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We study a dynamic equilibrium model in which agents have adaptive expectations and
monetary authorities pursue an inflation target. We show how alternative monetary
stabilization policies become more effective when fiscal constraints on deficits are
implemented, although they are not binding at the equilibrium target. In particular, we
show that the inflation target equilibrium can be locally, or even globally, stable for a large
class of adaptive learning schemes. We also compare alternative stabilization policies in
terms of their stability properties. Commonly postulated conditional Taylor-type rules
tend to be dominated by other rules, such as an unconditional Friedman type.
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1. INTRODUCTION

As monetary policy design enters the twenty-first century, the more than half-
century-old Friedman (1948) dictum, “rules rather than discretion,” seems to de-
fine the predominant view among academics and many central bankers. More
specifically, a goal of price stability has become the norm and, to this aim, two
policy options dominate the debate. One is the need for fiscal constraints (at least
constraints on seignorage) as a way to force monetary authorities to pursue price
stability. The second is the more or less explicit implementation dhiation

target rule The former is seen as a commitment device whereas the second is
seen, once commitment has been granted, as a stabilization policy. We focus on
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one (usually neglected) aspect of such policies: the role of expectations formation
in the design of policy rules. In particular, we investigate how fiscal constraints
can help to achieve price stability (even when there are no credibility problems)
and how different inflation target policies can be ranked according to their stability
properties in economies in which private agents form their expectations adaptively.

In taking into account the role of fiscal (seignorage) constraints in economies
with adaptive learning agents, we follow up on the recent work of Evans et al.
(2000). However, in contrast to that work, we consider alternative policies for the
central bank (they only consider fixed seignorage financing) and a wider class
of (deterministic) learning rules for private agents. In particular, our analysis of
alternative stabilization policy rules aims at shedding some light on the discussion
of how inflation target policies should be designed. Our analysis of a wide class
of learning rules aims at taking into account the fact that, when observed inflation
differs from the fixed (trivially stationary) target, private agents are likely to place
more weight on recent data. Taking this broader perspective allows us to study how
different parameters affect the price stability under alternative rules. For example,
we show how fiscal constraints may enhance price stabilization in ways that could
not be captured either by rational expectations models or by adaptive learning
models with decreasing gain [such as least-squares learning, as studied by Evans
et al. (2000Db)].

We show how different monetary instruments are equivalent to the use of a
single intermediate instrument determining thepostreal return on money. In
setting the value of such an instrument (e.g., what would correspond to setting the
current interbank rate), the central bank may condition on current information (i.e.,
deviations from an output target), but also has to forecast the demand for money,
which, in our model, reduces to forecast “private agents’ expectations.” Different
inflation target policies differ on how the government conditions on past data and
on its beliefs regarding private agents’ expectations. The policy that we identify as
“optimal” is the one that uses all available information and, therefore, conditions
on observed deviations. Such a policy is consistent with rational expectations, in
the sense that the monetary authority, assumed to be fully committed to its policy,
forecasts that private agents expect that the target will be achieved in the short run.
Such a policy is of the form of the inflation target policies proposed by Svensson
(1997) and others. However, under our policy, the target is only one of many
possible rational expectations equilibria. In fact, as Benhabib et al. (1999) have
recently shown, Taylor-rule policies may resultin indeterminacy and, in particular,
in paths that diverge from the target (when policy is “active”; see Section 2). Along
these paths, as often happens with observed series, inflation is autocorrelated and
deviations from target cannot be accounted for as simple stochastic innovations.

What should inflation target policy be when deviations from target are not in-
novations? A first possibility is to think that the optimal policy remains in place.
Implicitly, this is the view adopted by the existing literature on Taylor rules [see,
e.g., McCallum (1997), Mishkin and Posen (1997), and Clarida et al. (1997a)]. A
second possibility is to go back to Friedman’s recommendation and postulate an
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unconditional policy consistent with the long-run objectives. Finally, the central
bank can try to “forecast how private agents forecast.” This, of course, is not a
closed—or well-defined—possibility and it raises a number of interesting issues.
We find that, if the central bank succeeds at such forecasting game, then, as in the
rational expectations case, the target should prevail in the short run and the best
forecast of private agents’ beliefs is the same target (see Section 2). However, cen-
tral banks may not be that farsighted; they may simply postulate a certain amount
of inertia on how private agents forecast. As a canonical example, we postulate
a simple (fixed) adaptive rule as a conditional inflation target rule. Studying and
comparing the performance of the three rules, in an economy in which agents’ ex-
pectations are adaptive, is the central theme of this paper. For all three rules, there
is, of course, anisspecificatioproblem: The central bank does not implement a
rule that is fully consistent with how private agents learn, nor do private agents
postulate learning rules fully consistent with the actual law of motion implied by
the central bank policyNevertheless, we show that for a wide range of parameters
the inflation target is a stable equilibrium of the corresponding adaptive process.

We find that, when policy is “active,” under learning the inflation target is more
stable when the stationary rational expectations equilibrium is a (locally unique)
determinateequilibrium. In this respect our work reinforces and complements the
contemporaneous work of Bullard and Mitra (1999), who also study the E-stability
of inflation target policie.We study a somewhat narrower set of policies than they
do, and we provide a full characterization of stability results, not only by consid-
ering local stability of a wide class of constant gain rules, but also by considering
associated global stability properties.

Itis in the global analysisthat this paper breaks more novel ground: first, by
showing how fiscal constraints may affect the global stability of the target, and,
second, by making use of some new resultglmbal bifurcations®

Our exercise provides a better understanding of how three basic parameters in-
teract with and affect price stability. Two are, to a large extent, policy parameters:
(1) how low the inflation target is set in relation to the inflation level at which there
is no demand for money; and (2) the tightness of the fiscal constraint. The remain-
ing parameter is endogenous to agents’ learning process: (3) how much weight
they place on previous-period observed information (i.e., the size of the gain or
tracking parameter). In addition, we show how the three, seemingly similar, poli-
cies can result in quite different dynamics. As a result, we can provide local and
global stability rankings. We show that, in these stability rankings, what appears to
be the optimal policy on other grounds actually tends to be dominated by the alter-
native policies. In particular, Friedman’s unconditional rule performs remarkably
well as stabilization policy. This may provide a rationale for the observed fact [see
Clarida et al. (1997b)] that central banks appear to react much less aggressively to
incoming information than standard analyses of Taylor rules suggest.

The paper is divided into two important sections. Section 2 develops the model
while Section 3, the bulk of the paper, contains the local and global stability
results.
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2. INFLATION TARGET POLICIES

In this section, we first consider a general monetary model of inflation targeting.
In the next subsection, we provide a specific cash-in-advance interpretation of the
model.

The consolidated intertemporal government budget constraint takes the form

M, + BSy = peO — ez + M+ BYly, (1)

whereg; is government expenditureg;t; is tax revenuesM¢,, and BS,, are

the supplies of money and government bonds, respectively, at the end of period

t; andl; is the nominal rate of return on bonds (contracted in petied. at that

rate). It is assumed that the sequence of intertemporal budget constraints satisfies
a transversality condition and, therefore, that the government satisfies its present-
value budget constraint. It is convenient to express (1) as

Mts+1 - IVI'[S = ptdt7

where
S S

B
dt:gt_l’t'f‘at't—fEgt—‘ft-i-be{b—btil. @)

In the last equality, debts and rates of return are specified in real terms. In particu-
lar, RP is therealizedreal rate of return on bonds. With this compact formulation,
d; can be identified as the instrument used to implement the target, although, in
practice, changes on the right-hand side of (2) correspond to open-market oper-
ations, interbank rate interventions, etc. Although it may be important for policy
design, in our model the exact form through whaglchanges is not relevant for
the dynamic effects of the polidy.

