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We study a dynamic equilibrium model in which agents have adaptive expectations and
monetary authorities pursue an inflation target. We show how alternative monetary
stabilization policies become more effective when fiscal constraints on deficits are
implemented, although they are not binding at the equilibrium target. In particular, we
show that the inflation target equilibrium can be locally, or even globally, stable for a large
class of adaptive learning schemes. We also compare alternative stabilization policies in
terms of their stability properties. Commonly postulated conditional Taylor-type rules
tend to be dominated by other rules, such as an unconditional Friedman type.
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1. INTRODUCTION

As monetary policy design enters the twenty-first century, the more than half-
century-old Friedman (1948) dictum, “rules rather than discretion,” seems to de-
fine the predominant view among academics and many central bankers. More
specifically, a goal of price stability has become the norm and, to this aim, two
policy options dominate the debate. One is the need for fiscal constraints (at least
constraints on seignorage) as a way to force monetary authorities to pursue price
stability. The second is the more or less explicit implementation of aninflation
target rule. The former is seen as a commitment device whereas the second is
seen, once commitment has been granted, as a stabilization policy. We focus on
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one (usually neglected) aspect of such policies: the role of expectations formation
in the design of policy rules. In particular, we investigate how fiscal constraints
can help to achieve price stability (even when there are no credibility problems)
and how different inflation target policies can be ranked according to their stability
properties in economies in which private agents form their expectations adaptively.

In taking into account the role of fiscal (seignorage) constraints in economies
with adaptive learning agents, we follow up on the recent work of Evans et al.
(2000). However, in contrast to that work, we consider alternative policies for the
central bank (they only consider fixed seignorage financing) and a wider class
of (deterministic) learning rules for private agents. In particular, our analysis of
alternative stabilization policy rules aims at shedding some light on the discussion
of how inflation target policies should be designed. Our analysis of a wide class
of learning rules aims at taking into account the fact that, when observed inflation
differs from the fixed (trivially stationary) target, private agents are likely to place
more weight on recent data. Taking this broader perspective allows us to study how
different parameters affect the price stability under alternative rules. For example,
we show how fiscal constraints may enhance price stabilization in ways that could
not be captured either by rational expectations models or by adaptive learning
models with decreasing gain [such as least-squares learning, as studied by Evans
et al. (2000b)].

We show how different monetary instruments are equivalent to the use of a
single intermediate instrument determining theex-postreal return on money. In
setting the value of such an instrument (e.g., what would correspond to setting the
current interbank rate), the central bank may condition on current information (i.e.,
deviations from an output target), but also has to forecast the demand for money,
which, in our model, reduces to forecast “private agents’ expectations.” Different
inflation target policies differ on how the government conditions on past data and
on its beliefs regarding private agents’ expectations. The policy that we identify as
“optimal” is the one that uses all available information and, therefore, conditions
on observed deviations. Such a policy is consistent with rational expectations, in
the sense that the monetary authority, assumed to be fully committed to its policy,
forecasts that private agents expect that the target will be achieved in the short run.
Such a policy is of the form of the inflation target policies proposed by Svensson
(1997) and others. However, under our policy, the target is only one of many
possible rational expectations equilibria. In fact, as Benhabib et al. (1999) have
recently shown, Taylor-rule policies may result in indeterminacy and, in particular,
in paths that diverge from the target (when policy is “active”; see Section 2). Along
these paths, as often happens with observed series, inflation is autocorrelated and
deviations from target cannot be accounted for as simple stochastic innovations.

What should inflation target policy be when deviations from target are not in-
novations? A first possibility is to think that the optimal policy remains in place.
Implicitly, this is the view adopted by the existing literature on Taylor rules [see,
e.g., McCallum (1997), Mishkin and Posen (1997), and Clarida et al. (1997a)]. A
second possibility is to go back to Friedman’s recommendation and postulate an
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unconditional policy consistent with the long-run objectives. Finally, the central
bank can try to “forecast how private agents forecast.” This, of course, is not a
closed—or well-defined—possibility and it raises a number of interesting issues.
We find that, if the central bank succeeds at such forecasting game, then, as in the
rational expectations case, the target should prevail in the short run and the best
forecast of private agents’ beliefs is the same target (see Section 2). However, cen-
tral banks may not be that farsighted; they may simply postulate a certain amount
of inertia on how private agents forecast. As a canonical example, we postulate
a simple (fixed) adaptive rule as a conditional inflation target rule. Studying and
comparing the performance of the three rules, in an economy in which agents’ ex-
pectations are adaptive, is the central theme of this paper. For all three rules, there
is, of course, amisspecificationproblem: The central bank does not implement a
rule that is fully consistent with how private agents learn, nor do private agents
postulate learning rules fully consistent with the actual law of motion implied by
the central bank policy.1 Nevertheless, we show that for a wide range of parameters
the inflation target is a stable equilibrium of the corresponding adaptive process.

We find that, when policy is “active,” under learning the inflation target is more
stable when the stationary rational expectations equilibrium is a (locally unique)
determinateequilibrium. In this respect our work reinforces and complements the
contemporaneous work of Bullard and Mitra (1999), who also study the E-stability
of inflation target policies.2 We study a somewhat narrower set of policies than they
do, and we provide a full characterization of stability results, not only by consid-
ering local stability of a wide class of constant gain rules, but also by considering
associated global stability properties.

It is in the global analysisthat this paper breaks more novel ground: first, by
showing how fiscal constraints may affect the global stability of the target, and,
second, by making use of some new results onglobal bifurcations.3

Our exercise provides a better understanding of how three basic parameters in-
teract with and affect price stability. Two are, to a large extent, policy parameters:
(1) how low the inflation target is set in relation to the inflation level at which there
is no demand for money; and (2) the tightness of the fiscal constraint. The remain-
ing parameter is endogenous to agents’ learning process: (3) how much weight
they place on previous-period observed information (i.e., the size of the gain or
tracking parameter). In addition, we show how the three, seemingly similar, poli-
cies can result in quite different dynamics. As a result, we can provide local and
global stability rankings. We show that, in these stability rankings, what appears to
be the optimal policy on other grounds actually tends to be dominated by the alter-
native policies. In particular, Friedman’s unconditional rule performs remarkably
well as stabilization policy. This may provide a rationale for the observed fact [see
Clarida et al. (1997b)] that central banks appear to react much less aggressively to
incoming information than standard analyses of Taylor rules suggest.

The paper is divided into two important sections. Section 2 develops the model
while Section 3, the bulk of the paper, contains the local and global stability
results.
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2. INFLATION TARGET POLICIES

In this section, we first consider a general monetary model of inflation targeting.
In the next subsection, we provide a specific cash-in-advance interpretation of the
model.

The consolidated intertemporal government budget constraint takes the form

Ms
t+1+ Bs

t+1 = pt gt − ptτt + Ms
t + Bs

t It , (1)

wheregt is government expenditures;ptτt is tax revenues;Ms
t+1 and Bs

t+1 are
the supplies of money and government bonds, respectively, at the end of period
t ; and It is the nominal rate of return on bonds (contracted in periodt − 1 at that
rate). It is assumed that the sequence of intertemporal budget constraints satisfies
a transversality condition and, therefore, that the government satisfies its present-
value budget constraint. It is convenient to express (1) as

Ms
t+1− Ms

t = ptdt ,

where

dt = gt − τt + Bs
t

pt
It − Bs

t+1

pt
≡ gt − τt + bs

t Rb
t − bs

t+1. (2)

In the last equality, debts and rates of return are specified in real terms. In particu-
lar, Rb

t is therealizedreal rate of return on bonds. With this compact formulation,
dt can be identified as the instrument used to implement the target, although, in
practice, changes on the right-hand side of (2) correspond to open-market oper-
ations, interbank rate interventions, etc. Although it may be important for policy
design, in our model the exact form through whichdt changes is not relevant for
the dynamic effects of the policy.4

The money-market equilibrium is simply given byMd
t+1=Ms

t+1. Denoting real
balances bymd

t+1=Md
t+1/pt and gross inflation byπt+1 = pt+1/pt the intertem-

poral equilibrium condition reduces to

md
t+1 =

md
t

πt
+ dt . (3)

We consider economies in which the demand for real balances takes the form

md
t+1 = md

(
πe

t+1

)
,

whereπe
t+1 is the agents’ expected inflation.

2.1. Introducing Inflation Target Policies

An inflation target policyspecifies a desired level of inflation together with a level
of dt as a function of the available information in periodt . We consider recursive
policies. More specifically, consistent with the intertemporal equilibrium map (3),
we consider policies of the formdt = d(P)(md

t ) . Furthermore, if demand functions
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are known, these policies take the formdt = dP(πe
t ). It follows that realized

inflation is given by

πt = φ(P)
(
πe

t , π
e
t+1

) ≡ md
(
πe

t )

md
(
πe

t+1

)− dP
(
πe

t

) . (4)

Notice that, with the assumption that private agents have rational expectations,
equation (4) reduces toπt = φ(P)(πt , πt+1). That is, we can derive an equilibrium
map,ψ(P), such that rational expectations equilibrium paths are those satisfying

πt = ψ(P)(πt+1). (5)

Using equation (3), inflation target policies take the form

d(P)
(
md

t

) = Eg
t md

t+1−md
t

/
π∗, (6)

whereEg
t md

t+1 denotes the (government) expected demand for real balances con-
ditional on the available information at the beginning of periodt . That is, the
resulting policy isconditionalon past and expected future real balances.

