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SUMMARY
An approach for calculating the maximum possible absolute values of joint velocities or generalized
reactions in a leg of a parallel mechanism has been considered in this paper. The Jacobian analysis
and the Screw theory-based methods have been used to acquire the result. These values are calculated
for the “worst” directions of the external load or end-effector’s velocity for each leg. The feasibility
of using these parameters as the measures of closeness to different types of parallel mechanism
singularity is discussed. Further, how this approach is related to the state-of-the-art methods has
been illustrated. The key aspect of the discussed approach is that the normalization of vectors or
screws is carried out separately for angular and linear components. One possible advantage of such
an approach is that it deals only with the kinematic and statics of the mechanism while still providing
physically meaningful and practically applicable measures. Case studies of a 3-Degrees Of Freedom
translational parallel mechanism and a planar parallel mechanism are presented for illustration and
comparison.

KEYWORDS: Parallel mechanism; Workspace; Closeness to singularity; Singularity analysis;
Screw theory; Jacobian.

1. Introduction
The existence of certain poses that are called “singular” is a significant problem for parallel
mechanisms. In these poses, the kinematic or static properties of a mechanism change. It is also
a well-known fact that the closeness to singular poses affects the performance of the mechanism.1

Thus, it is important to study these singularities in order to properly design, build, and use these
mechanisms.2, 3 Therefore, many researchers have focused their efforts on determining the sin-
gularity loci and poses,4–6 planning trajectories that avoid such poses,7–9 and calculating various
“performance” indices.10–16 Numerous different indices and parameters, such as the inverse condi-
tion number, the smallest singular value of a Jacobian matrix, pressure angles, etc., can be used to
estimate how close the mechanism is to its singular pose. However, it is difficult to determine the
admissible value for a transmission index from a practical point of view. The other problem that
many of the proposed indices have is that they do not have a clear physical meaning.
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676 On the maximization of joint velocities and generalized reactions

Depending on the singularity type,17, 18 a significant increase may be observed in the
joint velocities or reactions when the mechanism’s end-effector approaches the singular pose.
Consequently, these two parameters can be used for calculating an “effective” workspace of robots,
essentially excluding working areas where the mechanism is “too close” to the singular pose and the
values of the velocities or reactions are too big. For instance, an algorithm for determining the border
of the so-called “static workspace” was introduced in ref. [19]. This is a part of the workspace of
the entire mechanism that includes all the points for which the maximal torques or forces in the legs
of the mechanism do not exceed certain threshold values for a given external load. However, this
analysis was done for a predefined external wrench. Thus, the “static workspace” will change its size
or form if the direction of the external wrench is changed. Moreover, for many robot applications, the
direction of the load wrench is not specified. Thus, this approach may require a significant amount of
time to compute the values of the actuation efforts, since every possible direction (with a reasonable
step) of the external load wrench should be taken into account.

In this paper, we discuss an approach for calculating the values of the generalized reactions (forces
or torques) and velocities for a given norm of the external load or motion twist (or vector) of the end-
effector, respectively. The key component of this approach is that it deals with the “worst” directions
of the external load or motion of the end-effector that produce the generalized velocities with the
maximum possible magnitude or maximize the generalized reactions (including the actuation veloci-
ties and efforts) in the mechanism’s legs. The discussed approach will be illustrated using 3-Degrees
Of Freedom (DOF) translational and planar parallel manipulators.

As for using the discussed approach to measure the closeness to the different types of singularities,
we are mostly interested in how it is related to the work of Volgewede.20, 21 In these papers, a thorough
analysis of the closeness to singularity measures was performed. However, the physically meaningful
and practically applicable measures presented in his work require some non-kinematic properties of
the mechanism (stiffness, inertia, etc.) to be introduced to the measure calculation (this was also
noted by Merlet in his book1). A link between the discussed approach and the Voglewede’s work on
the topic will be illustrated in Section 4 of this paper.

We also make certain assumptions in order to simplify the explanations:

1. The number of DOFs of the end-effector in any non-singular pose is equal to the number of
actuated joints.

2. Only one joint in each leg is actuated. Keeping the first assumption in mind, this also means that
the number of legs is equal to the number of DOFs of the mechanism. Further, we also assume
that all the actuated joints are located on the base plate of the mechanism. We begin enumerating
joints within a leg starting from the actuated joint.

