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On the swimming of a flexible body in a
vortex street
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We formulate a new theoretical model for the swimming of a flexible body in a vortex
street. We consider the class of periodic travelling-wave body motions, in the limit
of small amplitude. We calculate the output power provided to the body by thrust
forces, and the input power done against pressure forces, as functions of the aspect
ratio and strength of the vortex street. We then formulate two optimization problems.
In the first, we determine the body wave which provides maximum output power
for fixed amplitude. We find a closed-form solution with a transition from power
law to exponential decay of output power as the vortex street widens. In the second
problem, we incorporate internal viscoelasticity to the swimming body and compute
its contribution to the input power. We find the body wave which maximizes efficiency
for a given output power. The body shape and resulting efficiency are found in closed
form and simple approximate formulas are given. We find that efficiency scales as
the inverse of the damping parameter. Finally, we compare our results with previous
experiments and simulations. We find agreement in some aspects and disagreement
in others. We give physical interpretations for agreements and disagreements in terms
of the phase between the body wave and vortex street.

1. Introduction
The interaction between solid bodies and vortices is a central component of many

instances of locomotion in fluids. In schools of fish (Weihs 1973; Abrahams & Colgan
1987) and flocks of birds (Lissaman & Shollenberger 1970; Weimerskirch et al. 2001)
individuals encounter vortical structures created by other individuals, leading to
significant changes in the fluid forces they experience. The same phenomenon occurs
among the multiple fins of a single swimming fish (Videler 1993; Drucker & Lauder
2001). Tuning the motion of the body in response to oncoming vorticity can lead to
significant savings in the energy needed for locomotion.

An inviscid model of an important two-dimensional problem was put forwards by
Streitlien, Triantafyllou & Triantafyllou (1996). They considered a Joukowski airfoil
heaving and pitching in the flow of an alternating (von Kármán) vortex street, which
is a classical model for the wake of a body at Reynolds numbers of O(102 − 105).
They formulated a full numerical model, and a simpler linearized model for the limit
of small airfoil motions. The numerical model represents each vortex in the street
as a cluster of point vortices spread over a small area. At discrete time steps, new
point vortices are released near the trailing edge of the airfoil. The strength of these
vortices is set to make the flow velocity finite at the trailing edge (a version of the
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28 S. Alben

Kutta condition Batchelor 1967). Then they varied heaving and pitching amplitude,
frequency and phase parameters, and computed the forces on the airfoil. The analytical
model began by computing the instantaneous far-field flow encountered by the airfoil.
This flow is the potential flow due to the vortex street at the position of the airfoil,
projected onto the centreline between the alternating rows of vortices. This model,
related to a model of Wu & Chwang (1975), considers the limit in which the heaving
amplitude of the body is small relative to the size and to the vertical and horizontal
spacing of the vortices.

Their simulations found that Froude efficiency is largest when the phase between
the body and the vortices ranges from 0◦ to 45◦. Here 0◦ means that the body reaches
its maximum transverse displacement when one of the point vortices is at the same
streamwise location. In other words, the zero phase brings the body as close to the
point vortices as possible. Based on simulations at eight phases and at eight points
in the six-dimensional parameter space, they indicated that input power and thrust
are also largest for phases between 0◦ and 45◦. However, when the body is closest to
the clusters of point vortices, the error in representing a real viscous vortex by such
a cluster becomes significant. In the linearized model, they found that the optimal
efficiency phase ranged from 0◦ down to about −90◦ as they varied the strength of
the vortex street.

The same phenomenon was studied experimentally by Liao et al. (2003). They
produced a von Kármán street using a steady flow past a D-shaped cylinder, and
placed a rainbow trout in the wake of the flow. They found that the trout maintained
its streamwise position relative to the cylinder while ‘slaloming’ in between the vortices.
When a given vortex approached, the trout swam around it, moving transversely away
from the vortex. This motion, which was presented as the characteristic swimming
motion for the trout in the vortex street, corresponded to a range of phase differences
between different points on the fish body and the vortex street. The phases ranged
from π/2 at the head to near 3π/2 at the tail. They also found a decrease in
muscle activity during the motion, supporting the notion of an increased efficiency.
This experiment indicates that an actual fish may swim with a phase relative to
the vortex street which is very different from the optimal phases of Streitlien et al.
(1996). In general, the trout moves transversely away from the vortices while the
simulations show that a motion towards the vortices is better. A more extensive
study appeared in Beal et al. (2006), which interpreted the thrust gain in terms
of body-vortex interactions. Also relevant are two studies of passive body motions
near vorticity: Eldredge & Pisani (2008) studied computationally the passive motion
of a linked rigid body in the viscous wake of a cylinder, and Kanso & Oskouei
(2008) studied the passive motion of a rigid ellipse near two oppositely signed point
vortices.

Here we propose a new theoretical model of a body swimming in a vortex street,
different from the model studied by Streitlien et al. (1996) and amenable to analytical
calculation. Analytical methods are made possible by restricting to the limit where the
amplitude of body motion is small relative to the streamwise and transverse spacing
of the vortex street. By considering a periodic body, we avoid free distributions of
vorticity shed from the body and the complications inherent in their simulation using
the Kutta condition (Shukla & Eldredge 2007; Alben & Shelley 2008). We use the
Hilbert transform to obtain the power output and efficiency as approximate or exact
functions of the dimensionless parameters. Like previous models of this problem, ours
assumes a two-dimensional inviscid flow.
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Figure 1. The parameters for a body swimming with amplitude h(x, t) in a vortex street with
width d , horizontal spacing between vortices l. A background flow velocity Uex is assumed.

