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We computationally investigate coupling of a nonlinear rotational dissipative element
to a sprung circular cylinder allowed to undergo transverse vortex-induced vibration
(VIV) in an incompressible flow. The dissipative element is a ‘nonlinear energy sink’
(NES), consisting of a mass rotating at fixed radius about the cylinder axis and a
linear viscous damper that dissipates energy from the motion of the rotating mass.
We consider the Reynolds number range 20 6 Re 6 120, with Re based on cylinder
diameter and free-stream velocity, and the cylinder restricted to rectilinear motion
transverse to the mean flow. Interaction of this NES with the flow is mediated
by the cylinder, whose rectilinear motion is mechanically linked to rotational
motion of the NES mass through nonlinear inertial coupling. The rotational NES
provides significant ‘passive’ suppression of VIV. Beyond suppression however, the
rotational NES gives rise to a range of qualitatively new behaviours not found in
transverse VIV of a sprung cylinder without an NES, or one with a ‘rectilinear
NES’, considered previously. Specifically, the NES can either stabilize or destabilize
the steady, symmetric, motionless-cylinder solution and can induce conditions under
which suppression of VIV (and concomitant reduction in lift and drag) is accompanied
by a greatly elongated region of attached vorticity in the wake, as well as conditions
in which the cylinder motion and flow are temporally chaotic at relatively low Re.
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1. Introduction
Vortex-induced vibration (VIV) of a rigid cylinder is of practical importance in a

range of applications involving flow past bluff bodies (Bearman 1984). Considerable
effort has been devoted to active and passive VIV suppression, and to understanding
the fundamental flow physics of how the motion of a linearly sprung cylinder is
coupled to the dynamics of the wake, including the alternate shedding of vortices
that gives rise to, and is modified by, the VIV. In addition to VIV suppression, there
is also active interest in harnessing VIV in marine, riverine and estuarine flows to
generate electrical power (Lee & Bernitsas 2011). Beyond these applications, VIV of
a circular cylinder has come to be the prototypical system for studying bluff-body
VIV. The case of greatest interest has been transverse VIV of a circular cylinder in
rectilinear motion perpendicular to the mean flow. Recent reviews have been provided
by Sarpkaya (2004), Williamson & Govardhan (2004), Gabbai & Benaroya (2005),
Bearman (2011) and Païdoussis, Price & de Langre (2011).

We have recently investigated (Tumkur et al. 2013) how transverse VIV of a
circular cylinder at and near Re=UD/ν= 100 (where U, D and ν are the free-stream
velocity, cylinder diameter and kinematic viscosity, respectively) restrained by a linear
spring can be suppressed by attachment of a ‘nonlinear energy sink’ (NES) consisting
of an essentially nonlinear spring (for which the force–displacement relation has
no term linear in displacement, and hence has no linearized natural frequency)
connecting the cylinder to a small mass from whose rectilinear motion, parallel to
the transverse motion of the cylinder, energy is extracted and dissipated by a linear
viscous damper. More generally, an NES is a dissipative attachment with strong (in
fact, non-linearizable) stiffness and/or inertial nonlinearity, which, as discussed below,
can passively absorb vibrational energy from the primary structure to which it is
attached over broad frequency and energy ranges. The resulting nonlinear energy
transfer from the structure to the NES has been dubbed ‘targeted energy transfer’
(TET), and consists of a nearly one-way (irreversible) transfer of energy from the
primary vibrating structure (in this case the cylinder) to the mass of the NES (Vakakis
et al. 2008), from which energy is dissipated, without ‘spreading back’ to the primary
system. The nonlinear mechanism responsible for TET is isolated, or cascades of,
transient resonance capture (Arnol’d 1988) realized over broad frequency and energy
ranges. As shown by Tumkur et al. (2013), TET to the rectilinear NES can effect
significant suppression of transverse VIV of a circular cylinder for small values of
the ratio of the NES mass per unit length to the cylinder mass per unit length.

Besides the ‘rectilinear NES’ considered by Tumkur et al. (2013), there are many
ways to passively affect VIV of a sprung cylinder by attaching ‘lumped’ masses
and dampers. Here, we investigate an approach considered in a finite-dimensional,
purely structural system by Gendelman et al. (2012), who showed that vibration of
a primary structure can be effectively suppressed using TET to a small mass, from
whose rotation at a fixed radius about an axis fixed in the primary structure, energy is
dissipated by a linear damper. The essential nonlinearity is due to inertial coupling of
rotation of the NES mass to rectilinear motion of the primary structure. As with the
rectilinear NES (Tumkur et al. 2013), a rotational NES can be placed within a hollow
cylinder or at one or both of a cylinder’s ends, allowing VIV modification with no
internal ‘plumbing’ (as required for approaches employing blowing and suction), and
without external geometric changes (i.e. shrouds, helical appendages, freely rotatable
plates or fairings) to the wetted surface. This, and the inherent attractiveness of a
passive approach (i.e. no need for a feedback control system, electronics or a power
supply), combine to make this a potentially attractive approach to VIV modification.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.504


198 R. K. R. Tumkur and others

The work of Tumkur et al. (2013) for a rectilinear NES, which also included results
for a ‘tuned mass’ linear proportional damper, dealt largely with suppressing VIV.
Here, for a rotational NES, we focus on how such an element gives rise to several
qualitatively different results for the flow, beyond VIV suppression. Specifically,
a rotational NES can lead to temporal chaos in both the cylinder motion and
flow at Reynolds numbers where flow past a fixed circular cylinder or NES-less
sprung cylinder is time periodic. A rotational NES can also give rise to considerable
elongation of the region of attached vorticity during each shedding cycle. Chaotic
response in the wake of an oscillating cylinder at relatively low Re has potential
application to enhancement of mixing and chemical reaction rates (see Deshmukh &
Vlachos 2005), and has been considered in the context of flow past a periodically
excited cylinder at higher Re by Karniadakis & Triantafyllou (1989), Batcho &
Karniadakis (1991) and Leontini, Thompson & Hourigan (2006). The capability of
this approach to enhance mixing and reaction rates in laminar flow, without forced
excitation, is potentially attractive. A second result is that a rotational NES can induce
VIV under conditions where an NES-less sprung cylinder does not undergo VIV.

While flow and the associated VIV in the laminar two-dimensional regime
are expected to differ from behaviour at higher Re, traditionally of interest in
applications (Anagnostopoulos & Bearman 1992), the laminar flow phenomena that
we investigate are of interest for two main reasons. First, at Re= 100, the flow can
be simulated without concern for the unresolved scales and attendant unmodelled
dynamics associated with simulations of turbulent flow. Second, as shown by Roshko
(1954), one notable feature of flow past a fixed cylinder is that the Strouhal number
St = fsD/U (a dimensionless shedding frequency, where fs is a properly defined
dimensional shedding frequency) maintains a nearly constant value (St= 0.19± 0.02)
over 102 6 Re 6 104, i.e. from the laminar two-dimensional regime well into the
turbulent regime. As discussed by Roshko and by Williamson (1996), significant
aspects of vortex shedding by a cylinder are qualitatively similar over wide ranges
of Re, including at least part of the laminar regime. Thus, there is reason to believe
that an understanding of the flow, of VIV and of approaches to modifying VIV at
Re= 100, will be useful or can be adapted for use at much higher Re.

The remainder of the paper is organized as follows. In § 2 we briefly describe the
physical model, governing equations and numerical methods. A stability boundary
is presented in § 3, followed by results for the dynamic response in § 4 and
characterization of the temporal chaos in § 5. In § 6, we show how an approximate
analysis of the system, and an ‘NES-induced mass’ concept can be used to explain
some of the results, and briefly discuss experimental realization. Some conclusions
are offered in § 7.

2. Physical model, governing equations and computational approach
2.1. Physical model and governing equations

The physical model is that of a Newtonian fluid with constant density ρf and
kinematic viscosity ν flowing with uniform and steady free-stream velocity Uex past
a rigid circular cylindrical surface of diameter D= 2R with generators parallel to the
z-axis. Rectilinear motion of the cylinder in the y-direction is driven by unsteady lift
due to vortex shedding asymmetric about any constant-y plane, and is restrained by a
linear spring. Flow past a motionless circular cylinder is known to be two-dimensional
for Re up to approximately 190 (Williamson & Roshko 1988), and we assume, as
have others (cf. Baek & Sung 2000), that the flow past an oscillating cylinder is also

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.504
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two-dimensional in the regime of interest. As the cylinder moves, so do its component
masses: a non-rotating stator with mass M̂stat per unit length; and a rotating part with
mass M̂rnes per unit length not symmetrically distributed about the translating cylinder
axis, about which it rotates at a fixed distance. Inertial coupling transfers energy from
the stator to the rotating mass, from whose motion it is extracted and dissipated by
a linear damper. We refer to the rotating mass and its damper as a ‘rotational NES’.

The flow is governed by the Navier–Stokes equations, written dimensionlessly in
terms of primitive variables as

∂v∗

∂τ
+ v∗ · ∇∗v∗ = −∇∗p∗ +

1
Re
∇
∗2

v∗, (2.1a)

∇
∗
· v∗ = 0, (2.1b)

subject to the boundary conditions

v∗|cyl =
dY∗1
dτ

ey (2.1c)

and

lim
r→∞

v∗ = ex, (2.1d)

where the dimensionless time is defined by τ = tU/D and we have scaled length
(including the cylinder displacement y1 = Y∗1 D), velocity (including the cylinder
velocity on the right-hand side of (2.1c)) and pressure by D, U and ρf U2/2,
respectively. Here, an asterisk denotes a dimensionless quantity.

