic mappings in special

lattices, i.e. in lattices different from the standard set-containment lattice used for

TP . Furthermore, programs with such monotonic aggregates can express many

interesting applications (Ross and Sagiv, 1997). Unfortunately, the lattice that makes

the aggregate rules of a given program monotonic is very difficult to identify

automatically (Van Gelder, 1993); this problem prevents the deployment of such a

notion of monotonicity in real deductive database systems.

A new wave of decision support applications has recently underscored the im-

portance of aggregates and the need for a wide range of new aggregates (Han and

Kamber, 2001). Examples include rollups and datacubes for OLAP applications, run-

ning aggregates and window aggregates in time series analysis, and special versions

of standard aggregates used to construct classifiers or association rules in data-

mining (Han and Kamber, 2001). Furthermore, a new form of aggregation, called

online aggregation, finds many uses in data-intensive applications (Hellerstein et al.,

1997). To better serve this wide new assortment of applications requiring specialized

aggregates, a deductive database system should support User Defined Aggregates

(UDAs). Therefore, the new LDL++ system supports powerful UDAs, including

online aggregates and monotonic aggregates, in a simple rule-based framework built

on formal logic-based semantics.

In LDL++ users can define a new aggregate by writing the single, multi,

and freturn rules (however, ereturn rules can be used to supplement or replace

freturn rules). The single rule defines the computation for the first element of

the set (for instance mcount has its second argument set to 1), while multi defines

the induction step whereby the value of the aggregate on a set of n+ 1 elements is

derived from the aggregate value of the previous set with n elements and the value

of (n + 1)th element itself. A unique aggregate name is used as the first argument

in the head of these rules to eliminate any interference between the rules defining

different aggregates. For instance, for computing averages we must compute both

the count and the sum of the elements seen so far:

single(avg, Y, cs(1, Y)).

multi(avg, Y, cs(Cnt, Sum), cs(Cnt1, Sum1))←
Cnt1 = Cnt + 1, Sum1 = Sum + Y.

Then, we write a freturn rule that upon visiting the final element in d(Y) produces

the ratio of sum over count, as follows:

freturn(avg, Y, cs(Cnt, Sum), Val)← Val = Sum/Cnt.

After an aggregate is defined by its single, multi, ereturn and/or freturn

rules, it can be invoked and used in other rules. For instance, our the newly defined

avg can be invoked as follows:

p(avg〈Y〉)← d(Y).

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

70 F. Arni et al.

Thus LDL++ uses the special notation of pointed brackets, in the head of rules,

to denote the application of an aggregate. This syntax, that has been adopted by

other languages (Ramakrishnan et al., 1993), also supports an implicit ‘group by’

construct, whereby the aggregate arguments in the head are implicitly grouped by

the other arguments in the head. Thus, to find the average salary of employees

grouped by department a user can write the following rule:

davg(DeptNo, avg〈Sal〉)← employee(Eno, Sal, DeptNo).

The formal semantics of UDAs was introduced in Zaniolo and Wang (1999)

and is described in the Appendix: basically, the aggregate invocation rules and the

aggregate definition rules are rewritten into an equivalent program that calls on the

chain predicate defined as in Example 2.4. (Naturally, for the sake of efficiency, the

LDL++ system shortcuts the full rewriting used to define their formal semantics,

and implement the UDAs by a more direct implementation.)

LDL++ UDAs have also been extended to support online aggregation (Heller-

stein et al., 1997). This is achieved by using ereturn rules in the definition of UDAs,

to either supplement, or replace freturn rules.

For example, the computation of averages normally produces an approximate

value long before the whole data set is visited. Then, we might want to see the

average value obtained so far every 100 elements. Then, the following rule will be

added:

ereturn(avg, X, (Sum, Count), Avg)←
Count mod 100 = 0, Avg = Sum/Count.

Thus the ereturn rules produce early returns, while the freturn rules produce

final returns.

As second example, let us consider the well-known problem of coalescing after

temporal projection in temporal databases (Zaniolo et al., 1997). For instance in

Example 2.5, after projecting out from the employee relation the salary column, we

might have a situation where the same Eno appears in tuples where their valid-

time intervals overlap; then these intervals must be coalesced. Here, we use closed

intervals represented by the pair (From, To) where From is the start-time, and To is

the end-time. Under the assumption that tuples are sorted by increasing start-time,

then we can use a special coales aggregate to perform the task in one pass through

the data.

Example 2.5

Coalescing overlapping intervals sorted by start time.

empProj(Eno, coales〈(From, To)〉)← emp(Eno, , , (From, To)).

single(coales, (Frm, To), (Frm, To)).

multi(coales, (Nfr, Nto), (Cfr, Cto), (Cfr, Nto))←
Nfr <= Cto, Nto > Cto.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 71

multi(coales, (Nfr, Nto), (Cfr, Cto), (Cfr, Cto))←
Nfr <= Cto, Nto <= Cto.

multi(coales, (Nfr, Nto), (Cfr, Cto), (Nfr, Nto))← Cto < Nfr.

ereturn(coales, (Nfr, Nto), (Cfr, Cto), (Cfr, Cto))← Cto < Nfr.

freturn(coales, , LastInt, LastInt).

Since the input intervals are ordered by their start time, the new interval (Nfr, Nto)

overlaps the current interval (Cfr, Cto) when Nfr 6 Cto; in this situation, the two

intervals are merged into one that begins at Cfr and ends with the larger of Nto

and Cto. When, the new interval does not overlap with the current interval, this is

returned by the ereturn rule, while the new interval becomes the current one (see

the last multi rule).

Let P be a program. A rule r of P whose head contains aggregates is called

an aggregate rule. Then, P is said to be stratified w.r.t. aggregates when for each

aggregate rule r in P , the stratum of r’s head predicate is strictly higher than the

stratum of each predicate in the head of r. Therefore, the previous program is

stratified with respect to coales which is nonmonotonic since it uses both early

returns and final returns.

While, programs stratified with respect to aggregates can be used in many appli-

cations, more advanced applications require the use of aggregates in more general

settings. Thus,LDL++ supports the usage of arbitrary aggregates in XY-stratified

programs, which will be discussed in Section 3. FurthermoreLDL++ supports the

monotonic aggregates that can be used freely in recursion.

Monotone aggregation

An important result that follows from the formalization of the semantics of UDAs

(Zaniolo and Wang, 1999) (see also the Appendix), is that UDA defined without

final return rules, i.e. no freturn rule, define monotonic mappings, and can thus be

used without restrictions in the definition of recursive predicates.For instance, we

will next define a continuous count that returns the current count after each new

element (thus final returns are here omitted since they are redundant).

single(mcount, Y, 1).

multi(mcount, Y, Old, New)← New = Old + 1.

ereturn(mcount, Y, Old, New)← New = Old + 1.

Monotonic aggregates allow us to express the following two examples taken from

Ross and Sagiv (1997).

Join the Party. Some people will come to the party no matter what, and their names

are stored in a sure(Person) relation. But others will join only after they know that

at least K = 3 of their friends will be there. Here, friend(P, F) denotes that F is a

friend of person P.

willcome(P)← sure(P).

willcome(P)← c friends(P, K), K > 3.

c friends(P, mcount〈F〉)← willcome(F), friend(P, F).

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

72 F. Arni et al.

Consider now a computation of these rules on the following database.

friend(jerry, mark). sure(mark).

friend(penny, mark). sure(tom).

friend(jerry, jane). sure(jane).

friend(penny, jane).

friend(jerry, penny).

friend(penny, tom).

Then, the basic semi-naive computation yields:

willcome(mark), willcome(tom), willcome(jane),

c friends(jerry, 1), c friends(penny, 1), c friends(jerry, 2),

c friends(penny, 2), c friends(penny, 3), willcome(penny),

c friends(jerry, 3), willcome(jerry).

This example illustrates how the standard semi-naive computation can be applied

to queries containing monotone UDAs. Another interesting example is transitive

ownership and control of corporations.