An outline of subsequent sections of the paper is as follows. In § 2, we derive the
leading-order modification to the flow due to the swimming body, which is the same
as that due to a horizontal sheet. The effect is to uniformly speed up the reverse
von Kármán vortex street and to slow down the regular von Kármán street. In § 3
we derive analytical formulas for the leading-order vorticity distribution and pressure
jump along the body, and the resulting input and output power needed to maintain a
given swimming motion. We use these formulas to find optimal swimming motions for
two simple problems in § 4. In the first problem, we find the travelling-wave motion
which maximizes output power among motions with a fixed amplitude. This identifies
a particular shape of the body which produces large thrust. The optimal shape is
simply proportional to the first derivative of the pressure distribution. The output
power can be found exactly, and shows a transition from a power law behaviour for
narrow vortex streets to an exponential behaviour for wide vortex streets. The phase
difference between the optimal shape and the vortex street varies smoothly from 0◦ in
the limit of zero vortex street width to 90◦ (saturation) at an intermediate vortex street
width. The Froude efficiency is found to be the same for all travelling-wave shapes
with the same spatial and temporal frequency as the vortex street. For a reverse von
Kármán street, weaker and wider vortex streets allow for higher efficiencies. Stronger
and narrower streets yield higher efficiencies for the regular von Kármán street, up to
a limiting vortex strength. We also consider another measure of efficiency, which is the
amount of vortex street energy recovered by a foil per unit time. This efficiency turns
out to be proportional to output power for travelling-wave shapes. In the second
problem, we include internal damping due to Kelvin–Voigt viscoelastic behaviour.
Optimal efficiency shapes are smoothed versions of the pressure profile, and efficiency
shows an algebraic dependence on the damping parameter, and an exponential decay
for wider vortex streets relative to the undamped efficiency. In § 5 we make some
comments on the body’s effect on stability of vortex streets. Finally, § 6 compares our
main results with those of previous experiments and simulations.

2. Periodic flexible body in a vortex street
We consider a periodic flexible body in a periodic von Kármán vortex street. The

street consists of two alternating rows of vortices (see figure 1). The top row has
identical point vortices, each with circulation Γ , at the points {ml + id/2, m ∈ �}.
The bottom row has vortices with circulation −Γ located at the points {(m + 1/2)l −
id/2, m ∈ �}. The spacing between neighbouring vortices in a row is then l, and the
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30 S. Alben

width of the vortex street is d . For the regular von Kármán street, Γ < 0, while for
the reverse von Kármán street, Γ > 0 (positive Γ corresponds to counterclockwise
rotation). We assume that the point vortices are superposed on a background flow
with uniform speed U . Such is the case when vortices are shed from a stationary body
in a uniform stream, or from a body swimming at constant speed through quiescent
fluid. In the latter case the background flow velocity is the negative of the body
velocity, when we view the vortex street in a reference frame translating with the
swimming body. In the unbounded plane, the vortex street translates with uniform
velocity Ucex given by Saffman (1992):

Uc = U + (Γ/2l) tanh(πd/l). (2.1)

We now introduce a flexible body in the form of an infinite sheet along the
midline between the two alternating rows of vortices. The sheet executes small-
amplitude displacements h(x, t) transverse to the mid-line, and thus has complex
position x + ih(x, t), |h/l| � 1.

We consider first the undeflected ‘base state’ in which the infinite flexible solid sheet
lies exactly along the x-axis. The condition that fluid does not penetrate the body can
be satisfied by posing a vortex sheet, or equivalently a jump in tangential velocity,
across the body. The strength distribution of the vortex sheet is set to cancel the
vertical velocity along the body induced by the translating vortex street. We shall
determine the strength of the vortex sheet in the base case, which is accurate up to
O(|h/l|, |∂xh|) in an expansion in powers of |h/l| and |∂xh|. We shall also show that
it modifies the velocity of the vortex street uniformly to a new constant velocity Usex .

Let us first consider the flow induced by the von Kármán street alone. At the
instant when one of the vortices in the top row lies on the y-axis, the flow has the
following complex velocity potential (Saffman 1992):

w = Uz+
−iΓ

2π
log

(
sin

(
π

l

(
z − id

2

)))
+

iΓ

2π
log

(
sin

(
π

l

(
z +

l

2
+

id

2

)))
. (2.2)

The complex–conjugate velocity is

u − iv =
dw

dz
= U − iΓ

2l
cot

(
π

l

(
z − id

2

))
+

iΓ

2l
cot

(
π

l

(
z +

l

2
+

id

2

))
. (2.3)

Evaluating (2.3) at z = x and simplifying, we find that the conjugate flow velocity on
the x-axis is

u − iv|y=0 = U − i
Γ

l

cosh(πd/l)

sin(2πx/l) − i sinh(πd/l)
. (2.4)

Separated into real and imaginary parts, (2.4) reads

u|y=0 = U +
Γ

l

sinh(πd/l) cosh(πd/l)

sin2(2πx/l) + sinh2(πd/l)
, (2.5)

v|y=0 =
Γ

l

sin(2πx/l) cosh(πd/l)

sin2(2πx/l) + sinh2(πd/l)
. (2.6)

In what follows it is convenient to write v in (2.6) as a sine series:

v|y=0 =
Γ

l

∞∑
k=1

vk sin(2πkx/l). (2.7)

It turns out that only odd-k coefficients are non-zero in (2.7).
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Flexible body swimming in a vortex street 31