To see the sense in which these policies are of the type of those proposed by
Taylor (1993) and Svensson (1997), and estimated by Clarida et al. (1997a,b), let
R∗ = 1/π∗,m∗ =md(π∗), andd∗ = [(π∗ − 1)/π∗]m∗. Then, equation (6) takes
the form

d(P)
(
md

t

) = d∗ + (Eg
t md

t+1−m∗
)+ R∗

(
m∗ −md

t

)
. (7)

That is, the central bank’s optimal reaction is to increase the money supply if either
the expected demand for real balances is above the target or the realized one is
below the target, so as to adapt to any expected deviation from target or adjust for
any experienced deviation from target. More specifically, in the special (linear)
casemd(πe

t+1) = b− πe
t+1, equation (7) can be written as

d(P)
(
πe

t

) = d∗ + (π∗ − Eg
t π

e
t+1

)+ R∗
(
πe

t − π∗
)
,

showing that the government reaction should be to increase the money supply
above the target level if it expects the private sector’s forecasted inflation to be
below the target or if past expectations of inflation were too high. Notice that,
as long as higher expected inflation results in lower output, a positive deviation
[πe

t −π∗] corresponds to a realized value of output below the target. In other
words, underd(P) rules, monetary authorities adapt to forecasted money demands
and to realized output gaps.

However, as can be seen from equation (6), with such a feedback rule the
rate of return on money(Rt = 1/πt ) satisfiesRt − R∗ = (md

t+1− Eg
t md

t+1)/mt . In
other words, realized inflation differs from target inflation only if the government
miscalculates the private sector’s demands. In fact, when the government knows
the money demand function, the target is achieved—immediately—as long as the
government accurately forecasts the private sector’s expectations of inflation. This
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also means that the forecast consistent with rational expectations isEg
t πt+1 = π∗,

which results in the optimal target policy

dO
t = dO

(
md

t

) ≡ md(π∗)− R∗md
t = d∗ + R∗

(
m∗ −md

t

)
,

where the money supply is constant except for deviations of realized real balances
from their target level (or output deviations, in the constant-velocity case). Further-
more, consistency with rational expectations also implies thatEt−1[dO(md

t )] = d∗.
In other words, the expected money growth must be the constant growth implied
by the desired inflation target. The constant growth of money ruled∗ is, in fact,
the rule proposed by Milton Friedman, who explicitly advocated “rules rather than
discretion” and also advocated designing short-run rules in terms of long-term
objectives and not in terms of discretionary reactions to economic fluctuations
[e.g., Friedman (1948)]. For this reason, we refer to the constant policyd∗ as the
Friedman policydF , given by

dF
t = dF ≡ md(π∗)− R∗md(π∗) = d∗.

Such a policy is not optimal in the sense that it does not make use of all available
information as the conditional policydO(md

t ) does. But, as we have seen, the
conditional policy should only react to unexpected deviations ofmd

t . In particular,
if the government has been following such a policy and private agents have rational
expectations, then it should be the case thatmd(πe

t ) = md(π∗) = m∗ and, if there
are no other sources of uncertainty, this implies thatdO(md

t ) = d∗.

2.1.1. Indeterminacy, policy activism, and consistency with rational expecta-
tions. Under both policies,O andF , there is, in general, a continuum of rational
expectations equilibria (REE) and two stationary rational expectations equilibria
(SREE), that is, two fixed points ofψ(P). In particular, under theO policy the two
SREE areπ∗ andb/(1+ π∗), while under theF policy the two SREE areπ∗ and
b/π∗. Notice thatF corresponds to the standard hyperinflation model of a con-
stant deficit financed through seignorage, and the two SREE reflect the existence
of two inflation-tax levels raising the same revenues (i.e., a version of the Laffer
curve). Furthermore,π∗ should be the lower steady-state inflation rate, otherwise
the target policy cannot be optimal. In fact, these models have a Laer curve, and
the two SREE generate the same revenues, but higher inflation is associated with
lower savings and lower welfare. For the policyF , this requiresb>π∗

2
. Similarly,

π∗ is the lower SREE inflation under the policyO if and only if b>π∗(1+ π∗),
a more stringent condition than underF .

It is convenient to consider the inverse map of equation (5), sayϕ≡ψ−1. In fact,
provided thatϕ(P)′(π)>0, if π̄ is a SREE andϕ(P)′(π̄)>1, then the corresponding
target policy is calledactiveand the corresponding SREE isdeterminate, whereas
if ϕ(P)′(π̄)<1, then the policy is calledpassiveand there isindeterminacy, in the
sense that a continuum of REE has a long-run inflation of ¯π , that is a continuum of
solutions of (5) withπt→ π̄ [see, e.g., Leeper (1991) or Benhabib et al. (1999)].
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It is easy to see that, under any of the two policies, we haveϕ(P)′(π)>0 and,
provided thatπ∗ is the lower-inflation SREE,ϕ(P)′(π∗) > 1. The high SREE is, in
contrast,indeterminateand, correspondingly, theO policy ispassiveatb/(1+π∗)
while theF policy ispassiveatb/π∗. However, at high-inflation SREE, as well as
along the REE hyperinflationary paths approaching them, the government should
realize that its target policy is not being achieved and, therefore, the rationality of
the policy should be questioned. In other words, these paths are not fully consistent
with rational expectations on the part of the government.

What should the government do if it observesmd
t 6= m∗?5 In the following, we

explore several plausible options, but we do not provide a complete answer to this
question. We first consider the case in which the government simply follows the
optimal policy O even when output (i.e., real balance) deviations are autocorre-
lated. However, Friedman’s implicit criticism of conditional policies as possibly
being too “overreactive” may apply to this case and, therefore, we also consider
the unconditional policyF .

2.1.2. Policies based on forecasts of private agents’ forecasts.Facing devi-
ations from rational expectations, the government may want to infer how private
agents forecast inflation. As we have said, if the government succeeds at “learning
how private agents learn,” then the resulting inflation must be the target, but then
private agents’ forecasts (forecasting rules) may be affected by the correspond-
ing shift to the announced target. This problem is similar to that of using “good
predictors” of inflation as a guide for monetary policy. As Woodford (1994) has
argued, such “nonstandard indicators” suffer from the Lucas critique problem: As
much as they are “good predictors,” if they are used in the design of policy, then
they should cease to be good indicators.

Let us assume that government’s ability to accurately predict how private agents
forecast is limited. In particular, since a broad class of learning rules show some
degree ofinertia,6 a benchmark option to consider is that the government postulates
that inertia persists; that is,Eg

t md
t+1 = md

t .
Inertia in private agents’ forecasts results in autocorrelated deviations from tar-

get. In particular, notice that if agents update their estimates of inflation according
to an adaptive rule of the form

πe
t+1 = πe

t + αt
(
πt−1− πe

t

)
, (8)

with αt ∈ (0, 1), αt ≈ 0 (or αt↘ 0 as is the case when they use standard OLS
techniques), then the government is almost right (in the limit) in postulating that
inertia persists, although they could choose better predictors of private agents’
forecasts—namely, the same rule (8)! Postulating that (one-period) inertia persists,
we get an inflation target policy of the form

dI
(
md

t

) ≡ md
t − R∗md

t =
(
π∗ − 1

π∗

)
md

t = d∗ + (R∗ − 1)
(
m∗ −md

t

)
.
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Forπ∗ > 1 (i.e.,R∗ < 1), whenever real balances (output) are below the target, this
policy recommends reducing the money supply below the target because it adapts
to the expected low money demand. Such a recommendation is the opposite of the
recommendation under the optimal policydO, which only takes into account the
current period downturn, but expects demand to be at the target level the following
period.

The REE under theI policy is characterized by theψ(I ) map (5): There is only
one SREE corresponding to the targetπ∗ and there is a continuum of REE paths
with the property that, in the long run, money loses its value. Notice that when
π∗ = 1, I is equivalent toF . Of course, along nonstationary REE paths, there
is an element of irrationality on the part of the government because itsinertia
assumption is not satisfied.

In summary, we consider the three alternative stabilization policies,O, F , and
I . However, it should be clear from our discussion that, within our class of models,
other policies may be considered, reflecting central bank perceptions of how the
private sector will forecast inflation, given its announced policy. Nevertheless, a
careful stability analysis of our benchmark policies may help us to understand how
policies should be modified in order to enhance stability properties. In particular,
we are interested in contrasting the performance of the so-called optimal policy
with the other two policies. To do this, in what follows, we describe the dynamics
of the model with adaptive private agents and a linear demand

md
(
πe

t+1

) = b− πe
t+1. (9)

As we will see, although the design of an optimal fiscal and monetary mix, under
rational expectations, does not place any restriction onb−π∗, other thanb−π∗ >
0, the saturation valueb may determine the success of the inflation targetπ∗. The
fact that the stability of the inflation target may be affected by the point ofcurrency
collapse, even if a collapse never occurs, is a general feature of our results. Our
linear demand formulation simplifies the corresponding analysis.

2.2. Introducing Fiscal Constraints

Nonnegative prices requiremd
t+1− dt ≥ 0. Here, we follow Evans et al. (2000) in

considering constrained policies that satisfymd
t+1 − d(P)(md

t ) ≥ 0. In particular,
we consider a constraint on the ratio of seignorage to (private) GDP,7

dt

yt − g
≤ κ. (10)

By equation (3),

dt

md
t+1

= 1− md
t π
−1
t

md
t+1

= 1− ct

md
t+1

= 1− yt − g

md
t+1

≤ 1− 1

κ

dt

md
t+1

,
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that is,
dt

md
t+1

≤ κ

1+ κ ≡ λ.