The money-market equilibrium is simply given W+1 = Mg, ;. Denoting real
balances bynf, ; = M ,/p and gross inflation byt,1 = pr.1/pr the intertem-
poral equilibrium condition reduces to

d
m

md = —% +d. ©)
Tt

We consider economies in which the demand for real balances takes the form
d d e
m_,=m (T[H—l)’

wherer, , is the agents’ expected inflation.

2.1. Introducing Inflation Target Policies

An inflation target policyspecifies a desired level of inflation together with a level
of d; as a function of the available information in periodVe consider recursive
policies. More specifically, consistent with the intertemporal equilibrium map (3),
we consider policies of the foroh = d<P)(m§’) . Furthermore, if demand functions
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are known, these policies take the fodn = dP (z¢). It follows that realized
inflation is given by

md (nte)
i (xg.1) — 47 (2€)

Notice that, with the assumption that private agents have rational expectations,
equation (4) reduces ta = ¢ (7y, m41). That is, we can derive an equilibrium
map,y P, such that rational expectations equilibrium paths are those satisfying

m =¥ P (rep). (5)

Using equation (3), inflation target policies take the form

(4)

= ¢ (”te» 7Tte+1) =

d®(my) = Emi,, —mf /7", C)

WhereEtgmtd+1 denotes the (government) expected demand for real balances con-
ditional on the available information at the beginning of period@hat is, the
resulting policy isconditionalon past and expected future real balances.

To see the sense in which these policies are of the type of those proposed by
Taylor (1993) and Svensson (1997), and estimated by Clarida et al. (1997a,b), let
R*=1/7*, m*=md(x*), andd* =[(x* — 1)/7*]m*. Then, equation (6) takes
the form

d®(mf) = d* + (Efm?,, — m*) + R*(m* —m{). @)

Thatis, the central bank’s optimal reaction is to increase the money supply if either
the expected demand for real balances is above the target or the realized one is
below the target, so as to adapt to any expected deviation from target or adjust for
any experienced deviation from target. More specifically, in the special (linear)
casemd(n ;) = b — = 4, equation (7) can be written as

d® (”te) =d*+ (7’* - Etg”til) + R (”te - ”*)’

showing that the government reaction should be to increase the money supply
above the target level if it expects the private sector’s forecasted inflation to be
below the target or if past expectations of inflation were too high. Notice that,
as long as higher expected inflation results in lower output, a positive deviation
[7& —n*] corresponds to a realized value of output below the target. In other
words, unded‘® rules, monetary authorities adapt to forecasted money demands
and to realized output gaps.

However, as can be seen from equation (6), with such a feedback rule the
rate of return on monegyR; = 1/m) satisfiesR — R* = (m¢,; — EZmd, ))/m¢. In
other words, realized inflation differs from target inflation only if the government
miscalculates the private sector’s demands. In fact, when the government knows
the money demand function, the target is achieved—immediately—as long as the
government accurately forecasts the private sector’s expectations of inflation. This

https://doi.org/10.1017/51365100501019022 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100501019022

GLOBAL STABILITY OF INFLATION TARGET POLICIES 153

also means that the forecast consistent with rational expectatiEﬁsrj$l =¥,
which results in the optimal target policy

d° =d°(mf) = mi(z*) — R'm{ = d* + R*(m* — m{),

where the money supply is constant except for deviations of realized real balances
from their target level (or output deviations, in the constant-velocity case). Further-
more, consistency with rational expectations also impliesghafd® (md)] = d*.

In other words, the expected money growth must be the constant growth implied
by the desired inflation target. The constant growth of moneyadtilis, in fact,

the rule proposed by Milton Friedman, who explicitly advocated “rules rather than
discretion” and also advocated designing short-run rules in terms of long-term
objectives and not in terms of discretionary reactions to economic fluctuations
[e.g., Friedman (1948)]. For this reason, we refer to the constant plieg the
Friedman policyd", given by

df =df =mi@*) — Rrmi(z*) = d*.

Such a policy is not optimal in the sense that it does not make use of all available
information as the conditional policg®(m) does. But, as we have seen, the
conditional policy should only react to unexpected deviatioms®bfin particular,

if the government has been following such a policy and private agents have rational
expectations, then it should be the case ntfé(mte) = md(z*) = m* and, if there

are no other sources of uncertainty, this implies d%mn{’) = d*.

2.1.1. Indeterminacy, policy activism, and consistency with rational expecta-
tions. Under both policiesD andF, there is, in general, a continuum of rational
expectations equilibria (REE) and two stationary rational expectations equilibria
(SREE), that is, two fixed points @f ™. In particular, under th® policy the two
SREE arer* andb/(1+ =*), while under theF policy the two SREE are* and
b/7*. Notice thatF corresponds to the standard hyperinflation model of a con-
stant deficit financed through seignorage, and the two SREE reflect the existence
of two inflation-tax levels raising the same revenues (i.e., a version of the Laffer
curve). Furthermorer* should be the lower steady-state inflation rate, otherwise
the target policy cannot be optimal. In fact, these models have a Laer curve, and
the two SREE generate the same revenues, but higher inflation is associated with
lower savings and lower welfare. For the poliythis required > b Similarly,

* is the lower SREE inflation under the poli€y if and only ifb > 7*(1 + 7*),
a more stringent condition than under

Itis convenient to consider the inverse map of equation (S)psays . In fact,
provided that®'(r) > 0, if 7 isa SREE ang ™’ () > 1, then the corresponding
target policy is calle@ctiveand the corresponding SREEdsterminatewhereas
if 9P’() < 1, then the policy is calledassiveand there isndeterminacyin the
sense that a continuum of REE has a long-run inflation,¢hat is a continuum of
solutions of (5) withry — 7 [see, e.g., Leeper (1991) or Benhabib et al. (1999)].
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It is easy to see that, under any of the two policies, we haf&(7) > 0 and,
provided thatr* is the lower-inflation SRER,P” (7*) > 1. The high SREE is, in
contrastjndeterminateand, correspondingly, th@ policy ispassiveatb/(1+ 7 *)

while theF policy ispassiveatb/7*. However, at high-inflation SREE, as well as
along the REE hyperinflationary paths approaching them, the government should
realize that its target policy is not being achieved and, therefore, the rationality of
the policy should be questioned. In other words, these paths are not fully consistent
with rational expectations on the part of the government.

What should the government do if it observe$ # m*® In the following, we
explore several plausible options, but we do not provide a complete answer to this
guestion. We first consider the case in which the government simply follows the
optimal policy O even when output (i.e., real balance) deviations are autocorre-
lated. However, Friedman'’s implicit criticism of conditional policies as possibly
being too “overreactive” may apply to this case and, therefore, we also consider
the unconditional policy.

2.1.2. Policies based on forecasts of private agents’ forecastacing devi-
ations from rational expectations, the government may want to infer how private
agents forecast inflation. As we have said, if the government succeeds at “learning
how private agents learn,” then the resulting inflation must be the target, but then
private agents’ forecasts (forecasting rules) may be affected by the correspond-
ing shift to the announced target. This problem is similar to that of using “good
predictors” of inflation as a guide for monetary policy. As Woodford (1994) has
argued, such “nonstandard indicators” suffer from the Lucas critique problem: As
much as they are “good predictors,” if they are used in the design of policy, then
they should cease to be good indicators.

Let us assume that government’s ability to accurately predict how private agents
forecast is limited. In particular, since a broad class of learning rules show some
degree ofnertia,® a benchmark option to consider is that the government postulates
that inertia persists; that i§¢m¢, ; = m.

