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This paper addresses the issue of state estimation in the integration of a Strapdown Inertial
Navigation System (SINS) and Global Positioning System (GPS), which is used for airborne
earth observation positioning and orientation. For a nonlinear system, especially with large
initial attitude errors, the performance of linear estimation approaches will degrade. In this
paper a nonlinear error model based on angle errors is built, and a nonlinear estimation
algorithm called the Central Difference Rauch-Tung-Striebel (R-T-S) Smoother (CDRTSS)
is utilized in SINS/GPS integration post-processing. In this algorithm, the measurements are
first processed by the forward Central Difference Kalman filter (CDKF) and then a separate
backward smoothing pass is used to obtain the improved solution. The performance of this
algorithm is compared with a similar smoother based on an extended Kalman filter known as
ERTSS through Monte Carlo simulations and flight tests with a loaded SINS/GPS integrated
system. Furthermore, a digital camera was used to verify the precision of practical
applications in a check field with numerous reference points. All these validity checks
demonstrate that CDRTSS is a better method and the work of this paper will offer a new
approach for SINS/GPS integration for Synthetic Aperture Radar (SAR) and other airborne
earth observation tasks.
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1. INTRODUCTION. An integrated system comprising a Strapdown Inertial
Navigation System (SINS) and Global Positioning System (GPS) has become the
main method to derive aircraft trajectory information for airborne earth observation
(Groves, 2008). Most observation loads, such as Synthetic Aperture Radar (SAR) and
Light Detection and Ranging (LiDAR) depend on a SINS/GPS integrated system for
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motion compensation. Furthermore, the imaging quality is affected directly by the
motion measurement precision of the SINS/GPS integrated system. For example, low-
frequency motion errors (biases and ramps) cause errors in the location of the imagery
relative to the Earth or “target location” errors, while higher frequency errors cause
images to defocus, even if autofocus algorithms are applied (Kim, 2004). This means
that the SINS/GPS integrated system must have high absolute precision as well as
relative precision (smoothness) in motion measurement.
In general, a SINS/GPS integrated system used for airborne earth observation

comprises an inertial measurement unit (IMU), a GPS receiver, a processing computer
system (PCS) and post-processing software (PPS) (Fang and Gong, 2010). The
estimation algorithms run in the PCS and PPS, which integrate the SINS and GPS, are
the key to the performance of the integrated system. Three classes of optimal
estimation algorithms can be found in the literature (Simon, 2006), namely prediction,
filtering and smoothing. A Kalman filter (KF) (Brown and Hwang, 1992) is the most
commonly used algorithm for fusing the outputs of an integrated SINS/GPS system
(Xu et al., 2010). It is well known that the precision of the optimal smoothing
algorithm is theoretically higher than that of prediction and filtering, since the
smoother can use more observations (Gelb, 1974). In general, most high-resolution
earth observations deliver the imaging results after the missions are complete. Thus
this paper considers the smoothing estimation algorithm for post processing. The
Rauch-Tung-Striebel (R-T-S) smoother is a fixed interval smoother, consisting of a
standard Kalman filter and a set of backward processing equations (Rauch et al.,
1965; Lee and Jekeli, 2011). The smoothed state estimates are derived through
propagating the scaled statistics of the forward filter backward in time (Durbin and
Koopman, 2012). This smoothing method has already been used in the post data
processing of a SINS/GPS integrated system (Kennedy et al., 2007).
However, to reduce the preparation time on the ground and enhance work

efficiency, especially in more urgent situations (such as the survey of geological
disaster, fire and flood), it is hoped that the SINS/GPS integrated system could be
started up after the take-off and before the aircraft reaches the mission location. In this
case, the uncertain errors of the initial attitude will be brought into the integrated
SINS/GPS system. As misalignment of initial attitude error may now be very large,
the linear SINS error model becomes inapplicable. Moreover, the performance of an
R-T-S smoother based on a KF will degrade because of the neglected nonlinear error
terms in the model. Therefore, a nonlinear smoothing algorithm should be considered.
The extended Kalman filter (EKF) based on linearizing the system model with a