3. All kinematic pairs (joints) are 1-DOF, since any joint with a greater degree of freedom can be
represented as a combination of 1-DOF joints.

Thus, in this paper, we consider an n-DOF parallel mechanism with n legs, with only the first joint
being actuated in each leg. However, the approach can be extended to more complex cases, although
this is beyond the scope of this paper. Furthermore, many of the widely used parallel mechanisms’
topologies correspond to these assumptions.

In the next two sections, we describe the discussed approach using the Jacobian analysis and
the Screw theory. The objective of this work is to study the basic fundamental properties of parallel
mechanisms near the singularities. Therefore, performing the influence analysis of friction, damping,
joint tolerances, etc., is beyond the scope of this paper.

2. Jacobian Analysis Approach
It is well known that, for any parallel mechanism, the relationship between its input (actuated) and
output velocities can be expressed using the inverse Jacobian matrix Jinv of this mechanism (The
matrix shown in this equation is called “inverse” because it defines the output-input velocity map.
However, this definition may differ in different articles and books. The matrix can also be referred to
as “actuation Jacobian,” indicating that only the actuated ones of all joint velocities are considered):

θ̇ = Jinv · ẋ,

where θ̇ and ẋ are the column vectors of the input and output velocities, respectively.
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On the other hand, for the (column) vectors of actuation efforts e and external load F, we can write
the following:

e = −JT · F,

where J is the Jacobian matrix. It is to be noted that if the full-cycle mobility of the mechanism
M is equal to its number of actuated joints Na (which is true under the assumptions made in the
previous section), then Jinv and J are square matrices, while for any non-singular configuration,
Jinv = J−1. Additionally, F here can act only on the directions that correspond to the allowed motions
(all feasible ẋ) of the mechanism.

As Jinv is constant for any particular mechanism configuration, it is quite clear that, in this case, for
any given norm of ẋ, the maximum possible absolute value of the velocity in the i th (i = 1, . . . , Na)
actuated joint |θ̇i |max corresponds to the vector ẋ = ẋmax

i collinear to the vector jinvi , which is the i th
row of Jinv. Further, this direction of ẋ need not be calculated, as |θ̇i |max is essentially a dot product
of two vectors that fall on the same line:∣∣θ̇i

∣∣max = 〈
jinvi , ẋmax

i

〉= ∥∥jinvi

∥∥ · ‖ẋ‖, (1)

where 〈·, ·〉 denotes a dot product. Thus, if the norm of ẋ is given, then calculating |θ̇i |max is simple
and straightforward because the components of Jinv can usually be obtained in a closed form as partial
derivatives of the constraint equations.

Consequently, for the actuation effort in the i th active pair, we can write the following:

|ei |max = 〈
jT i , Fmax

i

〉= ∥∥jT i

∥∥ · ‖F‖, (2)

where |ei |max is the maximum possible absolute value of the actuation effort on the i th actuated joint
and jT i is the i th row (vector) of the transpose Jacobian matrix JT . Usually, the Jacobian matrix J
can be computed only numerically as the inverse of Jinv.

The major issue with this approach is that ẋ has to be normalized. This is a problem if the units
of the components of ẋ are not consistent. Since ẋ may contain both angular and linear velocities, it
is obvious that the Euclidean norm would not have clear physical significance in this case. In other
words, the choice of norm has a huge impact on the physical interpretation of the results.

One possible solution to this problem is to consider the angular and linear components separately.
Indeed, for a particular mechanism, we usually have requirements that would assign certain desired
values to the end-effector’s angular and linear velocities separately; these values may even be differ-
ent for the velocities of the same type (for instance, the required speed of the end-effector may be
higher for the xy-plane and lower for the z-axis). In this case, we can rewrite (1) as follows:∣∣θ̇i

∣∣max = ∣∣θ̇i

∣∣max
ω

+ ∣∣θ̇i

∣∣max
v

= ∥∥jωinvi

∥∥ · ‖ω‖ + ∥∥jvinvi

∥∥ · ‖v‖. (3)

Here, |θ̇i |max
ω and |θ̇i |max

v are the maximum possible absolute values of the joint velocity in the i th
actuated pair corresponding to angular (ω) and linear (v) parts of vector ẋ, respectively. Vectors jωinvi

and jvinvi consist only of components of the i th row of Jinv, which correspond to ω and v, respectively.
In a similar manner, for the actuation efforts, we can rewrite (2):

|ei |max = |ei |max
f + |ei |max

m =
∥∥∥j f

T i

∥∥∥ · ‖f‖ + ∥∥jm
T i

∥∥ · ‖m‖, (4)

where vectors j f
T i and jm

T i consist only of components of the i th row of the JT and correspond to
external force (f) and torque (m), respectively.