A schematic of the rotational NES attached to the cylinder is shown in figure 1. The
coordinates x and y are referred to the centre of the undisplaced cylinder. Following
the model of Gendelman et al. (2012), we take the rotating mass to be concentrated at
a point or along a line a distance ro from the cylinder axis. (Experimental realization
for a rotating distributed mass is discussed in § 6.3.) The dimensional equations of
motion for the coupled cylinder–NES system shown in figure 1 are written as

(M̂stat + M̂rnes)
d2y1

dt2
+ K̂cyly1 = F̂L + M̂rnesro

d
dt

(
dθ
dt

sin θ
)
, (2.2a)

M̂rnesr2
o

d2θ

dt2
+ Ĉrnes

dθ
dt
= M̂rnesro

d2y1

dt2
sin θ, (2.2b)

where y1(t) is the cylinder displacement relative to its equilibrium position and θ(t) is
the angular position of the NES mass, increasing clockwise, with θ =π/2 being along
the positive x-axis. Here, M̂stat, M̂rnes and K̂cyl are the mass of the stator, the mass of
the rotating part of the NES and the stiffness of the linear spring, respectively, and
F̂L is the dimensional lift force

F̂L =

∫ 2π

0

[(
−p+ 2µ

∂vr

∂r

)
sin φ +µ

(
∂vφ

∂r
−
vφ

r
+

1
r
∂vr

∂φ

)
cos φ

]∣∣∣∣
R

R dφ (2.3)

each per unit length of cylinder, vr and vφ are the radial and azimuthal components of
the fluid velocity on the cylinder surface, respectively, and r and φ are the radial and
azimuthal coordinates, respectively. The damping of the rotational motion of the NES
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x

y

U

D

FIGURE 1. Cylinder in cross-flow with rotational NES. The rotational motion of the NES
mass (at a fixed radius r0, shown here for r0<D/2) is retarded by a linear viscous damper
(not shown). The ‘ground’ to which the spring connects the cylinder should not be thought
of as part of the boundary of the domain. The cylinder mass per unit length is defined
by M̂cyl = M̂stat + M̂rnes.

mass attributable to the linear viscous damper, per unit length of cylinder, is denoted
by Ĉrnes. The absence of a gravitational force acting on the NES mass is tantamount
to the cylinder axis being vertical.

Rotational motion of the NES mass is inertially coupled to transverse rectilinear
motion of the cylinder through the second term on the right-hand side of (2.2a)
and the right-hand side of (2.2b). For either of the two equilibrium solutions
(y1(t), θ(t)) = (0, 0) and (0, π), this coupling is essentially nonlinear, in the sense
that Taylor expansion of either inertial coupling term has no linear term. For these
two equilibria, the dynamics of this system is strongly nonlinear and the rotational
NES has no linear resonance. The absence of a linear term in these coupling terms,
and dissipation (provided here by the linear viscous damper), is the prerequisites for
TET (Vakakis et al. 2008) from the cylinder to the NES.

Defining m∗=ρb/ρf and the three NES parameters εp= M̂rnes/(M̂stat+ M̂rnes) (a mass
ratio), r̄o = ro/D and ζr = Ĉrnes/(ν r̄2

oM̂rnes) (a dimensionless damping coefficient), we
non-dimensionalize (2.2a) and (2.2b) to get

d2Y1

dτ 2
+ (2πf ∗n )

2Y1 =
2CL

πm∗
+ εpr̄o

d
dτ

(
dθ
dτ

sin θ
)
, (2.4a)

d2θ

dτ 2
+
ζr

Re
dθ
dτ
=

1
r̄o

d2Y1

dτ 2
sin θ, (2.4b)

where ρb= (M̂stat+ M̂rnes)/(πR2) is the mean density of the cylinder, the lift force per
unit length F̂L in (2.2a) has been non-dimensionalized in favour of a lift coefficient CL,
and we have dropped the asterisk for the dimensionless cylinder displacement, now
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x
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y

FIGURE 2. Computational domain.

denoted by Y1. We have defined the dimensionless natural frequency of the sprung
cylinder by

f ∗n
2
=

1
4π2

D2

U2

K̂cyl

M̂stat + M̂rnes

. (2.5)

We note that mechanical damping, parametrized by ζr, plays a rather different role
here than in other analyses of VIV (Blackburn & Henderson 1996; Leontini et al.
2006). In those cases, rectilinear motion of the cylinder is directly damped by a term
linearly proportional to dY1/dt in an equation analogous to (2.4a) so that in the heavily
damped limit, the cylinder motion is necessarily suppressed. For a cylinder with a
rotating NES, however, damping acts on, and suppresses, the rotation of the NES
mass. Thus, in the limit of large ζr in (2.4a), it is the rotation of the NES mass
that is suppressed, with the dynamics of the cylinder approaching that of ‘standard
VIV’ (i.e. a cylinder with no NES), in which case the NES extracts essentially no
kinetic energy from the rectilinear motion of the cylinder. Thus, very large values of
the damping parameter ζr correspond to essentially no NES-induced damping of the
rectilinear motion of the cylinder.

In everything that follows, m∗= 10, a value chosen to facilitate validation of results
by comparison to previous work. Except for one case discussed in § 4.1, the initial
NES angular displacement and velocity are θ(0)=π/2 and dθ(0)/dt= 0, respectively.
We take f ∗n =0.167 unless otherwise specified. We note that for m∗=10, the difference
between f ∗n and an ‘effective’ natural frequency accounting for added mass effects is
small.

2.2. Computational approach
Except as indicated below, the results shown were computed using the approach
discussed in detail by Tumkur et al. (2013). Briefly, we employ a time-dependent
annular domain (figure 2) whose cross-stream and streamwise extents are 24D
and 48D, respectively, and which deforms with cylinder motion. The centre of
the cylinder moves on a line 36D upstream from the outlet. At the inlet and
sidewall boundaries, the velocity is prescribed as its free-stream value. We prescribe
a stress-free condition at the outlet, and a no-slip condition on the cylinder. The
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Navier–Stokes equations are solved numerically in an arbitrary Lagrangian Eulerian
(ALE) framework, discussed in detail by Calderer & Masud (2010) and references
cited therein. The domain is discretized using a finite-element mesh, one element thick
in the spanwise direction, with 8261 brick elements, corresponding to 16 922 nodes.
The discretized Navier–Stokes equations are solved using the implicit second-order
accurate generalized-α scheme discussed by Jansen, Whiting & Hulbert (2000) for
first-order systems, in which the parameter ρ∞ is set to 0. The rigid-body equations
(2.4a) and (2.4b) and Navier–Stokes equations (2.1a) and (2.1b) are solved in a
staggered fashion as described by Tumkur et al. (2013). The rigid-body equations
are solved using the generalized-α scheme for second-order systems described by
Chung & Hulbert (1993), with ρ∞ = 0. To check whether the time step size was
sufficiently small to achieve temporal convergence (especially with respect to the
issue of fluid/structure interaction iteration), we needed to use a code that allows
reduction of the time step size without increasing spatial resolution. To that end, all
of the cases for which results are shown were recomputed using Nek5000 (Fischer,
Lottes & Kerkemeier 2008), a spectral-element code which allows the time step size
to be reduced without changing the spatial resolution (mesh and polynomial order). In
several cases, finite-element results could not be reproduced using the spectral-element
approach for the same values of Re,m∗, f ∗n , εp, ζr and r̄o. In those cases, very similar
results were obtained using the spectral-element approach for ‘nearby’ combinations
of the parameters. For these cases (figures 6, 7, 14 and 16), the results presented were
obtained for Nek5000. Spot checks showed that with the time step size (1τ = 10−3)

employed, no fluid–structure interaction iteration was necessary.
For cases in which the flow and rigid-body dynamics are chaotic, the details

of solutions are extremely sensitive not only to initial conditions but also to
computational parameters, such as spatial and temporal discretization, how iteration is
conducted at each time step and on how the (parallel) computation is divided among
processors. Detailed checks in selected cases show that the statistical properties
(e.g. Fourier spectra, wavelet transformations, fractal dimension) of the solutions and
the qualitative features (wake elongation, lift and drag reduction) we present are
insensitive to those parameters and processes.

When there is no NES, the problem reduces to the well-known ‘standard VIV case’
of an elastically restrained cylinder in cross-flow. We have used this case, and the
case of a fixed cylinder, to validate our finite-element code (Tumkur et al. 2013) and
our spectral-element code (Tumkur et al. 2017). For a fixed cylinder at Re = 100,
the spectral-element approach provides good convergence with respect to time step
size, domain size, number of mesh elements and polynomial order, as shown in
table S1, where the results of Henderson (1995) (including the unpublished results of
Henderson, cited by Shiels, Leonard & Roshko (2001)) and Tumkur et al. (2013) are
shown for comparison. For the linearly sprung cylinder at Re= 100 with m∗= 10 and
f ∗n = 0.167, standard VIV with maximum dimensionless oscillation amplitude 0.49
was computed, in excellent agreement with the results of Prasanth & Mittal (2009)
at the same Re, m∗ and f ∗n .

3. Stability boundary

We first address the question of how the NES affects the stability of the steady
solution, corresponding to symmetric flow past a motionless sprung cylinder whose
stability has been considered recently by Tumkur et al. (2017) for m∗ = 10. (We
distinguish between the ‘fixed-cylinder’ case, in which the cylinder is not allowed to
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FIGURE 3. For m∗= 10, effect of an NES (with εr = 0.3, ζr = 1.333 and r̄o= 0.3) on the
stability of the steady, symmetric motionless-cylinder solution with θs=π/2. Points on the
stability boundary are denoted by ‘E’ for the NES-less sprung cylinder case (Tumkur et al.
2017), and by ‘+’ with this NES for θs=π/2. The line at Re= 46.05 is the critical value
for a fixed cylinder, computed by Tumkur et al. (2017). In the vertically lined region and
shaded region, this NES (with θs=π/2) stabilizes and destabilizes, respectively, the steady,
symmetric, motionless-cylinder solution with respect to the NES-less linearly sprung case.

move, and the ‘motionless-cylinder’ case, in which a sprung cylinder does not move,
even though motion is allowed.) For the NES-less system, stability depends on the
dimensionless natural frequency f ∗n of the spring/mass system, the density ratio m∗
and Re. For a fixed value of m∗, the results can be represented in terms of critical
values of Re as a function of some measure of the stiffness of the spring/mass system.
We choose

g∗n = f ∗n Re= (D2/ν)

√
K̂cyl/(M̂cyl + M̂rnes)/(2π), (3.1)

so that the dimensionless stiffness is independent of U, which is typically used to
vary Re. (We note that the NES parameters εp, ζr and r̄o are independent of U.)
As discussed by Tumkur et al. (2017) and shown by the stability boundary ABCDE
in figure 3 of the present work, the steady, symmetric, motionless-cylinder (SSMC)
solution for flow past an NES-less sprung cylinder can be unstable well below the
fixed-cylinder value of Recrit,fixed = 46.05. In addition, as shown in figure 3, there is a
range of g∗n for which there are three critical values of Re (Relower <Remiddle <Reupper),
with the steady solution being stable for Re< Relower and Remiddle < Re< Reupper, and
unstable for Relower < Re< Remiddle and Re> Reupper.

