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THE ASYMPTOTIC DISTRIBUTION

OF THE COINTEGRATION RANK

ESTIMATOR UNDER THE AKAIKE
INFORMATION CRITERION

GEORGE KAPETANIOS
Queen Mary, University of London

We derive the asymptotic distribution of the estimate of the cointegration rank of
a multivariate model when Akaike’s information criterion is uskds shown that

the use of this criterion is ill-advised given that the estimate is severely upward
biased even asymptotically

1. INTRODUCTION

The determination of the cointegration rank of a multivariate cointegrated sys-
tem has attracted considerable attention in the econometric literature for the
past 15 yearsThe most widely used procedures for determining cointegration
rank are those proposed by JohangEd88. Alternative testing procedures have
been suggested pgmong othersPhillips and Ouliarig1988, Stock and Wat-
son (1988, Snell (1999, and Biereng1997).

In this paper we start by reviewing the formal justification for the applica-
tion of model selection criteria in selecting the cointegration r& note that
the standard necessary and sufficient conditions for a criterion to be weakly
consistent in lag order selection extend to the determination of the cointegra-
tion rank The main result of the paper involves the derivation of the asymp-
totic distribution of the cointegrating rank estimate when the inconsistent Akaike
information criterion(AIC) is used Unlike with stationary mode)svhere AIC
approximates the Kullback—-Leibler distance between the estimated model and
the data generation proceskere is no compelling theoretical reason for its
use in rank selection in nonstationary cointegration modieis shown that the
use of this criterion is ill-advised given that the estimate is severely upward
biased even asymptoticallyhese results point toward the use of other criteria
such as the Bayesian information criteridIC) and the posterior information
criterion (PIC).
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2. WEAK CONSISTENCY OF INFORMATION CRITERIA

We assume that the multivariate system may be written as-dimensional
VAR (k) process given by

yt:I“‘+¢lyt*l+”'+<I)kyt*k+€t7 t:l,...,T, (1)

where the error terna, is a zero mean independent and identically distributed
(i.i.d.) vector with finite positive definite covariance matrikhis VAR(k) pro-
cess will be referred to as cointegrated of rankIl =1 — ®; — --- — &, has
rankr. In this case the matrifl may be decomposed &#k= aB’ wherea and

B are matrices of dimensiom X r. The error correction representatfoof the
system is given by

Ay, =p — Iy g + WAy g+ oo + W 1AV i1 + €, (2)
where®;, i =1,...,k— 1 are functions ofp;, i = 1,...,k

The general form of the loss function minimized by information criteria is
given by
IC(s) = —2I+(8) + 2¢(9), (3)

wherel+(8) is the log likelihood of the modgk is the number of free param-
eters andcy(s) is a penalty term promoting model parsimony depending on
and the sample sizé&or three common information criteria the penalty terms
are as follows s (Akaike’s information criterion (Akaike, 1973, (s/2)In(T)
(Bayesian information criterion(Schwarz 1978, and sIn(In(T)) (Hannan-
Quinn information criteriofHQ]) (Hannan and Quinrl979. The model spec-
ification chosen is that for whichC (k) is minimized In lag order selection
it is well known that the estimated lag order for stationary and unit root non-
stationary vector autoregressiV¥AR) models will be weakly consistent iff
cr(k) 2 oo ander(k)/T 5 0 asT — oo andcr(k) is bounded irk wherek is
the lag orderFor a proof of the latter caséor deterministic penalty termsee
Paulsen(1984). Clearly whereas BIC and HQ are weakly consistent for lag
order selectiopAIC is not This is a well-known result for AlIGseg e.g., Shi-
batg 1976. Note that we choose to have a general expression for the penalty
term to accommodate other less widely used criteria such.@sthe general-
ized information criteriofGIC) (see Konishi and Kitagawd 996 and the PIC
(see Phillips 1996 Phillips and Plobergef994 Phillips and Plobergei996.
Note that whereas AICBIC, and HQ have deterministic penalty tern@IC
and PIC have stochastic penalty terthence the notation concerning the con-
ditions on the asymptotic behavior of the generic penalty tefthese results
have been shown by various authors to extend to more general model selection
frameworks(seg e.g., Sin and White 1996 Kapetanios2001).

Aznar and Salvadof2000 show that the standard conditions on the penalty
terms for weak consistency in lag selection extend to the cointegration frame-
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work. In particular they show that the cointegration rank and the lag order may
be jointly weakly consistently estimated iff (k) — o andcy(k)/T — 0 as

T — oo. This result holds only for information criteria whose penalty terms are
deterministic and therefore criteria such as the GIC are not covelésl also

note that the asymptotic properties of PIC have been discussed in Chao and Phil-
lips (1999 where weak consistency of PIC in jointly estimating cointegration
rank and VAR lag order is establishddote that this is the first paper to give a
consistency result for estimating cointegration rank via an information criterion

3. THE ASYMPTOTIC DISTRIBUTION OF THE RANK ESTIMATE
USING AKAIKE'S INFORMATION CRITERION

Following Pesaran and Pesard®97) we specify the number of free param-
eters for a multivariate cointegrated model with no intercept or time trend to be
equal tos = m?(k® — 1) + 2mr — r? wherek® is the true lag order of the
system The penalty terms for AICBIC, and HQ are then givemespectively

by s, (s/2)In(T), andsIn(In(T)) or equivalently bys, §/2 In(T), andsIn(In(T))
wheres = —(m—r)2.