It is to be noted that even if the full-cycle mobility is greater than the number of the end-effector
DOFs (the mechanism has the so-called kinematic redundancy22), there will be no alteration to the
approach, as all of the supplementary DOFs of the mechanism can also be considered separately.
The case of the actuation redundancy22 (Jacobian matrices are not square) is beyond the scope of this
paper.

Although the maximum speed and force/torque of any actuation device will be specified, these
parameters are not generally independent. Further, in practice, the maximum speed of a joint may
depend on a number of factors, including loading and power input limit of the joint that may not be
known. All these factors are not considered in the discussed approach, but some notes may be made
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678 On the maximization of joint velocities and generalized reactions

regarding its practical application. For example, it is possible to use the combination of velocity and
effort in the actuated joint to compute the power required to execute a motion of the end-effector
with the desired speed under the external load (inertia of the end-effector can also be counted as an
external load in this approach) with a specified norm acting from the “worst” direction. Thus, the
extremal value of the power output can be calculated for a driving mechanism. There may be several
work-arounds for improving this approach, but this is also beyond the scope of this paper.

3. Screw Theory Approach
Now, let us consider the screw theory approach for the same problem. It is well known that the
following equation holds for any leg of parallel mechanism:

Ni∑
j=1

ti, j · q̇i, j = �, (5)

where ti, j is the unit twist of the j th pair in the i th leg, q̇i, j is the corresponding velocity in this pair,
� is the twist of the end-effector, and Ni is the total number of kinematic pairs in the leg. Since we
require exactly six scalar components to represent a screw,23 � �= ẋ if n < 6.

Using the reciprocal screw approach24 and considering q̇i,1 = θ̇i , we obtain the following for
each leg:

θ̇i · ti,1 ◦ wi = � ◦ wi . (6)

Here “◦” denotes the reciprocal product of a twist and a wrench, and wi is the wrench reciprocal for
all unit twists from (5) except ti,1:

wi ◦ ti, j = 0 ∀ j = 2, . . . , Ni . (7)

Let us denote the twist of the end-effector that maximizes |θ̇i | as �max
i . From Eq. (6), one can

clearly see that |θ̇i | = |θ̇i |max for a given constant ‖�‖ if � = �max
i is proportional to wi in the

following manner:

�max
i ∝

[
03×3 I3

I3 03×3

]
· wi .

For a 6-DOF mechanism, wi is defined uniquely up to a non-zero multiplier, as the twist space of
passive joints for each leg will have the dimensionality of five (as per the assumptions from the first
section). Therefore, the dimensionality of the orthogonal complement space will be equal to one.

For any mechanism with less than six DOFs, this wrench should also not be a part of the constraint
wrench space Wc

i of the i th leg:

wi /∈ Wc
i = {

wc
i

∣∣wc
i ◦ ti, j = 0 ∀ j = 1, . . . , Ni

}
.

In actuality, we are interested in finding the twist �max
i and not the wrench wi itself, and since this

twist should not be constrained by any leg, we can replace this condition with a stronger one:

wi ⊥ Wc
i . (8)

Thus, conditions (7) and (8) will define wi and, consequently, �max
i uniquely up to a non-zero mul-

tiplier. These conditions, however, do not guarantee that this twist will be feasible for the mechanism
(each leg can be represented as a linear combination of the joint twists of this leg). To ensure this, we
must consider an orthogonal projection of the �max

i onto the freedom space � of the mechanism:

�max
�i = proj�

(
�max

i

)=
n∑

p=1

〈
�max

i , φp

〉
〈
φp, φp

〉 · φp

and calculate |θ̇i | for � = �max
�i . Here, φ1, φ2, . . . , φn is the orthogonal basis of �. The freedom

space contains all feasible end-effector twists*******:

� =
n⋂

i=1

Span(ti,1, ti,2..., ti,Ni ).
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The orthogonal projection here is, in fact, the twist �max
i that has corresponding Plücker

coordinates for the infeasible motions of the end-effector set to zero.
Finally, the maximum possible magnitude of the actuated joint velocity in the i-th leg can be

calculated using the following equation:

|θ̇i |max = |θ̇i |max
ω + |θ̇i |max

v =
∣∣∣∣�

max
�i(ω) ◦ wi

ti,1 ◦ wi

∣∣∣∣+
∣∣∣∣�

max
�i(v) ◦ wi

ti,1 ◦ wi

∣∣∣∣.
where �max

�i(ω) and �max
�i(v) are obtained by setting all linear or angular components of �max

�i to zero
respectively. These twists are normalized separately.

Now, let us assume that all the actuated joints are locked. The wrench system of the mechanism
will then consist of n wrenches wi . We can also define the constraint space of the mechanism as
follows:

Wc =
n⋃

i=1

Wc
i .

The constraint space can be represented by 6−n linearly independent constraint wrenches wc.
If the constraint spaces of different legs intersect each other, then wrenches wc can actually be chosen
arbitrarily within Wc. Assuming that the mechanism is in a state of equilibrium, its static analysis
can be executed using the following equation:

n∑
i=1

ri · wi +
6−n∑
k=1

rc
i · wc

k = L. (9)

where L is a six-component wrench of external load and ri , rc
i are generalized reactions that define

the actual magnitude of corresponding wrenches. Note that L �= F if n < 6.
Using the same approach, we can reduce (9) to

ri · wi ◦ τi = L ◦ τ i ,

where τ i is defined using the following conditions:

τ i ◦ wc
k = 0 ∀wc

k ∈ Wc; τ i ◦ wi �= 0; τ p ◦ wpi = 0 ∀p �= i (p = 1..n).

Unlike wi, this twist will always be defined uniquely up to a non-zero multiplier even if n < 6.
Thus, we can maximize |ri | by assuming the components of L = Lmax

i to be proportional to the
components of τ i :

Lmax
i ∝

[
03×3 I3

I3 03×3

]
· τ i .

The maximum possible generalized reaction in the i-th leg can be calculated as follows:

|ri |max = |ri |max
ω + |ri |max

v =
∣∣∣∣L

max
i(ω) ◦ τ i

wi ◦ τ i

∣∣∣∣+
∣∣∣∣L

max
i(v) ◦ τ i

wi ◦ τ i

∣∣∣∣.
where Lmax

i(ω) and Lmax
i(v) are obtained by setting all linear (forces) or all angular (torques) components

of Lmax
i respectively to zero, and these should be normalized independently.

It is important to distinguish between the generalized reaction ri and the actuation effort ei . The
first is simply a multiplier that, in fact, should be considered together with the corresponding wrench
wi in order to represent the component of the external load that acts on this particular leg. The actua-
tion effort can be calculated from ri · wi by changing the reference point for the Plücker coordinates
of ri · wi from the point on the end-effector to the point that defines the position of the actuated joint.
Then, the actuation effort will be just the component of this wrench that corresponds to the actuated
degree of freedom of the i-th active joint.

It is also extremely important to note that the notions of reciprocal and perpendicular screws used
previously are practically the same; in the sense that they describe the elements of the orthogonal
complement subspace in a six-dimensional screw (vector) space. However, the notions of the orthog-
onal complement and orthogonal projection are not well-defined for the twist or wrench spaces.
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680 On the maximization of joint velocities and generalized reactions

On the other hand, these notions and the orthogonal projection operator are used only for intermediate
calculations. In the end, the numerical results are physically meaningful. This has been demonstrated
in the case-study section by comparing the results obtained from the Jacobian analysis and Screw
theory-based approaches with the simulation results.

The other problem is that the screw components depend on the choice of the reference frame
or, more precisely, on the choice of the reference point.23 Since we are interested in the move-
ment of the end-effector and the load applied to it, it is clear that the reference point for all screws
should be the point on the end-effector—the so-called “operating point”1 (see the first case study
section).