Tumkur et al. (2017) have rigorously proved, by considering the initial value
problem for the sprung-cylinder case, that for each g∗n, the SSMC solution is linearly
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unstable for every Re for which steady flow past a fixed cylinder is unstable. Another
key finding of Tumkur et al. (2017) is that the NES-less stability boundary (indicated
by open circles) in figure 3 is single valued for sufficiently large and small values
of 1/g∗n, and triple valued in an intermediate range of 1/g∗n. (For a circular cylinder
with m∗ = 4.73 undergoing VIV in the transverse and streamwise directions, with
two independent restraining springs having the same spring constant, Mittal & Singh
(2005) had previously identified two disjoint ranges of stable Re for a single value
of the dimensionless spring constant.) Tumkur et al. (2017) also found that near the
point where the NES-less stability boundary begins to descend as 1/g∗n increases (near
Re = 46, 1/g∗n = 0.119), the critical frequency associated with the Hopf bifurcation
jumps discontinuously from a value corresponding to the Kármán vortex street (for
1/g∗n < 0.119) to a higher value associated with a ‘structural’ mode (for 1/g∗n > 0.119)
corresponding to a double-Hopf point. Finally, just above the stability boundary, near
the double-Hopf point, the response is quasi-periodic, with significant response at the
frequencies associated with both the Kármán vortex street and structural modes.

The proof by Tumkur et al. (2017) that the SSMC solution of the (NES-less)
sprung-cylinder problem is linearly unstable above the critical Re for a fixed
cylinder can be directly extended to the NES-equipped case. To actually establish the
stability boundary, however, requires considering the effects of the NES parameters
(εp, ζr and r̄o), and also the fact that an SSMC solution exists for any NES
displacement. However, as shown in Part B of the supplementary material available at
https://doi.org/10.1017/jfm.2017.504, linearization of (2.1a), (2.1b), (2.4a) and (2.4b)
about an SSMC solution with an NES displacement of θs leads to an eigenvalue
problem in which ζr and εp sin2 θs are the only dimensionless parameters beyond
Re, m∗ and f ∗n . In other words, while the solution of the initial value problem (and
hence the dynamics) for the full nonlinear problem depends on Re, m∗ and f ∗n , r̄o,
ζr, εp and θs, linear stability of the SSMC solution depends only on Re, m∗, f ∗n , ζr

and εp sin2 θs, and so the NES introduces only two additional independent parameters
to the stability analysis, rather than four. In addition, equations (S14)–(S16) in the
supplementary material show that if εp = 0 or θs = nπ (n an integer), then the NES
has no effect on the linear stability analysis.

We consider the stability of the SSMC flow past an NES-equipped linearly sprung
cylinder for one combination of NES parameters (εp= 0.3, ζr= 1.333 and r̄o= 0.3) for
θs=π/2. The stability boundary for the NES-equipped case pertains to an SSMC base
flow, and was determined by adapting the approach described in Tumkur et al. (2017)
for the NES-less case, along the lines described by Zielinska & Wesfreid (1995), in
which eigenvalues are not computed. For the NES-less case, the base flow was judged
to be stable if the long-time solution (computed using the full nonlinear equations)
was an SSMC solution, for which sufficiently small asymmetric disturbances decayed
for combinations of Re and 1/g∗n on one side of the boundary ABCDE, and did
not decay on the other side. The NES-equipped case requires inclusion of the NES
angular position θ , and recognition that when an initial state with a non-zero θ is
subjected to an infinitesimal disturbance, the long-time solution might be an SSMC
solution with θ differing non-infinitesimally from the initial value. This can arise if
the infinitesimal disturbance initially grows to ‘finite amplitude’, before settling as
an SSMC with θ differing considerably from the initial value. For a hypothetical
infinitesimal disturbance, we designate such a case as unstable, reserving ‘stable’ for
the situation in which the final state is an SSMC with θ differing only infinitesimally
from the initial value.

We consider only non-zero initial values of θ (θ =π/2 unless otherwise indicated),
and note that the stability boundary AB′C′D′E separates situations where asymmetric
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disturbances decay from those in which they do not. Any asymmetric disturbance will
set the cylinder and NES into motion. (A symmetric inlet transient can also lead
to instability, but only as a result of very small asymmetries in the numerics.) For
the asymmetric non-infinitesimal disturbances we used, we expect a final value of θ
differing only slightly from π/2 to arise only as a limiting case when the asymmetry
of the inlet transient tends to zero. All of the results were computed with an inlet
transient

vx(0, y∗, τ )= [1+ qe−(y
∗
−1)2/2
](1− τ/25)+ τ/25 0 6 τ 6 25 (3.2)

having very small asymmetry
(
q= 10−4

)
. Spot checks on the stable side of

the stability boundary gave final values of θ that exceeded π/2 by very small
amounts. For example, at Re = 25 and 1/g∗n = 0.3, ‘asymmetry amplitudes’ of
q = 10−1, 10−2, 10−3 and 10−4 gave final value of θ that exceeded π/2 by
8.48× 10−5, 5.20× 10−8, 1.61× 10−9 and 0, respectively. (The value for q= 10−4 is
limited by the number of significant figures used to report the final θ .) This shows
that base states characterized as stable are SSMC solutions for which the final value
of θ approaches π/2 as the asymmetry of the inlet transient approaches zero. This,
in turn, provides a high degree of confidence that the stability boundary shown is
indeed the linear stability boundary.

Figure 3 shows that for the given NES parameters, the stability boundary AB′C′D′E
(points on which are denoted by the symbol ‘+’) is qualitatively similar to that for
the NES-less sprung cylinder. As in that case, the stability boundary is single valued
for 1/g∗n < 1/g∗n,D′ and for 1/g∗n > 1/g∗n,C′ , and triple valued in the intermediate range
1/g∗n,D′ < 1/g∗n < 1/gn,C′ where C′ and D′ are the counterparts of the left and right
turning points found in the NES-less case (Tumkur et al. 2017).

For θs = π/2, figure 3 also shows that the region in the 1/g∗n − Re plane in which
the NES-equipped sprung cylinder is linearly stable is not a subset of the region in
which the NES-less sprung cylinder is stable. In regions where the NES-less case is
unstable and flow past the NES-equipped sprung cylinder is linearly stable (vertically
lined region in figure 3), rectilinear cylinder motion will cause the NES mass in any
initial position other than an integer multiple of π to rotate, which will cause the
NES to dissipate energy through the damper, with the potential for the system to
asymptotically approach the SSMC solution. On the other hand, in regions where
the NES-less case is linearly stable and flow past the NES-equipped sprung cylinder
with θs = π/2 is unstable (shaded area in figure 3), the NES destabilizes the flow.
In that case, transfer of kinetic energy between the rotation of the NES mass and
the rectilinear motion of the cylinder allows for disturbance growth (and sustainment
of motion) that cannot be overcome by dissipation through the damper of the NES.
In summary, we see that introduction of an NES can either destabilize the SSMC
solution, or completely suppress VIV.

The NES has the effect of shifting the double-Hopf point (denoted by B for the
NES-less sprung-cylinder case, and by B′ for the NES parameters specified above) to a
larger value of 1/g∗n, which we estimate to be 0.140, based on extrapolation of results
at 1/g∗n = 0.15, 0.16, 0.17, 0.19 and 0.20. Compared to the NES-less sprung-cylinder
case, the right turning point C′ is at slightly larger values of 1/g∗n and Re, while the
left turning point D′ is displaced to a larger value of 1/g∗n, with a small change in
Re. The asymptotic behaviour as 1/g∗n→ 0 and as 1/g∗n→∞ seems to be virtually
unchanged compared the NES-less case.

For most combinations of 1/g∗n and Re for which the SSMC solution with θs =

π/2 is unstable for this NES-equipped case, the long-time attracting two-dimensional
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solution is time periodic. We have found two exceptions. First, quasi-periodic and
temporally chaotic solutions are found in several ranges of 1/g∗n and Re, as in the
NES-less spring-cylinder case. Second, in a portion of the triple-valued range of 1/g∗n,
the lower interval of unstable Re (Relower < Re < Remiddle) includes a subinterval of
Re in which disturbance growth is oscillatory with an exponential envelope, but the
disturbance then decays to zero (without approaching a ‘stationary’ oscillatory state) in
an oscillatory fashion with an exponentially decaying envelope, approaching an SSMC
solution in which θs= nπ (i.e. the final orientation of the NES mass is displaced 90◦
from its initial position).

As mentioned above, if θs is an integer multiple of π, then the NES has no effect on
the linear stability analysis and the stability boundary will be identical to that for the
NES-less case. On the other hand, as θs varies, we expect a continuous deformation
of the NES-less stability boundary (points denoted by ‘E’ in figure 3 for θs= 0) into
the θs =π/2 curve (points denoted by ‘+’).

Finally, the issue arises as to how the critical values of Re might be determined
experimentally. There are two key questions. First, will three-dimensional effects
render the two-dimensional analysis moot? Second, what is the importance of
nonlinearity, and in particular, subcritical onset?

Three-dimensionality can become an issue in two ways. First, even a slightly
three-dimensional geometry (e.g. any finite-span cylinder) can give rise to oblique
shedding (Williamson 1989). This will probably require use of a large aspect ratio
cylinder. Second, there is the potential for three-dimensional instability in a strictly
two-dimensional base flow (Williamson & Roshko 1988; Leontini, Thompson &
Hourigan 2007). Fortunately, work by Leontini et al. (2007) strongly suggests that
two-dimensional flow past a circular cylinder undergoing either transverse VIV or
forced transverse oscillation becomes unstable with respect to three-dimensional
disturbance at Re above the known fixed-cylinder critical value of 190 (Williamson &
Roshko 1988). To assess the significance of these three-dimensional effects in detail
would require a three-dimensional analysis, which is beyond the scope of the present
work.