The vertical velocity induced by the vortices is cancelled by the vertical velocity
−v due to the vortex sheet along the horizontal body γ (x), which satisfies (Batchelor
1967):

−v =
1

2π

∫ ∞

−∞

γ (x ′) dx ′

x − x ′ =
1

2
H (γ ). (2.8)

Here H denotes the Hilbert transform. Using the identity

H (eikx) = −i sign(k)eikx, (2.9)

the γ in (2.8) corresponding to v in (2.7) is

γ = −2Γ

l

∞∑
k=1

vk cos(2πkx/l) = −2Γ

l

cos(2πx/l) sinh(πd/l)

sin2(2πx/l) + sinh2(πd/l)
. (2.10)

The last expression in (2.10) is obtained by explicitly evaluating the cosine series
using the coefficients for vk from (2.6) and (2.7) and trigonometric identities. This
distribution of vorticity induces a velocity at the point vortices. This velocity is a
contour integral:

u(x, y) − iv(x, y) =
1

2πi

∫ ∞

−∞

γ (x ′) dx ′

x + iy − x ′ (2.11)

=
(−2Γ/l)

2πi

∞∑
k=1

vk

∫ ∞

−∞

(cos(2πkx ′/l)) dx ′

x + iy − x ′ . (2.12)

Each integral in the sum (2.12) is a standard contour integral in the residue theory of
complex integration (Ahlfors 1979). The integral is evaluated using separate contours
when the target point is in the upper half-plane (y > 0) and when the target point is in
the lower half-plane (y < 0). Each contour is closed, and consists of a long segment of
the real axis (−N <x <N , N � 1) joined to a large semicircle in the upper half-plane
(when y > 0 in (2.12)) or lower half-plane (when y < 0 in (2.12)). Taking the limit
N → ∞, the result is

u(x, y) − iv(x, y) =
Γ

l

∞∑
k=1

vke
i2πk(x + iy)/l, y > 0 (2.13)

= −Γ

l

∞∑
k=1

vke
−i2πk(x + iy)/l, y < 0. (2.14)

For the upper row of vortices x + iy = ml + id/2, m ∈ �, while for the lower row of
vortices x + iy = (m + 1/2)l − id/2, m ∈ �. The velocity induced by the vortex sheet
(defined in (2.14)) is the same at all point vortices, and is

Uind =
Γ

l

∞∑
k=1

vke
−πkd/l . (2.15)
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Uind can be written as the value of an analytic function at z = id/2:

Uind = f (z)|z= id/2, (2.16)

f (z) =
Γ

l

∞∑
k=1

vke
2πikz/l, (2.17)

=
Γ

l

∞∑
k=1

vk(cos(2πkz/l) + i sin(2πkz/l)). (2.18)

We already have an expression for f (z) restricted to the real line z = x. The imaginary
part of f (x) is given by (2.6) and (2.7), and the real part is given by (2.10). Then
f (z) is the unique analytic extension of f (x) to its maximum domain of analyticity
(Ahlfors 1979). Inserting z for x in f (x), and evaluating the result at z = id/2, we
obtain

Uind =
Γ

l

1

sinh(2πd/l)
. (2.19)

Since Uind is a constant, the infinite horizontal sheet simply adds a uniform horizontal
velocity to the vortex street but does not alter its spatial structure. The sheet adds
negative horizontal velocity to the regular von Kármán street and positive horizontal
velocity to the reverse von Kármán street; the velocity increment has the same sign
as that induced by the point vortices on each other. Thus with the speed of the vortex
street given by

Us = Uc + Uind = U +
Γ

2l
tanh(πd/l) +

Γ

l

1

sinh(2πd/l)
, (2.20)

= U +
Γ

2l
coth(πd/l), (2.21)

we obtain a self-consistent base state for the vortex street motion about a body on
the horizontal axis. The velocity of the vortex street diverges as d/l → 0, because in
this limit γ in (2.10) tends to a sequence of sharp peaks of vorticity, adjacent to and
opposite in sign to the point vortices in the street. The speed of a pair of oppositely
signed distributions of vorticity diverges as they approach one another. As d/l → ∞,
the vortex street speed converges to Us = U + Γ/2l. This is the same as the speed of
the vortex street in the absence of the horizontal sheet as d/l → ∞.

We have so far given all flow variables as functions of x and z, which holds only
at the instant when a vortex from the top row coincides with the y-axis. Because the
point vortices translate horizontally with speed Us , the flow variables u, v and γ are
travelling waves with x changed to x − Ust in the expressions given so far (setting the
temporal phase so that a vortex from the upper street crosses the y-axis at time t = 0).
The unsteadiness of the flow affects the pressure, as we show in the next section.

3. Pressure force, input power and output power
Given the base state in which the body lies on the horizontal axis and the vortex

street translates with velocity Us given by (2.21), we now consider prescribed motions
of the body and calculate the resulting thrust force per unit length on it.

First, because we are interested in body motions with the same length scale
as the spacing between neighbouring vortices, we assume that the motion has the same
spatial period as the vortex street (l). We make the further simplifying assumption –
in agreement with Streitlien et al. (1996) and Liao et al. (2003) – that the body motion
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is a travelling wave moving with the speed of the vortex street Us . When viewed in
the rest frame of the vortex street, the body thus takes a constant shape.