Overall, the Screw theory-based approach is computationally more demanding and less stable
(at least in our case study calculations) than the Jacobian analysis approach. However, it allows
one to also perform the velocity analysis for passive joints. Additionally, for the static analysis,
it deals not only with the actuation efforts but also with the load on the leg as a whole, allowing
the calculation of stresses and reactions if required. Also, it can possibly allow one to consider the
so-called constraint singularities25 through the analysis of the generalized reactions corresponding to
the constraint wrenches. However, this is beyond the scope of this paper.

4. Closeness to Singularity
It is a well-known fact that the actuated joint velocities increase when a mechanism approaches the
serial (Type 1 as described in ref. [17]) singularity, and the actuation efforts are larger near the parallel
(Type 2 as described in ref. [17]) singularity. Thus, these two parameters are a natural measure of the
closeness to these types of singularities.

Perhaps the most extensive study of the closeness to singularities for parallel mechanisms can
be found in Voglewede’s articles on the subject.20, 21 In this work, the task of calculating a measure
of the closeness to singularity (in the velocity domain) is formulated as the constraint optimization
problem:

M =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min θ̇
T

Sθ̇

subject to

θ̇ − Jinvẋ = 0

ẋT Tẋ − 1 = 0

which is then transformed into a generalized eigenvalue problem. The solution to the latter is well-
known. The formulation for the force domain is similar.

The choice of scaling matrices S and T defines the physical meaning of the measure M .
Voglewede, in his second paper, provides nine different combinations for these matrices in each
domain and notes that, though the list he provides is not exhaustive, almost all possible measures can
be formulated in this manner.

The usage of the actuated joint velocities as the measure of closeness to the serial singularity can
also be written using Voglewede’s notation:

Mθ = max
i=1,...,Na

(√∣∣θ̇i

∣∣max
ω

+
√∣∣θ̇i

∣∣max
v

)
,

where, for each i ,

∣∣θ̇i

∣∣max
ω

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max θ2
i

subject to

θ̇ − Jinv
ω ω = 0

‖ω‖2 = cω

,
∣∣θ̇i

∣∣max
v

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max θ2
i

subject to

θ̇ − Jinv
v v = 0

‖v‖2 = cv

.

Matrices Jinv
ω and Jinv

v consist only of columns of Jinv that correspond to the ω and v, while cω
and cv are some given constants that are equal to the square of the desired values of angular and
linear velocities of the end-effector, respectively.
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These formulae imply that, for each leg, the scaling matrix S is a diagonal matrix consisting only
of zeroes except its i, i-th component, which is equal to one. It is also implied that T is an identity
matrix. However, the significant part is that it is defined for the angular and linear parts of ẋ separately
(also note that here we normalize vectors ω and v, not ẋ):

Tω = Idim(ω), Tv = Idim(v).

Similarly, for parallel singularities, we can write the following:

Me = max
i=1,...,Na

(√|ei |max
ω +√|ei |max

v

)
,

where, for each i ,

|ei |max
ω =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max e2
i

subject to

e + JT
f f = 0

‖ f ‖2 = cf

|ei |max
ω =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max e2
i

subject to

e + JT
mm = 0

‖m‖2 = cm

Here, matrices JT
f and JT

m consist only of columns of JT that correspond to f and m respectively,
and cω and cv are the constants given.

There are, however, some differences between this approach and the work of Voglewede. First of
all, the discussed measures do not obey the rules established in the referenced papers, as they increase
when the mechanism is close to its singularity. However, one can simply consider the reciprocal
values of these measures.

Another difference is in the weighting matrices S and T. Here, we use two separate matrices T
for different types of DOFs, practically separating angular and linear components in order to avoid
the units’ inconsistency. In Voglewede’s paper matrix, S is assumed to be invertible, while this is not
the case in the Jacobian matrix. However, if the correct Jacobian (direct or inverse) matrix is chosen,
there is no need to consider the inverse of S or T matrices.

Thus, one can see that the discussed approach can be technically treated as a special case within
Volglewede’s framework (as virtually any closeness to singularity measure can). However, it still has
some differences that allow one to avoid the usage of non-kinematic properties while still maintaining
the practicality and applicability of the presented measures.