At its heart, the question of nonlinearity in the stability analysis is one of whether
there are accessible combinations of initial conditions and inlet conditions for which
the trajectory is attracted to solutions consistent with the (linear) stability boundary.
The extensive computations mentioned above do indeed confirm that there are simple
asymmetric inlet transients and initial conditions that lead to an SSMC solutions in
the stable portion of figure 3, and to unsteady VIV solutions in the unstable portion,
with the boundaries between the two corresponding to the critical Re values shown in
figure 3. These results suggest that nonlinearity will not be a serious impediment to
experimental verification of the critical values.

4. Dynamic response
Here, we explore how addition of a mass whose damped rotational motion about

the cylinder axis is inertially coupled to the rectilinear motion of the cylinder can
significantly affect cylinder motion and flow. The intent is to show the diversity of
effects, rather than to focus on any of them (e.g. VIV suppression) or systematically
survey the parameter space. To that end, results are described for only a few of the (εp,
ζr, r̄o) combinations in an ensemble of several hundred computations. Unless otherwise
specified, Re= 100.

Post-processing of some computed time series was performed by numerical wavelet
transforms (WT) using an algorithm described by Grossmann & Morlet (1984) and
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Argoul & Le (2003), employing only the Morlet wavelet, a Gaussian-windowed
complex sinusoid. Choosing the frequency of the mother wavelet allows one to tune
the temporal and frequency resolution of the results. In the WT contour plots (WT
spectra) presented, we show the amplitude of the WT as a function of frequency
(vertical axis) and time (horizontal axis). Heavily and lightly shaded areas correspond
to regions of high and low WT amplitude, respectively. Such plots reveal temporal
evolution of the frequency components of the time series, and allow identification
of modal transitions as the system evolves (Vakakis et al. 2008). The WT contour
plots can thus be regarded as ‘dynamic analogues’ of the classic Fourier transform,
whose applicability is restricted to stationary signals and which provides the frequency
content of a signal in an averaged sense.

4.1. NES reduction of cylinder motion
In this section, we show how interaction of NES rotation with the flow, mediated by
the cylinder, leads to TET directed to the NES, resulting in suppression of cylinder
vibration. Two passive suppression mechanisms were observed: a ‘strongly modulated
response’ (SMR; ‘Mechanism I’) and a ‘suppressed limit-cycle oscillation’ (LCO;
‘Mechanism II’). We made no effort to search for the best combination of, or to
otherwise optimize, the NES parameters. The best passive suppression found in the
original ensemble for each mechanism is reported in this section.

Strongly modulated responses – Mechanism I
For NES parameters r̄o = 0.2, εp = 0.3 and ζr = 21.221, the cylinder exhibits a

strongly modulated response. The time history of the cylinder displacement, NES
angle, NES angular velocity and lift coefficient are shown in figure 4(a–d). (In
the results shown, the angular displacement of the NES mass is given in radians.)
The root-mean-square (r.m.s.) cylinder displacement is reduced by approximately
71 % compared to the NES-less system. Figure 4(b,c) shows that as the cylinder
undergoes relaxation oscillations, the direction of rotation of the NES mass changes,
with a dominant frequency comparable to the modulation frequency of the cylinder
displacement and lift coefficient. By comparison to figure 4, figure S1 in the
supplementary material shows that for the stated combination of NES parameters,
choosing θ(0) = π/4 rather than θ(0) = π/2 has the effect of temporally delaying
development of instability, but has no qualitative effect on the long-time solution.
Note, however, that as discussed in § 3, the stability of the SSMC solution depends
on ζ sin2 θs, so that the strong similarity of the long-time solutions (evident by
comparing the r.m.s. values of lift and cylinder displacement shown in figures 4 and
S1) is not universal for all combinations of NES parameters.

Figure 5(a–c) shows the frequency content (in terms of WT spectra) of the time
series of cylinder displacement, cosine of the NES angular displacement and lift
coefficient shown in figure 4. The cylinder displacement and lift coefficient have
a dominant frequency close to the natural shedding frequency, whereas the NES
angular displacement has no dominant frequency, showing that the NES is not in a
1:1 resonance with the cylinder displacement or lift coefficient. Unlike the standard
VIV case near Re = 100 (Prasanth & Mittal 2009), for which the WT is a strong
horizontal band at the Strouhal frequency and a weaker band at its third harmonic,
figure 5(a–c) shows that the response with a rotational NES is broadband. This is due
to the NES’s nonlinearizable inertial nonlinearity, which has no preferred resonance
frequency and enables transient resonant capture over a broad range of frequency in
the cylinder response.
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FIGURE 4. Mechanism I response with 71 % reduction in r.m.s. cylinder displacement for
Re = 100, r̄o = 0.2, εp = 0.3 and ζr = 21.221. (a) Cylinder displacement (Y1); (b) NES
angle (θ ); (c) NES angular velocity (θ̇ ); and (d) lift coefficient (CL). Root-mean-square
values of Y1 and CL for 200 6 tU/D 6 1000 are 0.1245 and 0.3474, respectively.

The strongly modulated response is characterized by very deep modulation. In
fact, the response amplitude oscillates between a maximum value and a minimum
value close to zero. The strongly modulated response is ubiquitous in NES-equipped
systems under external forcing or self-excitation, and is usually related to relaxation
oscillations of the averaged slow flow on a slow invariant manifold (Gendelman
2011).

Suppressed LCO – Mechanism II
A different mechanism of passive VIV suppression is found for NES parameters

r̄o = 0.2, εp = 0.3 and ζr = 98.40. The cylinder displacement, NES angle and lift
coefficient are shown in figure 6(a–c), indicating that a reduction of approximately
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FIGURE 5. (Colour online) Frequency content of Mechanism I response with 71 %
reduction in r.m.s. cylinder displacement for Re= 100, r̄o= 0.2, εp= 0.3, and ζr = 21.221.
Wavelet transforms of (a) cylinder displacement (Y1); (b) NES angle (cos θ ); and (c) lift
coefficient (CL).

50 % in the r.m.s. cylinder displacement (to a maximum amplitude of approximately
0.25D) can in this case be attributed to the rotational NES.

Figure 6(b) shows that the NES mass remains nearly motionless when the cylinder
displacement is very small. Once the cylinder displacement reaches a sufficiently large
amplitude, the NES starts interacting with the cylinder, and after an initial transient,
the system settles into a 1:1:1 resonance, as seen from frequency analysis of the time
series, shown in figure 7(a–c). We note that for Mechanism II, the direction of NES
rotation reverses with a frequency one half that of the cylinder displacement and lift
coefficient.

4.2. Intermittent bursting and wake modification
For r̄o = 0.5, εp = 0.3 and ζr = 0.340, the response is characterized by very slow
decay of the cylinder displacement, angular velocity of the NES mass, oscillation
amplitude of the drag coefficient and lift coefficient, followed by bursting into a
chaotic mode, as shown in figure 8(a–e). Time integration in this ‘slowly decaying
chaotic burst’ case was performed for a very long duration (4000 dimensionless
convective time units) to ascertain the long-time nature of the solution. Figure 8(a)
shows that cylinder displacement decays considerably (by approximately 80 %), the
lift coefficient decreases by approximately 98 % and the oscillation amplitude of the
drag coefficient decreases by nearly 100 %, before bursting into chaotic oscillation.
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FIGURE 6. Mechanism II response with 50 % reduction in r.m.s. cylinder displacement
for Re= 100, r̄o = 0.2, εp = 0.3 and ζr = 98.40. (a) Cylinder displacement (Y1); (b) NES
angle (θ ); and (c) lift coefficient (CL).

This slow decay followed by bursting into chaos recurs, strongly suggesting that the
observed response in what we refer to as the ‘intermittently bursting’ solution is not
an initial transient, but rather a stable attractor for this combination of NES parameters.
Figure 8(b,c) shows that although a moving average of the angular displacement of
the NES mass is nearly a piecewise linear function of time, the angular velocity of
the NES mass has a low-amplitude, relatively high-frequency component. Figure 8(c)
shows that rotation of the NES mass is nearly unidirectional during each interval of
slow decay of the cylinder amplitude, with the direction resetting after each chaotic
burst. This long-duration, nearly unidirectional rotation of the NES mass differs from
that found for Mechanisms I and II, described in § 4.1.

The frequency content for the intermittently bursting solution is shown in figure 9.
Unlike the SMR and LCO regimes discussed above, the frequency content deviates
from the Strouhal frequency on a slow time scale. During the chaotic bursts, there
is no dominant frequency, indicating that the response is essentially broadband.
But once the system locks on to the slowly decaying response, there is clearly a
dominant frequency close to the Strouhal frequency, for both the cylinder displacement
(figure 9a) and NES angle (figure 9b), but not for the drag and lift coefficients
(figure 9c,d).

A distinctive feature of this intermittently bursting solution is that the dominant
frequency is no longer constant in time, but continuously decreases within the slowly
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FIGURE 7. (Colour online) Frequency content of Mechanism II response with 50 %
reduction in r.m.s. cylinder displacement for Re= 100, r̄o = 0.2, εp = 0.3 and ζr = 98.40.
Wavelet transforms of (a) cylinder displacement (Y1); (b) NES angle (cos θ ); and (c) lift
coefficient (CL).

varying portion of the response, falling below St before each burst into chaos. The
detuning from the Strouhal frequency is approximately 15 % at the beginning of the
slow decay and reaches 33 % near the end. During the slow decay, the dominant
frequency in CL is approximately twice the Strouhal frequency. For NES-less VIV at
higher Re, such a transition in lift frequency content has been attributed to switching
in the timing of vortex shedding (Williamson & Roshko 1988), thus suggesting closer
examination of the wake structure.