Company Control. Say that owns(C1, C2, Per) denotes the percentage of shares that

corporation C1 owns of corporation C2. Then, C1 controls C2 if it owns more than,

say, 50% of its shares. In general, to decide whether C1 controls C3 we must also add

the shares owned by corporations, such as C2, that are controlled by C1. This yields

the transitive control rules defined with the help of a continuous sum aggregate that

returns the partial sum for each new element:

control(C, C)← owns(C, ,).

control(Onr, C)← towns(Onr, C, Per), Per > 50.

towns(Onr, C2, msum〈Per〉)← control(Onr, C1), owns(C1, C2, Per).

single(msum, Y, Y).

multi(msum, Y, Old, New)← New = Old + Y.

ereturn(msum, Y, Old, New)← New = Old + Y.

Thus, every company controls itself, and a company C1 that has transitive owner-

ship of more than 50% of C2’s shares controls C2. In the last rule, towns computes

transitive ownership with the help of msum that adds up the shares of controlling

companies. Observe that any pair (Onr, C2) is added at most once to control,

thus the contribution of C1 to Onr’s transitive ownership of C2 is only accounted

once.

Bill-of-Materials (BoM) Applications. BoM applications represent an important ap-

plication area that requires aggregates in recursive rules. For instance, let us say

that assembly(P1, P2, QT) denotes that P1 contains part P2 in quantity QT. We also

have elementary parts described by the relation basic part(Part, Price). Then, the

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 73

following program computes the cost of a part as the sum of the cost of the basic

parts it contains:

part cost(Part, O, Cst)← basic part(Part, Cst).

part cost(Part, mcount〈Sb〉, msum〈MCst〉)←
part cost(Sb, ChC, Cst), prolfc(Sb, ChC),

assembly(Part, Sb, Mult), MCst = Cst ∗ Mult.
Thus, the key condition in the body of the second rule is that a subpart Sb is

counted in part cost only when all Sb’s children have been counted. This occurs

when the number of Sb’s children counted so far by mcount is equal to the out-

degree of this node in the graph representing assembly. This number is kept in the

prolificacy table, prolfc(Part, ChC), which can be computed as follows:

prolfc(P1, count〈P2〉)← assembly(P1, P2,).

prolfc(P1, 0)← basic part(P1,).

Therefore the simple and general solution of the monotonic aggregation prob-

lem introduced by LDL++ allows the concise expression of many interesting

algorithms. This concept can also be extended easily to SQL recursive queries,

as discussed in (Wang and Zaniolo, 2000) where additional applications are also

discussed.

2.3 Beyond stratification

The need to go beyond stratification has motivated much recent research. Several

deductive database systems have addressed it by supporting the notion of modular

stratification (Ross, 1994). Unfortunately, this approach suffers from poor usability,

since the existence of a modular stratification for a program can depend on its ex-

tensional information (i.e. its fact base) and, in general, cannot be checked without

executing the program. The standard notion of stratification is instead much easier

to use, since it provides a simple criterion for the programmer to follow and for the

compiler to use when validating the program and optimizing its execution. There-

fore, LDL++ has introduced the notion of XY-stratified programs that preserves

the compilability and usability benefits of stratified programs while achieving the ex-

pressive power of well-founded models (Kemp et al., 1995). XY-stratified programs

are locally stratified explicitly by a temporal argument: thus, they can be viewed

as Datalog1S programs, which are known to provide a powerful tool for temporal

reasoning (Baudinet et al., 1994; Zaniolo et al., 1997), or as Statelog programs

that were used to model active databases (Lausen et al., 1998b). The deductive

database system Aditi (Kemp and Ramamohanarao, 1998) also supports the closely

related concept of explicitly locally stratified programs, which were shown to be as

powerful as well-founded models, since they can express their alternating fixpoint

computation (Kemp et al., 1995).

For instance, the ancestors of marc, with the number of generations that separate

them from marc, can be computed using the following program which models the

differential fixpoint computation:

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

74 F. Arni et al.

Example 2.6

Computing ancestors of Marc and their remoteness from Marc using differential

fixpoint approach.

r1 : delta anc(0, marc).

r2 : delta anc(J + 1, Y)← delta anc(J, X), parent(Y, X),

¬all anc(J, Y).

r3 : all anc(J + 1, X)← all anc(J, X).

r4 : all anc(J, X)← delta anc(J, X).

This program is locally stratified by the first arguments in delta anc and all anc

that serve as temporal arguments (thus +1 is a postfix successor function symbol,

much the same as s(J) that denotes the successor of J in Datalog1S (Zaniolo

et al., 1997)). The zero stratum consists of atoms of nonrecursive predicates such

as parent and of atoms that unify with all anc(0, X) or delta anc(0, X). The

kth stratum consists of atoms of the form all anc(k, X), delta anc(k, X). Thus,

the previous program is locally stratified (Przymusinski, 1988), since the heads of

recursive rules belong to strata that are one above those of their goals. Alternatively,

we can view the previous program as a compact representation for the stratified

program obtained by instantiating the temporal argument to integers and attaching

them to the predicate names, thus generating an infinite sequence of unique names.

Also, observe that the temporal arguments in rules are either the same as, or one

less than, the temporal argument in the head. Then, there are two kinds of rules

in our example: (i) X-rules (i.e. a horizontal rules) where the temporal argument in

each of their goals is the same as that in their heads, and (ii) Y-rules (i.e. a vertical

rules) where the temporal arguments in some of their goals are one less than those in

their heads. Formally, let P be a set of rules defining mutually recursive predicates,

where each recursive predicate has a distinguished temporal argument and every

rule in P is either an X-rule or a Y-rule. Then, P will be said to be an XY-program.

For instance, the program in Example 2.6 is an XY-program, where r4 and r1 are

X-rules, while r2 and r3 are Y-rules.

A simple test can now be used to decide whether an XY-program P is locally

stratified. The test begins by labelling all the head predicates in P with the prefix

‘new’. Then, the body predicates with the same temporal argument as the head

are also labelled with the prefix ‘new’, while the others are labelled with the prefix

‘old’. Finally, the temporal arguments are dropped from the program. The resulting

program is called the bistate version of P and is denoted Pbis.

Example 2.7

The bistate version of the program in Example 2.6:

new delta anc(marc).

new delta anc(Y)← old delta anc(X), parent(Y, X),

¬old all anc(Y).

new all anc(X)← new delta anc(X).

new all anc(X)← old all anc(X).

Now we have that (Zaniolo et al., 1993):

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 75

Definition 2.3

Let P be an XY-program. P is said to be XY-stratified when Pbis is a stratified

program.

Theorem 2.3

Let P be an XY-stratified program. Then P is locally stratified.

The program of Example 2.7 is stratified with the following strata: S0 = {parent,
old all anc, old delta anc}, S1 = {new delta anc}, and S2 = {new all anc}.
Thus, the program in Example 2.6 is locally stratified.

For an XY-stratified program P , the general iterated fixpoint procedure (Przy-

musinski, 1988) used to compute the stable model of locally stratified programs

(Zaniolo et al., 1993) becomes quite simple; basically it reduces to a repeated com-

putation over the stratified program Pbis. For instance, for Example 2.7 we compute

new delta anc from old delta anc and then new all anc from this. Then, the

‘old’ relations are re-initialized with the content of the ‘new’ ones so derived, and the

process is repeated. Furthermore, since the temporal arguments have been removed

from this program, we need to

1. store the temporal argument as an external fact counter(T),

2. add a new goal counter(Ir) to each exit rule r in Pbis, where Ir is the variable

from the temporal arguments of the original rule r, and

3. For each recursive predicate q add the rule:

q(J, X)← new q(X), counter(J).

The program so constructed will be called the synchronized bistate version of P ,

denoted syncbi(P). For instance, to obtain the synchronized version of the program

in Example 2.7, we need to change the first rule to

new delta anc(marc)← counter(0).

since the temporal argument in the original exit rule was the constant 0. Then, we

must add the following rules:

delta anc(J, X)← new delta anc(X), counter(J).

all anc(J, X)← new all anc(X), counter(J).