Notice that if, instead, the constraint is a deficit to (private) GDP constraint of the
form

g+ (Rt − 1)bt − τnt

yt − g
= dt + (bt+1− bt )

yt − g
≤ κ,

thendt/md
t+1≤ λ as long as(bt+1− bt )≥ 0, as in a (targeted) steady-state budget.

We abstract from the exact nature of the constraint, but we assume thatex-post
policies satisfy

d̂
(P)(

md
t ,m

d
t+1

) = min
{

d(P)
(
md

t

)
, λmd

t+1

}
(11)

for some policy parameterλ. In particular, we are interested in studying how the
stability of inflation target policies is affected by such a fiscal constraint param-
eter. Notice, however, that such a constraint does not mitigate (and may actually
worsen) the indeterminacy problem of REE. More specifically, with full commit-
ment and rational expectations, there is no rationale for imposing constraints of
this type [see Evans et al. (2000b)]. Of course, with limited commitment and ra-
tional expectations, there may be a stabilizing role for fiscal constraints [see, e.g.,
Giovannetti et al. (2000)]. As in Evans et al. (2000b), this paper shows that, with
full commitment and adaptive expectations, there is also a stabilizing role for fiscal
constraints.

2.2.1. Precautionary savings.Unfortunately, theλ constraint is not enough
to avoid currency collapses (i.e., it guarantees 1/pt ≥ 0 but not 1/pt > 0). One
may consider policies explicitly aimed at avoiding such extreme events, however.
As long as there is some minimum (residual) demand for money, currency col-
lapses cannot occur. Here, as in Evans et al. (2000b), we assume the existence of
an ε >0, such that the representative agent’s demand for real balances satisfies
md(πe)=max{b=πe, ε}. As we will see, such an assumption only plays a role
in our global analysis in the sense that, without it, the rare event of a currency
collapse cannot be dismissed.8

2.3. Introducing Adaptive Expectations

We consider that private agents predict inflation as a constant. In other words,
we follow Cagan (1956) in considering a general class of learning rules in which
agents condition data focusing on aminimal state variable(MSV) solution. In
particular,

πe
t+1 = πe

t + α
(
πt−1− πe

t

)
, (12)

where previous-period, and not-current period, inflation is used to update fore-
casts. This formulation is consistent with the underlying informational structure
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of the model and with agents not overreacting to current events (i.e., having some
behavioral inertia).9 We also assume that the weight on realized inflation,αt , is
exogenous. Nevertheless, experimental evidence shows that the parameterαt tends
to increase when observed paths are nonstationary. In fact, in a nonstationary envi-
ronment, to use a tracking procedure (i.e., keepingαt constant) is a better learning
rule than to use a stochastic approximation procedure (withαt↘ 0), such as stan-
dard least-squares procedures. Since, on the one hand, the asymptotic analysis of
the stochastic approximation case has been done by Evans et al. (2000) (only for
theF policy) and, on the other hand, we want to allow for a wide range of tracking
procedures, we should consider the whole classαt = α ∈ (0, 1).10

3. DYNAMIC MODEL WITH ADAPTIVE EXPECTATIONS

In this section we provide the main stability results. We start by considering some
general properties of the adaptive expectations process under a general inflation
target policyd(P). Given such a policy, substituting (12) into the intertemporal
equilibrium condition (4), we obtain a second order difference equation in expected
inflation rates:

πe
t+1 = (1− α)πe

t + αφ(P)
(
πe

t−1, π
e
t

)
,

which, under our assumptions, takes the form

πe
t+1 = (1− α)πe

t + α
max

{
b− πe

t−1, ε
}

max
{

b− πe
t , ε
}− d̂

(P)(
πe

t−1, π
e
t

) . (13)

As usual, a second order difference equation is more easily studied by writing
it as an equivalent system of two first order difference equations. In order to do
this, let xt =πe

t−1 and yt =πe
t . Then equation (13) can be written in the form

(xt+1, yt+1)= T (P)(xt , yt ), whereT (P) is the two-dimensional map

T (P) :


xt+1 = yt

yt+1 = (1− α)yt + α m(xt )

m(yt )− d̂
(P)
(xt , yt )

.
(14)

with m(z)=max{ε, b− z}, d̂(P) given by equation (11),b ≥ π∗, α ∈ (0, 1), λ∈
[0, 1] andε >0 is a small parameter.

3.1. Some General Properties of the Models

The map (14), the iteration of which defines the time evolution of the system in
the space of expected inflation, is a nonlinear piecewise continuous map onR2

+.
However, its behavior changes along the linesx= bε andy= bε , wherebε ≡ b− ε.
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Correspondingly, we can subdivideR2
+ into the following four regions:

R(I) = {(x, y) | 0≤ x < bε, 0≤ y < bε},
R(II) = {(x, y) | x ≥ bε, 0≤ y < bε},

R(III ) = {(x, y) | x > bε, y > bε},
R(IV) = {(x, y) | 0≤ x < bε, y > bε}.

Notice that, by assumption,E ≡ (π∗, π∗) is in regionR(I) and outside this region
there is only a residual,ε, demand for real balances [i.e., formd

t−1 in R(II) or md
t

in R(III) or both md
t−1 andmd

t in R(IV)]. Therefore, we are particularly interested
in the behavior of (14) inR(I). The following result shows that, provided the fiscal
constraint is not too loose, the regions,R(II), R(III), and R(IV) are transition
regions.

LEMMA 1. Assumeλ < 1− 1/bε . Then, for any initial condition(x0, y0)∈
R2
+, a process{xt , yt } generated by(14) visits R(I) infinitely often. In particular,

either R(I) is an absorbing region for{xt , yt } or, eventually, {xt , yt } follows a path
through the regions R(I)→ R(IV)→ R(III )→ R(II)→ R(I).

Proof. See Appendix A.

Notice that, when the fiscal constraint is binding, the map (14) reduces to the
sub map

Tλ:


xt+1 = yt ,

yt+1 = (1− α)yt + α

1− λ
m(xt )

m(yt )

(15)

which has a unique fixed point atEλ ≡ [1/(1− λ), 1/(1− λ)]. The assumption
of Lemma 1 implies thatEλ is in regionR(I); that is, the conditionλ<1− 1/bε
guarantees that the mapTλ, active when there is only a residual demand for real
balances, does not allow the process to be absorbed outside region (I). It does
not guarantee, however, that the process eventually remains in region (I) because,
there may be cycling behavior along the four regions. In fact, Lemma 1 allows the
existence of cyclic dynamics, which may be periodic or not, that move “clockwise”
visiting the four regions in the orderR(I)→ R(IV)→ R(III )→ R(II)→ R(I),
with fast transitions (just one time period) forR(II)→ R(I) andR(IV)→ R(III )
or R(II), and with slower transitions forR(III )→ R(II) and R(I)→ R(IV). The
existence of this type of large-amplitude oscillation is strictly related to the value
of the parameterε, in the sense that the amplitude of the oscillations is inversely
proportional toε. We return to this issue when we analyze the global dynamics of
the models.
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3.2. Local Stability of π∗

We first study the asymptotic stability (i.e., whetherπe
t →π∗) of paths with initial

conditions in a neighborhood of the target (i.e.,‖(πe
0, π

e
1)− E‖<ρ for some

ρ >0. Such local stability analysis of (14) aroundπ∗ is relatively straightforward.
It requires the characterization of the map (14) in region (I), possibly establishing
conditions guaranteeing that the fiscal constraint is not binding for expectations
close to the target and, finally, studying the eigenvalues of the corresponding
Jacobian. We first briefly discuss the three policies and then compare them in
terms of their local stability properties. For all of the policies, in the subregion of
R(I) where the fiscal constraint is not binding, the map (14) reduces to the sub map
T (P)
∗ whose fixed points are the same than those of the rational expectations map

(5). For convenience, policies are discussed in reverse order with respect to their
appearance; that is,I , F , andO. In what follows, given an inflation targetπ∗, we
letÄ≡{(b, α) | b>π∗, α ∈ (0, 1)}.

3.2.1. Policy I . The restriction ofT (I ) to regionR(I) is given by

T (I )|R(I):


x′ = y

y′ = (1− α)y+ α m(x)

m(y)−min
{π∗ − 1

π∗
m(x), λm(y)

} . (16)

The lines of equationy= s(x) ≡ [(π∗ − 1)/λπ∗]x + [1 − (π∗ − 1)/λπ∗]bε
separates theR(I) into two subregions:

R(I A) = {(x, y) ∈ R(I) | y < s(x)} and R(I B) = {(x, y) ∈ R(I) | y > s(x)}.
The mapT (I )|R(I ) can be written in the equivalent form

T (I )|R(I ) :



T (I )|R(IB)=Tλ if (xt , yt ) ∈ R(IB)

T (I )|R(I A)=T (I )
∗ :


xt+1= yt

yt+1= (1−α)y+απ∗ m(xt )

π∗m(yt )− (π∗ − 1)m(xt )
if (xt , yt ) ∈ R(I A)

The mapT (I)
∗ has the unique fixed pointE∗ = (π∗, π∗), which is also a fixed

point of T (I) provided thatE∗ ∈ (I A), that is, if the condition 1− 1/π∗<λ≤ 1
holds. In other words, the target equilibrium is a steady state of the model if the
fiscal constraint on seignorage is not too tight. With such a condition, the fixed
point of the mapTλ, Eλ = [1/(1− λ), 1/(1− λ)], is not a fixed point ofT (I); that
is, T (I)(Eλ)= T (I)

∗ (Eλ) 6= Eλ.
We will restrict the fiscal constraint to satisfy

λ ∈ 1∗ ≡ (1− 1/π∗, 1− 1/bε
)
. (17)

https://doi.org/10.1017/S1365100501019022 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501019022


160 GIAN-ITALO BISCHI AND RAMON MARIMON

FIGURE 1. A superposition, in the parameter spaceÄ, of the regions of local stability of the
target equilibriumE∗ under the three different policies, withπ∗ = 1.5. The region with left
boundary OD is the stability region ofE∗ underI , the one bounded by ABC refers to policy
F , and the one with left boundary ED refers to policyO.