For r̄o = 0.5, εp = 0.3 and ζr = 0.340, figure 10(a) shows that at a time close to
the end of the slow decay, there are striking changes in wake structure, not seen
for other combinations of the NES parameters discussed in § 4.1, or for a rectilinear
NES (Tumkur et al. 2013). It is well known that in two-dimensional standard VIV,
the wake structure remains qualitatively similar to that of the fixed-cylinder case,
with a well-defined Kármán vortex street. Indeed, in our computations for many other
combinations of rotational NES parameters, and for a rectilinear NES (Tumkur et al.
2013), the vortex streets found are qualitatively very similar to those for standard VIV.
However, for r̄o = 0.5, εp = 0.3 and ζr = 0.340, and for other values of the rotational
NES parameters, the intermittently bursting solution is associated with elongation
of the attached vorticity to about 10D aft of the rear of the cylinder, compared to
approximately 4D and 4.5D for the stationary and standard VIV cases, respectively.
(In all figures showing wake structure, the cross-stream and streamwise extents of the
image are 5D and 36D, respectively.)
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FIGURE 8. For Re = 100, r̄o = 0.5, εp = 0.3 and ζr = 0.340, time history of the slowly
decaying and intermittently chaotic bursting response. (a) Cylinder displacement (Y1); (b)
NES angle (θ ); (c) NES angular velocity (θ̇ ); (d) drag coefficient (CD); and (e) lift
coefficient (CL).

Elongation of the region of attached vorticity is seen only when the cylinder
oscillation amplitude envelope is slowly decaying. The wake structure is shown in
figure 10(a) at tU/D= 910.125, just before bursting into the chaotic regime, and in
figure 10(b) at tU/D = 1181.375, well into the chaotic regime. By comparing these
results to those at Re= 100 for flow past a stationary cylinder shown in figure 10(c),
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FIGURE 9. (Colour online) For Re = 100, r̄o = 0.5, εp = 0.3 and ζr = 0.340, frequency
content of the slowly decaying and intermittently chaotic bursting response. Wavelet
transforms of (a) cylinder displacement (Y1); (b) NES angle (cos θ ); (c) drag coefficient
(CD); and (d) lift coefficient (CL).

and for standard (NES-less) VIV shown in figure 10(d), we see significant differences
in the near and far wake. Compared to those cases, the region of attached vorticity
in figure 10(a) is not only elongated, but also noticeably ‘straightened’, and the
strength of the alternating vortices farther downstream is considerably diminished.
These results suggest, as discussed in § 6.1, that the steady symmetric solution is in
some sense ‘partially stabilized’ by action of the NES during the slow decay, and
that as the flow becomes increasingly unsteady near the end of the slow decay, this
partial stabilization is overcome, with the flow ‘locking out’ of the slowly decaying
envelope.

As discussed above in connection with figure 8(e), the amplitude of CL decreases
by approximately 98 % during each slow decay cycle. Figure 11(a–c) compares time
histories of CL for the cylinder with a rotational NES (figure 11a, with finer temporal
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FIGURE 10. (Colour online) For Re= 100, spanwise vorticity (a) with NES (r̄o= 0.5, εp=

0.3 and ζr = 0.340) at tU/D= 910.125; (b) with NES (r̄o = 0.5, εp = 0.3 and ζr = 0.340)
at tU/D= 1181.375; (c) for stationary cylinder; and (d) for free VIV without NES.

detail than shown in figure 8e), a stationary cylinder (figure 11b) and the NES-less
VIV case (figure 11c). By comparison, the amplitude of the (periodic) CL for the fixed
cylinder (figure 11b) is 0.328 and that for the NES-less cylinder undergoing periodic
VIV (figure 11c) is 0.212. The dramatic reduction in CL can thus be directly attributed
to the rotational NES. Along with the nearly 100 % reduction in the oscillation of
CD (figure 8d), this provides additional support for the hypothesis that the steady
symmetric flow (with CL = 0 and a steady CD) is partially stabilized during each
slowly decaying portion of the intermittently bursting solution.

For r̄o = 0.5, εp = 0.3 and ζr = 0.340, the time history of CD during the
slowly modulated response is shown in figure 8(d). A moving average of CD

continuously decreases during the slowly decaying portion of the solution, to a value
of approximately 1.2 just before the chaotic transition, compared to a mean value of
1.85 for NES-less VIV. Equally significant, the oscillation amplitude of CD decreases
by nearly 100 %. These reductions in the mean value and oscillation amplitude CD,
both attributable to the rotational NES, further support our interpretation that the
steady symmetric flow (with CD= 0.44 close to the value at the Hopf bifurcation for
the stationary cylinder) is partially stabilized during the slow decay part of the cycle.

From the time series of the cylinder and NES motions, and of CL, along with the
wake structure, one can associate the dynamics with relaxation oscillations punctuated
by intermittent chaotic transitions during relaxation. Such relaxation oscillations can
be attributed to TET from the vortical flow to the rectilinear cylinder motion to the
rotational kinetic energy of the NES mass. Indeed, the NES continuously extracts
kinetic energy from the flow and cylinder (dissipating it through its damper), thus
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FIGURE 11. For Re= 100, lift coefficients (CL) (a) with rotational NES (r̄o= 0.5, εp= 0.3
and ζr=0.340); (b) stationary cylinder; and (c) cylinder undergoing standard VIV (without
NES).

diminishing the VIV amplitude. Targeted energy transfer directed towards the NES not
only reduces the amplitude of cylinder motion, but also provides a new dissipative
mechanism (beyond viscosity in the flow) to suppress flow instability. It appears
that this additional dissipation can, for certain combinations of the NES parameters,
partially stabilize the steady symmetric flow. Beyond that, the results suggest that
during the slow decay, a stage is reached in which cylinder motion increases more
rapidly than can NES angular velocity or NES dissipation, resulting in destabilization
of the low-amplitude, less unsteady flow, which in turn leads to sudden relaxation
and transition into a chaotic large-amplitude, highly unsteady regime. The relaxation
cycle then repeats itself after the NES angular velocity regains its capacity to extract
energy from the flow, as described above.

4.3. Existence of the elongated vortex over a range of parameters
As we initially found the slowly decaying motion, its elongated attached vortex and
significantly lower CL and CD coefficients, for only a single value of the parameters,
the question naturally arises as to whether these features persist over a range of Re
and NES parameters.

To gauge this persistence in the parameter space, we computed flows at Re = 60
with NES parameters different from those used at Re = 100. Since the Strouhal
frequency varies with Re, we chose St at Re = 60 so that the parameters for
the NES-less case can be tuned to the resonance condition in order to have
large-amplitude oscillation of the cylinder. For a stationary cylinder at Re = 60
(for which St = 0.14), the time series of CL and its frequency content are shown
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in figures S2a and S2b in the supplementary material. Next, we tuned the natural
frequency of the cylinder to be in resonance with the lift (at f ∗n = St = 0.14), and
computed NES-less VIV to obtain the large-amplitude motion of the cylinder at
Re= 60. The cylinder displacement and CL at Re= 60 for NES-less VIV are shown
in figures S3a and S3b, respectively, in the supplementary material.

We then introduced a rotational NES with r̄o = 0.5, εp = 0.3, and ζr = 0.340 (used
at Re= 100), and found that the elongated region of attached vorticity is not observed
at Re= 60. However, a coarse search shows that an elongated vortex solution exists
for Re = 60 with r̄o = 0.3, εp = 0.3 and ζr = 0.943. The time series of the cylinder
displacement, NES angle and lift coefficient are shown in figure 12(a,b,d), respectively.
The angular velocity of the NES mass (figure 12c) shows that the NES mass changes
direction frequently until a dimensionless time tU/D of approximately 450, and is
unidirectional for 4506 tU/D6620. For Re=60, the distribution of spanwise vorticity
at tU/D= 570 (figure 12e) shows the elongated region of attached vorticity, at a time
when the cylinder displacement (figure 12a) and lift coefficient (figure 12d) exhibit the
typical scenario of chaotic bursting leading to slowly decaying motion of the cylinder
and a very small CL. However, there are clear differences between the responses at
Re = 60 and 100 (see figure 8). The magnitude of CL is much smaller at Re = 60,
which is expected since Re = 60 is closer to the Hopf bifurcation that occurs near
Re= 46. The intervals during which the cylinder motion is chaotic and in the slowly
decaying regime are much shorter at Re = 60 than at Re = 100. As Re is reduced
from 100 to 60, we expect that damping provided by the flow will increase due to
increased viscous dissipation, resulting in shorter durations of the chaotic and slow
decay regimes.

Near Re = 100, f ∗n = 0.167, r̄o = 0.5, εp = 0.3 and ζr = 0.340 (the parameters
for which an elongated vortex was originally found), we consider persistence of
the elongated vortex solution for small changes in Re and the NES parameters. To
determine the dependence of the solution and the elongated vortex structure on Re
near 100, we perform a survey over the range 95 6 Re 6 105 with a unit increment,
using the nominal values of f ∗n and the rotational NES parameters. Figure 13(a,b)
shows that disturbances grow very slowly until a dimensionless time of just less
than tU/D = 100, at which point rapid amplification occurs. The time of onset for
rapid amplification decreases slightly with increasing Re. For each Re shown, rapid
amplification gives rise to a second, temporally chaotic, transient whose duration
varies from approximately 500 convective time units (at Re = 95) to approximately
100 time units (at Re = 101). For Re < 100, figure 13(a,b) shows that this second
transient ultimately settles down to a time-periodic solution, whereas for Re > 100,
figure 13(c,d) shows that the second transient is followed by slow decay until bursting
occurs. For f ∗n = 0.167, r̄o= 0.5, εp= 0.3 and ζr= 0.340, we do not find the elongated
wake solution for Re < 100, the range of Re for which the time series of cylinder
displacement shows no slow decay. For Re > 100, an elongated vortex is found.
Figure 13(e, f ) shows the elongated wake structure at its maximum extent during the
slowly decaying portion of the cylinder displacement time series at Re = 101 and
Re= 105, respectively.