Then, the iterated fixpoint computation for an XY-stratified program can be imple-

mented by the following procedure:

Procedure 2.1

Computing a stable model of an XY-stratified program P : Add the fact counter(0).

Then, forever repeat the following two steps:

1. Compute the stable model of syncbi(P).

2. For each recursive predicate q, replace old q with new q, computed in the

previous step. Then, increase the value of counter by one.

Since syncbi(P) is stratified, we can then use the iterated fixpoint computation to

compute its stable model.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

76 F. Arni et al.

Since each XY-stratified program is locally stratified (Przymusinski, 1988), it is

guaranteed to have a unique stable model, which is also known as its perfect model

(Przymusinski, 1988). However, the special syntactic structure of XY-stratified pro-

grams allows an efficient computation of their perfect models using Procedure

4; moreover, in the actual LDL++ implementation, this computation is further

improved with the optimization techniques discussed next. For instance, the replace-

ment of old q with new q described in the last step of Procedure 2.1 becomes an

operation of (small) constant cost when it is implemented by switching the pointers

to the relations. A second improvement concerns copy rules, such as the last rule

in Example 2.6. For instance r3 in Example 2.6 is a copy rule that copies the new

values of all anc from its old values. Observe that the body and the head of this

rule are identical, except for the prefixes new or old, in its bistate version (Example

2.7). Thus, in order to compute new all anc, we first execute the copy rule by

simply setting the pointer to new all anc to point to old all anc – a constant-time

operation. Rule r4 that adds tuples to new all anc is then executed after r3.

In writing XY-stratified programs, the user must also be concerned with termi-

nation conditions since, for example, a rule such as r3 in Example 2.6 could, if left

unchecked, keep producing all anc results under a new temporal argument, after

delta becomes empty. One solution to this problem is for the user to add the goal

delta anc(J,) to rule r3. Then, the computation all anc stops as soon as no new

delta anc(J,) is generated. Alternatively, our program could be called from a goal

such as delta anc(J, Y). In this case, if r2 fails to produce any result for a value J, no

more results can be produced at successive steps, since delta anc(J, Y) is a positive

goal of r2. The LDL++ system is capable of recognizing these situations, and it

will terminate the computation of Procedure 2.1 when either condition occurs.

Example 2.8 solves the coalescing problem without relying on tuples being sorted

on their start-time – an assumption made in Example 2.5. Therefore, we use the

XY-stratified program of Example 2.8, which iterates over two basic computation

steps. The first step is defined by the overlap rule, which identifies pairs of distinct

intervals that overlap, where the first interval contains the start of the second

interval. The second step consists of deriving a new interval that begins at the

start of the first interval, and ends at the later of the two endpoints. Finally, a

rule final e hist returns the intervals that do not overlap other intervals (after

eliminating the temporal argument).

Example 2.8

Coalescing overlapping periods into maximal periods after a projection:

e hist(0, Eno, Frm, To)← emp dep sal(0, Eno, , , Frm, To).

overlap(J + 1, Eno, Frm1, To1, Frm2, To2)←
e hist(J, Eno, Frm1, To1),

e hist(J, Eno, Frm2, To2),

Frm1 6 Frm2, Frm2 6 To1,

distinct(Frm1, To1, Frm2, To2).

e hist(J, Eno, Frm1, To)← overlap(J, Eno, Frm1, To1, Frm2, To2),

select larger(To1, To2, To).

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 77

final e hist(J + 1, Eno, Frm, To)← e hist(J, Eno, Frm, To),

¬overlap(J + 1, Eno, Frm, To, ,).

distinct(Frm1, To1, Frm2, To2)← To1 6= To2.

distinct(Frm1, To1, Frm2, To2)← Frm1 6= Frm2.

select larger(X, Y, X)← X > Y.

select larger(X, Y, Y)← Y > X.

As demonstrated by these examples, XY-stratified programs allow an efficient

logic-based expression of procedural algorithms. For instance, the alternating fix-

point procedure used in the computation of well-founded models can also be

expressed using these programs (Kemp et al., 1995). In general, XY-stratified pro-

grams are quite powerful, as demonstrated by fact that these programs (without

choice, aggregates, and function symbol) are known to be equivalent to Statelog

programs (Lausen et al., 1998a), which have pspace complexity and can express the

while queries (Abiteboul et al., 1995). Finally, observe that the bistate programs for

the examples used here are nonrecursive. In general, by making the computation of

the recursive predicate explicit as it was done for the anc example, it is possible to

rewrite an XY-stratified program P whose bistate version Pbis is recursive into an

XY-stratified program P ′ whose bistate version P ′bis is nonrecursive.

Choice and aggregates in XY-stratified programs

As described in section 2.1, choice can be used in stratified programs with no

restriction, and its stable model can be computed by an iterated choice fixpoint

procedure. Generalizing such notion, the LDL++ system supports the use of

choice in programs that are XY-stratified with respect to negation. The following

conditions are, however, enforced to assure the existence of stable models for a given

program P (Giannotti et al., 1998):

• the program obtained from P by removing its choice goals is XY-stratified

w.r.t. negation, and

• if r is a recursive choice rule in P , then some choice goal of r contains r’s

temporal variable in its left side.

After checking these conditions, the LDL++ compiler constructs syncbi(P) by

dropping the temporal variable from the choice goals and transforming the rest

of the rules as described in the previous section. Then, the program syncbi(P) so

obtained is a stratified choice program and its stable models can be computed

accordingly; therefore, each stable model for the original XY-stratified program P

is computed by simply applying Procedure 2.1 with no modification (Zaniolo et al.,

1997; Giannotti et al., 1998).

Using the simple syntactic characterization given in section 2.2, LDL++ draws

a sharp distinction between monotonic and nonmonotonic aggregates. No restric-

tion is imposed on programs with only monotonic aggregates and no negation.

But recursive programs with nonmonotonic aggregates must satisfy the following

conditions (which assure that once the aggregates are expanded as described in

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

78 F. Arni et al.

section 2.2 the resulting choice program satisfies the XY-stratification conditions for

choice programs discussed in the previous paragraph):

• For each recursive rule, the temporal variable must be contained in the group-

by attributes.

• The bistate version of P must be stratified w.r.t. negation and nonmonotonic

aggregates, and

After checking these simple conditions, the LDL++ compiler proceeds with the

usual computation of syncbi(P) as previously described.

For instance, the following XY-stratified program with aggregates expresses

Floyd’s algorithm to compute the least-cost path between pairs of nodes in a

graph. Here, g(X, Y, C) denotes an arc from X to Y of cost C:

Example 2.9

Floyd’s least-cost paths between all node pairs.

delta(0, X, Y, C)← g(X, Y, C).

newmin(J, X, Z, min〈C〉)← new(J, X, Z, C).

discard(J, X, Z, C)← newmin(J, X, Z, C1), all(J, X, Z, C2), C1 > C2.

delta(J, X, Z, C)← newmin(J, X, X, C),¬discard(J, X, Z,).

all(J, X, Z, C)← delta(J, X, Z, C).

The fourth rule in this example uses a nonmonotonic min aggregate to select the

least cost pairs among those just generated (observe that the temporal variable J

appears among the group-by attributes). The next two rules derive the new delta

pairs by discarding from new those that are larger than any existing pair in all.

This new delta is then used to update all and compute new pairs.

By supporting UDAs, choice, and XY-stratificationLDL++ provides a powerful,

fully integrated framework for expressing logic-based computation and modelling.

In addition to express complex computations (Zaniolo et al., 1998), this power has

been used to model the AI planning problem (Brogi et al., 1997), database updates,

and active database rules (Zaniolo, 1997). For instance, to model AI planning,

preconditions can simply be expressed by rules, choice can be used to select among

applicable actions, and frame axioms can be expressed by XY-stratified rules that

describe changes from the old state to the new state (Brogi et al., 1997).

3 The system

The main objectives in the design of the LDL++ system, were (i) strengthening

the architecture of the previous LDL system (Chimenti et al., 1990), (ii) improving

the system’s usability and the application development turnaround time, and (iii)

provide efficient support for the new language constructs.