We now make the assumption that the body executes small-amplitude motions
h(x, t), so that |h| � l, |∂xh| � 1. Then we can proceed to compute the pressure jump
[p] across the body, accurate to O(|h|/l, |∂xh|), as simply that across the undeflected
sheet. This provides the leading-order term in expansions of the power output Pout

due to thrust forces on the body, and the power input Pin due to the work done by
the body against fluid pressure forces. We now compute the leading-order terms in
[p], Pout and Pin .

3.1. Pressure jump

We begin by noting that for transverse body motions h(x, t), the velocity induced
by the point vortices at the body is given by the complex conjugate of (2.3) with
z = x + ih(x, t). The component of this velocity normal to the body is given by the
real part of its product with the quantity (−∂xh − i)/

√
1 + ∂xh2. Up to O(|h/l|, |∂xh|),

the normal component is the same as v in (2.6). The vortex sheet strength γ is then
computed from the first (2.8) with x ′ changed to x ′ + ih(x ′, t). The result is again
(2.10) up to O(|h/l|). This γ is then used in (2.12) to compute the velocity induced
by the vortex sheet at the point vortices, with x ′ changed to x ′ + ih(x ′, t). The result
is again an O(|h/l|) correction, so body movements do not alter the motion of the
vortex street at O(1).

Thus the leading-order contribution to the vortex sheet strength on the body is γ

from (2.10). We can calculate the pressure jump across a body supporting a vortex
sheet in terms of the vortex sheet strength γ . One writes the Euler equation on both
sides of the sheet, and takes the difference of the tangential components of the fluid
acceleration terms on the either side of the body. This is done as in Saffman (1992,
p. 31). The result is

γt + ∂s((μ − τ )γ ) =
1

ρf

∂s[p], (3.1)

where s is arclength along the body, ρf is the fluid density, τ (s, t) is the tangential
component of the body velocity and μ(s, t) is the tangential component of the average
w(s, t) of the fluid velocities on the two sides of the body at s:

τ (s, t) = Re (∂tζ (s, t) s̄) ; μ(s, t) = Re (w(s, t) s̄) . (3.2)

Here the body position is the complex-valued function ζ (s, t). The tangent vector is

s = (1 + i∂xh)/
√

1 + ∂xh2. (3.3)

Thus the tangential velocity due to the vertical motion h(x, t) is τ = ∂th∂xh/√
1 + ∂xh2 = O(|∂xh|2). The average fluid velocity at the body is horizontal in the

base state (where the body is horizontal), and is the expression given in (2.5), a
superposition of the background flow speed U plus the contribution from the point
vortices:

μ = U +
Γ

l

sinh(πd/l) cosh(πd/l)

sin2(2π(x − Ust)/l) + sinh2(πd/l)
. (3.4)

To order |∂xh|2 the s derivatives in (3.1) are x derivatives, and the equation becomes

∂tγ + ∂x(μγ ) =
1

ρf

∂x[p]. (3.5)
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Figure 2. (a) The pressure jump profile for five values of πd/l =0.1, 0.5, 1, 1.5, 5. The x-axis
tick labels are the same as in (b). (b) The optimal swimming shapes h for the same values of
πd/l, given by (4.3).

The instant t = 0 is assumed for γ in (2.10). The time-dependent γ is the same but
with x replaced by x − Ust . Because γ is a travelling wave,

∂tγ = −Us∂xγ. (3.6)

and thus the solution to [p] in (3.5) is

[p] = ρf (μ − Us)γ. (3.7)

= −ρf

Γ 2

l2

[
sinh(πd/l) cosh(πd/l) − coth(πd/l) sin2(2π(x − Ust)/l)

(sin2(2π(x − Ust)/l) + sinh2(πd/l))2

]
× (cos(2π(x − Ust)/l) sinh(πd/l)). (3.8)

We note that the pressure jump is independent of the background flow speed U at
leading order, unlike in previous studies of slender bodies nearly aligned with flows
such as a flapping flag (Shelley, Vandenberghe & Zhang 2005; Alben & Shelley
2008). The reason is that the body is undeflected in the base state, so superposing
a horizontal background flow changes the flow velocity and also the fluid pressure
equally above and below the body. Hence the difference in pressures is not affected
by U at leading order in body deflection.

In figure 2(a) we plot [p] for five different values of d/l. When the vortices are far
from the swimming sheet (d/l is large), the pressure jump profile tends to a cosine
function. As d/l decreases, the pressure jump becomes localized as sharp peaks at
the horizontal location of the point vortices, and is relatively flat between the peaks.

3.2. Input power

Motion of the body normal to itself requires an input power per unit area pin equal
to the product of velocity in the normal direction with [p], the force per unit area in
the normal direction against which the body works. At a fixed point on the body this
is

pin = [p]Im (∂tζ (s, t) s̄) , (3.9)

= [p]∂th(x, t)(1 + O(|∂xh|2)), (3.10)
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using (3.3). We integrate over the period length 0 � x < l to obtain the input power
per period length, and per unit width in the third dimension:

Pin =

∫ l

0

[p]∂th(x, t) dx. (3.11)

3.3. Output power

The thrust force per unit area fout is given by the negative of the horizontal component
of the body normal times the negative of the pressure jump:

fout = −[p]Re(n̂ · −êx), (3.12)

= −[p]∂xh/
√

1 + ∂xh2, (3.13)

= −[p]∂xh + O(|∂xh|3). (3.14)

If we consider the problem in the frame in which the background flow is at rest, the
body moves upstream at a prescribed velocity −Uex . The work done on the body per
unit time (power) per unit area in this frame by the thrust force per unit area (3.14)
is pout , at leading order:

pout = −U [p]∂xh(x, t), (3.15)

Pout = −U

∫ l

0

[p]∂xh(x, t) dx. (3.16)

Pout is the output power per unit period length, per unit width in the third dimension.
Similar expressions for Pin and Pout were used in theoretical studies of fish swimming
by Lighthill (1960) and Wu (1961). Because [p] and h are both travelling waves with
the same spatial and temporal period, so are the products in the integrands of Pin and
Pout . As time evolves, the periodic integrands simply shift within the interval [0, l],
so Pin and Pout are constant in time, and thus their time averages are the quantities
themselves.