Inertia in private agents’ forecasts results in autocorrelated deviations from tar-
get. In particular, notice that if agents update their estimates of inflation according
to an adaptive rule of the form

nlq =7+ o (o1 — ), €

with o € (0, 1), &y =0 (or o \( O as is the case when they use standard OLS
techniques), then the government is almost right (in the limit) in postulating that
inertia persists, although they could choose better predictors of private agents’
forecasts—namely, the same rule (8)! Postulating that (one-period) inertia persists,
we get an inflation target policy of the form

d'(m) =m! — R'm{ = <n :1)m§’ =d*+ (R* = D (m* —m).
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Forz* > 1(i.e.,R* < 1), wheneverreal balances (output) are below the target, this
policy recommends reducing the money supply below the target because it adapts
to the expected low money demand. Such a recommendation is the opposite of the
recommendation under the optimal polid§, which only takes into account the
current period downturn, but expects demand to be at the target level the following
period.

The REE under thé policy is characterized by the) map (5): There is only
one SREE corresponding to the targétand there is a continuum of REE paths
with the property that, in the long run, money loses its value. Notice that when
7*=1,1 is equivalent toF. Of course, along nonstationary REE paths, there
is an element of irrationality on the part of the government becausedtta
assumption is not satisfied.

In summary, we consider the three alternative stabilization poli€es$;, and
| . However, it should be clear from our discussion that, within our class of models,
other policies may be considered, reflecting central bank perceptions of how the
private sector will forecast inflation, given its announced policy. Nevertheless, a
careful stability analysis of our benchmark policies may help us to understand how
policies should be modified in order to enhance stability properties. In particular,
we are interested in contrasting the performance of the so-called optimal policy
with the other two policies. To do this, in what follows, we describe the dynamics
of the model with adaptive private agents and a linear demand

mé (&) = b — 784 €)

As we will see, although the design of an optimal fiscal and monetary mix, under
rational expectations, does not place any restrictiom-em*, othertharb — 7* >

0, the saturation value may determine the success of the inflation targetThe

fact that the stability of the inflation target may be affected by the poictinEncy
collapse even if a collapse never occurs, is a general feature of our results. Our
linear demand formulation simplifies the corresponding analysis.

2.2. Introducing Fiscal Constraints

Nonnegative prices requina?+l — di > 0. Here, we follow Evans et al. (2000) in
considering constrained policies that satisfy,, — d®(m¢) > 0. In particular,
we consider a constraint on the ratio of seignorage to (private) GDP,

d
<k (10
Yt —9
By equation (3),
d mdz 1 C — 1 d
dt —1— I;Tt —1— d’( =1—ytdg§1—— dt’
M Mii1 Mii1 M1 kMg
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that is,
o K
<

< .
M.~ 1+«

Notice that if, instead, the constraint is a deficit to (private) GDP constraint of the

form
g+ (R — Dby — iy _ o + (b1 — by) “x
Vi —9 Vi —9 B
thendt/m?+1 <iaslongagh;.; —b) >0, as in a (targeted) steady-state budget.

We abstract from the exact nature of the constraint, but we assumextipaist
policies satisfy

)

oT(P)(m?, md.) = min{d® (m¢), am, ;} (12)

for some policy parameter. In particular, we are interested in studying how the
stability of inflation target policies is affected by such a fiscal constraint param-
eter. Notice, however, that such a constraint does not mitigate (and may actually
worsen) the indeterminacy problem of REE. More specifically, with full commit-
ment and rational expectations, there is no rationale for imposing constraints of
this type [see Evans et al. (2000b)]. Of course, with limited commitment and ra-
tional expectations, there may be a stabilizing role for fiscal constraints [see, e.g.,
Giovannetti et al. (2000)]. As in Evans et al. (2000b), this paper shows that, with
full commitment and adaptive expectations, there is also a stabilizing role for fiscal
constraints.

2.2.1. Precautionary savings.Unfortunately, thex constraint is not enough
to avoid currency collapses (i.e., it guarante¢g; 0 but not ¥ p; > 0). One
may consider policies explicitly aimed at avoiding such extreme events, however.
As long as there is some minimum (residual) demand for money, currency col-
lapses cannot occur. Here, as in Evans et al. (2000b), we assume the existence of
ane > 0, such that the representative agent’s demand for real balances satisfies
md(7®) = maxb= 7%, €}. As we will see, such an assumption only plays a role
in our global analysis in the sense that, without it, the rare event of a currency
collapse cannot be dismisséd.

2.3. Introducing Adaptive Expectations

We consider that private agents predict inflation as a constant. In other words,
we follow Cagan (1956) in considering a general class of learning rules in which
agents condition data focusing omanimal state variabl§MSV) solution. In
particular,

miy =8 +a(moy — ), (12

where previous-period, and not-current period, inflation is used to update fore-
casts. This formulation is consistent with the underlying informational structure
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of the model and with agents not overreacting to current events (i.e., having some
behavioral inertiaf. We also assume that the weight on realized inflatignjs
exogenous. Nevertheless, experimental evidence shows that the parartestds

to increase when observed paths are nonstationary. In fact, in a nonstationary envi-
ronment, to use a tracking procedure (i.e., keepingpnstant) is a better learning

rule than to use a stochastic approximation procedure gwitQ 0), such as stan-

dard least-squares procedures. Since, on the one hand, the asymptotic analysis of
the stochastic approximation case has been done by Evans et al. (2000) (only for
theF policy) and, on the other hand, we want to allow for a wide range of tracking
procedures, we should consider the whole class o € (0, 1).1°

3. DYNAMIC MODEL WITH ADAPTIVE EXPECTATIONS

In this section we provide the main stability results. We start by considering some
general properties of the adaptive expectations process under a general inflation
target policyd®™. Given such a policy, substituting (12) into the intertemporal
equilibrium condition (4), we obtain a second order difference equation in expected
inflation rates:

nte-&-l = (1 — C()?Tte + (X(b(P) (JTte_l, nte) 5
which, under our assumptions, takes the form

max{b — 7 ;, €}

max{b — 7€, e} — a® (mf 1, f) .

me =0 -+« (13

As usual, a second order difference equation is more easily studied by writing
it as an equivalent system of two first order difference equations. In order to do
this, letx, = ; and y; ==f. Then equation (13) can be written in the form
(Xt+1s Yir1) = TP (X, ), whereT (P is the two-dimensional map

Xt+1 = Wt
TP m(x 14
Vrri= A -y +a E<;)) - (19
m(y:) —d (X, Vi)

with m(z) = max{e, b — z}, qa® given by equation (11 > 7*, ¢ € (0,1), 1 €
[0, 1] ande > 0 is a small parameter.

3.1. Some General Properties of the Models

The map (14), the iteration of which defines the time evolution of the system in
the space of expected inflation, is a nonlinear piecewise continuous maﬁg.on
However, its behavior changes along the liresb, andy = b,, whereb, =b —e.
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Correspondingly, we can subdivitﬂﬁ into the following four regions:

R ={X,y)|0<x<b,0=<y<b},
RAID ={(X,y) | x> b, 0<y < b},
R = {(X,y) | X > be,y > b},

RUIV) = {(X,y) 0 <X < b,y > be}.

Notice that, by assumptiol, = (=*, 7*) is in regionR(l) and outside this region
there is only a residuad,, demand for real balances [i.e., ﬁmﬂl in R(I) or m?

in R(II1) or both md_; andmd in R(IV)]. Therefore, we are particularly interested
in the behavior of (14) ifR(l). The following result shows that, provided the fiscal
constraint is not too loose, the regiori(ll), R(Ill), and R(IV) are transition
regions.

LEMMA 1. Assume\. < 1 — 1/b.. Then for any initial condition(xo, Yo) €
Ri, a processx;, Yt} generated by14) visits K1) infinitely often. In particular
either R) is an absorbing region fofx;, y;} or, eventually{x;, y;} follows a path
through the regions R) — R(IV) — R(ll) — R(l) — R(I).

Proof. See Appendix A.