As long as condition (17) is satisfied,λ does not affect the local stability properties
of E∗. Indeed, letÄI

s={(b, α) ∈ Ä|b>π∗(1+απ∗)} (see the region below the
line OD in Figure 1). The following result is proved in Appendix B.1.

LEMMA 2. Assumeλ ∈ 1∗ [i.e., condition (17)]. If (b, α)∈Ä1
s, then E∗ is

locally stable with policy I.

In the complementary region,ÄI
u={(b, α) | b−π∗

2
α−π∗< 0}E∗ is unstable.

In particular, following the arguments given in the Appendix B.1, if the point(b, α)
crosses the line

b= b(I)h (α) = (1+ απ∗)π∗, (18)

passing fromÄI
u to ÄI

s, a subcritical Neimark–Hopf bifurcationoccurs which,
at least for(b, α)∈ÄI

s close to the bifurcation curve (18), creates a repelling
closed invariant curve0 around the stable fixed pointE∗, which constitutes the
boundary of the basin of attractionB(E∗) of E∗. More precisely, forb> b(I)h (α),
a range of values ofb exists such thatE∗ is locally asymptotically stable (a stable
focus), with a basin of attraction bounded by a closed curve whose radius is
proportional to

√
b− b(I)h (α). Analogously, for a fixed value of the parameter

b ∈ (π∗, π∗(1+ π∗)), the subcritical Neimark–Hopf bifurcation occurs at

α = α(I)h (b) =
b− π∗
π∗2

(19)

and E∗ is stable forα <α(I)h with the basin of attraction bounded, at least for
values ofα close toα(I)h , by a closed curve whose radius increases proportionally

to
√
α
(I)
h (b)− α.
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3.2.2. Policy F. The restriction ofT (F) to the region (I) is given by

T (F)|R(I):


xt+1 = yt

yt+1 = (1− α)yt + α m(xt )

m(yt )−min

{
π∗ − 1

π∗
m(π∗), λm(yt )

} . (20)

The horizontal lineq of equationy=q(x) ≡ bε − [(π∗ − 1)/λπ∗](bε −π∗)
separates the regionR(I) into two subregions,

R(I A)= {(x, y) ∈ R(I) | y < q(x)} and R(IB)= {(x, y) ∈ R(I) | y > q(x)},
such that the mapT (F)|(I) can be written in the equivalent form

T (F)|R(I):



T (F)|(IB) = Tλ if (xt , yt ) ∈ R(IB)

T (F)|(I A) = T (F)
∗ :


xt+1 = yt

yt+1 =(1−α)yt +απ∗ m(xt )

π∗m(yt )− (π∗ −1)m(π∗)
.

if (xt , yt ) ∈ R(I A).

As in the corresponding REE map (5), the mapT (F)
∗ has two fixed points: the

targetE∗ = (π∗, π∗) and B∗ = (b/π∗, b/π∗). These points also are fixed points
for T (F) provided that they belong to the region(I A) where the dynamics ofT (F)

are governed by the restrictionT (F)
∗ . It is easy to see thatE∗ ∈ (I A) if, λ>1− 1/π∗,

which is satisfied if condition (17) holds, andB∗ ∈ (I A) if λ>1−π∗/b. (Notice
that 1− 1/π∗< 1−π∗/b if b>π∗

2
). As with policy I , we assume that condition

(17) is satisfied.
On the basis of the analysis of the eigenvalues given in Appendix B.2, the

target fixed pointE∗ is stable in the regionÄF
s ={(b, α)∈Ä | b>π∗

2
andb >

π∗(1+α)} (see the shaded region bounded by the lines AB and BC in Figure 1)
and, for(b, α) ∈ ÄF

s , B∗ is a saddle point. The two fixed points ofT (F)
∗ exchange

stability via atranscritical bifurcationat b=π∗2 at which E∗ = B∗, so that the
fixed point characterized by lower inflation is the stable one.

The unique fixed pointEλ of the mapTλ is also a fixed point forT (F), provided
it belongs to the region(IB); that is,

bε − π
∗ − 1

λπ∗
(
bε − π∗

)
<

1

1− λ < bε .

Furthermore,Eλ is locally stable providedb> bλh(α)= (α+ 1)/(1− λ) (see
Appendix B.4). From these conditions for the existence and stability of the fixed
points, we obtain the following result:

LEMMA 3. Assume thatλ ∈ 1∗[i.e., condition (17)] and let(b,α)∈Ä:

(i) If b < π∗
2
, then the map T(F) has three fixed points: E∗, B∗, and Eλ. If α <π∗ − 1,

then E∗ is unstable and B∗ is stable, while if α < (1− λ)b− 1 then Eλ is locally
stable.
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(ii) The target E∗ is locally stable provided that(b, α)∈ÄF
s . Furthermore, if λ<1−

π∗/bε , then E∗ is the only fixed point of T(F) , whereas if1−π∗/bε < λ<1−
1/bε , then the map T(F) has three fixed points, E∗, B∗ and Eλ, where B∗ is unstable
and Eλ, is stable ifα < (1− λ)b− 1.

As with policy I , for b>π∗
2

and high values ofα, the target equilibriumE∗

is unstable [the only attractor being a big “cyclic” setA(ε)]; then, E∗ becomes
stable for decreasing values ofα through asubcritical Neimark–Hopf bifurcation
at the lineb= b(F)h (α)=π∗(α+ 1).

3.2.3. Policy O. The restriction ofT (O) to regionR(I) is given by

T (O)|R(I):


xt+1= yt

yt+1= (1− α)yt + α m(xt )

m(yt )−min
{

m(π∗)− 1
π∗m(xt ), λm(yt )

} .
(21)

The line r of equationy= r (x)≡−(1/λπ∗)x+π∗/λ+ (be/λ)(1/π∗ + λ− 1)
separates the regionR(I) into two subregions,

R(I A) = {(x, y) ∈ R(I) | y < r (x)} and R(IB) = {(x, y) ∈ R(I) | y > r (x)},

such that the mapT (O)|(I) can be written in the equivalent form

T (O)|R(I):


T (O)|R(IB) = Tλ if (xt , yt ) ∈ R(IB)

T (O)|R(I A) = T (O)
∗ :

xt+1= yt

yt+1= (1−α)yt +απ∗ m(xt )

m(yt )−
(
m(π∗)− 1

π∗m(xt )
) .

if (xt , yt ) ∈ R(I A).

As in the corresponding REE map (5),T (O)
∗ has two fixed points: the targetE∗ =

(π∗, π∗) andB∗ = (b/(1+π∗), b/(1+π∗)). These points are also fixed points for
T (O), provided that they belong to the regionR(I A)where the dynamics ofT (O) are
governed by the sub mapT (O)

∗ . It is easy to see that, with condition (17),E∗ ∈ R(I A)

and B∗ ∈ R(I A) if λ>1− (1+π∗)/b. {Notice that 1− 1/π∗< 1− [(1+π∗)/b]
if b>π∗(1+π∗).} Therefore, the characterization is similar to that obtained for
policy F . With policy O, the two fixed points ofT (O)

∗ exchange stability via
a transcritical bifurcationat b=π∗(1+π∗)b=π∗2 at which E∗ = B∗. As with
policy O, the fixed point characterized by lower inflation is locally stable under
adaptive learning. However, in contrast, in this case the conditionb>π∗(1+π∗) is
the only condition for the stability ofE∗; that is,ÄO

s ={(b, α)∈Ä | b>π∗(1+π∗)}
(see the shaded region at the right of line ED in Figure 1). The unique fixed point
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Eλ of the mapTλ is also a fixed point forT (O), provided it belongs to the region
R(IB); that is, if

− 1

λπ∗
1

1− λ +
π∗

λ
+ bε
λ

(
1

π∗
+ λ− 1

)
<

1

1− λ < bε .

Furthermore,Eλ is locally stable, provided thatb>(α+ 1)/(1− λ) (see Ap-
pendix B.4). In summary, we obtain local stability results that almost parallel
those of policyF .

LEMMA 4. Assumeλ∈1∗ [i.e., condition(17)] and let(b, α)∈Ä:

(i) If b<π∗(1+π∗), then the map T(O) has three fixed points: E∗, B∗, and Eλ. E∗ is
locally unstable, B∗ is locally stable, and Eλ is locally stable ifα < (1− λ)b− 1;

(ii) The target E∗ is locally stable, provided that(b, α)∈ÄO
s . Furthermore, if λ<1−

(1+π∗)/bε , then E∗ is the only fixed point of T(O), whereas if1− (1+π∗)/bε < λ<
1− 1/bε , then the map T(O) has three fixed points, E∗, B∗, and Eλ, where B∗ is
unstable and Eλ is stable ifα < (1− λ)b− 1.