5. Case Study: 3-RRRRR Translational Parallel Mechanism
To demonstrate the discussed approach, we will use a 3-DOF translational parallel mechanism. The
mechanism and the unit twists of its legs are shown in Fig. 1.

The workspace of this mechanism is covered by a grid of certain steps. Then, we calculate the
inverse Jacobian matrix Jinv for each node by taking the partial derivatives of the mechanism’s con-
straint equations (more details regarding the singularity analysis of this mechanism are furnished in
ref. [26]). Thereafter, we calculate the transpose Jacobian matrix, which is equal to (Jinv)−T , after
which we calculate |θ̇i |max and |ei |max using Eqs. (1) and (2). We can use these equations instead of
(3) and (4) because the mechanism only has translational degrees of freedom.

For the Screw theory-based analysis, the following algorithm is executed in every node:

1. We calculate the Plücker coordinates of each unit twist ti, j with the end-effector’s operating point
(F on Fig. 1) as the reference.

2. Using the Plücker coordinates of joint twists, a 5 × 6 matrix Ti is formed for each leg:

Ti =
⎛
⎜⎝

tT
i,1
...

tT
i,5

⎞
⎟⎠.

3. A kernel of each matrix is found to provide us with a twist tc
wi that is proportional to the constraint

wrench wc
i .

https://doi.org/10.1017/S026357471800125X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471800125X


682 On the maximization of joint velocities and generalized reactions

Fig. 1. 3-DOF Translational Parallel Manipulator and corresponding unit twists.

4. The Plücker coordinates of the actuated joint twist ti,1 (first row of Ti ) are replaced with Plücker
coordinates of tc

wi , and the kernel of this newly formed matrix is calculated (for each leg). This
essentially gives us the components of twist �max

i .
5. Since we deal with a translational mechanism, all rotational components of �max

i are then replaced
by zeroes, providing a twist �max

�i . At this point, we can normalize this twist to a certain given norm
and calculate the maximized values of angular velocities in the actuated joints |θ̇i |max for each leg.

6. The Plücker coordinates of tc
wi and �max

i for all three legs are rearranged to form a 6 × 6 matrix
W so that each row of this matrix consists of components of wc

i or wi :

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

(wc
1)

T

wT
1
...

(wc
3)

T

wT
3

⎞
⎟⎟⎟⎟⎟⎟⎠
.

7. For each leg, the row corresponding to wi of this leg is excluded, and the kernel of the remaining
5 × 6 matrix is then calculated. Thus, we obtain external load wrenches L = Lmax

i corresponding
to |ri |max for each leg.

8. Lmax
i is normalized to a given norm and the value of |ri |max is calculated. Then, for each leg, an

actuation effort |ei |max is found by moving the Plücker coordinates reference point of ri · wi from
point F to point Ai .

In this example, we assume that the lengths of the links are (in centimetres): l1 = Ai Bi = 20, l2 =
Bi Ci = 20, l3 = Ci Di = 20, l4 = Di Ei = 20, l5 = Ei F = 30, lA = O Ai = 50. We also assume that
the discretization step is 0.2 cm. In order to provide a clear visualization using 2-D plots, we also
fix the Cartesian coordinate z of the end-effector on a certain constant value (in this case -18 cm).

In Fig. 2, a slice of the workspace is presented. In each point, the value of rotational speed ν in the
actuated joints (in revolutions per minute) is calculated for each leg using the discussed approach and
assuming that the end-effector velocity is 100 cm/s. Thereafter, the largest of the three (one for each
leg) values is associated with its corresponding point. All points are divided in four sets depending
on whether the magnitude of their rotational speed exceeds a certain threshold value. The dashed
black line represents the points when a serial singularity occurs, and the white area is not a part of
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Fig. 2. Slice of the mechanism workspace and corresponding maximized rotational speed in actuated joints.

the workspace. One can clearly see that the rotational speed in the actuated joints increases near the
singularity.

If, for instance, the driving mechanism of any actuated joint is not capable of producing more than
100 rpm, the “effective” workspace, that is, the workspace when a desirable end-effector speed of
100 cm/s can be achieved, will shrink to the light-grey area in Fig. 2.

In practice, the parallel singularity usually has more impact on the mechanism’s performance
than the serial singularity. The location of the parallel singularity points depends on the mechanism
configuration, which corresponds to a certain set of input angles26 defined by the working mode.