Notice that, when the fiscal constraint is binding, the map (14) reduces to the
sub map

YVerr =1 -y + 1 mey)

Xt+1 = W,

T o m(X) (15
which has a unique fixed point &, = [1/(1 — 1), 1/(1 — A)]. The assumption
of Lemma 1 implies thaE; is in regionR(l); that is, the conditiork <1 — 1/b,
guarantees that the mdp, active when there is only a residual demand for real
balances, does not allow the process to be absorbed outside region (I). It does
not guarantee, however, that the process eventually remains in region (I) because,
there may be cycling behavior along the four regions. In fact, Lemma 1 allows the
existence of cyclic dynamics, which may be periodic or not, that move “clockwise”
visiting the four regions in the ordeR(l) - R(IV) — R(ll) — R(l) — R(l),
with fast transitions (just one time period) fB(Il1) — R(l) and R(IV) — R(lIl)
or R(ll), and with slower transitions faR(lll ) — R(Il) and R(l) — R(IV). The
existence of this type of large-amplitude oscillation is strictly related to the value
of the parametet, in the sense that the amplitude of the oscillations is inversely
proportional toe. We return to this issue when we analyze the global dynamics of
the models.
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3.2. Local Stability of =*

We first study the asymptotic stability (i.e., whethegr— 7*) of paths with initial
conditions in a neighborhood of the target (i.b(x§, 7n7) — E|l < p for some

o > 0. Such local stability analysis of (14) around is relatively straightforward.

It requires the characterization of the map (14) in region (l), possibly establishing
conditions guaranteeing that the fiscal constraint is not binding for expectations
close to the target and, finally, studying the eigenvalues of the corresponding
Jacobian. We first briefly discuss the three policies and then compare them in
terms of their local stability properties. For all of the policies, in the subregion of
R(I) where the fiscal constraint is not binding, the map (14) reduces to the sub map
TP whose fixed points are the same than those of the rational expectations map
(5). For convenience, policies are discussed in reverse order with respect to their
appearance; that i, F, andO. In what follows, given an inflation target*, we
letQ={(b,a) | b>7x* aec (0, 1)}

3.2.1. Policy I. The restriction off !V to regionR(l) is given by
X'=y

TR (Y =1—a)y+a nr;n(_x)l . (19
m(y) — min{ m(Xx), Am(y)}

jT*

The lines of equationy=s(x) = [(z* — 1)/Ax*|x + [1 — (z* — 1)/Ax*]b.
separates th&(l) into two subregions:

R(la) ={X,y) e ROy <sx)} and R(lg)={X,y) € RD|y>sXx}
The mapT (V|rq, can be written in the equivalent form

TOlR1g =Th if (X, y) € R(p)

| Xt+1=Wt
TOlra): mM(xc)
TEM(Yy) — (T — M)

if (%, o) € Rla)

TRy =T (Y1 =1 —)y+ar*

The mapT" has the unique fixed poirE* = (7*, 7*), which is also a fixed
point of T provided thatE* € (I ), that is, if the condition +1/7* <A <1
holds. In other words, the target equilibrium is a steady state of the model if the
fiscal constraint on seignorage is not too tight. With such a condition, the fixed
point of the magr;, E;, = [1/(1—A), 1/(1— 1)], is not a fixed point off ; that
is, TO(E,) =TV (E,) # E,.

We will restrict the fiscal constraint to satisfy

reA = (1-1/7%,1-1/b.). (17)

https://doi.org/10.1017/51365100501019022 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100501019022

160 GIAN-ITALO BISCHI AND RAMON MARIMON

o C/

0 e . 5
n* n*d 2x* a¥(1+ x*) b

Ficure 1. A superposition, in the parameter spazeof the regions of local stability of the
target equilibriumE* under the three different policies, wittt = 1.5. The region with left

boundary OD is the stability region &* underl , the one bounded by ABC refers to policy
F, and the one with left boundary ED refers to pol©y

As long as condition (17) is satisfieddoes not affect the local stability properties
of E*. Indeed, let2L = {(b, o) € Q|b>7*(1+ax*)} (see the region below the
line OD in Figure 1). The following result is proved in Appendix B.1.

LEMMA 2. Assume. € A* [i.e, condition(17)]. If (b, @) € @1, then E is
locally stable with policy I.

In the complementary regiof!, = {(b, «) | b— o —n* < 0}E* is unstable.
In particular, following the arguments given in the Appendix B.1, if the p@ini)
crosses the line

b:bﬁl)(a) =A+ar®)r*, (18)

passing fromQ!, to ., a subcritical Neimark—Hopf bifurcatiomccurs which,

at least for(b, o) € Q. close to the bifurcation curve (18), creates a repelling
closed invariant curvé& around the stable fixed poif*, which constitutes the
boundary of the basin of attractid®(E*) of E*. More precisely, fob > bﬁ')(a),

a range of values df exists such thaE* is locally asymptotically stable (a stable
focus), with a basin of attraction bounded by a closed curve whose radius is
proportional toy/b — brﬂ')(a). Analogously, for a fixed value of the parameter
be (n* n*(1+ n*)), the subcritical Neimark—Hopf bifurcation occurs at

b—n*

7

o =ay (b) = (19)

and E* is stable fora <oq(1|) with the basin of attraction bounded, at least for
values ofu close thﬁ'), by a closed curve whose radius increases proportionally

to \/aél)(b) — .
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3.2.2. Policy F. The restriction off (P to the region (l) is given by

Xt+1 =W
m(x
TOlrpyid Y1 =L -+ p— E tl) (20
m(yy) — min{ — M), )\m(yt)}

The horizontal lineg of equationy=q(x) = b, — [(w* — 1)/ Ax*](b. — *)
separates the regid®(l) into two subregions,

R ={x,y) € RD |y <qx)} and Rde) ={(X.y) € R() |y > q(x)},
such that the maj (7|, can be written in the equivalent form

TOlge =Th if (X, y) € R(lg)

Xt+1 =W
T®[ra): m(x)
T*m(y;) — (r* —m(z*)

if (%, o) € RUA).

TPy =T =1-a)y +ar*

As in the corresponding REE map (5), the niBf’ has two fixed points: the
targetE* = (z*, n*) and B* = (b/n*, b/7*). These points also are fixed points
for TP provided that they belong to the regidn,) where the dynamics of (/)
are governed by the restrictidig™. Itis easy to see th&* € (1) if, A > 1 — 1/7*,
which is satisfied if condition (17) holds, agt € (1) if A >1—7*/b. (Notice
thatl—1/7n*<1—nx*/bif b> n*z). As with policy |, we assume that condition
(17) is satisfied.

On the basis of the analysis of the eigenvalues given in Appendix B.2, the
target fixed pointE* is stable in the regio®f ={(b, @) e Q | b> 7% andb >
7*(1+ a)} (see the shaded region bounded by the lines AB and BC in Figure 1)
and, for(b, @) € QF, B* is a saddle point. The two fixed points Bf~ exchange
stability via atranscritical bifurcationat b=r* at which E* = B*, so that the
fixed point characterized by lower inflation is the stable one.

The unique fixed poinE, of the mapT, is also a fixed point fol (7, provided
it belongs to the regiofig); that is,

-1 . 1
b, o (bE 7'[)<1_)L<b€.
Furthermore,E; is locally stable providedo> bf:(a) = (o +1)/(1—2) (see
Appendix B.4). From these conditions for the existence and stability of the fixed
points, we obtain the following result:

LEMMA 3. Assume that € A*[i.e, condition (17)] and let(b,«) € Q:

@) Ifb < n*z, then the map T has three fixed point€*, B*,and . If a < 7* — 1,
then E* is unstable and Bis stable while if « < (1 — A)b— 1 then E is locally
stable.
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(i) The target E is locally stable provided that, «) € QF. Furthermoreif A <1—
7*/b,, then E is the only fixed point of ) , whereas ifl—7*/b, <A <1—
1/b,, then the map T has three fixed point€*, B* and E,, where B is unstable
and g, is stable ife < (1 —A)b— 1.