While the first objective could be achieved by building on and extending the

general architecture of the predecessor LDL system, the second objective forced

us to depart significantly from the compilation and execution approach used by

the LDL system. In fact, the old system adhered closely to the set-oriented

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 79

semantics of relational algebra and relational databases; therefore, it computed

and accumulated all partial results before returning the whole set to the user.

However, our experience in developing applications indicated that a more inter-

active and incremental computation model was preferable, i.e. one where users see

the results incrementally as they are produced. This allows developers to monitor

better the computation as it progresses, helping them debugging their programs,

and, e.g. allowing them to stop promptly executions that have fallen into infinite

loops.

Therefore, LDL++ uses a pipelined execution model, whereby tuples are gen-

erated one at a time as they are needed (i.e. lazily as the consumer requests them,

rather than eagerly). This approach also realizes objective (iii) by providing bet-

ter support for new constructs, such as choice and on-line aggregation, and for

intelligent backtracking optimization (discussed in the next section).

TheLDL++ system also adopted a shallow-compilation approach that achieves

faster turnaround during program development and enhances the overall usability;

this approach also made it easier to support on-line debugging and meta-level ex-

tensions. The previous LDL system was instead optimized for performance; thus,

it used a deep-compilation approach where the original program was translated

into a (large) C program – whose compilation and linking slowed the develop-

ment turnaround time. The architecture of the system is summarized in the next

section; additional information, a web demo, and instructions on downloading for

noncommercial use can be found in Zaniolo (1998).

3.1 Architecture

The overall architecture of theLDL++ system and its main components are shown

in figure 1. The major components of the system are:

The compiler. The compiler reads in LDL++ programs and constructs the Global

Predicate Connection Graph (PCG). For each query form, the compiler partially

evaluates the PCG, transforming it into a network of objects that are executed by

the interpreter. The compiler is basically similar to that of the old system (Chimenti

et al., 1990), and is responsible for checking the safety of queries, and rewriting the

recursive rules using techniques such the Magic Sets method (Bancilhon et al., 1986),

and the more specialized methods for left-linear and right-linear rules (Ullman, 1989).

These rewriting techniques result in an efficient execution plan for queries.

The database managers. TheLDL experience confirmed the desirability supporting

access to (i) an internal (fast-path) database and (ii) multiple external DBMSs in a

transparent fashion. This led to the design of a new system where the two types of

database managers are fully integrated.

The internal database is shown in figure 1 as Fact Base Manager. This module

supports the management and retrieval of LDL++ complex objects, including

sets and lists, and of temporary relations obtained during the computation. In

addition to supporting users’ data defined by the schema as internal relations, the

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

80 F. Arni et al.

INTERPRETER

COMPILER

A

P

I

USER

INTERFACE

External
Predicate
Manager

External
Database
Manager

Fact
Base

Manager

External
C/C++

Functions
SQL

DB

SQL

DB

Fig. 1. LDL++ open architecture.

interpreter relies on the local database to store and manage temporary data sets. The

internal database is designed as a virtual-memory record manager: thus its internal

organization and indexing schemes are optimized for the situation where the pages

containing frequently used data can reside in main memory. Data is written back

onto disk at the commit point of each update transaction; when the transaction

aborts the old data is instead restored from disk.

The system also supports an external database manager, which is designed to

optimize access to external SQL databases; this is described in section 3.3.

Interpreter. The interpreter receives as input a graph of executable objects corre-

sponding to an LDL++ query form generated by the compiler, and executes it

by issuing get-next, and other calls, to the local database. Similar calls are also

issued by the External Database Manager and the External Predicate Manager to,

respectively, external databases, and external functions or software packages that

follow the C/C++ calling conventions. Details on the interpreter are presented in

the next section.

User interface. All applications written in C/C++ can call theLDL++ system via

a standard API; thus applications written in LDL++ can be embedded in other

procedural systems.

One such application is a line-oriented command interpreter supporting a set of

predefined user commands, command completion and on-line help. The command

interpreter is supplied with the system, although it is not part of the core system.

Basically, the interface is an application built in C++ that can be replaced with

other front-ends, including graphical ones based on a GUI, without requiring any

changes to the internals of the system. In particular, a Java-based interface for

remote demoing was added recently (Zaniolo et al., 1998).

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 81

3.2 Execution model and interpreter

The abstract machine for the LDL++ interpreter is based upon the architecture

described in (Chimenti et al., 1989). An LDL++ program is transformed into

a network of active objects and the graph-based interpreter then processes these

objects.

Code generation and execution. Given a query form, an LDL++ program is trans-

formed into a Predicate Connection Graph (PCG), which can be viewed as an

AND/OR graph with annotations.An OR-node represents a predicate occurrence

and each AND node represents the head of a rule. The PCG is subsequently

compiled into an evaluable data structure called a LAM (for LDL++ Abstract

Machine), whose nodes are implemented as instances of C++ classes. Arguments

are passed from one node to the other by means of variables. Unification is done at

compile time and the sharing of variables avoids useless assignments.

Each node of the generated LAM structure has a virtual2 ‘GetTuple’ interface,

which evaluates the corresponding predicate in the program. Each node also stores

a state variable that determines whether this node is being ‘entered’ or is being

‘backtracked’ into. The implementation of this ‘GetTuple’ interface depends upon

the type of node. The most basic C++ classes are OR-nodes and AND-nodes;

then there are several more specialized subclasses of these two basic types. Such

subclasses include the special OR-node that serves as the distinguished root node

for the query form, internal relations AND-nodes, external relations AND-nodes,

etc.

And/OR graph. For a generic OR node corresponding to a derived relation, the

‘GetTuple’ interface merely issues ‘GetTuple’ calls to its children (AND nodes).

Each successful invocation automatically instantiates the variables of both the child

(AND node) and the parent (OR node). Upon backtracking, the last AND node

which was successfully executed is executed again. The ‘GetTuple’ on an OR node

fails when its last AND node child fails.

The Dataflow points represent different entries into the AND/OR nodes, each

entry corresponding to a different state of the computation. The dataflow points

associated with each node are shown in Table 1 (observe their similarity to ports in

Byrd’s Prolog execution model (Byrd, 1980)).

A dataflow point of a node can be directed to a dataflow point of a different

node by a dataflow destination. The entry destination (e dest) of a given node

is the dataflow point to which its entry point is directed. Similarly, backtrack

(b dest), success (s dest), and fail destinations (f dest) can be defined. The dataflow

destinations represent logical operations between the nodes involved; for example

a join or union of the two nodes. The dataflow points and destinations of a node

describe how the tuples of that node are combined with tuples from other nodes

(but not how those tuples are generated).

2 Similar to a C++ virtual function.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

82 F. Arni et al.

Table 1. Dataflow points associated with each node

Dataflow Point State of Computation

entry e dest getting first tuple of node

backtrack b dest getting next tuple of node

success s dest a tuple has been generated

fail f dest no more tuples can be generated

To obtain the first tuple of an OR node we get the first tuple of its first child

AND node. To obtain the next tuple from an OR node we request it from the AND

node that generated the previous tuple. Observe that the currently ‘active’ AND

node must be determined at run-time. When no more tuples can be generated for a

given AND node, then we go to the next AND node, till the last child AND node

is reached. (At this point no more tuples can be generated for the OR node.) Thus,

we have:

OR nodes: e dest: the e dest of the first child AND-node

b dest: the b dest of the “active” child AND node

f dest: if node is first OR node in rule

then the f dest point of parent AND node

else the b dest of previous OR node

s dest: if node is last OR node in a rule

then the s dest of parent AND node

else the e dest of next OR node.

The execution of an AND node is conceptually less complicated. Intuitively, the

execution corresponds to a nested loop, where, for each tuple of the first OR node,

we generate all matching tuples from the next OR node. This continues until we

reach the last OR node. Thus, when generating the next tuple of an AND node,

we generate the next matching tuple from the last OR node. If there are no more

matching tuples, we generate the next tuple from the previous OR node. When there

are no more tuples to be generated by the first OR node, we can generate no more

tuples for the AND node. Thus we have:

AND nodes: e dest: the e dest of first OR child

b dest: the b dest of last OR child

f dest: if node is last AND child

then f dest of parent OR node

else e dest of next AND node

s dest: s dest of parent OR node.