3.2.4. Ranking policies according to their local stability properties.Lemmas
2–4 show how the local stability properties of the inflation targetπ∗ differ across
policies. In particular, assuming condition (17), the stability of the inflation target
under the policiesI , F , andO holds in the following domains of the parameters’
spaceÄ:

ÄI
s = {(b, α) ∈ Ä | b > π∗(1+ απ∗)}

ÄF
s = {(b, α) ∈ Ä | b > π∗

2
and b > π∗(1+ α)}

ÄO
s = {(b, α) ∈ Ä | b > π∗(1+ π∗)}.

Therefore, we say that policyP dominates policyP′, in terms of its local stability
properties, if the inflation target equilibriumπ∗ is locally stable in a larger domain
of the parameter spaceÄ, and denote such preference byPÂl P′. Then, as corollary
to Lemmas 2–4 we have the following propositions.

PROPOSITION 1.Assume thatλ∈1∗ [i.e., condition (17)] and letπ∗> 1.
Then, policy O is dominated in terms of its local stability properties. In particular,
F Âl O and IÂl O.

Figure 1 illustrates Proposition 1 for 2>π∗> 1. Notice that, as long asb>π∗2,
the unconditional policyF dominates the other policies in terms of its local stability
properties. This result is consistent with Friedman’s views.

A local stability ranking is not uniquely determined byÂl . For example, pro-
vided that the target is locally stable, we may be interested in whether convergence
is monotone, which can make it easier to “pattern recognize” the tendency for
inflation to converge to the target. Alternatively, we may be interested in the speed
of convergence to the target. As we show in Appendix C, provided that the target
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is locally stable, only with policyO is convergence always monotone, whereas for
other policies, monotone convergence requires a small enough value ofα. Never-
theless, in terms of speed of convergence, policyO also tends to be dominated.

More formally, letÄ∗s=ÄI
s ∩ÄF

s ∩ÄO
s ; that is,Ä∗s ⊂ Ä denotes the region of

parameters where the inflation target is locally stable under the three policies under
consideration. We say thatPÂs P′ on a subsetA⊆Ä∗s if, for any (b, α)∈ A, paths
(starting in a neighborhood ofπ∗) converge faster under the policyP than under
the policyP′. The following proposition (proved in the Appendix C) provides the
corresponding characterization.

PROPOSITION 2.Assume that(b, α) ∈ Ä∗s andπ∗> 1. Then,

(i) there exists an̄α such that, for all α≤ ᾱ, all three policies have a monotone path;
(ii) there exists anα1∈ (ᾱ,1) and anα2∈ (α1,1) such that, for all α ≤ α1,I Âs O, and,

for all α≤α2,F Âs O.

As we have shown, the local stability analysis already allows us to rank inflation
target policies and, in particular, it suggests disregarding the optimal policyO in
favor of alternative policies. On the other hand, differences based on the eigenvalues
of the Jacobian ofT (P)

∗ tend to be relatively small and, therefore, the rankings are
not very sharp. We now turn in the next subsection to the more interesting and
novel global analysis of the three policies.

3.3. Global Stability of π∗

As in the preceding subsection, we first briefly discuss global dynamics under
the alternative policies and then we summarize the results comparing the three
policies. As we will see, even if the local analysis also provides useful information
concerning the global dynamics of the system, a more complete understanding is
based on the study of the basins of attraction and, in particular, of someglobal
bifurcationsthat cause qualitative changes in such basins, whose characterization
requires the use of computer graphics. We focus our attention on the basin of
attraction ofπ∗,B(E∗), defined as the set of points of the planex, y that generate
trajectories converging toE∗. Of particular interest is the role played by the fiscal
constraint parameterλ and by the tracking parameterα in enlargingB(E∗). The
global analysis becomes quite complex because of the possible coexistence of
different attractors. As we will see, in all of these respects the three, apparently very
similar, policies behave quite differently. Such differences could not be captured
in a model in which only the asymptotic caseα↘ 0 is analyzed [e.g., Evans et al.
(2000)].

3.3.1. Policy I : The role of fiscal constraints.As we have seen in Lemma 1,
even when the inflation target is locally stable, there may be cycling paths following
a large cyclical movement across the four regions. Figure 2 illustrates such behavior
for policy I . In particular, Figure 2a shows, in the phase spacex,y, the coexistence
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FIGURE 2. Numerical simulations of the model under policyI with π∗ = 1.5, α= 0.4,
λ= 0.5, b= 2.75, andε= 0.03, that is, just after the subcritical Neimark–Hopf bifurcation
at which the target inflation fixed pointE∗ becomes stable, occurring atb(I)h (0.4)= 2.4.
(a) The basin of attraction ofE∗ is represented by the gray region, whereas the basin of
the “cyclic” attractorA(ε) is represented by the white region (only partially visible in the
figure). (b) Two sequences of expected inflation rates are represented relative to time, one
generated by an initial condition taken in the gray region of (a) and the other one generated
by an initial condition taken in the white region.

of a large “cyclic” attractorA(ε), whose basin is represented by the white region,
with the SREEπ∗ whose basinB(E∗) is represented by the gray region. Figure 2b
shows two paths, each of which starts from an initial expected inflation taken in a
different basin of attraction.

In Figure 2a,B(E∗) is contained in the interior of subregion(I A). This is a
snapshot corresponding to fixed values ofb, α, andλ. Nevertheless, changing these
parameters also causesB(E∗) to change. In particular, numerical simulations show
how the size ofB(E∗) increases for decreasing values ofα (or increasing values
of b) until the basin boundary∂B(E∗) has a contact with the big cyclic attractor
A(ε). This contact causes the disappearance ofA(ε) [Gumowski and Mira (1978,
1980)] and, consequently,E∗ becomes a global attractor; that is,B(E∗) covers the
whole phase space. Such a contact bifurcation is calledfinal bifurcation in Mira
et al. (1996) and Abraham et al. (1997) orboundary crisisin Grebogi et al. (1983).
This bifurcation cannot be revealed by a local study, that is, based on the linear
approximation of the dynamical system.

An interesting result is obtained if the influence of the parameterλ on the size
and the shape ofB(E∗) is considered. In fact, even ifλ does not influence the
local stability ofE∗ when condition (17) is assumed, it may influence the shape
and the size ofB(E∗). This is clearly shown in Figure 3, where we start with a
situation similar to that of Figure 2a (see Figure 3a) and, keeping all of the other
parameters fixed, we successively decreaseλ, making the fiscal constraint tighter.
In Figure 3b,B(E∗) intersects the subregionR(IB)where dynamics are dominated
by the sub mapTλ. The contact between the basin boundary∂B(E∗) and the lines,
which separates the subregionsR(I A) andR(IB), causes a sudden enlargement of
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FIGURE 3. Numerical simulations of the model under policyI with π∗ = 1.5, α= 0.6,
b= 3, ε= 0.03, and four different values ofλ, decreasing from (a) to (d). The gray region
represents the basin of the target equilibriumE∗. In (a),λ = 0.5, and the basin is entirely
included in the region (IA). In (b), λ= 0.42, after the contact between the basin boundary
and the lines. In (c), λ= 0.4195 at the contact between the basin boundary and the line
x= b− ε. In (d), λ= 0.419, after the contact between the basin boundary and the line
x= b− ε, the basin ofE∗ covers the whole plane; that is,E∗ is globally stable.

the basinB(E∗). In fact, after such contact, ifEλ is stable forTλ andEλ ∈ B(E∗),
then some trajectories starting from regionR(IB)may move towardEλ and, conse-
quently, enter the basinB(E∗). We may say thatEλ behaves as acatalystbecause
it attracts trajectories coming from the subregionR(IB) and then it conveys them
towardE∗ becauseEλ ∈B(E∗). Moreover, a small reduction ofλ causesB(E∗)
to increase to the point where the basin boundary∂B(E∗) contactsthe linebε (see
Figure 3c), producing aglobal (or contact) bifurcation. As Figure 3d shows, as
a result of such a global bifurcation,B(E∗) coversthe entire phase space under
consideration, so that global stability is achieved.

In summary, Figure 3 shows how fiscal constraints can enhance the global
stability properties of an inflation target policy (such asI ) even when the constraints
have no effect on local stability properties of the inflation policy.
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It is important to remark that, since the equations of the curves that form∂B(E∗)
are not known, an analytical computation of the parameters values at which the
contacts between∂B(E∗) and the liness andb= bε occur is not possible. Hence,
these parameters can only be revealed numerically, by a graphical analysis. Indeed,
computational methods are a standard tool in the global study of dynamical systems
of dimension greater than one [see, e.g., Mira et al. (1996), Brock and Hommes
(1997)].

3.3.2. Policy F: The coexistence of two attracting fixed points.As Lemma 3(ii)
shows, the fixed pointsE∗ andEλ may coexist, both being locally stable. In this case
of two coexisting attractors, the initial condition is crucial in order to forecast the
long-run behavior of the system; it is therefore important to study the boundaries of
the respective basins of attraction. As with policyI , whenE∗ is the only attractor,
decreasingα orλ, or increasingb, enhances the stability ofπ∗, andB(E∗)expands.
However, when bothE∗ andEλ are attractors, these changes of parameters tend
to enhance the stability properties of both attractors and it may well be that the
effect is stronger forEλ, in which caseB(Eλ) will enlarge whileB(E∗) will
contract. This is shown in Figure 4, where we start in a situation in which both
attractors coexist, but just after the subcritical Neimark–Hopf bifurcation at which
Eλ becomes stable and, therefore,B(E∗)encompasses almost all of the phase space
[see Figure 4a; notice that the Neimark–Hopf bifurcation at whichEλ becomes
stable occurs atα= (1− λ)b− 1= 0.25]. In Figures 4b–d, we successively reduce
the tracking parameterα while keeping all other parameters constant. Asα is
decreased,B(Eλ) enlarges and its boundary has a contact with the lineq. After
this contact, a sudden change ofB(Eλ) is observed, as shown in Figure 4b. Now
the boundary of the basinB(Eλ) includes the saddle pointB∗ and, consequently,
points that are very close toE∗ belong toB(Eλ). Furthermore, ifα is further
decreased,B(Eλ) continues to enlarge until a contact with the linex= bε occurs
(see Figure 4c), which marks another evident qualitative change, as Figure 4d
shows.