As with policy I, for b > 7 and high values of, the target equilibriunt*
is unstable [the only attractor being a big “cyclic” s&fe)]; then, E* becomes
stable for decreasing values®through asubcritical Neimark—Hopf bifurcation
atthe lineb=b{" (a) = 7*(a + 1).

3.2.3. Policy O. The restriction ofT (9’ to regionR(l) is given by

Xt+1 =MW
T ray: m(Xy)
=1- .
Yot = O e min{m() — Zmex), am(y) )
2
The liner of equationy=r(X)=—(1/Ax*)X+7* /A + (be/A)(1/7*+ 1 —1)
separates the regid®(l) into two subregions,

R(a) ={(X,y) e RO |y <r(x)} and R(p)={(X,y) € Ry >r(x)}
such that the maj (©|;, can be written in the equivalent form

Olrig =Ta if (X, ) € R(lg)

Xt+1 =W
TO g,y =T O m(X;)
* =1-o)Yyi+ar* .
ot AT 0 — (M) — Lmixo)

if (X, Y) € R(A).

T ray:

As in the corresponding REE map (3)(°) has two fixed points: the targ&t* =

(*, 7*)andB* = (b/(1+x*), b/(1+x*)). These points are also fixed points for
T, provided that they belong to the regil ) where the dynamics af(© are
governed by the sub mag®. Itis easy to see that, with condition (1B € R(1 )
andB*e R(la) if A>1—(1+x*)/b. {Notice that 1- 1/7* <1—[(1+ *)/b]

if b>n7*(1+ *).} Therefore, the characterization is similar to that obtained for
policy F. With policy O, the two fixed points ofT(©) exchange stability via

a transcritical bifurcationatb=7*(1+ 7*)b=7** at which E* = B*. As with
policy O, the fixed point characterized by lower inflation is locally stable under
adaptive learning. However, in contrast, in this case the condittorn* (1 + 7 *) is

the only condition for the stability & *; thatis Q0 = {(b, @) € Q | b>7*(1+7*)}
(see the shaded region at the right of line ED in Figure 1). The unique fixed point
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E, of the mapT, is also a fixed point fof (©’, provided it belongs to the region
R(lg); that is, if

1 1 +”*+b€ 1+/\ 1 1 b,
- 4+ = = -1) < —— )
e T WL L 11 ¢

Furthermore,E, is locally stable, provided that > (¢ +1)/(1— 1) (see Ap-
pendix B.4). In summary, we obtain local stability results that almost parallel
those of policyF.

LEMMA 4. Assume. € A* [i.e,, condition(17)] and let(b, «) € Q:

@) Ifb<x*(1+x*), then the map 1 has three fixed pointE*, B*, and E.. E* is
locally unstable B* is locally stableand E; is locally stable ife < (1—A)b—1;

(i) The target E is locally stable provided that(b, o) € Q8. Furthermoreif » <1 —
(14 7*)/b,, then E is the only fixed point of ®, whereas ifl — (1+7*)/b, <A <
1—1/b,, then the map T has three fixed pointE*, B*, and E, where B is
unstable and Eis stable ifa < (1—A)b—1.

3.2.4. Ranking policies according to their local stability propertiekemmas
2-4 show how the local stability properties of the inflation targetliffer across
policies. In particular, assuming condition (17), the stability of the inflation target
under the policie$, F, andO holds in the following domains of the parameters’
spaceQ:

Ql={b,a)eQ|b>n*1+ar*)
Qf =(b.a)eQ|b>7" and b>7*1+a)}
Q2 ={(b,a) e Q| b>n*1+x%).

Therefore, we say that polidy dominates policy?’, in terms of its local stability

properties, if the inflation target equilibriuat is locally stable in a larger domain
of the parameter spa€e and denote such preferencelby, P’. Then, as corollary

to Lemmas 2—4 we have the following propositions.

PROPOSITION 1.Assume thatk € A* [i.e., condition (17)] and letz* > 1.
Then policy O is dominated in terms of its local stability properties. In particular
F > O and I > 0.

Figure 1 illustrates Proposition 1 for27* > 1. Notice that, as long ds> 7*2,
the unconditional policf dominates the other policies in terms of its local stability
properties. This result is consistent with Friedman'’s views.

A local stability ranking is not uniquely determined by. For example, pro-
vided that the target is locally stable, we may be interested in whether convergence
is monotone, which can make it easier to “pattern recognize” the tendency for
inflation to converge to the target. Alternatively, we may be interested in the speed
of convergence to the target. As we show in Appendix C, provided that the target
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is locally stable, only with policyD is convergence always monotone, whereas for
other policies, monotone convergence requires a small enough valuéefer-
theless, in terms of speed of convergence, pdlicglso tends to be dominated.

More formally, letQ: = QL N QF N QY; thatis,Q% c Q denotes the region of
parameters where the inflation target is locally stable under the three policies under
consideration. We say thBt-< P’ on a subsef € Q} if, for any (b, o) € A, paths
(starting in a neighborhood af*) converge faster under the poli®than under
the policyP’. The following proposition (proved in the Appendix C) provides the
corresponding characterization.

PROPOSITION 2.Assume thatb, o) € Qf andx* > 1. Then

(i) there exists am such that for all @ < «, all three policies have a monotone path
(i) there exists am; € («,1) and ana; € (a1,1) such that for all @ < ay,1 > O, and,
forall a <ay,F =5 0.

As we have shown, the local stability analysis already allows us to rank inflation
target policies and, in particular, it suggests disregarding the optimal pOlicy
favor of alternative policies. Onthe other hand, differences based on the eigenvalues
of the Jacobian of (P tend to be relatively small and, therefore, the rankings are
not very sharp. We now turn in the next subsection to the more interesting and
novel global analysis of the three policies.

3.3. Global Stability of =*

As in the preceding subsection, we first briefly discuss global dynamics under
the alternative policies and then we summarize the results comparing the three
policies. As we will see, even if the local analysis also provides useful information
concerning the global dynamics of the system, a more complete understanding is
based on the study of the basins of attraction and, in particular, of gtohal
bifurcationsthat cause qualitative changes in such basins, whose characterization
requires the use of computer graphics. We focus our attention on the basin of
attraction ofr*, B(E*), defined as the set of points of the plagey that generate
trajectories converging te*. Of particular interest is the role played by the fiscal
constraint parameter and by the tracking parameterin enlargingB(E*). The

global analysis becomes quite complex because of the possible coexistence of
different attractors. As we will see, in all of these respects the three, apparently very
similar, policies behave quite differently. Such differences could not be captured
in a model in which only the asymptotic cage\ 0 is analyzed [e.g., Evans et al.
(2000)].

3.3.1. Policy I: The role of fiscal constraints As we have seen in Lemma 1,
evenwhentheinflation targetis locally stable, there may be cycling paths following
alarge cyclical movement across the four regions. Figure 2 illustrates such behavior
for policy | . In particular, Figure 2a shows, in the phase spaggthe coexistence
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Ficure 2. Numerical simulations of the model under politywith 7* =15, « =0.4,

A=0.5b=275, ande =0.03, that is, just after the subcritical Neimark—Hopf bifurcation

at which the target inflation fixed poirE* becomes stable, occurring la(i) (0.4)=24.

(a) The basin of attraction dE* is represented by the gray region, whereas the basin of

the “cyclic” attractorA(e) is represented by the white region (only partially visible in the

figure). (b) Two sequences of expected inflation rates are represented relative to time, one

generated by an initial condition taken in the gray region of (a) and the other one generated

by an initial condition taken in the white region.

of a large “cyclic” attractorA(e), whose basin is represented by the white region,
with the SREEr* whose basiB(E*) is represented by the gray region. Figure 2b
shows two paths, each of which starts from an initial expected inflation taken in a
different basin of attraction.