It is clear that AIC is not consistent in rank determinatibievertheless it is
also clear that the probability of picking a rank that is lower than the true rank
goes to zero asymptoticallps we also show in the AppendiXhe following
theorem provides the means for determining the asymptotic probabilities that
AIC will pick a higher rank than the true one

THEOREM Consider thevAR model of (1) withw = 0 and known K. The
asymptotic distribution of the rank estimate obtained throdd@ is given by

0 ifr<r?®

lim P(fac=r)=
lim P(fuc =1) {pr fr = r0.
where p are given by expression (A.7) in the Appendix afdsrthe true rank
of the model.

Note that we assume a known true lag order for the derivation of the asymp-
totic distribution of AIC Unlike the result of Aznar and Salvad@@000 on the
joint determination of lag order and cointegration raalkowing for an unknown
lag order in this context would obviously change the asymptotic distribution of
the cointegration rank estimated using AIC

The asymptotic distribution of the estimate of the cointegration rank depends
only ond = m — r° Tables 1 and 2 show the distribution of the cointegration
rank estimate for the case of no deterministic terms and the case of an unrestricted
constant obtained through simulati@rownian motion is simulated using a ran-
dom walk of 1000 observationd=ive thousand replications have been used

In the standard case of lag order selectithe asymptotic probability of AIC
picking a lag order larger than the true one is quite small and declines rapidly
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TABLE 1. Asymptotic distribution of cointegration rank estimate under AIC when the model contains no deterministic terms

m—r?° ro ro+1 ro+2 r®+3 ro+4 ro+5 r°+6 ro+7 r°+8 r®+9
1 0.820 Q180 — — — — — — — —
2 0.643 Q308 Q049 — — — — — — —
3 0.490 Q362 Q136 Q012 — — — — — —
4 0.374 Q414 Q146 Q054 Q012 — — — — —
5 0.300 Q414 Q198 Q060 Q025 Q003 — — — —
6 0.226 0391 0248 Q097 Q030 Q007 Q001 — — —
7 0.149 Q403 Q277 Q113 Q041 Q011 Q006 Q000 — —
8 0.110 0328 Q318 Q165 Q056 Q012 Qo007 Q004 Q000 —
9 0.072 Q311 Q326 Q199 Q061 Q023 Q006 Q002 Q000 Q000

TABLE 2. Asymptotic distribution of cointegration rank estimate under AIC when the model contains an unrestricted constant

m-—r?° ro ro+1 ro+2 r°+3 ro+4 ro+5 r°+6 ro+7 r°+8 r°+9
1 0.851 Q149 — — — — — — — —
2 0.386 0529 Q085 — — — — — — —
3 0.227 Q394 Q317 Q062 — — — — — —
4 0.147 Q349 0258 0212 Q034 — — — — —
5 0.108 0259 Q305 Q185 Q126 Q017 — — — —
6 0.082 0259 Q277 Q180 Q1o7 Q082 Q013 — — —
7 0.048 0224 0263 0204 Q122 Q070 Q058 Q011 — —
8 0.037 Q172 0263 0233 Q0131 Qo077 Q045 Q038 Q004 —
9 0.019 Q138 0283 Q246 Q156 Q080 Q025 Q029 Q018 Q006
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for higher lag ordersThe results for the cointegration rank estimate do not
follow this pattern The probabilities of overestimation are quite large and depend
crucially on the nature of the deterministic terms included in the mddehost
cases the true rank is not even the mode of the asymptotic distribution of the
estimate As m — r° rises the problem is further accentuatdd the extreme
case considered in the tableshenm — r® = 9 and a constant is included in
the model the probability of picking the right rank is equal to jusB%.

The motivation behind the derivation of AIC is not consistency in the selec-
tion of the true model but optimization in terms of goodness of the selected
model as measured by the Kullback—Leibler information métiderefore
our result does not necessarily imply that the criterion is in general “bad” in
selecting cointegration rank because such a judgment would have to be related
to a particular modeling purposieverthelesshe optimality properties of AIC
hold for stationary modelsCurrently there is no compelling theoretical reason
motivating the use of AIC for rank determination in cointegration madels-
thermore we can provide some evidence in favor of methods that are parsimo-
nious in cointegration rank selection such as BIC and Ri@rms of forecasting
and over long horizonrror correction models have been in general shown to
have an advantagélowever Christoffersen and Dieboll998 cast doubt on
the notion that error correction models are better forecasting tools even at long
horizons at least with respect to the standard root mean square forecasting error
criterion They also argue that although unit roots are estimated consistently
modeling nonstationary series (log) levels is likely to produce forecasts that
are suboptimal in finite samples relative to a procedure that imposes unit roots
a phenomenon exacerbated by small sample estimation Dé&loping this
argumentthey suggest that for cointegrated series it is better to overestimate
rather than underestimate the number of common treod# other words
underestimate the cointegrating rank

4. CONCLUSION

In this paper the asymptotic distribution of the rank estimator of a cointegrated
model using AIC has been derivethe results are rather critical of the Akaike
criterion in this context and point toward the use of other criteria such as BIC
and PIC The AIC estimate severely overestimates the rdrie overestima-

tion is accentuated by the presence of deterministic terms in the model and by
the magnitude of the difference between the true rank and the dimension of the
model

NOTES

1. We assume that the error correction representation exists by imposing extra conditions such
as e.g., condition(iii) of Chao and Phillip$1999.