Given a query, the LDL++ system first finds the appropriate LAM graph for

the matching query form, then stores any constant being passed to the query form

by initializing the variables attached to the root node of the LAM graph. Finally,

the system begins the execution by repeatedly calling the ‘GetTuple’ method on the

root of this graph. When the call fails the execution is complete.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 83

Step 1. Move the cursor Cj to the next tuple of R, and consume the tuple.

Step 2. If Step 1 fails (thus, Cj is the last tuple of R), check the fixpoint flag F .

Step 3. If the fixpoint is reached, return failure.

Step 4. If the fixpoint is not reached, call the current rule to generate a new tuple.

Step 5. If a new tuple is generated, add it to the relation R, advance Cj and return the

tuple.

Step 6. Otherwise, repeat Step 2.

Fig. 2. Lazy fixpoint producer.

Lazy Evaluation of Fixpoints. LDL++ adopts a lazy evaluation approach (pipelin-

ing) as its primary execution model, which is naturally supported by the AND/OR

graph described above. This model is also supported through the lazy evaluation

of fixpoints. The traditional implementation of fixpoints (Ullman, 1989; Zaniolo

et al., 1997) assumes an eager computation, where new tuples are generated until

the fixpoint is reached. LDL++ instead supports lazy computation where the

recursive rules produce new tuples only in response to the goal that, as a consumer,

calls the recursive predicate. Multiple consumers can be served by one producer,

since each consumer j uses a separate cursor Cj to access the relation R written by

the producer. Whenever j needs a new tuple, it proceeds as shown in figure 2.

A limitation of pipelining is that the internal state of each node must be kept

for computation to resume where the last call left off. This creates a problem when

several goals call the same predicate (i.e. the same subtree in the PCG is shared).

Multiple invocations of a shared node can interfere with each other (non-reentrant

code). Solutions to this problem include (i) using a stack as in Prolog, and (ii)

duplicating the source code as in the LDL system – thus ensuring that the PCG

is a tree, rather than a DAG (Chimenti et al., 1990). In the LDL++ system, we

instead use the lazy producer approach described above for situations where the

calling goals have no bound argument. If there are bound arguments in consuming

predicates we duplicate the node. However, since each node is implemented as a

C++ class, we simply generate multiple instances of this class, i.e. we duplicate the

data but still share the code.

Intelligent Backtracking. Pipelining makes it easy to implement optimizations such

as existential optimization and intelligent backtracking (Chimenti et al., 1990). Take

for instance the following example:

Example 3.1

Intelligent Backtracking

query3(A, B)← b1(A), p(A, B), b2(A).

Take the situation where the first A-value generated by b1 is passed to p(A, B),

which succeeds and passes the value of A to b2. If the first call to this third goal fails,

there is no point in going back to p, since this can only return a new value for B.

Instead, we have to jump back to b1 for a new value of A. In an eager approach, all

the B-values corresponding to each A are computed, even when they cannot satisfy b2.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

84 F. Arni et al.

Similar optimizations were also supported in LDL (Chimenti et al., 1990), but

with various limitations, e.g. existential optimization was not applied to recursive

predicates, since these were not pipelined. In LDL++, the techniques are applied

uniformly, since pipelining is now used in the computation of all predicates, including

recursive ones.

3.3 External databases

A most useful feature of the LDL++ system is that it supports convenient and

efficient access to external databases. As shown in figure 1, the External Database

Interface (EDI) provides the capability to interact with external databases. The

system is equipped with a generic SQL interface as well as an object-oriented design

that allows easy access to external database systems from different vendors. To link

the system with a specific external database, it is only necessary to write a small

amount of code to implement vendor-specific drivers to handle data conversion and

local SQL dialects. The current LDL++ system can link directly with Sybase,

Oracle, DB2 and indirectly with other databases via JDBC3.

The rules in a program make no distinction between internal and external relations.

Relations from external SQL databases are declared in the LDL++ schema just

like internal relations, with the additional specification of the type and the name

of the SQL server holding the data. As a result, these external resources are

transparent to the inference engine, and applications can access different databases

without changes. The EDI can also access data stored in files.

The following example shows the LDL++ schema declarations used to access

an external relation employee in the database payroll running on the server

sybase tarski.

Example 3.2

Schema Declaration to external Sybase server.

database({

sybase::employee(NAME:char(30),SALARY:int, MANAGER:char(30))

from sybase_tarski

use payroll

user_name ’john’

application_name ’downsizing’

interface_filename ’/tmp/ldl++/demo/interfaces’

password nhoj

}).

TheLDL++ system generates SQL queries that off-loads to the external database

server the computation of (i) the join, select, project queries corresponding to positive

rule goals, (ii) the set differences corresponding to the negated goals, and (iii) the

aggregate operations specified in the heads of the rules.

3 Sybase is a trademark of Sybase Inc., Oracle is a trademark of Oracle Inc., DB2 is a trademark of
IBM Inc.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 85

In the following example the rule defines expensive employees as those who make

over 75,000 and more than their managers:

Example 3.3

SQL Generation

expensive_employee(Name) <-

employee(Name, Salary1, Manager),

Salary1 > 75000,

employee(Manager, Salary2, _),

Salary1 > Salary2.

The LDL++ compiler collapses all the goals of this rule and transforms it into

the following SQL node:

expensive_employee(Name) <- sql_node(Name).

where sql node denotes the following SQL query sent to external database server:

SELECT employee_0.NAME

FROM employee employee_0, employee employee_1

WHERE employee_0.SALARY > 75000 AND

employee_1.NAME = employee_0.MANAGER AND

employee_0.SALARY > employee_1.SALARY

Consequently, access to the external database via LDL++ is as efficient as for

queries written directly in SQL. Rules with negated goals are also supported and

implemented via the NOT EXIST construct of SQL. The LDL++ SQL interface

also supports updates to external databases, including set-oriented updates with

qualification conditions. Updates to external relations follow the same syntax and

semantics as the updates to local relations. The execution of each query form is

viewed as a new transaction: either it reaches its commit point or the transaction is

aborted.

To better support middleware applications, the coupling of LDL++ with exter-

nal databases was further enhanced as follows:

• Literal collapsing: the goals in the body of a rule are reordered to ensure that

several goals using database relations can now be supported as a single SQL

subquery to be offloaded to the DBMS.

• Rule compression: to offload more complex and powerful queries the remote

database, literals from multiple levels of rules are combined and the rules are

compressed vertically.

• Aggregates: rules that contain standard SQL aggregates in their heads can

also be offloaded to the remote SQL system.

3.4 Procedural language interface

As shown in figure 1, the LDL++ system is designed to achieve an open architec-

ture where links with procedural languages, such C/C++, can be established in two

ways:

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

86 F. Arni et al.

• via the Application Programming Interface (API) which allows applications

to drive the system; and

• via the External Predicate Manager which allows C/C++ functions to be

imported into the inference engine as external predicates.

Via the API, any C/C++ routine can call the LDL++ inference engine. The

API provides a set of functions that enable applications to instruct the LDL++

engine to load a schema, load rules, compile query forms, send queries and retrieve

results.

Via the external predicate manager, function defined in C/C++ can be imported

into LDL++ and treated as logical predicates callable as rule goals. A library

of C/C++ functions is also provided to facilitate the manipulation of internal

LDL++ objects, and the return of multiple answers by the external functions.

Therefore, external functions can have the same behavior as internal predicates in

all aspects, including flow of control and backtracking. Details on these interfaces

can be found in Zaniolo et al. (1998).

4 Applications

The deployment of the LDL and LDL++ prototypes in various real-life ap-

plications have much contributed to understanding the advantages and limitations

of deductive databases in key application domains (Tsur, 1990a, 1990b). Moreover,

this experience with application problems, has greatly influenced the design of the

LDL++ system and its successive improvements.