In Figure 2a,B(E*) is contained in the interior of subregidh,). This is a
shapshot corresponding to fixed valueb,af, andi. Nevertheless, changing these
parameters also caus8€E*) to change. In particular, numerical simulations show
how the size of3(E*) increases for decreasing valuesxofor increasing values
of b) until the basin boundar§B(E*) has a contact with the big cyclic attractor
A(e). This contact causes the disappearanc&(ej [Gumowski and Mira (1978,
1980)] and, consequentlig* becomes a global attractor; thatB(E*) covers the
whole phase space. Such a contact bifurcation is céithedl bifurcationin Mira
etal. (1996) and Abraham et al. (1997)mundary crisisn Grebogi et al. (1983).
This bifurcation cannot be revealed by a local study, that is, based on the linear
approximation of the dynamical system.

An interesting result is obtained if the influence of the parametar the size
and the shape oB(E*) is considered. In fact, even if does not influence the
local stability of E* when condition (17) is assumed, it may influence the shape
and the size of3(E*). This is clearly shown in Figure 3, where we start with a
situation similar to that of Figure 2a (see Figure 3a) and, keeping all of the other
parameters fixed, we successively decreaseaking the fiscal constraint tighter.

In Figure 3bB(E*) intersects the subregid®(l g) where dynamics are dominated
by the sub maf; . The contact between the basin boundd#syE*) and the lines,
which separates the subregidRd 5) andR(Ig), causes a sudden enlargement of
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Ficure 3. Numerical simulations of the model under politywith 7* =15, « = 0.6,

b =3, € =0.03, and four different values af, decreasing from (a) to (d). The gray region
represents the basin of the target equilibri'n In (a), A = 0.5, and the basin is entirely
included in the region f). In (b), A = 0.42, after the contact between the basin boundary
and the lines. In (c), A =0.4195 at the contact between the basin boundary and the line
x=b—e€. In (d), . =0.419, after the contact between the basin boundary and the line
x =b — ¢, the basin ofE* covers the whole plane; that i§; is globally stable.

the basinB(E*). In fact, after such contact, i, is stable fofT, andE, € B(E*),
then some trajectories starting from regie@ig) may move towardt; and, conse-
quently, enter the basii(E*). We may say thaE, behaves as eatalystbecause
it attracts trajectories coming from the subregiRfg) and then it conveys them
toward E* becauseE, € B(E*). Moreover, a small reduction of causes€3(E*)
to increase to the point where the basin bound#yE*) contactghe lineb, (see
Figure 3c), producing global (or contac) bifurcation As Figure 3d shows, as
a result of such a global bifurcatio8(E*) coversthe entire phase space under
consideration, so that global stability is achieved.

In summary, Figure 3 shows how fiscal constraints can enhance the global
stability properties of an inflation target policy (sucH asven when the constraints
have no effect on local stability properties of the inflation policy.
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Itisimportantto remark that, since the equations of the curves thatdfBi(a*)
are not known, an analytical computation of the parameters values at which the
contacts betweed3(E*) and the lines andb = b, occur is not possible. Hence,
these parameters can only be revealed numerically, by a graphical analysis. Indeed,
computational methods are a standard tool in the global study of dynamical systems
of dimension greater than one [see, e.g., Mira et al. (1996), Brock and Hommes
(2997)].

3.3.2. Policy F: The coexistence of two attracting fixed poinss Lemma 3(ii)
shows, the fixed points* andE; may coexist, both being locally stable. Inthis case
of two coexisting attractors, the initial condition is crucial in order to forecast the
long-run behavior of the system; it is therefore important to study the boundaries of
the respective basins of attraction. As with pollgwhenE* is the only attractor,
decreasing or A, orincreasindp, enhances the stability af*, and5(E*) expands.
However, when bothe* and E, are attractors, these changes of parameters tend
to enhance the stability properties of both attractors and it may well be that the
effect is stronger forE,, in which caseB(E;) will enlarge while B(E*) will
contract. This is shown in Figure 4, where we start in a situation in which both
attractors coexist, but just after the subcritical Neimark—Hopf bifurcation at which
E, becomes stable and, therefdf¢ E*) encompasses almost all of the phase space
[see Figure 4a; notice that the Neimark—Hopf bifurcation at witighhecomes
stable occurs at = (1 — A)b — 1=0.25]. In Figures 4b—d, we successively reduce
the tracking parameter while keeping all other parameters constant. A
decreased3(E,) enlarges and its boundary has a contact with thedinafter
this contact, a sudden changel(E, ) is observed, as shown in Figure 4b. Now
the boundary of the basii(E;) includes the saddle poitit* and, consequently,
points that are very close tB* belong to3(E,). Furthermore, ife is further
decreased3(E;) continues to enlarge until a contact with the Ixe- b, occurs
(see Figure 4c), which marks another evident qualitative change, as Figure 4d
shows.

In summary, Figure 4 shows how the presence of coexisting attractors (as may
occur under policyr) can induce counterintuitive effects on the stability properties
of the inflation targetr* when parameters are changed.

3.3.3. Policy O: The coexistence of two attracting fixed points and a chaotic
attractor. Lemma 4(ii) shows that, with the polid, the fixed point€E* andE;,
can coexist as attractors. However, as Figure 5 shows, the situation may be more
complex: In particular, Figure 5b shows the existence of a chaotic attractor around
E,. In this figure the dark-gray and the light-gray regions represent the basins of
E* andE;, respectively, whereas the points of the white region converge to the
chaotic attractor. Notice that the ba¢iqE; ) is formed by two disjoint portions.
However, as the parametelis decreased, the chaotic attractor disappears after a
contactwith its basin boundary, a typicéihal bifurcation(or boundary crisi¥,
see Figure 5b.
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Ficure 4. Numerical simulations of the model with policfF, with parameters
7*=151=0.5b=25,¢=0.03, and four different values af, decreasing from (a)
to (d), such that the two stable equilibrizt and E; coexist. The dark-gray region rep-
resents the basiB(E*) of the target equilibriunE*; the light-gray region represents the
basinB(E,) of the higher-inflation equilibriunt; .

In summary, Figure 5 shows that the global dynamics can be quite complex.
However, decreasing (or increasingb) tends to simplify the dynamics of the
model in favor of the attracting fixed points. As in Figure 4, however, stability may
be enhanced more fd; than forE*

3.3.4. Comparing policies according to their global stability properties with
the help of fiscal constraints.The results on global dynamics given above are
interesting but do not lead to a clear ranking of policies according to their global
stability properties. To provide such a comparison, we restrict our attention to
values ofA € A* = (1 - 1/n*,1— 1/b.) [i.e., where condition (17) is satis-
fied] and check, by numerical computation, which values,dd, anda produce
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Ficure 5. Numerical simulations of the model with policyD, with parameters
7*=15,1=0.6,b=3.9, ¢ =0.03, and two different values of, such that the two stable
equilibriaE* andE, coexist. The dark-gray region represents the bB$E*) of the target
equilibrium E*; the light-gray region represents the ba#itE,) of the higher-inflation
equilibrium E; . (a) Fora = 0.55, a chaotic attractor also exists aroufid whose basin is
represented by the white region. The baSiiE; ) is formed by two disjoint portions. (b)
Fora =0.53, the chaotic attractor no longer exists.

“global convergence.” More precisely, given a set of parameters, 1), we nu-
merically generate paths from all initial conditiof, yo) taken within a fine

grid in a wide portion of the&x,y) plane, and we count how many of such paths
converge to the target. Figure 6 shows the results of these computations, made for
many values ofb, 1), whose values are represented on the axes, and two different
values ofe. From Lemmas 3(ii) and 4(ii), for valugs., b) between the curves
A*(b) = 1—1/b,AF(b) = 1 — n*/b,, andA®(b) =1— (1+7*)/b,, respec-
tively, the attractolE* may coexist with the attractdg,, whereas for values of

(%, b) belowAF (b) andA®(b), E* is the unique attractor. In contrast, for policy

I, there is a unique fixed point that can be an attradiri§ in subregiorR(l 5)],

which results in a better performance of this policy in terms of global stability
for relatively low values ofr. For relatively high values af, however, the target
may cease to be stable and polieymay dominate policyl in terms of global
stability.