Taylor series expansion has been widely used in nonlinear systems (Haykin, 2001).
However, the linearization will produce truncated errors and lead to poor
performance and even divergence for a highly nonlinear system (Simon, 2006). The
extended R-T-S smoother (ERTSS), which has a similar formulation to the R-T-S, is a
corresponding nonlinear smoother based on EKF (Crassidis and Junkins, 2004;
Sarkka et al., 2012). The sigma point Kalman filter (SPKF), a novel filter to overcome
the shortcomings of EKF, has been proved to be far superior to EKF in a wide range
of applications (Van der Merwe et al., 2004). It mainly comprises an unscented
Kalman filter (UKF), central difference Kalman filter (CDKF), cubature Kalman
filter among others (Julier et al., 1995; Ito and Xiong, 2000; Arasaratnam and Haykin,
2009; Wu, 2006). Sigma point filters have been used pervasively in the alignment of
SINS and the data fusion of SINS/GPS systems (Crassidis, 2006; Wang et al., 2012;
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Hao et al., 2010; Jwo and Lai, 2009). However, previous work mainly deals with real
time processes and few discussions can be found on the subject of nonlinear smoothing
problems. Based on Striling’s interpolation formula, CDKF can capture the posterior
mean and covariance accurately to 2nd-order (3nd-order is achieved for symmetric
distribution) compared to EKF (Van der Merwe et al., 2004). The central difference
R-T-S smoother (CDRTSS) was first proposed by Sarkka and Hartikainen (2010),
which can give superior results for nonlinear systems by combining the CDKF and
R-T-S smoother.
In this paper, we consider the implementation of the CDRTSS in integrated SINS/

GPS post-processing and apply it to airborne earth observation motion compensation.
There is no need to align before take-off since CDRTSS possesses the ability to deal
with large attitude errors. Simulation and flight tests are utilized to compare the
performance of CDRTSS and ERTSS.
This paper is organized in six sections. The CDRTSS algorithm is presented in

Section 2. Section 3 introduces the SINS error model based on an angle error model,
and the implementation of CDRTSS in the integrated SINS/GPS system is described.
In Section 4, numeric simulations and analyses are conducted through comparison
between ERTSS and CDRTSS. Flight testing is conducted in Section 5 to analyse the
performance of CDRTSS further and the paper is concluded in Section 6.

2. THE CDRTSS ALGORITHM. The ERTSS and CDRTSS possess the
same form and are all derived from a R-T-S smoother. In the R-T-S smoother, the
data is first processed by the forward filter, and then a backward recursion is used to
compute the smoothing results based on the forward filtering outputs. The ERTSS has
been discussed in several literatures and can be found in Simon (2006). In this section,
a brief introduction of CDRTSS is presented.
Consider the following nonlinear system:

xk = f (xk−1, k − 1) + Γk−1wk−1

zk = h(xk, k) + vk

{
(1)

where xk is the state vector and zk is the measurement vector. f (·) is the dynamic model
function and h(·) is the measurement model function. The process noise wk−1 and the
measurement noise vk are assumed to be Gaussian white noise with covariance Qk−1

and Rk−1 respectively.
The forward process part of CDRTSS is a standard CDKF algorithm. Based on

Stirling’s interpolation formula, CDKF utilizes the prior distribution to create 2L+1
(L is the state dimension) sigma points and then captures the posterior distribution by
propagating the sigma-points through the dynamic and measurement models. The
CDKF algorithm is given as follows (Ito and Xiong, 2000; Van der Merwe et al.,
2004):
Initialization:

x̂ = E[x0],Px0 = E[(x0 − x̂)(x0 − x̂)T ] (2)

(1) Calculate sigma-points for time-update

χ̂k−1 = [ x̂k−1 x̂k−1 + h
������
Pk−1

√
x̂k−1 − h

������
Pk−1

√ ] (3)
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(2) Time-update equations

χ̂−k = f (χ̂k−1, k − 1)

x̂−k = ∑2L
i=0

wm
i χ̂

−
k,i

P−
k = ∑L

i=1
[wc1

i (χ̂−k,i − χ̂−k,L+i)(χ̂−k,i − χ̂−k,i+L)T

+wc2
i (χ̂−k,i + χ̂−k,L+i − 2χ̂−k,0)(χ̂−k,i + χ̂−k,L+i − 2χ̂−k,0)T ] + Γk−1QΓT

k−1

Ck = ������
Pk−1

√ 1
2h

(χ̂−k,1:L − χ̂−k,L+1:2L)T




(4)

(3) Calculate sigma points for measurement-update

χ̂−∗
k = [ x̂−k x̂−k + h

����
P−
k

√
x̂−k − h

����
P−
k

√ ] (5)
(4) Measurement-update equations

ϒ̂
−
k = h(χ̂−∗

k , k);
ŷ−k = ∑2L

i=0
wm
i ϒ̂

−
k,i


 (6)