Recursive Queries. Our first focus was to compute transitive closures and to solve

various graph problems requiring recursive queries, such as Bill-of-Materials (Zan-

iolo et al., 1997). Unfortunately, many of these applications also require that set-

aggregates, such as counts and minima, be computed during the recursive traversal

of the graph. Therefore, these applications could not be expressed in LDL which

only supported stratified semantics, and thus disallowed the use of negation and ag-

gregation within recursive cliques. Going beyond stratification thus became a major

design objective for LDL++.

Rapid Prototyping of Information Systems. Rapid prototyping from E-R specifica-

tions has frequently been suggested as the solution for the productivity bottleneck

in information system design. Deductive databases provide a rule-based language

for encoding executable specifications, that is preferable to Prolog and 4GL sys-

tems used in the past, because their completely declarative semantics provides a

better basis for specifications and formal methods. Indeed, LDL proved to be the

tool of choice in the rapid Prototyping of Information Systems in conjunction with a

structured-design methodology called POS (Process, Object and State) (Ackley et al.,

1990; Tryon, 1991). Our proof-of-concept experiment confirmed the great potential

of deductive databases for the rapid prototyping of information systems; but this

also showed the need for a richer environment that also supports prototyping of

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 87

graphical interfaces, and the use of E-R based CASE tools. A large investment in

producing such tools is probably needed before this application area can produce a

commercial success for deductive databases.

Middleware. At MCC,LDL++ was used in the CARNOT/INFOSLEUTH project

to support semantic agents that carry out distributed, coordinated queries over a

network of databases (Ong et al., 1995). In particular, LDL++ was used to imple-

ment the ontology-driven mapping between different schemas; the main functions

performed by LDL++ include (i) transforming conceptual requests by users into

a collection of cooperating queries, (ii) performing the needed data conversion, and

(iii) offloading to SQL statements executable on local schemas (for both relational

and O-O databases).

Scientific Databases. TheLDL++ system provided a sound environment on which

to experiment with next-generation database applications, e.g. to support domain

science research, where complex data objects and novel query and inferencing

capabilities are required.

A first area of interest was molecular biology, where several pilot applications

relating to the Human Genome initiative (Erickson, 1992) were developed (Overbeek

et al., 1990; Tsur et al., 1990). LDL++ rules were also used to model and support

taxonomies and concepts from the biological domain, and to bridge the gap between

high-level scientific models and low-level experimental data when searching and

retrieving domain information (Tsur, 1990b).

A second research area involves geophysical databases for atmospheric and cli-

matic studies (Muntz et al., 1995). For instance, there is a need for detecting and

tracking over time and space the evolution of synoptic weather patterns, such as

cyclones. The use of LDL++ afforded the rapid development of queries requiring

sophisticated spatio-temporal reasoning on the geographical database. This first

prototype was then modified to cope with the large volume of data required, by

off-loading much of the search work to the underlying database. Special constructs

and operators were also added to express cyclone queries (Muntz et al., 1995).

Knowledge Discovery and Decision Support Applications. The potential of the

LDL++ technology in this important application area was clear from the start

(Naqviand Tsur, 1989), when our efforts concentrated on providing the analyst with

powerful tools for the verification and refinement of scientific hypotheses (Tsur,

1990a). In our early experiments, the expert would write complex verification rules

that were then applied to the data.LDL++ proved well-suited for the rapid proto-

typing of these rules, yielding what became known as the ‘data dredging’ paradigm

(Tsur, 1990a).

A more flexible methodology was later developed combining the deductive rules

with inductive tools, such as classifiers or Bayesian estimation techniques. A proto-

type of a system combining both the deductive and inductive methods is the

‘Knowledge Miner’ (Shen et al., 1994), which was used in the discovery of rules from

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

88 F. Arni et al.

a database of chemical process data; LDL++ meta predicates proved very useful

in this experiment (Shen et al., 1996).

Other experiments demonstrated the effectiveness of the system in performing

important auxiliary tasks, such as data cleaning (Shaw et al., 1993; Sheth et al.,

1995). In these applications, the declarative power of LDL++ is used to specify

the rules that define correct data. These allow record-by-record verification of data

for correctness but also the identification of sets of records, whose combination

violates the integrity of the data. Finally, the rules are used to clean (i.e. correct)

inconsistent data. This capability can either be used prior to the loading of data

into the database, or during the updating of the data after loading. This early

investigations paved the way for a major research project discussed next focusing

on using LDL++ in datamining applications.

Developing Data Mining Applications. The results of extensive experiences with an

LDL++ based environment for knowledge discovery were reported in Giannotti et

al. (1999) and Bonchi et al. (1999). The first study (Giannotti et al., 1999) describes

the experience with a fraud detection application, while the second one reports on a

marketing application using market basket analysis techniques (Bonchi et al., 1999).

In both studies, LDL++ proved effective at supporting the many diverse steps in-

volved in the KDD process. In Bonchi et al. (1999), the authors explain the rationale

for their approach and the reasons for their success, by observing that the process

of making decisions requires the integration of two kinds of activities: (i) knowledge

acquisition from data (inductive reasoning), and (ii) deductive reasoning about the

knowledge thus induced, using expert rules that characterize the specific business do-

main. Activity (i) relies mostly on datamining functions and algorithms that extract

implicit knowledge from raw data by performing aggregation and statistical analysis

on the database. A database-oriented rule-based system, such as LDL++, is effec-

tive at driving and integrating the different tasks involved in (i) and very effective in

activity (ii) where the results of task (i) are refined, interpreted and integrated with

domain knowledge and business rules characterizing the specific application.

For instance, association rules derived from market basket analysis are often too

low-level to be directly used for marketing decisions. Indeed, market analysts seek

answers to higher-level questions, such as “Is the supermarket assortment adequate

for the company’s target customer class?” or “Is a promotional campaign effective in

establishing a desired purchasing habit in the target class of customers?”.LDL++

deductive rules were used in Bonchi et al. (1999) to drive and control the overall

discovery process and to refine the raw association rules produced by datamining

algorithms into knowledge of interest to the business. For instance,LDL++ would

be used to express queries such as “Which rules survive/decay as one moves up

or down the product hierarchy?” or “What rules have been effected by the recent

promotions” (Bonchi et al., 1999).

The most useful properties of LDL++ mentioned in these studies (Giannotti

et al., 1999; Bonchi et al., 1999; Giannotti et al., 2001a) were flexibility, capability to

adapt to the analyst’s needs, and modularity, i.e. the ability to clearly separate the

different functional components, and provide simple interfaces for their integration.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 89

In particular, the user defined aggregates described in section 2.2 played a pivotal

roles in these datamining applications since datamining functions (performing the

inductive tasks) were modelled as user-defined aggregates which could then be con-

veniently invoked by the LDL++ rules performing the deductive tasks (Giannotti

et al., 2001a). The performance and scalability challenge was then addressed by en-

coding these user-defined aggregates by means of LDL++ procedural extensions,

and, for database resident data, offloading critical tasks to the database system

containing the data (Giannotti et al., 2001a).

Lessons Learned. The original motivations for the development of the original

LDL system was the desire to extend relational query languages to support the

development of complete applications, thus eliminating the impedance mismatch

from which applications using embedded SQL are now suffering. In particular,

data intensive expert systems were the intended ‘killer’ applications for LDL.

It was believed that such applications call for combining databases and logic

programming into a rule-based language capable of expressing reasoning, knowledge

representation, and database queries. While the original application area failed to

generate much commercial demand, other very promising areas emerged since then.

Indeed the success of LDL++ in several areas is remarkable, considering that

LDL++ is suffering from the combined drawbacks of (i) being a research prototype

(rather than a supported product), and yet (ii) being subject to severe licensing

limitations. Unless the situation changes and these two handicaps are removed,

the only opportunities for commercial deployments will come from influencing

other systems; i.e. from system that borrow the LDL++ technology to gain

an edge in advanced application areas, such as datamining and decision support

systems.