In summary, Figure B reinforces the local stability ranking of policies. In
particular, the global stability results are consistent with Propositions 1 and 2
in showing that the so-called optimal poli® tends to be outperformed, as a
stabilization policy, by either the unconditional Friedman pokcgr the adaptive
inertia policy| when private agents form their expectations adaptively.
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4. CONCLUSIONS

Stabilization policies must be judged by their stability properties. Within rational
expectations equilibria, such a statement is not even meaningful. It is meaningful,
however, when we consider that agents may form their expectations adaptively.
Experimental evidence [see, e.g., Marimon and Sunder (1993, 1994, 1995)] sup-
ports this adaptive view and can provide an empirical ground for our stability
resultst? The fact that our local and global stability rankings are consistent is en-
couraging. In particular, our results reinforce Friedman'’s caution against “overly
reactive” rules. Friedman had an intuition about policy lags that could apply to any
model. In contrast, we provide a careful stability analysis of a relatively simple
model without policy lags. Even so, some lessons emerge that are likely to apply
to other models. First, and foremost, thésspecificatiorthat private agents have
rational expectations when, in fact, they do not, may lead to a wrong policy de-
sign, in the sense that alternative designs of stabilization policies may outperform
the rules designed under the rational expectations assumption. Second, even leav-
ing aside time-consistency considerations or “fiscal theory of money” considera-
tions [see, e.g., Woodford (1996)], fiscal constraints, in particular, seignorage con-
straints, may play an importantrole in helping stabilization policies to achieve their
goals!® Third, even if monetary authorities follow—uwith full commitment—their
announced inflation target rules, inflation may differ substantially from the target.
Whereas, for example, inflationary episodes above the target are usually associated
with loose monetary policy or weak monetary authorities, in our economies such
instability may well correspond to the fact that, due to the existence of money
substitutes, the inflation target may not be too far from the level of inflation in
which there is a currency collapse. Furthermore, our global analysis also provides
a good reason to study the pointfrrency collapsetis the point where a global-
contact bifurcation occurs, resulting in a qualitative improvement of the stability
properties of the policy.

There is room for further research in several directions: studying other misspeci-
fied models, introducing stochastic learning, and so on. In such extensions, itwould
be interesting to see if the relatively good performance (as a stabilization policy)
of Friedman’s-constant-money-growth rule persists. We find it a remarkable result
that may generalize to other environments.

NOTES

1. See Sargent (1999) for a discussion of adaptive models with misspecified beliefs.

2. For a detailed account of E-stability theory, see, for example, Evans and Honkapohja (2000a).

3. See, for example, Mira et al. (1996), Abraham et al. (1997), and Bischi et al. (1998) for an
introduction to the these results oantact bifurcations.

4. Implicitly we assume that, within equivalent policies resulting in the sdrpelicy, there is
(local) Ricardian equivalence; that is, present-value considerations do not discriminate among these
equivalent policies.

5. In a stochastic model, the question is what should the government do when, at some confidence
level, it infers that the predictions of private agent are not consistent with rational expectations, given
the government policy.
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6. See, for example, Marimon and McGrattan (1994) and Fudenberg and Levine (1998).

7. For example, in the EMU, seignorage of the ECB is restricted; furthermore, the Growth and
Stability Pact constrains deficits and, in the United States, balanced-budget proposals are recurrently
being considered.

8. Notice that, for notational convenience, we also denoma‘lme) the demand for real balances
with precautionary savings.

9. Lettau and van Zandt (1999), in contrast with Marcet and Sargent (1989a,b), show that if agents
reacttacurrentprices and do notfocus on MSV solutions, the stability properties of the adaptive learning
process change. Recently, however, Adam (2000) has shown that, if Cagan’s hyperinflationary model
is properly developed to meaningfully allow for conditioning on current prices, most of the Marcet and
Sargent results prevail.

10. Notice that one could also consider that agents give some weight to the announced target, such
aSnl‘il =1 - [ —o)nf + oume — 1] + nr*. However, although in such a rule tends to help the
stability properties of the target, it complicates the analysis without providing new insights.

11. Similar computations, not reported here, are available on request.

12. Infact, Evans et al. (2000b) provide some experimental results showing the stabilization power
of fiscal constraints.

13. Notice, however, that if fiscal constraints are too tight, the target may not be a stationary
equilibrium.

14. The rigorous proof of the subcritical nature of the Hopf bifurcation requires the evaluation of
some long expressions involving derivatives of the map up to order 3. In this case, we claim numerical
evidence.
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APPENDIX A: PROOF OF LEMMA 1

We first prove that all the trajectories starting out of regi(h) enter regionR(l) after a
finite number of steps. In fact,

(@) If (%, y) € R(I), then(xe;1, t+1) € R(I), because in the map (14) < b, implies
Xt41 < be andyr 1 = (1 — )y <b..

(b) If (%, ) € R(lll)andAx <1—1/b,, then(xqk, Yt+x) € R(I) for afinitek > 0. Infact,
in region R(Il), we have m(x)=¢ and m(y)=e¢; hence, the mapT®
becomes

Xt+1 =W
P .
T )|R(III)-

yt+1=(1—“)Yt+a1_A-

This is a linear map with a triangular structure, the second component only being
dependent on the second variable, and it is immediate to see;tlhanhverges to
1/(1— 1) ata speedl — )', hence the entrance inside the regRiil) after a finite
number of steps is ensured if@ — 1) < b,; thatis,A <1—1/b,.

(©) If (%, ) € R(V), then(X1, Yir1) € RAID OF (%11, Yiv1) € R, becausg, > b,
impliesx;y1 =yt > b..

To complete the proof, we now show that a trajectory may transit from relg{Onto
regionR(IV), so thatR(l) is not trapping. In fact, in regioiR(l), we have

Xt+1 = W
T®ra): b—x
= 1—(1 + o
Yorr = (L=t o — yi — min{d® (x), A(b— yo) }

fromwhich itis evident that a movement from region (1) to region (l1) is impossible, because
Vi < be = X1 =V < b, where as we may haue, y;) € R(l) and (X1, Yi11) € R(IV)
whenevery, is sufficiently close td andx; is sufficiently small. ]
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APPENDIX B: LOCAL STABILITY ANALYSIS

In this Appendix, we analyze the local stability of the fixed points of the nidps TP,
T.©, andT,. Such analysis is obtained by the standard study of the eigenvalues, that is, the
solutions of the characteristic equation

P(z) =22 —Tr-z+ Det=0, (B.1)

where Tr and Det are the trace and the determinant of the Jacobian matrix computed at the
fixed point. A sufficient condition for the stability is expressed by the following system of
inequalities

P(1=1-Tr+Det>0; P(-1)=1+Tr+Det>0; 1—Det>0 B.2

that give necessary and sufficient conditions for the two eigenvalues of (B.1) be inside the
unit circle of the complex plane [see, e.g., Gumowski and Mira (1980 p. 159)].