The effect on the elongated vortex structure of changing the relative mass of
the NES is shown in figure 14. When εp is reduced to 0.28, the elongated vortex
solution is still found, with the cylinder displacement and spanwise vorticity shown
in figure 14(a,c), respectively. The cylinder displacement and spanwise vorticity for
εp = 0.35 are shown in figure 14(b,d), respectively. For the lighter NES mass, the
slowly decaying envelope extends over a longer time. In addition, the decay does not
have the typical linear envelope found in other cases.
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FIGURE 12. (Colour online) Response at Re = 60 and f ∗n = 0.14 for r̄o = 0.3, εp = 0.3
and ζr = 0.943. (a) Cylinder displacement (Y1); (b) NES angle (θ ); (c) NES angular
velocity (θ̇ ); (d) lift coefficient (CL); and (e) spanwise vorticity (ω).

The elongated vortex has been found over a significant range of the NES damping
parameter ζr. For ζr = 0.255 and 1.698, time series of cylinder displacement shown
in figure 15(a,b) indicate that for the larger ζr, the slowly decaying portion of the
solution (approximately 2506 tU/D6 370) is considerably shorter than for the smaller
ζr (approximately 180 6 tU/D 6 800), and also accounts for a smaller fraction of the
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FIGURE 13. (Colour online) Persistence of elongated wake solution for small changes in
Re with r̄o = 0.5, εp = 0.3 and ζr = 0.340.
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FIGURE 14. (Colour online) Persistence of elongated wake solution as εp and ζr vary,
with Re= 100 and r̄o = 0.5.

overall cycle. Figure 15(c,d) shows that the elongated vortex is quite similar for these
two ζr, even though the time series of cylinder displacement are quite different. The
slower decay in cylinder displacement at the smaller ζr is consistent with reduced
dissipation by the NES of energy transferred from the flow to the cylinder motion.

The effect of radius of the rotating NES mass on the elongated wake solution is
shown in figure 16. Figure 16(b) shows that the elongated vortex persists down to
r̄o = 0.47. We note that the slowly decaying envelope of the cylinder displacement
shown in figure 16(a) with r̄o = 0.47 is very similar to that for the lower mass case
(εp = 0.28) shown in figure 14(a).

These results show that for m∗ = 10 and f ∗n = 0.167, the elongated attached vortex
exists over a range of Re and NES parameters.
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FIGURE 15. (Colour online) Persistence of elongated wake solution for two values of ζr,
with Re= 100, r̄o = 0.5 and εp = 0.3.
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FIGURE 16. (Colour online) Persistence of elongated wake solution for a small change
in r̄o with Re= 100, εp = 0.3 and ζr = 0.340.

In addition to the NES parameters and Re, we also show that the elongated vortex
solution persists for changes in initial conditions. For this case, we initially ‘lock’
the NES mass, so that there is no NES motion during an initial transient. Since
the NES mass is a fixed fraction of the cylinder mass, the combined mass of the
system remains the same as for the system without the NES. Thus, standard VIV at
Re= 100 is expected with the NES mass locked. (The cylinder does not rotate, so if
it is rigid, the non-axisymmetric distribution of the internal mass due to the NES has
no effect.) After the standard VIV solution is fully developed, the NES is set free,
with a displacement of θ = π/2, to interact with the stator and flow. The results are
shown in figure 17, where the NES mass is locked until tU/D= 288, at which time
VIV is fully developed, with maximum cylinder amplitude y1/D= 0.49 and maximum
lift coefficient CL = 0.212, as for the system without an NES. Beyond tU/D = 288,
figure 17(a) shows that the system enters into exactly the same response as shown
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FIGURE 17. (Colour online) Response at Re= 100 for r̄o = 0.5, εp = 0.3 and ζr = 0.340
for cylinder with NES locked until tU/D= 288 and released at that time with θ = π/2.
(a) Cylinder displacement (Y1); (b) NES angle (θ ); (c) NES angular velocity (θ̇ ); (d) lift
coefficient (CL); and (e) spanwise vorticity (ω) at tU/D= 710.375.

in figure 8(a). The distribution of spanwise vorticity at tU/D= 710.375 (figure 17e)
shows that the elongated vortex develops from the standard VIV solution just as it
does from the usual initial condition.
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5. Characterization of the chaotic response
Quasi-periodicity and temporal chaos (collectively, ‘temporal complexity’) in the

wake of a circular cylinder at low Re (say, below Re = 100) has been of interest
since the initial report by Sreenivasan (1985). The careful experiments of Van Atta
& Gharib (1987) showed that wake characteristics depended sensitively on tension
in the wire used as the cylinder, and that damping of wire motion (beyond test
section sidewalls) sometimes eliminated temporal complexity. On the other hand,
in two definitive series of experiments in Sreenivasan’s laboratory, Olinger (1993)
showed that chaotic response at Re as low as 59 is sometimes uncoupled from
VIV. In one series, he varied wire tension, which affected the natural frequency,
but did not affect the wake hot-wire signal at frequencies associated with shedding.
(Cylinder vibration in Olinger’s work had a natural frequency less than the shedding
frequency, whereas in Van Atta and Gharib’s experiments, cylinder vibration was
predominately at a harmonic of the natural frequency, above the Strouhal frequency.)
From this, Olinger concluded that in his facility, chaotic response at low Re could
result from interaction of three incommensurate frequencies, associated with (i)
nominally two-dimensional Kármán vortex shedding, (ii) a spanwise non-uniform
cellular structure and (iii) end-plate effects, and that VIV was not necessary to the
explanation. In the other series, Olinger measured wire displacement with a laser
vibrometer and found the response to be nearly identical for temporally complex
flow, and for no flow. With flow, driven by pumps one story below the wind tunnel,
cylinder motion was essentially the same as when the pumps ran but there was no
flow. That provided strong support for the conclusion that for those cylinders in that
facility, cylinder motion was driven by extrinsic vibration.

Of the other investigations reporting temporal complexity in flow past a vibrating
circular cylinder at low Re, each has either involved end effects (Dauchy, Dus̆sek &
Fraunié 1997) or forced periodic excitation (Olinger & Sreenivasan 1988; Li, Sun &
Roux 1992; Nakano & Rockwell 1994; Anagnostopoulos 2000a,b), or an empirical
structural damping parameter was used at an Re considerably larger than the values
at which we find chaotic response (250 for Blackburn & Henderson (1996); 200 for
Leontini et al. (2006)).

The significance of the lower Re (60 and 100) at which we have found a
two-dimensional temporally chaotic flow, compared to the value of 200 of Leontini
et al. (2006), is that it establishes the existence of chaotic response at Re values
well removed from those at which Leontini et al. (2007) found three-dimensional
instability in the two-dimensional base flow past a cylinder undergoing driven
harmonic transverse oscillation (Re = 205), and at which Williamson (1988) found
three-dimensional disturbances to become unstable for a fixed cylinder (Re= 190).

Here, we focus on several measures of temporal chaos, including the attractor
dimension of the cylinder velocity and the cross-stream and streamwise components
of the fluid velocity at several locations, as well as wavelet transformations of the
same quantities. We also present results of cross-correlation of the cylinder velocity
with each velocity component of the flow at several points.

For Re = 100, r̄o = 0.5, εp = 0.3 and ζr = 0.340 (the case shown in figure 8),
figure 18(a) shows the cylinder velocity during the chaotic portion of the response,
while the frequency content revealed by WT and ‘fast Fourier transform’ (FFT) is
shown in figure 18(c,e), respectively. By comparison, the cylinder velocity for NES-
less periodic VIV at Re = 100 is shown in figure 18(b), and its WT and FFT are
shown in figure 18(d, f ), respectively. The broadband frequency content for the system
with an NES demonstrates the chaotic nature of the cylinder motion during this time
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FIGURE 18. (Colour online) Cylinder velocity at Re= 100. Chaotic response with NES
(a,c,e) for r̄o = 0.5, εp = 0.3 and ζr = 0.340, and periodic response system without NES
(b,d, f ). (a) Cylinder velocity with NES; (b) cylinder velocity without NES; (c) WT of
cylinder velocity with NES; (d) WT of cylinder velocity without NES; (e) FFT of cylinder
velocity with NES; ( f ) FFT of cylinder velocity without NES.

interval, whereas the periodic solution has a single dominant frequency close to the
Strouhal frequency, as expected.

We next examine the flow during the chaotic response, by considering the velocity
at two fixed locations in the wake. The first is one diameter above the midline of the
domain and one diameter downstream of the rear of the cylinder. By comparison, for
the periodic solution in the NES-less standard VIV case at Re= 100, the streamwise
velocity component in an inertial frame and its frequency content obtained by WT and
FFT, are shown in figure 19(a,c,e), with the corresponding quantities for the cross-
stream component in figure 19(b,d, f ), respectively. The WT and FFT clearly show a
dominant frequency, indicating the periodic nature of the flow in the wake.

The cross-correlations of the cylinder velocity with the streamwise and cross-stream
velocity components are calculated as

au(τc) =
1

U2(T2 − T1)

∫ T2

T1

Vcyl(t)u(xp, yp, t+ τc) dt, (5.1a)

av(τc) =
1

U2(T2 − T1)

∫ T2

T1

Vcyl(t)v(xp, yp, t+ τc) dt, (5.1b)
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FIGURE 19. (Colour online) For NES-less VIV at Re= 100, periodic nature of the flow
at a fixed point one diameter downstream of rear stagnation point and one diameter from
y= 0. (a) Streamwise velocity; (b) cross-stream velocity; (c) WT of streamwise velocity;
(d) WT of cross-stream velocity; (e) FFT of streamwise velocity; ( f ) FFT of cross-stream
velocity; (g) streamwise velocity cross-correlation with cylinder velocity; (h) cross-stream
velocity cross-correlation with cylinder velocity.

and are shown in figure 19(g,h) for the streamwise and cross-stream velocity,
respectively, with T1 = 150 and T2 = 275. Both cross-correlations are periodic, as
one would expect for a periodic flow.