There are two “optimal” configurations in which parallel singularities have less of a possi-
ble influence on the workspace volume (due to the mechanism geometry): (θ1,1, θ2,1, θ3,1) and
(θ1,2, θ2,2, θ3,2). All the calculations we performed earlier in this paper correspond to the set of angles
(θ1,2, θ2,2, θ3,2).

Let us consider the same slice of the mechanism workspace again. Now, each point will correspond
to the maximum absolute value of actuation effort (in N·cm) calculated using the discussed approach
for an external force of 10 N acting on the end-effector. The result for the optimal configuration
(θ1,2, θ2,2, θ3,2) is shown in Fig. 3, and that for the non-optimal configuration (θ1,2, θ2,1, θ3,1) is shown
in Fig. 4. Again, all the points are separated into four sets by certain threshold values, and the dashed
black line marks the location of points corresponding to a parallel singularity.

All calculations are done on a laptop (Core-i7 CPU and 16 GB RAM) in MATLAB using its
built-in functions for system solving, matrix inversion, etc. During the iteration process, 132,651
points within the mechanism’s workspace have been analyzed. For each point, we have calculated the
relative deviation between the results obtained using the Jacobian and Screw theory-based analyses:

�max
θ̇

=
∣∣∣∣∣
∣∣θ̇ ∣∣Jac − ∣∣θ̇ ∣∣Scr∣∣θ̇ ∣∣Jac

∣∣∣∣∣= 7.9375 · 10−15, �max
e =

∣∣∣∣ |e|Jac − |e|Scr

|e|Jac

∣∣∣∣= 2.1150 · 10−14.

Here,�max
e and�max

θ̇
are the maximum values of deviations between the magnitudes of |e| = |e|max

and |θ̇ | = |θ̇ |max, respectively; indices Jac and Scr denote the method of obtaining the value based on
the Jacobian analysis or on the Screw theory, respectively.
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Fig. 3. Slice of the mechanism workspace and corresponding maximized actuation efforts in optimal
configuration.

Fig. 4. Slice of the mechanism workspace and corresponding maximized actuation efforts in non-optimal
configuration.

We have also calculated the deviation between the Jacobian analysis approach and the method
described by Voglewede (index Eig) for each point:

�max
θ̇

=
∣∣∣∣∣
∣∣θ̇ ∣∣Jac − ∣∣θ̇ ∣∣Eig∣∣θ̇ ∣∣Jac

∣∣∣∣∣= 8.7235 · 10−16, �max
e =

∣∣∣∣ |e|Jac − |e|Eig

|e|Jac

∣∣∣∣= 8.4908 · 10−16.

https://doi.org/10.1017/S026357471800125X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471800125X


On the maximization of joint velocities and generalized reactions 685

Fig. 5. Scheme of 3-RRR planar mechanism and its model.

Fig. 6. Constant orientation workspace and corresponding maximized rotational speed in actuated joints.

In each point, the time required to perform the calculation (excluding the time spent on inverse
kinematics problem) was measured (in seconds) as follows:

Value Jacobian analysis Screw theory Eigenvalue problem∣∣θ̇ ∣∣max
3.56 · 10−5 3.70 · 10−4 6.44 · 10−5

|e|max 3.31 · 10−5 3.16 · 10−4 4.96 · 10−5

The actuation effort calculation is faster because it uses the results that were already obtained during
the joint velocity calculations.

Thus, in conclusion, we can see that the discussed approach does indeed function as intended.
The deviation between the results obtained using the Jacobian analysis and the Screw theory-based
calculation method is negligible. Comparing this approach and the Voglewede’s method, one can
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Fig. 7. Constant orientation workspace and corresponding maximized actuation efforts (first configuration).

also see that the numerical results are the same for the joint velocity analysis. It can also be seen that,
at least in MATLAB, the Jacobian analysis method is about 10 times faster for computing than the
Screw-based one and about twice as fast as compared to Voglewede’s method.

6. Case Study: 3-RRR Planar Parallel Mechanism
Let us now consider a classical 3-RRR planar parallel mechanism (Fig. 5) to demonstrate that the
angular and linear components of vectors can be analyzed separately.