5 Conclusion

Among the many remarkable projects and prototypes (Ramakrishnan and Ull-

man, 1995) developed in the field of logic and databases (Minker, 1996), the

LDL/LDL++ project occupies a prominent position because the level and

duration of its research endeavor, which brought together theory, systems, and ap-

plications. By all objective measures, the LDL++ project succeeded in its research

objectives. In particular, the nondeterministic and nonmonotonic constructs now

supported in LDL++ take declarative logic-based semantics well beyond stratifi-

cation in terms of power and expressivity (and stratified negation is already more

powerful than SLD-NF). The LDL++ system supports well the language and its

applications. In particular, the pipelined execution model dovetails with constructs

such as choice and aggregates (and incremental answer generation), while the sys-

tem’s open architecture supports tight coupling with external databases, JDBC, and

other procedural languages. The merits of the LDL++ technology, and there-

fore of deductive databases in the large, have been demonstrated in several pilot

applications – particularly datamining applications.

Although there is no current plan to develop LDL++ commercially, there

remain several exciting opportunities to transfer its logic-oriented technology to

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

90 F. Arni et al.

related fields. For instance, the new query and data manipulation languages for web

documents, particularly XML documents, bear affinity to logic-based rule languages.

Another is the extension to SQL databases of the new constructs and non-stratified

semantics developed forLDL++: in fact, the use of monotonic aggregates in SQL

has already been explored in Wang and Zaniolo (2000).

Appendix I: Aggregates in logic

The expressive power of choice can be used to provide a formal definition of

aggregates in logic. Say for instance that we want to define the aggregate avg

that returns the average of all Y-values that satisfy d(Y). By the notation used in

LDL (Chimenti et al., 1990), CORAL (Ramakrishnan et al., 1993) and LDL++,

this computation can be specified by the following rule:

p(avg〈Y〉)← d(Y).

A logic-based equivalent for this rule is

p(Y)← results(avg, Y).

where results(avg, Y) is derived from d(Y) by (i) the chain rules, (ii) the cagr rules

and (iii) the return rules.

The chain rules are those of Example 2.3 that place the elements of d(Y) into an

order-inducing chain.

chain(nil, nil).

chain(X, Y)← chain(, X), d(Y),

choice((X), (Y)), choice((Y), (X)).

Now, we can define the cagr rules to perform the inductive computation by calling

the single and multi rules as follows:

cagr(AgName, Y, New)← chain(nil, Y), Y 6= nil, single(avg, Y, New).

cagr(AgName, Y2, New)← chain(Y1, Y2), cagr(AgName, Y1, Old),

multi(AgName, Y2, Old, New).

Thus, the cagr rules are used to memorize the previous results, and to apply (i)

single to the first element of d(Y) (i.e. for the pattern chain(nil, Y)) and (ii) multi

to the successive elements. The return rules are as follows:

results(AgName, Yield)← chain(Y1, Y2), cagr(AgName, Y1, Old),

ereturn(AgName, Y2, Old, Yield).

results(AgName, Yield)← chain(X, Y),¬chain(Y,),

cagr(AgName, Y, Old),

freturn(AgName, Y, Old, Yield).

Therefore, we first compute chain, and then cagr that applies the single and

multi rules to every element in the chain. Concurrently, the first results rule

produces all the results that can be generated by the application of the ereturn

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 91

rules to the element in the chain. The final returns are instead computed by the

second results rule that calls on the freturn rules once the last element in the

chain (i.e. the element without successors) is detected. The second results rule is

the only rule using negation; in the absence of freturn this rule can be removed

yielding a positive choice program that is monotonic by Theorem 2. Thus, every

aggregate with only early returns is monotonic with respect to set containment and

can be used freely in recursive rules.

Acknowledgements

The authors are grateful to the referees for many suggested improvements. This

work was partially supported by NSF Grant IIS-0070135.

References

Abiteboul, S., Hull, R. and Vianu, V. (1995) Foundations of Databases. Addison-Wesley,

Reading, MA, 1995.

Ackley, D., Carasik, R. P., Soon, T., Tyron, D., Tsou, E., Tsur, S. and Zaniolo, C. (1990) System

analysis for deductive database environments: an enhanced role for aggregate entities. Proc.

9th Int. Conference on Entity-Relationship Approach, pp. 129–142. Lausanne, Switzerland.

Arni, N., Greco, S. and Saccà, D. (1996) Matching of bounded set terms in the logic language

LDL++. J. Logic Program 27(1), 73–87.

Bancilhon, F., Maier D., Sagiv, Y. and Ullman, J. (1986) Magic sets and other strange

ways to implement logic programs. Proc. SIGACT-SIGMOD Principles of Database Systems

Conference (PODS), pp. 1–16.

Baudinet, M., Chomicki, J. and Wolper, P. (1994) Temporal deductive databases. In: Tansel,

A. U., Clifford, J., Gadia, S. K., Jajodia, S. A. and Snodgrass, R. T. (eds.), Temporal

Databases: Theory, Design, and Implementation, pp. 294–320. Benjamin/Cummings.

Bonchi, F., Giannotti, F., Mainetto, G. and Pedreschi, D. (1999) Applications of LDL++

to datamining: a classification-based methodology for planning audit strategies in fraud

detection. Proc. 5th ACM SIGKDD Int. Conference on Knowledge Discovery and Data

Mining (KDD’99), pp. 175–184. ACM.

Brogi, A., Subrahmanian, V. S. and Zaniolo, C. (1997) The logic of totally and partially

ordered plans: a deductive database approach. Ann. Math. Artif. Intell. 19(1–2), 27–58.

Byrd, L. (1980) Understanding the control flow of Prolog programs. Proc. Logic Programming

Workshop, pp. 127–138. Debrecen, Hungary.

Chimenti, D., Gamboa, R. and Krishnamurthy, R. (1989) Abstract machine for LDL, Proc.

EDBT Conference, pp. 271–293.

Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S. A., Tsur, S. and Zaniolo, C. (1990)

The LDL system prototype. IEEE J. Data & Knowl. Eng. 2(1), 76–90.

Erickson, D. (1992) Hacking the genome. Sci. Am. 266(4), 128–137.

Finkelstein, S. J., Mattos, N., Mumick, I. and Pirahesh, J. (1996) Expressing Recursive Queries

in SQL. ISO WG3 report X3H2-96-075, March.

Gelfond, M. and Lifschitz, V. (1988) The stable model semantics of logic programming. Proc.

5th Int. Conference on Logic Programming, pp. 1070–1080.

Giannotti, F., Pedreschi, D., Saccà, D. and Zaniolo, C. (1991) Nondeterminism in deductive

databases. Proc. 2nd Int. Conference on Deductive and Object-Oriented Databases, pp. 129–

141.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

92 F. Arni et al.

Giannotti, F., Manco, G., Nanni, M. and Pedreschi, D. (1998) On the effective semantics of

nondeterministic, nonmonotonic, temporal logic databases. Computer Science Logic, 12th

International Workshop (CSL 1998): Lecture Notes in Computer Science 1584, pp. 58–72.

Springer-Verlag.

Giannotti, F., Manco, G., Pedreschi, D. and Turini, F. (1999) Experiences with a logic-based

knowledge discovery support environment, ACM SIGMOD Workshop on Research Issues

in Data Mining and Knowledge Discovery (DMKD’99), Philadelphia, USA.

Giannotti, F., Manco, G. and Turini, F. (2001) Specifying mining algorithms with iterative

user-defined aggregates: a case study. Principles of Data Mining and Knowledge Discovery,

5th European Conference (PKDD 2001), pp. 128–139.

Giannotti, F., Pedreschi, D. and Zaniolo, C. (2001) Semantics and expressive power of non-

deterministic constructs in deductive databases. J. Comput. & Syst. Sci. 62(1), 15–42.

Greco, S. and Saccà, D. (1997) NP Optimization Pproblems in Datalog. Logic Programming,

Proc. 1997 International Symposium (ILPS 1997), pp. 181–195. Port Jefferson, Long Island,

NY. MIT Press.

Han, J. and Kamber, M. (2001) Data Mining, Concepts and Techniques, Morgan Kaufman.