We now consider constrained optimization problems which identify optimal
swimming motions h(x, t).

4. Optimal motions
4.1. Fixed mean square amplitude

We first compute the shapes which maximize power output for a given mean square
amplitude. This identifies a particular body shape, independent of amplitude, for
delivering large thrust. We thus maximize the functional

L1 = Pout + λ

(
A2 − 1

l

∫ l

0

h(x ′, t)2 dx ′
)

, (4.1)

where Pout is given by (3.16) and A is the mean square amplitude. Inserting h ∼ A

into (3.16), and examining the form of [p] (defined in (3.8)), we see that Pout/ρf A

is a function of four parameters: Γ , l, U , d . From these we form two dimensionless
parameters for this problem: Γ/lU , d/l. In the following we shall see that only the
dependence on d/l is non-trivial.

Taking the variation of (4.1) with respect to h and integrating by parts,

δL1 =

∫ l

0

U∂x[p]δh(x ′, t) dx ′ − λ

(
1

l

∫ l

0

2h(x ′, t)δh(x ′, t) dx ′
)

. (4.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

06
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009990619


36 S. Alben

0 0.2 0.4 0.6 0.8

0

15

30

45

60

75

90

P
h
as

e 
(d

eg
re

es
)

d/l

Figure 3. The phase between the vortex street and the maximum transverse displacement of
the optimal-power-output shape h(x, t), versus the vortex street width parameter d/l.

The maximizing h is given by

h(x, t) = A∂x[p]

/√
1

l

∫ l

0

(∂x[p])2 dx ′. (4.3)

In figure 2 we plot h and [p] for different values of d/l. We see that as the point
vortices approach the body, h becomes an increasingly concentrated bump near the
point vortices, where the pressure jump is largest. Streitlien et al. (1996) found in
some cases that power output is maximum when the phase difference between the foil
(at its maximum transverse displacement) and the vortex street is near zero. Here the
phase difference is the horizontal distance between a point vortex in the upper row
of vortices and the nearest peak in h(x, t) downstream (see figure 2b).

In figure 3 we plot the phase difference between the peak of the optimal body
shape and the vortex street. We plot the phase difference in degrees, where 360◦

equals one spatial period. The phase difference moves gradually from 0 when d/l = 0
to 90◦ when d/l = 0.684. Above this value of d/l, the two peaks of h which occur
in the range 0 � (x − Ust)/l � 1/2 in figure 2(b) have merged into a single peak at
(x − Ust)/l = 1/4.

The value of Pout generated by the Pout -maximizing shape (4.3) is

Pout = UAl

√
1

l

∫ l

0

(∂x[p])2 dx ′. (4.4)

Because [p] in (3.8) is a rational expression of trigonometric functions, so is h in (4.3)
and so is the integrand of the maximum output power (4.4). It is possible to compute
the maximum output power in closed form using a symbolic integration package.
Here we use Mathematica 6. The result is

Pout = ρf UA
Γ 2

l2

√
π(115 + 76 cosh(4dπ/l) + cosh(8dπ/l))

sinh(2dπ/l)5
. (4.5)

In figure 4 we plot Pout versus d/l. For large d/l, the power output decays
exponentially:

Pout = ρf UA
Γ 2

l2
2
√

πe−dπ/l + O(e−2dπ/l),
d

l
→ ∞, (4.6)
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Figure 4. The dimensionless output power delivered by the optimal swimming shape, versus
the vortex street width parameter d/l.
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Figure 5. A contour plot of optimal Froude efficiency η relative to the dimensionless
circulation Γ/lU and vortex street width d/l, for the reverse von Kármán street (Γ > 0).

while for small d/l the power out diverges like a power law, as the sheet deformation
becomes localized near the point vortices:

Pout = ρf UA
Γ 2

π2l2

√
3

2

(
d

l

)−5/2

+ O

((
d

l

)−1/2
)

,
d

l
→ 0. (4.7)

There is a smooth transition from one regime to the other near d = l.
We now consider the question of Froude efficiency. It turns out that all travelling-

wave body shapes h(x − Ust) have the same Froude efficiency, or else Pin and Pout are
zero. This follows from the fact that ∂th = −Us∂xh. By the definitions of Pout and Pin ,

η = Pout/Pin = U/Us =

(
1 +

Γ

2lU
coth(πd/l)

)−1

. (4.8)

Because of the travelling-wave form of h and [p], both Pout and Pin are proportional
to the correlation between the slope of the body shape wave and the pressure wave.
All travelling waves have the same such correlation.

In figure 5 we plot contours of constant η in the two-parameter space of reduced
vortex circulation and reduced vortex street width, for the case Γ > 0. High efficiency
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occurs with very weak vortices (small Γ/lU ). Weaker vortices also result in a slower-
moving vortex street. Thus the velocity of the body wave is smaller, leading to
a smaller Pin . Conversely, stronger vortices require the body wave to move more
quickly, which increases Pin (by increasing ∂th) and decreases the efficiency. Efficiency
increases as the vortex street becomes wider, up to a critical value of d/l near 1,
where the efficiency approaches a constant limiting value.