For the case with a rotational NES undergoing chaotic cylinder motion, the fluid
velocity one diameter above the midline and one diameter downstream of the rear
of the cylinder are shown in figure 20(a,b) for the streamwise and cross-stream
components, respectively. The frequency content obtained via WT and FFT is shown
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in figure 20(c,e), respectively, for the streamwise component and in figure 20(d, f ),
respectively, for the cross-stream component. As for the cylinder motion, the chaotic
nature of the flow in the near wake can be discerned from the frequency content,
and by comparison to the periodic case shown in figure 19. For the chaotic solution,
the cross-correlations of the cylinder velocity are shown in figure 20(g,h) for the
streamwise and cross-stream velocity components, respectively, with T1 = 125 and
T2 = 700. The cross-correlation decays with time for both velocity components, and
strongly suggests the chaotic nature of the flow at Re = 100 when the rotational
NES is active. Very similar results are found at the second location, three diameters
downstream of the rear of the cylinder and one diameter above the midline of the
domain.

To complement the frequency spectra and autocorrelation functions, we estimate the
correlation dimension of the chaotic attractor. We use the algorithm of Grassberger &
Procaccia (1983), and apply the code developed by Hegger, Kantz & Schreiber (1999)
to the cylinder displacement time series shown in figure 8(a), with logarithmic plots
of the correlation dimension Cm(σ ) versus the ‘distance’ σ shown in figures S4(a–f)
in the supplementary material for six values of the embedding dimension m, using
approximately 300 points per quasi-period, a time delay corresponding to 60 sampled
points, and a Theiler window parameter corresponding to 800 sampled points.

The results, along with least-squares lines fitted over the indicated range of σ , show
that the slope (corresponding to the correlation dimension) approaches a limiting
value of approximately 3.2. This value is consistent with a low-dimensional attractor
expected for a low-Re flow with two additional degrees of freedom (the cylinder
oscillation and NES rotation), and is comparable to the fractal dimensions of 2.48,
3.10 and 4.65 computed for chaotic two-dimensional flow past a NACA 0012 airfoil
(Ma = 0.2; 20◦ angle of attack) at Re = 1600, 2000 and 3000, respectively (Pulliam
& Vastano 1993).

It is thus clear that a rotational NES can lead to temporal chaos of the cylinder
motion and the flow, at Reynolds numbers where NES-less VIV is strictly time
periodic.

6. Discussion
6.1. NES-induced effective mass model

Equation (2.2a) shows that the cylinder motion is driven by the oscillating lift force
and the essentially nonlinear coupling to the NES. Consider the latter term

N = M̂rnesro
d
dt

(
dθ
dt

sin θ
)
. (6.1)

Interaction of the rotational NES with the flow, mediated by the cylinder, can be
approximated by adding to the cylinder a time-varying NES-induced effective mass
(per unit length), which we define as the ratio of the nonlinear restoring force (per unit
length) to the acceleration of the cylinder, M̂eff (t)=−N(t)/(d2y/dt2). In dimensionless
form, this is

meff =−
εpr̄o

Ÿ1

d
dτ

(
dθ
dτ

sin θ
)
. (6.2)

For Re = 100, r̄o = 0.5, εp = 0.3 and ζr = 0.340, figure 21(a) shows meff for four
time intervals during which the NES locks into a slowly decaying motion. Since meff
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FIGURE 20. (Colour online) For VIV at Re = 100, r̄o = 0.5, εp = 0.3 and ζr = 0.340,
chaotic nature of the flow at a fixed point one diameter downstream of rear stagnation
point and one diameter from y = 0. (a) Streamwise velocity; (b) cross-stream velocity;
(c) WT of streamwise velocity; (d) WT of cross-stream velocity; (e) FFT of streamwise
velocity; ( f ) FFT of cross-stream velocity; (g) streamwise velocity cross-correlation with
cylinder velocity; (h) cross-stream velocity cross-correlation with cylinder velocity.

is the quotient of two quantities each oscillating about zero, the result will include
singularities that we filter out by Gaussian smoothing (Harris 1978). In each portion of
the time series shown separately in figure 21(a), meff approaches unity toward the end
of the decaying motion, i.e. the NES-induced effective mass is as large as the mass
of the cylinder and NES. Addition of this dynamic mass to the cylinder mass also
explains the large frequency detuning near the end of each slowly decaying motion.
The natural frequency of the structural system, including the effective NES-induced
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FIGURE 21. For Re = 100, r̄o = 0.5, εp = 0.3 and ζr = 0.340, (a) dimensionless
NES-induced effective mass for four time intervals and (b) corresponding complementary
cumulative distribution functions (CCDF).

mass, is ωdetuned=ω
∗

r /
√

2. Hence, doubling the mass reduces the frequency to 1/
√

2≈
70 % of its original value, which closely corresponds to the 33 % frequency detuning
found in the cylinder response near the end of each slow decay.

For each time interval during which the NES locks into slowly decaying motion,
figure 21(b) shows the complementary cumulative distribution function (CCDF) of the
effective mass induced by the NES. The CCDF plots indicate that the probability of
mass being additive in this response is high, since CCDF(meff = 0)≈ 0.95 in all such
time intervals. In contrast, for the passive suppression Mechanisms I and II discussed
in § 4.1, where no elongated vortex structure is found, figure 22(a,b) shows that there
is no overall trend in the mean value of meff , and the lock-in response in these cases
occurs with a frequency close to the Strouhal frequency. The CCDF of the effective
NES-induced mass for these two mechanisms is shown in figure 22(c,d), from which
we deduce that meff fluctuates about a zero mean, corresponding to no effective added
mass, with CCDF(meff = 0)≈ 0.35 and 0.4 for Mechanisms I and II, respectively.

These results strongly suggest (but do not prove) that the increase in NES-induced
mass is related to changes in vortex structure for the intermittently bursting solution.

6.2. Approximate analysis of cylinder motion during the slowly modulated solution
In this section, we perform an approximate analysis of cylinder motion during the
slowly decaying motion discussed in § 4.2, in order to show that during the slowly
decaying motion giving rise to the elongated vortex structure, the effect of the flow on
cylinder motion is in its effect similar to linear viscous dissipation. With this analysis,
we correlate the observed NES-induced effective mass and the computed frequency
detuning. To this end, we consider the system of equations governing the coupled
motion of the cylinder and NES

d2Y1

dτ 2
+ω∗r

2Y1 = εpr̄o
d

dτ

(
dθ
dτ

sin θ
)
, (6.3a)
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FIGURE 22. For Re=100, dimensionless effective NES-induced mass for (a) Mechanism I
(for r̄o= 0.2, εp= 0.3 and ζr = 21.221) and (b) Mechanism II (for r̄o= 0.2, εp= 0.25 and
ζr = 98.40) and CCDF of effective NES-induced mass for Mechanisms I (c) and II (d).

d2θ

dτ 2
+
ζr

Re
dθ
dτ
=

d2Y1

dτ 2

sin θ
r̄o

(6.3b)

decoupled from the flow, where ω∗r = 2πf ∗n .
For Re= 100, r̄o = 0.5, εp = 0.3 and ζr = 0.340, the ordinary differential equations

(ODEs) (6.3a) and (6.3b), subject to initial conditions taken from discretization
of the partial differential equations (PDEs) and other equations of the fully coupled
system at the beginning of the slowly decaying motion (namely Y1(550)=−0.309623,
dY1(550)/dτ = −0.028324, θ(550) = 90.935038 and dθ(550)/dτ = 1.167909) were
solved using the MATLAB ODE45 solver. The cylinder displacement and NES
mass angular displacement predicted by (6.3a) and (6.3b) are compared to the
corresponding results for the PDE solution in figure 23(a,b), and figure 23(c,d),
respectively. Equations (6.3a) and (6.3b), with initial conditions taken from the
discretized PDE solution, provide qualitatively correct predictions of the slow decay
of the cylinder displacement and unidirectional NES mass rotation. One apparent
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FIGURE 23. For Re= 100, r̄o = 0.5, εp = 0.3 and ζr = 0.340, solution of full, PDE-based
equations compared to solution of unforced ordinary differential equation (ODE) system
using initial conditions from PDE solution. (a) Cylinder displacement from PDE; (b)
cylinder displacement from ODE; (c) NES angular velocity from PDE; (d) NES angular
velocity from ODE.

difference is modulation in the slowly decaying envelope predicted by the ODE
model. It will be shown later in this section that this additional modulation is due to
omission of the flow from (6.3a) and (6.3b), which contributes to additional damping
of the system.

Based on the solution of the ODE system (6.3a) and (6.3b), we conjecture that the
slow modulation response is a dissipative perturbation of the solution of the underlying
Hamiltonian system, which we approximate by neglecting damping of NES rotation
in (6.3b). Assuming harmonic cylinder motion and unidirectional NES rotation, we
approximate the response according to the ansatz Ỹ1 = r̄oα cosωτ , θ̃ =ωτ , where the
amplitude α and frequency ω are assumed to vary on a time scale slower than τ .
Substituting into (6.3a) and (6.3b), with ζr= 0, gives the frequency–amplitude relation

α =
εpω

2

ω∗r
2 −ω2

. (6.4)

We can then evaluate (6.4) near the beginning (at τ1) and end (at τ2) of a slowly
decaying portion of the time series, and eliminate ω∗r

2 to get

ω2

ω1
=

√
α2
(
α1 + εp

)
α1
(
α2 + εp

) . (6.5)

Substituting cylinder displacement amplitudes from the PDE solution into (6.5), we
obtain the analytical estimate ω2/ω1= 0.777 for the portion of the time series shown
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FIGURE 24. (Colour online) For Re= 100, r̄o = 0.5, εp = 0.3 and ζr = 0.340, frequency
detuning in one slow modulation portion of the solution. (a) Cylinder displacement and
(b) frequency of cylinder displacement.

in figure 24(a). The frequency content of the solution of the full PDE system is
extracted by taking a wavelet transform of the cylinder displacement for 5506 tU/D6
950, shown in figure 24(b). The frequency ratio from the PDE solution is found to
be ω2/ω1 = 0.789. The good agreement between the frequency ratios obtained from
the approximate model (6.5) and the PDE solution supports our conjecture that the
observed slow modulation cycle is a perturbation of the underlying undamped system.