Pỹk =
∑L
i=1

[wc1
i (ϒ̂

−
k,i − ϒ̂

−
k,L+i)(ϒ̂

−
k,i − ϒ̂

−
k,L+i)T

+ wc2
i (ϒ̂

−
k,i + ϒ̂

−
k,L+i − 2ϒ̂

−
k,0)(ϒ̂

−
k,i + ϒ̂

−
k,L+i − 2ϒ̂

−
k,0)T ] + R

Pxkyk =
�������
wc1
i P

−
k

√ [ϒ̂−
k,1:L − ϒ̂

−
k,L+1:2L]T




(7)

Kk = PxkykP
−1
ỹk

x̂k = x̂−k + Kk(yk − ŷ−k )
Pk = P−

k − KkPỹkK
T
k




(8)

where the weights of each sigma-point are w0
m=(h2−L)/h2, w0

m=1/(2h2), wc1
i = 1/(4h2)

, wc2
i = (h2 − 1)/(4h4) . h51 is the scalar central difference interval size which

determines the spread of the sigma points around the prior mean, and its optimal
value is

��
3

√
for Gaussian distribution. The cross-covariance Ck between x̂k−1 and x̂−k is

calculated for the backward process part.
During the processing of CDKF, the predicted state x̂−k , estimated state x̂k ,

predicted covariance P−
k , estimated covariance Pk and the cross-covariance Ck need to

be stored at each filtering point for late backward recursion.
After the filtering estimates have been computed, the smoothed state estimation

and its covariance can be computed using the following backward recursion (for
n=N−1. . .0) (Sarkka and Hartikainen, 2010):

KS
k = Ck+1(P−

k+1)−1

x̂Sk = x̂k + KS
k (x̂Sk+1 − x̂−k+1)

PS
k = Pk + KS

k (PS
k+1 − P−

k+1)(KS
k )




(9)
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Where the smoothing distribution and filtering distribution of the last time step N are
the same, x̂SN = x̂N and PN

S =PN.

3. CDRTSS FOR THE SINS/GPS INTEGRATED SYSTEM.
3.1. SINS error model. The SINS error model, which is the foundation of the

integrated SINS/GPS system, is established in this subsection. It includes the
differential equation of attitude, velocity and position error (Goshen-Meskin and
Bar-Itzhack, 1992). The coordinate frames used in this paper include the geocentric
inertial frame (i-frame), earth-centered earth fixed frame (e-frame), navigation frame
(n-frame), platform frame (p-frame) and body frame (b-frame). A detailed description
of these coordinate frames is in Farrell and Barth (1998), and Crassidis (2006).
The differential equation of attitude error is given by (Groves, 2008):

ϕ̇ = (I − Cp
n)ωn

in + δωn
in − Ĉ

n
bε

b (10)
where ϕ = [ ϕE ϕN ϕU ]T denotes the attitude error angle. The Cn

p is the direction
cosine matrix (DCM) between the p-frame and the n-frame. ωin

n is the rotation velocity
vector of n-frame relative to i-frame expressed in n-frame, and δωin

n is the error of ωin
n .

Cb
n is the DCM between the n-frame and the b-frame, meanwhile Ĉ

n
b is the estimate of

Cb
n. εb = [ εx εy εz ]T is the gyro drifts in the b-frame. (I−Cn

p)ωin
n is the nonlinear

term of attitude error equation.
The differential equation of the velocity can be described as follows:

δV̇ = (I − Cn
p)Ĉ

n
b f̂

b − (2ωn
ie + ωn

en) × δV − (2δωn
ie + δωn

en) × V + Cn
b∇b (11)

whereV = [VE VN VU ]T is the velocity vector, and δV is the velocity error vector.

f̂
b
is the specific force measured by the accelerometers expressed in the b-frame. ωie

n is
the rotation rate from the e-frame relative to the i-frame expressed in the n-frame
and ωen

n is the rotation rate from the n-frame relative to the e-frame expressed in
the n-frame. δωie

n and δωen
n are the error of ωie

n and ωen
n , respectively. ∇b is the bias

of the accelerometer measurement expressed in the b-frame. (I − Cn
p)Ĉ

n
bf̂

b
is the

nonlinear term of velocity error equation.
The differential equation of position error is given by:

δL̇ = − VN

RM + h( )2 δh+
1

RM + h
δVN

δλ̇ = − VE sinL
RN + h( ) cos2 L δL− VE

RN + h( )2cosL δh+ 1
RN + h( ) cosL δVE

δḣ = δVU




(12)

where δL, δλ, δh are the errors of latitude, longitude and height, respectively. RM and
RN are the main curvature radii along the meridian and the vertical plane of meridian,
respectively.