Our expressions for [p] and Pout involve Γ only as Γ 2, and thus are the same for
regular and reverse von Kármán streets. Our expression for Froude efficiency (4.8)
involves the first power of Γ , however, and can be greater than 1 for a regular von
Kármán street (Γ < 0), while it is always less than 1 for a reverse von Kármán street
(Γ > 0). When Γ < 0 Froude efficiencies greater than 1 are common (Streitlien et al.
1996), and the term ‘efficiency’ is perhaps misleading because the body does no work
in setting up the vortex street, but gains output power from it. It is then useful to
consider an alternative definition of efficiency, which is the amount of kinetic energy
in the vortex street recovered by the body per period length, per unit time (Streitlien
et al. 1996):

η1 =
Pout − Pin

U 〈D〉 , (4.9)

where 〈D〉 is the time-averaged drag force on the object which sheds the vortex street.
The outward momentum flux due to the point vortices leaving a control volume
around the object is used to calculate 〈D〉 (Saffman 1992):

〈D〉 =
Γ 2

2πl
+

Γ d

l
(U − 2Uc). (4.10)

Because the body is a travelling wave, Pin =(Us/U )Pout and

η1 =
(U − Us)Pout

U 2 〈D〉 . (4.11)

Maximizing η1 is thus equivalent to maximizing Pout , which we have already done
under the constraint of fixed amplitude.

4.2. Maximum efficiency with internal damping

Thus far we have considered only the interaction of a flexible surface with an external
flow due to a vortex street. We have neglected the internal work required for the body
to perform a given motion. The muscles, tissues and organs of the fish body provide
considerable resistance to bending (Videler 1993; Long et al. 1996), and evidence
exists that the elastic properties of the fish body are tuned to hydrodynamic forces
(Long et al. 1996; Wainwright 2000; Beal et al. 2006). One of the most basic ways
to consider the effect of the internal resistance to bending is to model the fish as a
beam with bending rigidity (Cheng, Pedley & Altringham 1998). Here we incorporate
a uniform bending rigidity into our model of the flexible body, and show how the
required input power and achievable efficiency is altered.

For a periodic beam with uniform flexural rigidity B , the stored elastic energy per
period length l is

Eb =
B

2

∫ l

0

(∂xxh(x ′, t))2 dx ′. (4.12)

Because the motion h(x, t) is periodic in time, Eb does not change over one period.
Hence bending rigidity alone does not affect the time-averaged input power. However,
real elastic structures also have internal damping, which can be modelled as internal
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viscoelastic behaviour. One of the simplest and most widely used models for this
phenomenon is the Kelvin–Voigt model, in which the stress tensor is a linear
combination of the strain tensor and the rate-of-strain tensor (Banks & Inman
1991; Cheng et al. 1998). The result is a term proportional to ∂txxxxh in the beam
equation (assuming spatially uniform damping):

ρ∂tth + B∂xxxxh + c∂xxxxth = f (x, t). (4.13)

Here ρ is beam mass per unit length, c is the non-negative damping coefficient, and
f is an applied force per unit length:

f (x, t) = −[p](x, t) + ∂xxMint (x, t), (4.14)

where [p] is the pressure jump (3.8) and Mint is the internal moment which produces
the prescribed motion h(x, t). Specifically Mint (x, t) is the moment that material in
the interval {x ′ : x ′ >x} applies to the material in the interval {x ′ : x ′ <x}, in the
notation of standard beam theory (Segel 1977). The alternating contraction of muscle
fibres on either side of the fish backbone is the source of Mint .

The sum of kinetic and elastic potential energy of the beam per unit periodic length
is

W (t) =

∫ l

0

(
ρ

2
(∂th(x ′, t))2 +

B

2
(∂xxh(x ′, t))2

)
dx ′. (4.15)

The time derivative of W is

dW

dt
=

∫ l

0

(ρ∂tth(x ′, t)∂th(x ′, t) + B∂xxxxh(x ′, t)∂th(x ′, t)) dx ′, (4.16)

=

∫ l

0

[−c(∂xxth)2 − [p]∂th(x ′, t) dx ′ + ∂xxMint (x
′, t)∂th(x ′, t))], (4.17)

where we have used (4.13) and integration by parts (with periodic boundary
conditions). Because the motion of the beam is periodic, the integral of dW/dt

over one temporal period T is zero. Thus,∫ T

0

∫ l

0

∂xxMint (x
′, t ′)∂th(x ′, t ′) dx ′ dt ′ =

∫ T

0

∫ l

0

c(∂xxth)2 + [p]∂th(x ′, t ′) dx ′ dt ′. (4.18)

The quantity on the left is the time-averaged internal power per spatial wavelength
used to maintain the motion h(x, t). We see that it is equal to the negative of the
rate of energy dissipation in internal damping plus the time-averaged power applied
against fluid pressure.