The dimensions of this mechanism are lbase = 40 cm, l1 = 18 cm, l2 = 18 cm, and l3 = 8 cm.
Essentially, using the same algorithm as earlier, the workspace of this mechanism was analyzed.
The result of a generalized velocity analysis for a constant-orientation workspace and a scaled
schematic image of the mechanism itself are illustrated in Fig. 6. The end-effector velocity is
100 cm/s, discretization step is 0.2 cm, and the unit of rotation speed in actuated joints is rpm.

One can clearly see that the rotation speed in actuated joints is higher when the end-effector is
close to the serial singularity curve, which is the workspace boundary (dashed line). However, there
are three circular areas within the workspace in which the rotation speed is also increased. This occurs
due to the fact that the centre points of these circles are “Type 3”17 singular, which was demonstrated
in ref. [27].

The results of an actuation effort analysis are presented in Figs. 7 and 8 for two different mech-
anism configurations (working modes). The external force is 10 N and actuation effort units are
N·cm.

Again, the actuation efforts clearly increase as the end-effector approaches a parallel singular-
ity. However, one can see that the “Type 3” singular points, which were discussed before, can be
approached from certain directions without significantly altering the actuation effort’s magnitude.
A closer look with an iteration step 0.005 cm of one of these points (for a second working mode) is
shown in Fig. 9.

We have simply ignored the angular velocity and torque component of the end-effector twist and
the external load wrench, respectively.

Now, we use a Simulink model to compare the actuation efforts produced by an external force
applied to the moving plate. We simulate a trajectory that is a “rose” curve with three loops (Fig. 10).
The simulation time is 15 s, and the coordinates of this curve’s points are calculated with a 0.01 s step.
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Fig. 8. Constant orientation workspace and corresponding maximized actuation efforts (second configuration).

Fig. 9. Distribution of maximized actuation efforts near a “Type” 3 singular point (second configuration).

In each point, a force of 10 N is applied to the moving plate from three different directions: parallel
to x-axis, parallel to y-axis, and the third direction is calculated using the aforementioned approach.

The simulation results indicate that this is indeed true. In Fig. 11, the absolute value of an actuation
effort in the first leg |e1| is shown as an example. Curve “1” corresponds to a force direction obtained
using the discussed approach, while the curves “2” and “3” correspond to the forces parallel to
x- and y-axis, respectively. Clearly, one can see that curve “1” corresponds to the maximum possible
actuation effort for any given moment of simulation.
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Fig. 10. Simulation scheme. 1: Moving plate trajectory; 2: Workspace boundary.

Fig. 11. Actuation effort in the first leg for different directions of external force.

7. Conclusion
The Jacobian analysis-based calculation method discussed in this paper allows one to easily calculate
the maximum possible absolute value of the actuated joint velocity or the actuation efforts in each
leg of a parallel mechanism. The Screw theory-based alternative method, which allows one to also
consider passive joints velocities or generalized reactions in the leg, has also been presented. It has
also been shown that both methods yield the same results during the calculation. However, at least in
this particular study, the second method requires more computational time and should also be used
with certain care, as it partially depends on the reference frame choice.

The key aspect of both the methods is that the angular and linear components of end-effector
velocity and external load vectors (screws) are treated separately.

The possible usage of the mentioned values as the measure of closeness to serial or parallel sin-
gularity has been discussed. It has also been demonstrated that, although the approach can be treated
as the special case of the state-of-the-art framework (namely, the one developed by Voglewede), it
has its strengths and weaknesses. One of its possible advantages is that it relies only on kinematic or
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static properties of the mechanism. The other one is that it uses highly natural measures that depend
on the mechanism’s drives, performance, and characteristics, which can be taken into account rela-
tively easily. The comparative study of the discussed approach and the Voglewede’s computational
method in a case study of the 3-DOF translational parallel mechanism indicates that the numerical
results are the same for the velocity and actuation effort analysis. The case study of a 3-DOF pla-
nar parallel mechanism has also been presented to demonstrate the possibility of the separation of
different DOF types during the calculation.

The discussed methods yielded expected results in both case studies. This fact makes it possible
to conclude that the discussed approach can be used for any parallel mechanism that corresponds to
the assumptions presented in the introduction section of this paper.
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