3.2. Design of the CDRTSS for integrated SINS/GPS system. As we can see
from Equations (10) and (11), the SINS error model is related to the gyro drift ε and
the accelerometer bias ∇. To achieve better SINS error estimation accuracy, the
gyroscope drift and accelerometer bias must be considered. The gyroscope drift and
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accelerometer bias can be approximated as random noise, which includes a random
constant process and a white Gaussian process. The constant drift and bias of the gyro
and the accelerometer as well as the SINS errors are selected as the state vector.
The random noise of the gyro and accelerometer are estimated as the model
error. The state vector is as follows: x=[ϕE ϕN ϕU ϕE δVE δVN δVU

δL δλ δH εx εy εz ∇x ∇y ∇z]
T. εx, εy, εz, ∇x, ∇y, ∇z, are the constant

drift and bias of the gyro and accelerometer in x, y and z directions respectively,
which can be modelled by ε̇ = 0, ∇̇ = 0. The continued system model of SINS/GPS
is formed as ẋ(t) = f (x, t) + Gw(t) , where w = [wεx wεy wεz w∇x w∇y w∇z ]
represents the gyro and accelerometer random noise with E[wwT]=Q. Matrix G
is given by:

G =
Ĉ

n
b 03×3

03×3 Ĉ
n
b

09×3 09×3







To transfer the continued model to discrete model, a four-step Runge-Kutta
numerical solution is utilized in this paper. The observation vector is defined by

z = δV
′
E δV

′
N δV

′
U δL

′
δλ

′
δh

′[ ]T
. δV

′
E , δV

′
N , δV

′
U represent the differences

of the east velocity, north velocity and up velocity between the measurements of SINS
and the GPS, respectively. δL, δλ

′
, δh

′
represent the differences between the latitude,

longitude, and height calculated from SINS and GPS outputs respectively. The
observation noise v = [ vδV ′

E
vδV ′

N
vδV ′

U
vδL vδλ′ vδh′ ]T represents GPS velocity

and position measurement noises, and the observation matrix H is given by:

H = 03×3 diag 1, 1, 1{ } 03×3 03×6

03×3 03×3 diag RM + h, (RN + h) cosL, 1{ } 03×6

[ ]

Since the measurement model is linear, the formulation of CDKF in Equations (5,
6, 7) can be simplified as follows:

ŷk = Hkx̂
−
k

Pyy = P−
k H

T
k

Pxy = HkP−
k H

T
k + Rk


 (13)

Figure 1 shows the computation procedure diagram of an integrated SINS/GPS
system using CDRTSS.
In summary, the CDRTSS used for SINS/GPS integrated post-processing can be

divided into two parts: the filter solution and the smoother solution. The relationship
of these two parts based on the synthesis of numerical simulation results is shown in
Figure 2. In the whole process of SINS/GPS integration, the filter and smoother are
computed at the GPS sampling rate, and the strapdown navigator is computed at the
SINS sampling rate. In general, the sampling rate of SINS is higher than that of GPS.
From Figure 2, it can be seen that the strapdown computing error grows with time

during the interval of GPS data. Once the GPS data arrives, the slowly growing errors
in the strapdown navigator can thus be limited by the feedback correction of filter and
smoother. In the filtering solution, the VF, PF and AF (denoting the velocity, position
and attitude results of integration using filtering, respectively) would be corrected by
using x̂ f ,k (the state estimate of CDKF) at every filtering point. After the correction,
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x̂ f ,k should be set to zero. In the smoothing solution, VS, PS and AS (denoting the
velocity, position and attitude results of integration using smoothing, respectively)
should be corrected by using x̂s,k (the state estimate of smoothing) at every smoothing
point. The corrected velocity, position and attitude are regarded as the initial value of
strapdown computation after every estimate point.

4. SIMULATION AND ANALYSIS. To test and analyse the performance
of CDRTSS, numerical simulations based on the simulated flight trajectory of an
integrated SINS/GPS system have been conducted in this section.

4.1. Simulation design. In this subsection, a typical sequential U-form imaging
flight trajectory with an S-manoeuvre at the beginning is used, as shown in Figure 3.
The initial position is Latitude 40°N, Longitude 116°E and 500m in height. The initial

Strapdown compute Strapdown compute

, ,S S SV P A

, ,F F FV P A

Filter solution

Smoother solution

True trajectory

Estimate point k

Strapdown compute

,ˆ
f kx , 1ˆ

f k +x

, 1ˆ
s k +x

Estimate point k+1

,ˆ
s kx

Figure 2. Relation between filter solution and smoother solution of CDRTSS.