We thus modify the input power in (3.11) to take internal damping into account:

P ′
in =

∫ l

0

(c(∂xxth)2 + [p]∂th(x ′, t ′)) dx ′. (4.19)

Equation (4.19) is equal to its time-average, because again we assume h(x, t) is a
travelling wave with spatial period l. We now maximize the efficiency

η′ = Pout/P
′
in . (4.20)

In the limit where the amplitude of the body wave maxx |h(x, t)|/l goes to zero, the
damping term in (4.19) becomes negligible and we recover the case where all body
waves with non-zero power have the same efficiency U/Us .
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When we constrain the body wave to have a fixed positive power output, a particular
body wave maximizes the efficiency η′. Thus we optimize

L2 = Pout/P
′
in + λ

(
S −

∫ l

0

−U∂xh[p] dx ′
)

, (4.21)

where S is the fixed power output. Taking the variation of L2 with respect to h and
integrating by parts yields the equation for h:

∂x[p]
(
UP ′

in − UsPout − λUP ′2
in

)
= −2PoutcU

2
s ∂6

xh. (4.22)

We find that h is proportional to the fifth antiderivative of [p]:

h = c0D
−5[p], (4.23)

where negative powers of D denote antiderivatives, and c0 is a constant to be
determined. D−5 is a smoothing operator which damps the amplitudes of the cosine
components of [p] by wavenumber to the fifth power. Because [p] contains only odd-
wavenumber cosines, h is very well approximated by just the first cosine, cos(2π(x −
Ust)/l), scaled by a constant c0 (the amplitude of the next cosine in [p], k = 3, is
damped by a relative factor of 35). The constant c0 is determined by inserting h into
(3.16) and setting the power output equal to S:

c0 = −S

(
U

∫ l

0

(D−2[p])2 dx ′
)−1

. (4.24)

The power input for the optimum efficiency solution is found by (4.19):

P ′
in =

SUs

U
+ c

(
SUs

U

)2 (∫ l

0

(D−2[p])2 dx ′
)−1

. (4.25)

The corresponding efficiency is

η′ =
U

Us

(
1 + cSUs

(
U

∫ l

0

(D−2[p])2 dx ′
)−1

)−1

. (4.26)

By explicitly separating out the prefactor ρf Γ 2/l2 from [p] in (3.8), we can express the
efficiency as a function of just two dimensionless parameters: d/l and a dimensionless
damping constant c̄:

Us

U
η′ = (1 + c̄f (d/l))−1 , (4.27)

c̄ = cSUsl
4/(Uρ2

f Γ 4), (4.28)

f (d/l) =
ρ2

f Γ 4

l4

(∫ l

0

(D−2[p])2 dx ′
)−1

. (4.29)

In the first optimization problem (§ 4.1) we found that only the dependence on a single
parameter d/l was non-trivial. Considering the Froude efficiency (defined in (4.8))
then introduced a non-trivial dependence on a second parameter Γ/lU . By adding the
damping constant c, we have obtained a third parameter c̄ on which solutions depend
non-trivially. Because Γ/lU appears only in Us/U , we have absorbed it into η′ (4.27)
and c̄. This allows us to plot solutions in terms of the two remaining parameters d/l

and c̄.
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Figure 6. A contour plot of modified optimal efficiency Usη
′/U (including internal damping,

and for fixed power output S) relative to the dimensionless damping parameter cSUsl
4/(ρ2

f UΓ 4)

and vortex street width d/l. Here η′ is given as a fraction of the undamped efficiency U/Us

(defined in (4.8)).

The rescaling of efficiency in (4.27) is convenient because the scaling factor is the
undamped efficiency U/Us (defined in (4.8)). Thus we are naturally able to compare
the two. In figure 6 we plot contours of constant η′Us/U given by (4.27) versus d/l

and c̄. The parameter c̄ can be interpreted as a ratio of the characteristic input power
required to balance internal damping to that required to work against the external
fluid, for a body motion which produces output power S. First, we find unsurprisingly
that η′Us/U � 1; i.e. damped efficiency is always less than undamped efficiency. We
find also that the efficiency decreases with increasing damping, as expected. As d/l

exceeds 1, the efficiency decreases exponentially. The reason is that the amplitude of
the pressure jump decreases exponentially as d/l exceeds 1. To obtain a fixed output
power S, the amplitude of the body wave must then increase exponentially with d/l.
This increases the damping term in Pin ((4.19) and (4.20)) at a higher exponential
rate in d/l than it increases Pout . The result is an exponentially decreasing efficiency.
Above log10 d/l = 0.5, the amplitude max|h/l| approaches one, so the small-amplitude
approximation is no longer valid for the optimal body waves.

We can understand the behaviour of optimal efficiency more quantitatively by an
approximate analytical solution. We note that the operator D−2 also smoothes [p] in
η′, though not nearly as much as for h. A good approximation to η′ is obtained when
we approximate [p] in (3.8) by its first cosine component. Using Mathematica 6, this
component is

[p] =

∞∑
k=1

pk cos(2πk(x − Ust)/l) ≈ p1 cos(2π(x − Ust)/l), (4.30)

p1 = −2
ρf Γ 2

l2
e−πd/l . (4.31)

Using this approximation for [p] in c0 and h, h is approximately given by

h̃ =
Sl2

2πUρf Γ 2
eπd/l sin(2π(x − Ust)/l). (4.32)
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Figure 7. A contour plot of |η̃′ − η′|/|η′|, the relative error in approximation (4.33) for η′

(which includes just the first cosine mode of [p]). The contours are plotted in the space of the
dimensionless damping parameter c̄ = cSUsl

4/(ρ2
f UΓ 4) and vortex street width d/l.