Hellerstein, J. M., Haas, P. J. and Wang., H. J. (1997) Online aggregation. Proc. ACM–

SIGMOD Conference on Management of Data, pp. 171–182.

Kemp, D., Ramamohanarao, K. and Stuckey, P. (1995) ELS programs and the efficient

evaluation of non-stratified programs by transformation to ELS. In: Ling, T. W., Mendelzon,

A. O. and Vieille, L. (eds.), Proc. 4th Int. Conference on Deductive and Object-Oriented

Databases (DOOD’95), pp. 91–108. Springer-Verlag.

Kemp, D. and Ramamohanarao, K. (1998) Efficient recursive aggregation and negation in

deductive databases. Trans. Knowl. & Data Eng. 10(5), 727–745.

Krishnamurthy, R. and Naqvi, S. (1988) Non-deterministic choice in Datalog. Proc. 3rd

International Conference on Data and Knowledge Bases.

Lausen, G., Ludäscher, B. and May, W. (1998) On active deductive databases: the Statelog

approach. In: Freitag, B., Decker, H., Kifer, M. and Voronkov, A. (eds.), Transactions and

Change in Logic Databases: Lecture Notes in Computer Science 1472, pp. 69–106. Springer-

Verlag.

Lausen, G., Ludäscher, B. and May, W. (1998) On logical foundations of active databases.

In: Chomicki, J. and Saake, G. (eds.), Logics for Databases and Information Systems,

pp. 375–398. Kluwer Academic.

Marek, W. and Truszczynski, M. (1991) Autoepistemic logic. J. ACM, 38(3), 588–619.

Minker, J. (1996) Logic and databases: a 20 year retrospective. In: Pedreschi, D. and

Zaniolo, C. (eds.), Proc. International Workshop on Logic in Databases (LID’96), pp. 5–52.

Springer-Verlag.

Muntz, R. R., Shek, E. C. and Zaniolo, C. (1995) Using LDL++ for spatio-temporal rea-

soning in atmospheric science. In: Ramakrishan, R. (ed.), Applications of Logic Databases,

pp. 101–118. Kluwer.

Naqvi, S. and Tsur, S. (1989) A Logical Language for Data and Knowledge Bases. W. H.

Freeman.

Ong, K., Arni, N., Tomlinson, C., Unnikrishnan, C. and Woelk, D. (1995) A deductive

database solution to intelligent information retrieval from legacy databases. Proc. 4th Int.

Conference on Database Systems for Advanced Applications (DASFAA 1995), pp. 172–179.

Overbeek, R., Price, M. and Tsur, S. (1990) Automated Interpretation of Genetic Sequencing

Gels. MCC Technical Report.

Phipps, G., Derr, M. and Ross, K. (1991) Glue-Nail: a deductive database system. Proc. 1991

ACM–SIGMOD Conference on Management of Data, pp. 308–317.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

The deductive database system LDL++ 93

Przymusinski, T. (1988) On the declarative and procedural semantics of stratified deductive

databases. In: Minker, J. (ed.), Foundations of Deductive Databases and Logic Programming,

pp. 193–216. Morgan Kaufman.

Ramakrishnan, R., Srivastava, D. and Sudarshan, S. (1992) CORAL – Control, Relations

and Logic. Proc. 18th VLDB Conference, pp. 238–250. Morgan Kaufmann.

Ramakrishnan, R., Srivastava, D., Sudarshan, S. and Seshadri, P. (1993) Implementation of

the CORAL deductive database system. Proc. International ACM SIGMOD Conference on

Management of Data, pp. 167–176.

Ramakrishnan, R. and Ullman, J. D. (1995) A survey of deductive database systems. J. Logic

Program. 23(2), 125–149.

Ross, K. A. (1994) Modular stratification and magic sets for Datalog programs with negation.

J. ACM, 41(6), 1216–1266.

Ross, K. A. and Sagiv, Y. (1997) Monotonic aggregation in deductive database. J. Comput.

& Syst. Sci. 54(1), 79–97.

Saccà, D. and Zaniolo, C. (1990) Stable models and nondeterminism in logic programs with

negation. Proc. 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, pp. 205–218.

Schlipf, J. S. (1993) A survey of complexity and undecidability results in logic program-

ming. Proc. Workshop on Structural Complexity and Recursion-Theoretic Methods in Logic

Programming, pp. 143–164.

Shaw, S., Foggiato-Bish, L., Garcia, I., Tillman, G., Tryon, D., Wood, W. and Zaniolo C.

(1993) Improving data quality viaLDL++. ILP’93 Workshop on Programming with Logic

Databases, Vancouver, Canada.

Shen, W., Mitbander, W., Ong, K. and Zaniolo, C. (1994) Using metaqueries to integrate

inductive learning and deductive database technology. KDD Workshop 1994: Knowledge

Discovery from Databases, pp. 335–346. Seattle, WA. AAAI Press.

Shen, W., Ong, K., Mitbander, B. G. and Zaniolo, C. (1996) Metaqueries for data mining.

In: Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R. (eds.), Advances

in Knowledge Discovery and Data Mining, pp. 201–217. MIT Press.

Sheth, A. P., Wood, C. and Kashyap, V. (1995) Q-Data: using deductive database technology

to improve data quality. In: Ramakrishnan, R. (ed.), Applications of Logic Databases,

pp. 23–56. Kluwer.

Shmueli, O., Tsur, S. and Zaniolo, C. (1988) Rewriting of rules containing set terms in a logic

database language (LDL). Proc. 7th ACM Symposium on Principles of Database Systems,

pp. 15–28.

Van Gelder, A. (1993) Foundations of aggregations in deductive databases. In: Ceri, S.,

Tanaka, K. and Tsur, S. (eds.), Proc. Int. Conf. On Deductive and Object-Oriented Databases

(DOOD’93), pp. 13–34. Springer-Verlag.

Tryon, D. (1991) Deductive computing: living in the future. Proc. Monterey Software Confer-

ence.

Tsur, S., Olken, F. and Naor, D. (1990) Deductive databases for genomic mapping. Proc.

NACLP90 Workshop on Deductive Databases, Austin, TX.

Tsur, S. (1990) Deductive databases in action. Proc. 10th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pp. 205–218.

Tsur S. (1990) Data dredging. Data Eng. 13(4), 58–63.

Ullman, J. D. (1989) Database and Knowledge-Based Systems, Vols. I and II. Computer Science

Press, Rockville, MD.

Wang, H. and Zaniolo, C. (2000) User defined aggregates in object-relational systems. Proc.

16th International Conference on Data Engineering, ICDE’2000, pp. 135–144. IEEE.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

94 F. Arni et al.

Zaniolo, C., Arni, N. and Ong, K. (1993) Negation and aggregates in recursive rules: the

LDL++ approach. Proc. 3rd Int. Conference on Deductive and Object-Oriented Databases

(DOOD 1993), pp. 204–221. Springer-Verlag.

Zaniolo, C. (1994) A unified semantics for active and deductive databases. In: Paton, N. W. and

Williams, H. (eds.), Proc. Workshop on Rules in Database Systems (RIDS93), pp. 271–287.

Springer-Verlag.

Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R. T., Subrahmanian, V. S. and Zicari, R.

(1997) Advanced Database Systems, Morgan Kaufmann.

Zaniolo, C. (1997) The nonmonotonic semantics of active rules in deductive databases. Proc.

5th Int. Conference on Deductive and Object-Oriented Databases (DOOD 1997), pp. 265–282.

Springer-Verlag.

Zaniolo, C., Tsur, S. and Wang, H. (1998) LDL++ Documentation and Web Demo.

http://www.cs.ucla.edu/ldl.

Zaniolo, C. and Wang, H. (1999) Logic-based user-defined aggregates for the next generation

of database systems. In: Apt, K. R., Marek, V., Truszczynski, M. and Warren, D. S.

(eds.), The Logic Programming Paradigm: Current Trends and Future Directions, pp. 401–

424. Springer-Verlag.

https://doi.org/10.1017/S1471068402001515 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001515