In summary, Figure 4 shows how the presence of coexisting attractors (as may
occur under policyF) can induce counterintuitive effects on the stability properties
of the inflation targetπ∗ when parameters are changed.

3.3.3. Policy O: The coexistence of two attracting fixed points and a chaotic
attractor. Lemma 4(ii) shows that, with the policyO, the fixed pointsE∗ andEλ
can coexist as attractors. However, as Figure 5 shows, the situation may be more
complex: In particular, Figure 5b shows the existence of a chaotic attractor around
Eλ. In this figure the dark-gray and the light-gray regions represent the basins of
E∗ and Eλ, respectively, whereas the points of the white region converge to the
chaotic attractor. Notice that the basinB(Eλ) is formed by two disjoint portions.
However, as the parameterα is decreased, the chaotic attractor disappears after a
contactwith its basin boundary, a typicalfinal bifurcation(or boundary crisis);
see Figure 5b.
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FIGURE 4. Numerical simulations of the model with policyF , with parameters
π∗ = 1.5, λ= 0.5, b= 2.5, ε= 0.03, and four different values ofα, decreasing from (a)
to (d), such that the two stable equilibriaE∗ and Eλ coexist. The dark-gray region rep-
resents the basinB(E∗) of the target equilibriumE∗; the light-gray region represents the
basinB(Eλ) of the higher-inflation equilibriumEλ.

In summary, Figure 5 shows that the global dynamics can be quite complex.
However, decreasingα (or increasingb) tends to simplify the dynamics of the
model in favor of the attracting fixed points. As in Figure 4, however, stability may
be enhanced more forEλ than forE∗

3.3.4. Comparing policies according to their global stability properties with
the help of fiscal constraints.The results on global dynamics given above are
interesting but do not lead to a clear ranking of policies according to their global
stability properties. To provide such a comparison, we restrict our attention to
values ofλ ∈ 1∗ ≡ (1− 1/π∗, 1− 1/bε) [i.e., where condition (17) is satis-
fied] and check, by numerical computation, which values ofλ, b, andα produce

https://doi.org/10.1017/S1365100501019022 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501019022


GLOBAL STABILITY OF INFLATION TARGET POLICIES 169

FIGURE 5. Numerical simulations of the model with policyO, with parameters
π∗ = 1.5, λ= 0.6, b= 3.9, ε= 0.03, and two different values ofα, such that the two stable
equilibriaE∗ andEλ coexist. The dark-gray region represents the basinB(E∗) of the target
equilibrium E∗; the light-gray region represents the basinB(Eλ) of the higher-inflation
equilibrium Eλ. (a) Forα= 0.55, a chaotic attractor also exists aroundEλ, whose basin is
represented by the white region. The basinB(Eλ) is formed by two disjoint portions. (b)
Forα= 0.53, the chaotic attractor no longer exists.

“global convergence.” More precisely, given a set of parameters(α, b, λ), we nu-
merically generate paths from all initial conditions(x0, y0) taken within a fine
grid in a wide portion of the(x,y) plane, and we count how many of such paths
converge to the target. Figure 6 shows the results of these computations, made for
many values of(b, λ), whose values are represented on the axes, and two different
values ofα. From Lemmas 3(ii) and 4(ii), for values(λ, b) between the curves
λ∗(b) = 1− 1/bε, λF (b) = 1− π∗/bε , andλO(b)= 1− (1+π∗)/bε , respec-
tively, the attractorE∗ may coexist with the attractorEλ, whereas for values of
(λ, b) belowλF (b) andλO(b), E∗ is the unique attractor. In contrast, for policy
I , there is a unique fixed point that can be an attractor [Eλ is in subregionR(I A)],
which results in a better performance of this policy in terms of global stability
for relatively low values ofα. For relatively high values ofα, however, the target
may cease to be stable and policyF may dominate policyI in terms of global
stability.

In summary, Figure 611 reinforces the local stability ranking of policies. In
particular, the global stability results are consistent with Propositions 1 and 2
in showing that the so-called optimal policyO tends to be outperformed, as a
stabilization policy, by either the unconditional Friedman policyF or the adaptive
inertia policy I when private agents form their expectations adaptively.
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4. CONCLUSIONS

Stabilization policies must be judged by their stability properties. Within rational
expectations equilibria, such a statement is not even meaningful. It is meaningful,
however, when we consider that agents may form their expectations adaptively.
Experimental evidence [see, e.g., Marimon and Sunder (1993, 1994, 1995)] sup-
ports this adaptive view and can provide an empirical ground for our stability
results.12 The fact that our local and global stability rankings are consistent is en-
couraging. In particular, our results reinforce Friedman’s caution against “overly
reactive” rules. Friedman had an intuition about policy lags that could apply to any
model. In contrast, we provide a careful stability analysis of a relatively simple
model without policy lags. Even so, some lessons emerge that are likely to apply
to other models. First, and foremost, themisspecificationthat private agents have
rational expectations when, in fact, they do not, may lead to a wrong policy de-
sign, in the sense that alternative designs of stabilization policies may outperform
the rules designed under the rational expectations assumption. Second, even leav-
ing aside time-consistency considerations or “fiscal theory of money” considera-
tions [see, e.g., Woodford (1996)], fiscal constraints, in particular, seignorage con-
straints, may play an important role in helping stabilization policies to achieve their
goals.13 Third, even if monetary authorities follow—with full commitment—their
announced inflation target rules, inflation may differ substantially from the target.
Whereas, for example, inflationary episodes above the target are usually associated
with loose monetary policy or weak monetary authorities, in our economies such
instability may well correspond to the fact that, due to the existence of money
substitutes, the inflation target may not be too far from the level of inflation in
which there is a currency collapse. Furthermore, our global analysis also provides
a good reason to study the point ofcurrency collapse: It is the point where a global-
contact bifurcation occurs, resulting in a qualitative improvement of the stability
properties of the policy.

There is room for further research in several directions: studying other misspeci-
fied models, introducing stochastic learning, and so on. In such extensions, it would
be interesting to see if the relatively good performance (as a stabilization policy)
of Friedman’s-constant-money-growth rule persists. We find it a remarkable result
that may generalize to other environments.

NOTES

1. See Sargent (1999) for a discussion of adaptive models with misspecified beliefs.
2. For a detailed account of E-stability theory, see, for example, Evans and Honkapohja (2000a).
3. See, for example, Mira et al. (1996), Abraham et al. (1997), and Bischi et al. (1998) for an

introduction to the these results oncontact bifurcations.
4. Implicitly we assume that, within equivalent policies resulting in the samed policy, there is

(local) Ricardian equivalence; that is, present-value considerations do not discriminate among these
equivalent policies.

5. In a stochastic model, the question is what should the government do when, at some confidence
level, it infers that the predictions of private agent are not consistent with rational expectations, given
the government policy.
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6. See, for example, Marimon and McGrattan (1994) and Fudenberg and Levine (1998).
7. For example, in the EMU, seignorage of the ECB is restricted; furthermore, the Growth and

Stability Pact constrains deficits and, in the United States, balanced-budget proposals are recurrently
being considered.

8. Notice that, for notational convenience, we also denote bymd(πe) the demand for real balances
with precautionary savings.

9. Lettau and van Zandt (1999), in contrast with Marcet and Sargent (1989a,b), show that if agents
react tocurrentprices and do not focus on MSV solutions, the stability properties of the adaptive learning
process change. Recently, however, Adam (2000) has shown that, if Cagan’s hyperinflationary model
is properly developed to meaningfully allow for conditioning on current prices, most of the Marcet and
Sargent results prevail.

10. Notice that one could also consider that agents give some weight to the announced target, such
asπe

t+1 = (1− γt )[(1− αt )π
e
t + αtπt − 1] + γtπ

∗. However, although in such a rule tends to help the
stability properties of the target, it complicates the analysis without providing new insights.

11. Similar computations, not reported here, are available on request.
12. In fact, Evans et al. (2000b) provide some experimental results showing the stabilization power

of fiscal constraints.
13. Notice, however, that if fiscal constraints are too tight, the target may not be a stationary

equilibrium.
14. The rigorous proof of the subcritical nature of the Hopf bifurcation requires the evaluation of

some long expressions involving derivatives of the map up to order 3. In this case, we claim numerical
evidence.

REFERENCES

Abraham, R., L. Gardini & C. Mira (1997)Chaos in Discrete Dynamical Systems (a Visual Introduction
in Two Dimensions). New York: Springer–Verlag.

Adams, K. (2000)Learning Behavior: Microeconomic and Macroeconomic Implications. Unpublished
Ph.D. Dissertation, European University Institute, Florence, Italy.