Feed-forward 
error 

controller

Backward-pass 
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error control

Strapdown 
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Position
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Attitude

Navigator  
correction

Estimated 
errors

Filter
corrections

Angular rates
Accelerations

Position 
Velocity

TimeGPS

IMU

SINS/GPS integrated system

Figure 1. The computation procedure diagram of SINS/GPS integrated system using CDRTSS.
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heading is 040° and the velocity is 100 m/s during the flight. Firstly, the aircraft flies
100 s in a straight line, and after that there is an S-manoeuvre with 60° increase (100 s)
and decrease (100 s) in heading direction. Then the aircraft flies 400 s straight before
turning 180° clockwise in 200 s, and finally it flies 400 s straight again.
The errors of sensors in SINS/GPS integration are as follows: the gyro bias and

white noise are all 0·2°/h, the accelerometer bias is 100 μg and the accelerometer white
noise is 50 μg, the horizontal position noise is 0·1 m, the vertical position noise is
0·15 m, the horizontal velocity noise is 0·03 m/s, and the vertical velocity noise is
0·05 m/s. There is no outage in GPS data.
To test the performance of the CDRTSS and analyse the effect of different initial

attitude errors on the precision of the integrated SINS/GPS estimation, three
conditions with 10°, 20° and 30° initial attitude errors (the initial attitude includes
heading, pitch, and roll) are designed, and the simulated data are processed by ERTSS
and CDRTSS respectively.

4.2. Simulation results and analysis. The attitude estimate errors of CDRTSS
and ERTSS in three conditions mentioned in Section 4.1 are shown in Figures 4, 5, 6.
Moreover, the performance of CDRTSS and ERTSS with initial attitude error of 30°
for a Monte-Carlo run of 100 randomly initialized experiments is summarized and
compared in Table 1. Figure 4 illustrates that there is no distinct difference between
the performance of the ERTSS and CDRTSS with 10° initial attitude error. Along
with the initial attitude error increase, it is obvious that the CDRTSS gives better
results than the ERTSS. Furthermore, the mean standard deviation (E[STD]) of

Table 1. The mean STD of attitude error for 100 Monte-Carlo simulations (deg).

E[STD] heading error pitch error roll error

ERTSS 0·06282 0·01576 0·01015
CDRTSS 0·03284 0·00952 0·00657
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Figure 3. Trajectory of simulation.
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attitude errors using the CDRTSS algorithm shown in Table 1 is much smaller than
that of ERTSS, validating the superiority of the CDRTSS.

5. FLIGHT TEST AND DISCUSSION. The simulation tests, given in
Section 4, have shown that the CDRTSS can obtain a better performance over
ERTSS. How about the real application result of the CDRTSS? In this section, flight
data will be used to validate the effectiveness of CDRTSS.
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Figure 4. Estimated attitude error with 10° initial attitude error.
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Figure 5. Estimated attitude error with 20° initial attitude error.
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A two-hour flight test was carried out in a calibration field in Pingdingshan, China.
This area has a large number of ground control points with their actual positions
known in advance, which makes it possible to calculate the actual attitude and
position of the aircraft through the photos it takes. The SINS/GPS integrated system is
carried on an ultra-light A2C aircraft with the GPS antenna fixed on the top (seen in
Figure 7(a)). The IMU (TXD10-A2) and the camera are placed in the cabin of the
aircraft (see Figure 7(b)).
The integrated SINS/GPS system developed by Beihang University is used in the

flight test, which consists of the Dynamically Tuned Gyroscope (DTG)-based IMU
and the Trimble 5700 dual-frequency GPS receiver. The IMU comprises two HT-A3
dynamically tuned gyroscopes (HT-A3 precision strapdown flexible gyroscope, 1999)
and three JHT-I-B quartz accelerometers (Jht-i-b quartz accelerometers, 1998). The
sampling rates of the IMU and GPS are 100 Hz and 10Hz respectively. The gyro
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Figure 6. Estimated attitude error with 30° initial attitude error.