2. Note also the efficiency property of AIC in terms of selecting the model order for linear
models discussed by Shibatd980.
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APPENDIX

The proof of the theorem requires some of the results derived by Joh&1@@8. To
simplify matters we will assume that the VAR process has zero mean and that no con-
stant is included in the estimatiofExtension to models with deterministic terms is
straightforward We will denote the loss function used by AIC BYC(r) = —2I+(r) +

25 wherel+(r) is the log likelihood of the model for cointegration ramk Let
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AY, = (AY 1, AV 041)s X =(AYy,...,AY;),

Y_p=(Yipse-or Y1-p)s AY = (Ayy,...,Ayr),
M=1-X(X'X)"IX, Ry=MAY,

R, = MY S =RiR/T, i,j=0,1

—p»
Finally, let G be the lower triangular Cholesky decompositionSef and A, = .- =
Am be the eigenvalues @S,,Sy¢t Sy, G’. Then by say Proposition 111 of Liitkepohl
(1997 the difference in the log likelihood of the cointegrated WR) for cointegra-
tion ranksry, ro, r; > rq is equal to—(T/2) 3%, ., In(1 — Ai). Forrg<ry <r%itis
clear that(T/Z)E{iro+lIn(1 - ) = Op(T), showing that Akaike’s criterion will not
pick a rank lower than the true one asymptotically in probability

Forr > r° we first note that\, - 0 by Lemma 4 of Johans€988. By a simple
expansion we then have thain(1 — A)=—Th + 0p(1). But by Lemma 6 of Johansen
(1988 we have thaffA,o, 4,...,TA,, converge in distribution to the ordered eigenvalues
of the equation

1 1 1
‘/\j WW’du—f WdW’f dww’
0 0 0

denoted byA,,..., A, o, whereW is am — r° standard Brownian motion

We now concentrate on deriving the probabilities for r°. Forr = r® we have
that P(fac = r) is asymptotically equivalent t€(AIC(r) = AIC(u), r® = u = m).
The asymptotic equivalence follows by the fact that the criterion will not pick a
rank lower thanr® asymptotically Clearly, this may be the case in finite samples
Disregarding constant terms with respectridhe log likelihood is given byit(r) =
=T/23{_;In(1 — A;). Then

=0

P(AIC(r) = AIC(u), r°=u=m)

=P<T i In(175xi)52(mfr)272(mfu)2 (r°=u<r) and

i=u+l

T i IN(1—A) =2(m-uw?-2(m-r)? (r<u<m)>. (A1)

j=r+1

But TIn(1 — A,) = —TA, + 0p(1). Therefore for any e > 0 there exists a positive
integerM such that for alll larger thanM the difference between the probability on the
right-hand side ofA.1) and

P<T Er: A =2m-uw2-2(m-r)2 (r°=u<r) and

i=u+1

T_i A =2(m—-r)2—2(m-u)? (r<usm)> (A.2)

j=r+1
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is less thare. But the probability in(A.2) may be written as

P< i {TA; —2[m—=( - D]2+2(m-i)2}=0 (r°=u<r) and

i=u+l

> ATA —2[m—(j—D]2+2(m—j)?} =0 (r<usm)> (A.3)

j=r+1

or

P< Er‘, {TA; + (4 —4m—-2}=0 (r°=u<r) and

i=u+l

i {TA; + 4j —4m—-2} =0 (r<USm)>. (A.4)

j=r+1

By a change of indices and the weak convergenc&efwe get that asymptotically
the preceding probability is equivalent to

P( S A+ @ +U +19) —4m=2}=0 (0=u <r’) and

i'=1
u'—r’
DN @G T+ =4m=-2}=0 (r'<u=m-r9 |, (A.5)
j’=1
wherei’ =i—u,j'=j—r,r' =r—r°%andu’ = u- r° Regrouping terms gives

P(rEu A+ @i"+4(U' —d)—2}=0 (O=u <r’) and

i'=1
u' —r’
DA @ A —d) -2 =0 (' < u'smrf’)), (A-6)
j'=1
whered = m — r©. Define

-1
Sq:qE{,\i,Jr(4i’+4(|*d)*2)}, q>1

i'=1
Then the probability in(A.6) may be expressed as
P, =0 (0=u<r’) and S¥=0 (r'<u =m-r9)). (A.7)

The joint probability distribution 0§? may easily be obtained by simulation using the
standard results of Johansgi®88. |
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