Barucci, E., G.I. Bischi & R. Marimon (1998) The Stability of Inflation Target Policies. Manuscript,
European University Institute.

Benhabib, J., S. Schmitt-Groh´e & M. Uribe (1999) The Perils of Taylor Rules. Mimeo, New York
University.

Bernake, B.S. & I. Mihov (1997) What does the Bundesbank target?”European Economic Review41,
1025–1053.

Bischi, G.I., L. Gardini & C. Mira (1998) Maps with denominator: Some generic properties.Interna-
tional Journal of Bifurcations and Chaos9, 119–153.

Brock, W.A. & C. Hommes (1997) A rational route to randomness.Econometrica65, 1059–1095.
Bullard, J. & K. Mitra (1999) Learning About Monetary Policy Rules. Mimeo, Federal Reserve Bank

of St Louis.
Cagan, P. (1956) The monetary dynamics of hyerinflation. In M. Friedman (ed.),Studies in the

Quantity Theory of Money. Chicago: University of Chicago Press.
Christiano, L.J. & C.J. Gust (1999) Taylor Rules in a Limited Participation Model. NBER working

paper 7017.
Clarida, R. & M. Gertler (1996) How Does the Bundesbank Conduct Monetary Policy?” NBER

working paper 5581.
Clarida, R., J. Gal´ı & M. Gertler (1997a) Monetary Policy Rules and Macroeconomic Stability:

Evidence and Some Theory. Mimeo, New York University.
Clarida, R., J. Gal´ı & M. Gertler (1997b) Monetary Policy Rules in Practice: Some International

Evidence, Mimeo, New York University.
Evans, G.W. & S. Honkapohja (2000a)Adaptive Learning and Macroeconomic Dynamics. Princeton,

NJ: Princeton University.

https://doi.org/10.1017/S1365100501019022 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501019022


GLOBAL STABILITY OF INFLATION TARGET POLICIES 173

Evans, G.W., S. Honkapohja & R. Marimon (2001) Convergence in monetary inflation models with
heterogeneous learning rules.Macroeconomic Dynamics5, 1–31.

Farmer, R. (1999)The Economics of Self-Fulfilling Prophecies. Cambridge, MA: MIT Press.
Federal Reserve Bank of Kansas City (1996)Achieving Price Stability. Symposium proceedings.

Jackson Hole, WY: FRB Kansas City.
Friedman, M. (1948) A monetary and fiscal framework for economic stability.American Economic

Review38, 245–264.
Friedman, M. (1960)A Program for Monetary Stability. New York: Fordham University Press.
Fudenberg, D. & D. Levine (1998)The Theory of Learning in Games. Cambridge, MA: M.I.T. Press.
Giovannetti, G., J. Diaz, R. Marimon & P. Teles (2000) Nominal Debt as a Burden to Monetary Policy.

Mimeo, EUI.
Grebogi, C., E. Ott & J.A. Yorke (1983) Crises, sudden changes in chaotic attractors, and transient

chaos.Physica 7D, 181–200.
Gumowski, I. & C. Mira (1978) Bifurcation d´estabilisant une solution chaotique d’un endomorphisme

du 2nd ordre.Comptes Rendus de l’Academic des Sciences Paris, Série A, 286, 427–431.
Gumowski, I. & C. Mira (1980)Dynamique Chaotique. Toulouse, France: Cepadues Editions.
Guckenheimer, J. & P. Holmes (1983)Nonlinear Oscillations, Dynamical Systems, and Bifurcations

of Vector Fields. New York: Springer-Verlag.
Lettau, T. & T. van Zandt (1999) Robustness of Adaptive Expectations as an Equilibrium Selection

Device. CENTER Discussion paper 9598, Tilburg University.
Lorenz, H.W. (1993)Nonlinear Dynamical Economics and Chaotic Motion, 2nd ed. New York:

Springer-Verlag.
Marcet A. & T.J. Sargent (1989a) Least squares learning and the dynamics of hyperinflation. In

W.A. Barnett, J. Geweke, & K. Shell (eds.),Economic Complexity: Chaos, Sunspots, Bubbles, and
Nonlinearity. Cambridge, UK: Cambridge University Press.

Marcet A. & T.J. Sargent (1989b) Convergence of least-squares learning in environments with hidden
state variables and private information.Journal of Political Economy97, 1306–1322.

Marimon, R. (1997) Learning from learning in economics. In D.M. Kreps & K.F. Wallis (eds.),
Advances in Economics and Econometrics: Theory and Applications, Vol. I. Cambridge, UK:
Cambridge University Press.

Marimon, R. & E. McGrattan (1994) On adaptive learning in strategic games. In A. Kirman & M.
Salmon (eds.),Learning and Rationality in Economics. Oxford: Blackwell Publ.

Marimon, R. & S. Sunder (1993) Indeterminacy of equilibria in a hyperinflation world: experimental
evidence.Econometrica61, 1073–1107.

Marimon, R. & S. Sunder (1994) Expectations and learning under alternative monetary regimes: An
experimental approach.Economic Theory4, 131–162.

Marimon, R. & S. Sunder (1995) Does a constant money growth rule help stabilize inflation?
Experimental evidence.Carnegie-Rochester Conference Series on Public Policy43, 111–156.

McCallum, B.T. (1997) Issues in the Design of Monetary Policy Rules. NBER working paper
6016.

Mira, C., L. Gardini, A. Barugola & J.-C. Cathala (1996)Chaotic Dynamics in Two-Dimensional
Noninvertible Maps. Singapore: World Scientific.

Mishkin, F.S. & A.S. Posen (1997) Inflation Targeting: Lessons from Four Countries. NBER working
paper 6126.

Sargent, T.S. (1999)The Conquest of American Inflation. Princeton, NJ: Princeton University
Press.

Sargent, T.S. & N. Wallace (1987) Inflation and the government budget constraint. In A. Razin &
E. Sadka (eds.),Economic Policy in Theory and Practice. New York: Macmillan.

Svensson, L.E.O. (1997) Inflation forecast targeting: Implementing and monitoring inflation.European
Economic Review41, 1111–1146.

Taylor, J.B. (1993) Discretion versus policy rules in practice.Carnegie-Rochester Conference Series
on Public Policy39, 195–214.

https://doi.org/10.1017/S1365100501019022 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501019022


174 GIAN-ITALO BISCHI AND RAMON MARIMON

Taylor, J.B. (ed.) (1999)Monetary Policy Rules. Chicago: University of Chicago Press.
Woodford, M. (1994) Nonstandard indicators of moneatry policy: Can their usefulness be judged from

forecasting regressions? In G.N. Mankiw (ed.),Monetary Policy. Chicago: University of Chicago
Press.

Woodford, M. (1996) Control of the Public Debt: A Requirement for Price Stability? NBER working
paper 5684.

APPENDIX A: PROOF OF LEMMA 1

We first prove that all the trajectories starting out of regionR(I) enter regionR(I) after a
finite number of steps. In fact,

(a) If (xt , yt ) ∈ R(II), then(xt+1, yt+1) ∈ R(I), because in the map (14)yt < bε implies
xt+1< bε andyt+1= (1−α)yt < bε .

(b) If (xt , yt )∈ R(III ) andλ<1− 1/bε , then(xt+k, yt+k)∈ R(II) for a finitek> 0. Infact,
in region R(III ), we have m(x)= ε and m(y)= ε; hence, the mapT (P)

becomes

T (P)|R(III ):

xt+1 = yt

yt+1 = (1− α)yt + α 1

1− λ .

This is a linear map with a triangular structure, the second component only being
dependent on the second variable, and it is immediate to see thatyt converges to
1/(1− λ) at a speed(1− α)t , hence the entrance inside the regionR(II) after a finite
number of steps is ensured if 1/(1− λ) < bε ; that is,λ<1− 1/bε .

(c) If (xt , yt ) ∈ R(IV), then(xt+1, yt+1) ∈ R(III ) or (xt+1, yt+1) ∈ R(II), becauseyt > bε
impliesxt+1= yt > bε .

To complete the proof, we now show that a trajectory may transit from regionR(I) to
regionR(IV), so thatR(I) is not trapping. In fact, in regionR(I), we have

T (P)|R(I):


xt+1 = yt

yt+1 = (1− α)yt + α b− xt

b− yt −min
{

d(P)(xt ), λ(b− yt )
}

from which it is evident that a movement from region (I) to region (II) is impossible, because
yt < bε⇒ xt+1= yt < bε , where as we may have(xt , yt )∈ R(I ) and(xt+1, yt+1)∈ R(IV)
wheneveryt is sufficiently close tob andxt is sufficiently small. ¥
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APPENDIX B: LOCAL STABILITY ANALYSIS

In this Appendix, we analyze the local stability of the fixed points of the mapsT (I )
∗ , T (F)

∗ ,
T (O)
∗ , andTλ. Such analysis is obtained by the standard study of the eigenvalues, that is, the

solutions of the characteristic equation

P(z) = z2 − Tr · z+ Det= 0, (B.1)

where Tr and Det are the trace and the determinant of the Jacobian matrix computed at the
fixed point. A sufficient condition for the stability is expressed by the following system of
inequalities

P(1) = 1− Tr+ Det> 0; P(−1) = 1+ Tr+ Det> 0; 1− Det> 0 (B.2)

that give necessary and sufficient conditions for the two eigenvalues of (B.1) be inside the
unit circle of the complex plane [see, e.g., Gumowski and Mira (1980 p. 159)].