Figure 7. The test platform. (a) The A2C aircraft. (b) Sensor installation on the aircraft.
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constant and random drifts are 0·1°/h and the accelerometer constant and random
biases are 100 μg. The post-processed position and velocity precision of GPS is 10 mm
+1·5 ppm and 0·01 m/s respectively. During the flight, the original output data of the
integrated SINS/GPS system are stored by the PCS fixed in the cabin.
Figure 8(a) shows the trajectory of the flight measured by GPS. Point A in Figure 8

(b) can be seen as the time that the IMU started up and the imaging area is marked
by the dashed line. There are four image segments, including about 2000s data. Each
segment has a series of discrete image dots. Currently, the aero-triangulation method
is recognized as a better way to calibrate the navigation data processed by SINS/GPS
integration (Toth, 2002). In this flight test, the position and attitude information
of higher precision are provided by Chinese Academy of Surveying and Mapping,
which is computed by the aero-triangulation method with the well-signalized ground
control points and the imaging data. This flight test was in good conditions with
the sky very clear. This all ensures that aero-triangulation can obtain maximum
positioning and attitude accuracy that can be used as the reference for SINS/GPS
integration. In the in-flight startup case, the GPS can provide initial position and
velocity information for the aircraft. In general, the approximate value of the initial
heading can be acquired through the east and north velocity information from
GPS. However, the accurate initial heading still remains unknown due to the
existence of the drift angle induced by the wind speed and other factors. According
to other flight tests, the drift angle is around 10° in fine weather and these values
will increase in worse conditions. So we consider different cases with heading
misalignment ranging from 5° to 30° increased by 5° steps. Moreover, there is no large
pitch and roll during the preparation period, based on the many flight tests conducted.
Hence, the maximal values of pitch and roll are both about 5° for this aircraft.
Here, the pitch and roll can be initialized to zero and the misalignment is assumed
to be 5°.
Figures 9 and 10 show the STD of latitude, longitude and altitude error with

different initial heading errors using CDRTSS and ERTSS. From the figures, it can be
seen that the estimated error of position using ERTSS climbs with the increase of
initial heading error, whereas the performance of CDRTSS is very stable. Also, the
precision of the positioning estimate of CDRTSS is better than that of ERTSS.
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Figure 8. Flight trajectory. (a) three-dimensional trajectory. (b) two-dimensional trajectory.
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Figure 11 shows the STD of the pitch and roll error with different initial heading
errors using CDRTSS and ERTSS. It can be seen that the STD of pitch and roll error
using these two methods are very close and small due to high observability and the
small initial horizontal misalignment error. The STD of the heading error shown
in Figure 12 illustrates that the STD of heading error using CDRTSS is smaller and
much more stable than that of ERTSS, which is further displayed in Table 2.
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Figure 9. The STD of latitude and longitude error with different initial heading error.
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From the figures and tables above, it can be seen that the positioning precision of
CDRTSS can be improved by several millimetres, while the heading precision can be
improved by several percent of a degree. So, the remnant heading error (the absolute
error subtracting the mean error) with 30° heading misalign is shown in Figure 13. It
can be seen that the amplitude of CDRTSS is smaller than that of ERTSS and it is
obvious that CDRTSS has great advantages over ERTSS. Undoubtedly, it is more
effective.

6. CONCLUSION. In this paper, a nonlinear smoother algorithm called the
Central Difference Rauch-Tung-Striebel (R-T-S) smoother (CDRTSS) based on a
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Figure 12. The STD of heading error with different initial heading error.

Table 2. STD of heading error in different cases (deg).

Initial heading error(deg) 5 10 15 20 25 30

ERTSS 0·0461 0·0492 0·0521 0·0540 0·0555 0·0565
CDRTSS 0·0415 0·0416 0·0418 0·0419 0·0420 0·0420
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Figure 13. The remnant heading error with 30° initial heading error.
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Central Difference Kalman filter (CDKF) and Rauch-Tung-Striebel (R-T-S)
smoother is presented and applied to the SINS/GPS integrated system post-processing
under the in-flight startup condition. Compared with the commonly used Extended
R-T-S Smoother (ERTSS), its performance has been analysed through numerical
simulation and flight test. The results indicate that CDRTSS can obtain higher
precision of positioning and attitude estimates than that of ERTSS. This provides a
new estimation method for SINS/GPS integration used in airborne earth observation
and other applications, including some emergency applications. However, this paper
merely gives an evaluation of CDRTSS and ERTSS when GPS data is normal. GPS
receivers sometimes do not function correctly due to signal blockage, attenuation and
disturbance (which may lead to intermittent positions or unknown abnormal noise
which are also known as outliers). How to ensure that a satisfactory navigation result
can be obtained when there are outages or outliers in the GPS data is worthy of future
research.
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