Here the phase difference between the vortex street and the approximate body shape
is π/2, which is the same phase as for the maximum Pout body shape when d/l

exceeds 0.684.
For the approximate [p], η′ becomes

η̃′ =
U

Us

1

1 + (c̄/4π)e4πd/l
. (4.33)

In figure 7 we plot the relative error in η̃′. We see that it is very small except for
larger damping and smaller d/l. At smaller d/l the pressure peak becomes sharper
(see figure 2), and higher frequencies become important. Thus retaining only the first
cosine term can incur a significant error in this region. Because the damping constant
multiplies the term which is approximated, there can only be a significant error when
the damping constant is sufficiently large.

For the approximation η̃′, we can easily write down the asymptotic behaviour. For
small vortex street width, the efficiency approaches a constant:

η̃′ ∼ U

Us

1

1 + (c̄/4π)
. (4.34)

For large vortex street width, the efficiency decays exponentially with d/l:

η̃′ ∼ U

Us

4π

c̄
e−4dπ/l, d/ l � 1. (4.35)

This gives a quantitative form for the exponential decay described qualitatively below
(4.27).

5. Stability
In this work we have assumed that the body is periodic on the length of streamwise

separation between vortices. Our intent is to model a body with length on the scale
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of the streamwise spacing of vortices. It is also possible to apply our model to the
case of a body which extends over a scale of many streamwise vortex spacings, and
then it is interesting to consider whether or not such a body can stabilize the von
Kármán vortex street through time-periodic motions. We note that in the literature
there are relatively few experimental studies or natural observations of bodies of many
vortex-spacings in length placed in a vortex street. Some studies have considered the
behaviour of a vortex street in proximity to a solid wall (Bearman & Zdravkovich
1978; Zdravkovich 1983).

It is known that the von Kármán street is unstable to infinitesimal disturbances
at all values of d/l but one, and unstable to finite disturbances at all values of
d/l. These facts were reviewed by Saffman (1992), who also described models which
try to understand why stable von Kármán streets are common at large but finite
Reynolds number. It is an interesting topic for future work to determine the effect
of an oscillating body on the stability of the von Kármán street. When the vortices
are shed from a stationary body, a sufficiently large background flow, relative to
the induced flow of the vortex street, i.e. lU/Γ � 1, can make any such instability a
convective rather than absolute one.

There is some evidence which suggests that certain motions of a body near the
centreline of a point-vortex street may stabilize it. Acton & Dhanak (1993) considered
a lattice of sources on the midline of the vortex street, with a periodic distribution
of source strength which moves downstream together with the vortex street. They
motivated this problem as a basic one in flow control by using flow injection along a
solid boundary. They found equilibria in which each vortex in the street executes small
periodic motions superposed on constant downstream advection. The distribution of
point source strength on the midline is chosen to be locked in phase to the periodic
streamwise velocity of the vortex street. The combined flow due to the sources, vortex
street, and uniform advection leads to a wavy streamline near the midline. This
streamline can be interpreted as a ‘virtual body’ because fluid does not penetrate
it. Acton & Dhanak (1993) found that when the phase between the virtual body
amplitude and the vortex street is π/2, the combined motion is stable for certain
ranges of the other dimensionless parameters. This is the same phase between the
body and vortex street that we have found for optimal power output and efficiency
in the case of wider vortex streets (d/l � 0.684) in § 4.

6. Comparisons
We briefly compare some of our results with those of earlier work. First, our model

predicts that Pout is maximized when the phase difference ranges from 0◦ (for small
d/l) to 90◦ (for large d/l). Streitlien et al. (1996) considered a foil performing a
combination of heaving and pitching. The trajectory traced by the foil over a time
period is very similar to the shape assumed by our flexible sheet.

They did not report the values of d/l they used in simulations, but it can be
estimated as 0.2 in their figure 4. For this d/l our model predicts an optimal phase
of 15◦, while theirs is 20◦–45◦ (figure 2 of Streitlien et al. 1996) for simulations with
A/d � 0.2, which approximates the small-amplitude limit.

The linearized theory of Streitlien et al. (1996) did consider the small amplitude
limit of their airfoil model, and the wide vortex street limit d/l → ∞. Theirs was
a regular von Kármán street, in which case our model predicts a Froude efficiency
given by (4.8) with Γ < 0. They see an increased efficiency for increasing Γ/lU in
their figure 3, which is also shown by our model in this case.
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For rainbow trout swimming in a flow tunnel, Liao et al. (2003) found that the
phase differences between the vortex and different locations on the trout body ranged
from 90◦ to 270o(tail). From their PIV in figure 2, d/l can be estimated as 2/3.
In this case, our first optimization predicts maximum Pout with 90◦ phase (for both
the regular and reverse von Kármán streets), and our second optimization predicts
maximum efficiency with the same phase. Our first comment is that the amplitude
in the experiment is perhaps outside the small-amplitude limit. However, because
the trout body always remains some distance from the vortices, our model is still
reasonable. By matching optimal phases of the fish body and our model, our model
suggests that the power savings due to the vortex street is more concentrated on the
forward half of the trout (where the phase is closer to that of our optimal body
shape) than in the posterior region. An alternative interpretation considers the mean
phase of the trout, which is 180o. For this phase, our model predicts zero Pin (or, with
damping, minimum Pin) and zero Pout . However, the trout possesses an additional
means of generating thrust which is not present in our model – by shedding free
vorticity into the fluid at the tail. With this addition to Pout , we would expect high
efficiency at 180◦ phase. Apart from the free trailing wake, our periodic model also
neglects leading-edge suction, and the free-edge boundary conditions appropriate to
the edges of a finite swimming body.

This work was supported by the National Science Foundation Division of
Mathematics Sciences, grant NSF-DMS-0810602.
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