B.1 MAPT(®

The Jacobian matrix of the map" evaluated at the unique fixed poiat is

0 1

DT*“)(”*v ) = am*? an® |- (B.3
—— 1—a+
b—m* b—m*

The characteristic equation (B.1) has coefficientsTir) =1 — o +a7*2/(b— 7*) and
Det=Det" =an*2/(b—x*) . The conditionsP(1) > 0 andP(—1) > 0 are always satis-
fied, and the only condition for the stability &" is 1 — Det> 0; that is,

an*? —b+x*
BEE

Sinceb > 7* in the parameter spa&®, a sufficient condition for the stability d&* is
ar® —b+7* <O. (B.4)

The vanishing of the left-hand side of (25) gives a line, in the parameter §pacsuch

that if (b, @) crosses that line from left to right a pair of complex conjugate eigenvalues
enters the unit circle and a subcritical Neimark—Hopf bifurcation occurs at which the fixed
point E* is changed from unstable focus to stable focus, and a repelling closed invariant
orbit is created around it [see, e.g., Guckenheimer and Holmes (1983, p. 162)]. Just after
its creation, such a closed curve is smooth and approximately of circular shape, with radius
proportional to the square root of the distance of the pding) from the bifurcation line,

at least for values ofb, @) close to the bifurcation curve [see, e.g., Guckenheimer and
Holmes (1983, p. 305)].
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B.2 MAPT®

The Jacobian matrix at the fixed poiat, is

0 1

DTP (z*, 7*) = ar* an*? | . (B.95
l1—a+
b—m* b—m*

Hence the characteristic equation (B.1) has coefficients=THP =1—« +
an*?/(b—n*) and Det =Det® =anx*/(b—7*). In this case, we haveP(1)=
a[b=7"?)/(b—n")]>0 if b> b (being b>n* in the parameter spacf). At
b=n*" the fixed pointE* merges with the other fixed poirB* and one eigenvalue is
equal to 1. This situation corresponds twanscritical (or stability exchangkebifurcation.
The other two conditions?(— 1) > 0 and 1— Det> 0, become, respectively,

%2 * _ * —
b2 — a) + 7*[(* + 2« 2]>0 and a*(a+1)—b

g —— <0. (B.6)

The former is always satisfied fgb, o) € Q, whereas the vanishing of the numerator of
the latter gives a bifurcation curve at which a subcritical Neimark—Hopf bifurcation occurs.
The Jacobian matrix of the mag™, evaluated in the other fixed poiBt:, becomes

0 1
b b
T * — — o —
T —1 a*(r* — 1)
In this case,
72— . 2
Pl)=a— >0 if b<a™.
a*(mr* — 1)

This confirms that the stability properties Bf and B* are exchanged &t = 7+, when
the two fixed points merge. The other conditidd6-1) > 0 and 1— Det > 0, become,
respectively,

*2 — — * — *
72 —a)+ 2w —rn —|—ozb>0 and o—T —|—l<

T (r* — 1) o —1 0 G

For =* > 1, the first condition is satisfied for eaehe (0, 1), whereas the second con-
dition is satisfied for« <7* — 1. Hence, if I<n* <2 andb<n*2, then the equation
a=n* — 1 defines a bifurcation curve at which a subcritical Hopf bifurcation occurs, the
fixed pointB* being a stable focus far < 7* — 1. If b> 7**, thenB* is a saddle-point,
with eigenvalues & z; <1 andz, > 1, a straightforward consequence of the inequalities
P(-1) >0, P(1) <0andP(0) > 0. These arguments allow us to give the following clas-
sification of the stability properties as the parameterd, andw vary: If 7* > 1, thenE*

is a locally stable fixed point if

b>7" and b>b" (), with b (@)=r"(+1); (B.9)

B* is locally stable ifo < 7 and O<a <7* — 1.
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B.3. MAPT®
The Jacobian matrix at the fixed poiat, is
0 1

DT (r*, %) = ar®® |, (B.10)
0 1—o+
b—m*

and so, the eigenvalues are always reak 0,2z, = 1 — « + [an*?/(b — 7*)], and E* is
stable ifb > 7#*(1 + 7*).
At B*, we have

0 1
b b
DT© (— ) =| b—n*@A+7% ab (B.11)
tr oA TR+ Y trdr

soP(1) > 0forb < 7*(1+ *), thus confirming that di = 7*(1 + 7 *) the two fixed points
exchange their stability, and the conditions, thaBi&;-1) > 0 and 1—- Det > 0, are always
satisfied, provided that* > 1. If b > n*(1+ =*), then the fixed poinB* is a saddlepoint,
with —1 < z; < 0 andz; > 1, a straightforward consequence of the inequalfies- 1) > 0,
P(1) <0 andP(0) > 0. The local stability properties of the two fixed points, forif > 1,
can be summarized as follows: fbr> 7*(1+ 7*), E* is stable andB* is unstable; for
n* <b<a*(1+7*), E* is unstable andB* is stable.

B.4. MAPT),

The Jacobian matrix of the map (15) evaluated at the unique fixed Bgiist
1 1 0 1

P T T=) 7 - 1 ey

I bl—2)—1 bl—2) —1

the characteristic equation (B.1) has coefficients

Tr=1-« and Det=

+ o o
b1-x) -1 b1-x) -1
The conditionP (1) > 0 is always satisfied, hence the stability conditions reduce to

2u a—bl-A)+1
2—a+ % 09 and E22"HT2 B.1
tha-m-1 " ™ pa-mp-1 ° ©.12

which are both satisfied in the set (see Figure 7).

QL = {(b,a) € Q‘(b< I lx andb<b¢(a)) or (b> I 1A andb > bﬁ(a))}.
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Hopf bifurcation curve

o—(1-A)b+1=0
Flip bifurcation curve ¢ \
0=2(1— (1-\)b)/(3—(1-\)b

T (1) 2/(1-%) b

Ficure 7. Stability regions for the fixed poinE, of the mapT,. The gray-shaded area
represents the regions of local stabilityef in the parameters spade, «).

In particular, the equation
a+1

1-2
gives a bifurcation curve at which a subcritical Neimark—Hopf bifurcation occurs.

b =bi(a) = (B.13

APPENDIX C: PROOF OF PROPOSITION 2

Proposition 2 is a straightforward consequence of the following basic properties of linear
two-dimensional discrete dynamical systems [see, e.g., Lorenz (1993, p. 255)]:

o Ifthe eigenvalueg; andz, of the Jacobian matrix computed at the fixed p&ntare
complex conjugate with modulys,; | = |z,| = +v/Det < 1, where Det is the Jacobian
determinant, then the convergence to the fixed point is oscillatory and the distance
(%, Y1) — E*|| reduces at a rate proportionaltgDet.

o If the eigenvalues are real and both inside the unit circle, say|@| < || < 1,
then the distancé(x;, y;) — E*| reduces at a rate proportional @[, and if z, is
positive, then the convergence is monotone in the long run, becauskiiaant
eigenvaluethat is, the eigenvalue with largest modulus, determines the qualitative
behavior of the linear system &s>co.

Of course, the first case occurs if the discriminant Tr? — 4 Det< 0, and the second
if the opposite (weak) inequality holds. In our case,Bet ax*/(b— 7*). Then, Tf) =
TP (@) = Tr'® = 1—a+ Bx*, Det™ = B, Det” = Bx*, and Det® =0. Sinceb > 7*
anda € (0, 1), then for all policies considered we havé™r= 0. Hence, in the case of real
eigenvalues, the dominant eigenvalue is positive, giveu(z’B)y: 0.5(Tr® + VAP) >
0. This means that whenevex™ > 0 we have monotone convergence in the long run.
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However, from the above equalities, it follows that
AV = AP — 4 —1B; AV =A® —4Br*; AP =A@ —4B

and Proposition 2(i) follows from the fact thBt\, 0 asa \ 0.

The binary relations of Proposition 2(ii) can be obtained easily from the previous
equalities, recalling that, when convergence is monotone, the speed of convergence is
given by 0.5 [Tf? 4+ +/A®)], and when it is oscillatory bw DetP. For example, to
see thatF > O, notice that 0.5(Tr® 4+ VA©) = Tr® = 1 — o + Bx*, while
vDetP = /B. [ ]
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