At the beginning of the slowly decaying response, the results show that no ad hoc
damping is necessary to achieve qualitative agreement with the PDE model. In a sense,
the cylinder motion reaches, via a chaotic transition, a state where no coupling to the
flow is necessary. This might suggest that as the amplitude of the cylinder motion
decreases, the behaviour of the overall system (as described by the PDEs coupled
to the rigid-body dynamics) approaches that of a fixed cylinder, since the amplitude
of the cylinder oscillation is well below that for standard VIV at the same Re, m∗
and f ∗n . That this is not the case is seen from the elongation of the attached vorticity
in figure 10(a), which does not correspond to flow past a fixed cylinder. Rather, the
overall system behaviour is partially stabilized and approaches (but does not reach)
that of the SSMC flow. In that limit, there is no lift, and hence no cylinder motion,
and so as one approaches that limit, the interaction of the flow with the cylinder is
indeed expected to be weak. We attribute the elongated vortex flow to the existence
of a state in which the energy transfer rate from the flow to the cylinder is nearly
balanced dynamically (as opposed to over one oscillation period) by the rate at which
energy is dissipated by the NES.
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FIGURE 25. For Re= 100, r̄o = 0.5, εp = 0.3 and ζr = 0.340, solution of full, PDE-based
equations compared to solution of unforced ODE system (with linear damping β= 0.0059)
using initial conditions from PDE solution. (a) Cylinder displacement from PDE; (b)
cylinder displacement from ODE; (c) NES angular velocity from PDE; (d) NES angular
velocity from ODE.

While the cylinder oscillation amplitude falls approximately linearly during slow
decay, as seen in figure 23(a), the angular velocity of the NES mass falls superlinearly,
as seen in figure 23(c). Hence, the rate at which rotational kinetic energy of the NES
is dissipated falls below the rate at which energy is transferred to the cylinder, and
thus the energy of the cylinder must increase. This leads to the bursting associated
with the chaotic transition, and after a transient, the relaxation cycle repeats itself.
Moreover, our numerical results suggest, but do not prove, that once initiated, the
relaxation cycle is robust.

Guided by the above discussion, we model the effect of the flow by introducing an
ad hoc linear damping term into (6.3a), leading to the modified system

d2Y1

dτ 2
+ β

dY1

dτ
+ω∗r

2Y1 = εpr̄o
d

dτ

(
dθ
dτ

sin θ
)
, (6.6a)

d2θ

dτ 2
+
ζr

Re
dθ
dτ
=

d2Y1

dτ 2

sin θ
r̄o

, (6.6b)

where the term βdY1/dτ is used to approximately model the effect of the flow on
transverse oscillation of the cylinder during the relaxation cycle. We seek to ‘optimize’
the approximate model (6.6a) and (6.6b) by using the PDE solution to prescribe
initial conditions for (6.6a) and (6.6b), and finding the value of β that minimizes the
root-mean-square difference between the solution of (6.6a) and (6.6b) and the PDE
response during a slowly decaying portion of the time series. Starting the integration
of (6.6a) and (6.6b) at tU/D = 800, with initial conditions Y1(800) = −0.098147,
dY1(800)/dτ =−0.13978, θ(800)= 303.57 and dθ(800)/dτ = 0.74668 from the PDE
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solution, we obtain very good agreement of the response with the PDE solution for
β = 0.0059, as seen in figure 25(a,b) for cylinder displacement, and in figure 25(c,d)
for the NES angular velocity, respectively. The angular displacement of the NES
at the end of ODE integration is θ(950) = 414.25 (radians), in excellent agreement
with 414.22 predicted from the PDE solution. At this damping value, we can very
accurately match the system response if the solution of (6.6a) and (6.6b) is started
at an appropriate time in the slow modulation cycle.

6.3. Experimental realization
There are no experimental reports of two-dimensional temporally chaotic flow
past a cylinder in this range of Re, except when cylinder vibration is driven
externally (Olinger & Sreenivasan (1988); Nakano & Rockwell (1994)), and the
only reports of such a flow in a computation also involve external excitation (Li
et al. (1992); Anagnostopoulos (2000a,b)). Our prediction of temporally chaotic flow
for two-dimensional flow past a sprung circular cylinder with a rotational NES thus
raises the question of how the predicted results might be realized experimentally,
especially in light of the fact that it is not possible to concentrate all of the mass
along a line parallel to the axis of rotation.

As pointed out in § 2.1, the governing equations (2.2a,b), (2.4a,b) were derived for
the case in which the rotating mass is a ‘line mass’ concentrated on a line parallel to,
and rotating a fixed distance from, the cylinder axis. In part F of the supplementary
material, we show that the line mass model is dynamically equivalent to a distributed
mass model with a different ratio of the rotating mass to the total mass, and that
(according to equations (S20a), (S20b)) the two ratios are related by εp= εd

(
Rcm/Rg

)2,
where Rg and Rcm are the radius of gyration and distance from the centre of mass to
the axis of rotation, respectively. By ‘dynamically equivalent’, we mean a situation
in which the coefficient of the right-hand side of (2.4b) and coefficient of the second
term of the right-hand side of (2.4a) are identical to the corresponding coefficients in
(S19a), (S19b) for the distributed mass case, so that the dynamical response of the
distributed mass system is equivalent when m∗, Re, f ∗n and the dissipation parameter
ζr are the same.

For εp = 0.3 and r̄o = 0.47 (with m∗ = 10, Re= 100 and f ∗n = 0.167), corresponding
to the elongated wake solution shown in figure 16, experimental realization is
possible using a cylinder with diameter D = 10 cm and a free-stream speed of
U = 35 cm s−1 in a 350 cSt lubricating oil with density ρf = 0.89 g cm−3 (e.g.
SAE 30 at 20 ◦C), corresponding to a cylinder density of ρb = 8.9 g cm−3. As
discussed in the supplementary material, dynamic equivalence can be achieved using
a rotating tungsten mass (density 19.3 g cm−3) in the shape of a cylinder whose
cross-section is that of an annular sector with inner and outer radii of 1 cm and
4.2778 cm, respectively, and sector angle 2.8754 radians, and a stator made of either
of two commercially available tungsten alloys with density 17.0 g cm−3, whose
inner and outer radii are 4.5766 cm and 5 cm, respectively. (Note that these radii
and the sector angle are rounded values of more precisely computed values that
correspond to densities of 19.3000 and 17.0000 g cm−3 for the rotating mass and
stator, respectively. For slightly different densities, the radii and sector angle giving
dynamically equivalent response will differ slightly.) This corresponds to a clearance
between the rotating mass and stator of slightly more than 2.9 mm. The mass ratio
for this arrangement is εd = M̂rnes/(M̂stat + M̂rnes) = 0.6867, compared to the value
of εp = 0.3 for the dynamically equivalent point/line mass. If the rotating mass lies
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beyond the spanwise extent of the flow (e.g. is attached to an unsubmerged shaft
extending above a submerged vertical cylinder), then there are no radial constraints
on the mass distribution, which greatly simplifies selection of the inertial properties
of the rotating mass, and allows dynamic equivalence to be accomplished with a
wide range of materials much less dense than tungsten.

7. Conclusions

For a linearly sprung circular cylinder in cross-flow at Re = 100, we have shown
that vortex-induced vibration can be passively suppressed by targeted energy transfer
to a rotating nonlinear energy sink inertially coupled to the rectilinear motion of the
cylinder. The similarities between vortex shedding (which gives rise to the fluctuating
lift force that drives VIV) for two-dimensional laminar flow past a cylinder at Re=
100 and turbulent flow at much higher Re, suggest that this approach might also
be feasible well into the turbulent regime. That this approach to VIV suppression is
completely passive (requiring no control system, electronics, blowing/suction or power
supply), and can be implemented with no geometric modification of the cylindrical
surface (by placing the NES inside the cylinder, or attaching it to one or both ends of
the cylinder beyond the spanwise extent of the flow domain), increase its attractiveness
for applications.

While the NES is indeed a dissipative element, its effects on the flow and
cylinder motion (as described in §§ 3–5) are quite different from, and presumably
more complex than, what would be expected if proportional damping were to be
incorporated directly into the dynamics of the cylinder vibration, i.e. by replacing the
second term on the right-hand side of (2.4a) by γ dY/dτ (along the lines of Cossu &
Morino (2000) and Tumkur et al. (2013)). Our results clearly demonstrate the extent
to which a rotating NES can alter and enrich the dynamics of VIV. As shown in § 3,
the rotating NES not only can suppress the VIV of an NES-less sprung cylinder, but
can also destabilize the steady, symmetric, motionless-cylinder solution and excite
VIV. The latter is not possible for a system in which dissipation is provided by
proportional damping.

Unlike the case of a rectilinear NES (Tumkur et al. 2013), in which VIV
suppression is effected by TET to a mass whose rectilinear motion is nonlinearly
coupled to the parallel or anti-parallel cylinder motion by a nonlinear spring, the
rotational NES sometimes gives rise to temporal chaos in the cylinder motion and
the flow, as well as to considerable elongation of the region of vorticity attached to
the cylinder. We find that temporal chaos and elongation of the attached vorticity
are associated with an attractor in which the time series of cylinder displacement
resembles a relaxation oscillation cycle, consisting of slowly decaying oscillations
separated by rapid chaotic bursting. The elongation of the vortex, and its relationship
to the (unstable) steady symmetric flow past a fixed cylinder at Re = 100, suggest
that continuous transfer of energy from the flow to the cylinder, and subsequent
dissipation by the NES, can partially stabilize the steady symmetric flow during the
slow decay.

The elongated wake solution was found to have an increased NES-induced effective
mass, leading to a shift in the response frequency away from the Strouhal frequency.
The slow decay in response, and the frequency shift approximated by our analytical
model, both match those of the solution of the full problem. The slowly decaying
oscillation of the cylinder displacement can also be approximated by a simple model
of the cylinder and rotational NES, in which the only interaction with the flow is
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through an empirical linear damping term. The elongated wake solution and associated
slow decay in cylinder displacement are found to exist over a range of Re and NES
parameters.

Our results show that the addition of a purely passive, strongly nonlinear, rotating
dissipative attachment to a bluff body undergoing VIV, can not only suppress VIV
of the body, but also drastically change the topology of the wake, and, hence, the
corresponding drag and lift coefficients of the body. Moreover, such an attachment
can induce chaos at intermediate Re.
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