B.1 MAP T(I )
∗

The Jacobian matrix of the mapT (I )
∗ evaluated at the unique fixed pointE∗ is

DT (I )
∗ (π∗, π∗) =

 0 1

− απ∗2

b− π∗ 1− α + απ∗
2

b− π∗

 . (B.3)

The characteristic equation (B.1) has coefficients Tr=Tr(I )= 1−α+απ∗2/(b−π∗) and
Det=Det(I )=απ∗2/(b−π∗) . The conditionsP(1)>0 andP(−1)>0 are always satis-
fied, and the only condition for the stability ofE∗ is 1− Det> 0; that is,

απ∗2 − b+ π∗
b− π∗ < 0.

Sinceb>π∗ in the parameter spaceÄ, a sufficient condition for the stability ofE∗ is

απ∗
2 − b+ π∗ < 0. (B.4)

The vanishing of the left-hand side of (25) gives a line, in the parameter spaceb, α, such
that if (b, α) crosses that line from left to right a pair of complex conjugate eigenvalues
enters the unit circle and a subcritical Neimark–Hopf bifurcation occurs at which the fixed
point E∗ is changed from unstable focus to stable focus, and a repelling closed invariant
orbit is created around it14 [see, e.g., Guckenheimer and Holmes (1983, p. 162)]. Just after
its creation, such a closed curve is smooth and approximately of circular shape, with radius
proportional to the square root of the distance of the point(b, α) from the bifurcation line,
at least for values of(b, α) close to the bifurcation curve [see, e.g., Guckenheimer and
Holmes (1983, p. 305)].
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B.2 MAP T(F)
∗

The Jacobian matrix at the fixed pointE∗, is

DT(F)(π∗, π∗) =

 0 1

− απ∗

b− π∗ 1− α + απ∗2

b− π∗

 . (B.5)

Hence the characteristic equation (B.1) has coefficients Tr=Tr(F)= 1−α+
απ∗2/(b−π∗) and Det =Det(F)=απ∗/(b−π∗). In this case, we haveP(1)=
α[(b−π∗2)/(b−π∗)]> 0 if b>π∗

2
(being b>π∗ in the parameter spaceÄ). At

b=π∗2 the fixed pointE∗ merges with the other fixed pointB∗ and one eigenvalue is
equal to 1. This situation corresponds to atranscritical (or stability exchange) bifurcation.
The other two conditions,P(− 1)>0 and 1−Det> 0, become, respectively,

b(2− α)+ π∗2[(π∗ + 2)α − 2]

b− π∗ > 0 and
π∗(α + 1)− b

b− π∗ < 0. (B.6)

The former is always satisfied for(b, α) ∈ Ä, whereas the vanishing of the numerator of
the latter gives a bifurcation curve at which a subcritical Neimark–Hopf bifurcation occurs.

The Jacobian matrix of the mapT (F)
∗ , evaluated in the other fixed pointB∗, becomes

DT(F)
(

b

π∗
,

b

π∗

)
=

 0 1

− α

π∗ − 1
1− α + αb

π∗(π∗ − 1)

 . (B.7)

In this case,

P(1) = α π∗2 − b

π∗(π∗ − 1)
> 0 if b < π∗

2
.

This confirms that the stability properties ofE∗ and B∗ are exchanged atb = π∗2, when
the two fixed points merge. The other conditionsP(−1) > 0 and 1− Det > 0, become,
respectively,

π∗
2
(2− α)+ 2(α − 1)π∗ + αb

π∗(π∗ − 1)
> 0 and

α − π∗ + 1

π∗ − 1
< 0. (B.8)

For π∗> 1, the first condition is satisfied for eachα ∈ (0, 1), whereas the second con-
dition is satisfied forα <π∗ − 1. Hence, if 1<π∗< 2 andb<π∗

2
, then the equation

α=π∗ − 1 defines a bifurcation curve at which a subcritical Hopf bifurcation occurs, the
fixed point B∗ being a stable focus forα <π∗ − 1. If b>π∗

2
, thenB∗ is a saddle-point,

with eigenvalues 0< z1< 1 andz2> 1, a straightforward consequence of the inequalities
P(−1)>0, P(1)<0 andP(0) > 0. These arguments allow us to give the following clas-
sification of the stability properties as the parametersπ∗, b, andα vary: If π∗> 1, thenE∗

is a locally stable fixed point if

b>π∗
2

and b> b(F)h (α), with b(F)h (α)=π∗(α + 1); (B.9)

B∗ is locally stable ifb<π∗
2

and 0<α<π∗ − 1.
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B.3. MAP T(O)
∗

The Jacobian matrix at the fixed pointE∗, is

DT(O)∗ (π∗, π∗) =

0 1

0 1− α + απ∗2

b− π∗

 , (B.10)

and so, the eigenvalues are always real,z1 = 0, z2 = 1− α + [απ∗2/(b− π∗)], andE∗ is
stable ifb > π∗(1+ π∗).

At B∗, we have

DT(O)
(

b

1+ π∗ ,
b

1+ π∗
)
=

 0 1

α
b− π∗(1+ π∗)
π∗2(1+ π∗) 1− α + αb

π∗(1+ π∗)

 (B.11)

soP(1)>0 forb<π∗(1+π∗), thus confirming that atb=π∗(1+π∗) the two fixed points
exchange their stability, and the conditions, that is,P(−1)>0 and 1−Det> 0, are always
satisfied, provided thatπ∗> 1. If b>π∗(1+π∗), then the fixed pointB∗ is a saddlepoint,
with−1< z1< 0 andz2> 1, a straightforward consequence of the inequalitiesP(− 1)>0,
P(1)<0 andP(0)>0. The local stability properties of the two fixed points, for ifπ∗> 1,
can be summarized as follows: forb>π∗(1+π∗), E∗ is stable andB∗ is unstable; for
π∗< b<π∗(1+π∗), E∗ is unstable andB∗ is stable.

B.4. MAP Tλ

The Jacobian matrix of the map (15) evaluated at the unique fixed pointEλ is

DTλ

(
1

1− λ ,
1

1− λ

)
=
[

0 1

− α

b(1− λ)− 1
1− α + α

b(1− λ)− 1

]
.

the characteristic equation (B.1) has coefficients

Tr = 1− α + α

b(1− λ)− 1
and Det= α

b(1− λ)− 1
.

The conditionP(1) > 0 is always satisfied, hence the stability conditions reduce to

2− α + 2α

b(1− λ)− 1
> 0 and

α − b(1− λ)+ 1

b(1− λ)− 1
< 0 (B.12)

which are both satisfied in the set (see Figure 7).

Äλ
s =
{
(b, α) ∈ Ä

∣∣∣∣(b<
1

1− λ andb< bλf (α)

)
or

(
b >

1

1− λ andb > bλh(α)

)}
.

https://doi.org/10.1017/S1365100501019022 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501019022


178 GIAN-ITALO BISCHI AND RAMON MARIMON

FIGURE 7. Stability regions for the fixed pointEλ of the mapTλ. The gray-shaded area
represents the regions of local stability ofEλ in the parameters space(b, α).

In particular, the equation

b = bλh(α) =
α + 1

1− λ (B.13)

gives a bifurcation curve at which a subcritical Neimark–Hopf bifurcation occurs.

APPENDIX C: PROOF OF PROPOSITION 2

Proposition 2 is a straightforward consequence of the following basic properties of linear
two-dimensional discrete dynamical systems [see, e.g., Lorenz (1993, p. 255)]:

• If the eigenvaluesz1 andz2 of the Jacobian matrix computed at the fixed pointE∗ are
complex conjugate with modulus|z1| = |z2| =

√
Det< 1, where Det is the Jacobian

determinant, then the convergence to the fixed point is oscillatory and the distance
‖(xt , yt )− E∗‖ reduces at a rate proportional to(

√
Det)t .

• If the eigenvalues are real and both inside the unit circle, say 0< |z1| < |z2| < 1,
then the distance‖(xt , yt ) − E∗‖ reduces at a rate proportional to|z2|t , and if z2 is
positive, then the convergence is monotone in the long run, because thedominant
eigenvalue, that is, the eigenvalue with largest modulus, determines the qualitative
behavior of the linear system ast→∞.

Of course, the first case occurs if the discriminant1=Tr2− 4 Det< 0, and the second
if the opposite (weak) inequality holds. In our case, letB=απ∗/(b−π∗). Then, Tr(I ) =
Tr(F)(α) = Tr(O) = 1−α+Bπ∗,Det(F) = B,Det(I ) = Bπ∗, and Det(O)= 0. Sinceb > π∗

andα ∈ (0, 1), then for all policies considered we have Tr(P) > 0. Hence, in the case of real
eigenvalues, the dominant eigenvalue is positive, given byz(P)2 = 0.5(Tr(P) +

√
1(P)) >

0. This means that whenever1(P) > 0 we have monotone convergence in the long run.
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However, from the above equalities, it follows that

1(I ) = 1(F) − 4(π∗ − 1)B; 1(I ) = 1(O) − 4Bπ∗; 1(F) = 1(O) − 4B

and Proposition 2(i) follows from the fact thatB↘ 0 asα ↘ 0.
The binary relations of Proposition 2(ii) can be obtained easily from the previous

equalities, recalling that, when convergence is monotone, the speed of convergence is
given by 0.5 [Tr(P) +

√
1(P)], and when it is oscillatory by

√
Det(P). For example, to

see thatF Âs O, notice that 0.5(Tr(O) +
√
1(O)) = Tr(O) = 1 − α + Bπ∗, while√

Det(F) = √B. ¥
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