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Abstract

In this paper we derive several explicit results on one special sticky diffusion process
which is constructed as a time-changed version of a diffusion with no sticky points.
A theorem concerning the process-related Green operators defined on some nonnegative
piecewise continuous functions is provided. Then, based on this theorem, we explore
the distributional properties of the sticky diffusion. A financial application is presented
where we compute the value of the European vanilla call option written on the underlying
with sticky price dynamics.
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1. Introduction

Sticky reflecting diffusion processes were first discussed by Feller [13], where the second-
derivative boundary condition for the infinitesimal generator of the process X is used to
characterize the stickiness of X at the boundary. An interesting feature of this kind of process
is that the set of times spent at the sticky boundary forms a Cantor set with positive Lebesgue
measure (see [29]). We refer the reader to [14], [17], [33], and [34] for studies on sticky
reflecting diffusions. For applications of sticky diffusions in storage and queueing models,
see [25] and [36].

Generally, the sticky behavior can appear at any state of the diffusion, or in other words a
sticky point may not necessarily be a boundary. For instance, in [1], the sticky Brownian motion
on R was constructed as the strong limit of a sequence of time-changed random walks. Using
different approaches, [4] and [11] showed the weak existence and uniqueness of solutions of
the stochastic differential equation (SDE) system which governs the sticky Brownian motion.
More recently, the general pathwise characterization for diffusions with sticky points in terms
of an SDE and an occupation time formula was presented in [29], in which the authors derived
some basic results on the distributional properties of the sticky Brownian motion such as
the characteristic function. In fact, the explicit expressions for the Green’s function and the
transition density of the sticky Brownian motion were documented in [6] (Appendix 1, No. 8),
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and the distributions of some other quantities like the local time at the sticky point and the
first hitting time can be found in [1]. Moreover, based on the method of random time change
even much more complicated sticky diffusions can be constructed, and one may consult [16]
(Section 2.10) for more details. For a discussion on the optimal stopping problem of the sticky
Brownian motion, please refer, for example, to [8] and [30]. Other papers devoted to the
investigation of sticky (reflecting) Brownian motions include [8], [12], [18], [27], and [35].
However, to the best of the authors’ knowledge, many basic probabilistic properties for more
general diffusions with sticky points are still unknown.

There are interesting practical applications of processes with sticky points. As illustrated in
[4], if a corporation has a takeover offer at $10, then it is very likely that the stock price will stay
precisely at $10 for a great deal of time but not confined to it. Here, $10 can be viewed as the
sticky point of the diffusion process which models the stock price. Also, mounting empirical
evidence (see, e.g., [3], [5], and [31]) has discovered the existence of clustering phenomena in
the prices of stocks or commodities like gold and oil, meaning that the price appears at certain
levels much more often than other possible levels. Thus, diffusion with sticky points can nicely
capture the price behavior in such situations.

Due to the theoretical significance and the potential applications of sticky processes, we
explore in the current study some fundamental properties of one special kind of sticky diffusion
and provide one of its financial applications. First, based on the result on the first hitting time,
we obtain an important theorem concerning the Green operator acting on the nonnegative
piecewise continuous function. The ordinary differential equation (ODE) satisfied by the
resulting function under certain conditions is derived. Then, with the help of this theorem,
we analyze the distributional properties of the studied sticky diffusion by finding explicit
expressions for the Laplace transform of the probability mass at the sticky point, and the
Green’s function and the Laplace transform of the expected value of the process. As a financial
application, we use this process to characterize the underlying asset price, and compute the
value of the related European vanilla call option using the Laplace transform approach. The
impact of the sticky point on the option value is also revealed. The central idea we follow to
tackle all the above problems may also be applied to some other processes with sticky points
(including sticky boundaries).

The rest of this paper is organized as follows. In Section 2 we give a brief description of
the sticky diffusion studied in this paper. In Section 3 we present the main theorem, which
is helpful in deriving the conclusions in the subsequent sections. The distributional properties
are exhibited in Section 4. In Section 5, we deduce the Laplace transform associated with
the value of the vanilla call option whose underlying price is driven by the proposed sticky
process.

2. Preliminaries

Let {Bt, t ≥ 0} be a standard Brownian motion defined on a filtered probability space
(�,F , {Ft, t ≥ 0}, P). For S∗ > 0 consider on R+ a diffusion process satisfying the SDE

dYt = μ(Yt)Ytdt + σ (Yt)YtdBt, (1)

where the coefficient functions admit

μ(x) =
{

μ1, x < S∗,
μ2, x ≥ S∗, σ (x) =

{
σ1, x < S∗,
σ2, x ≥ S∗,
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with σi > 0 for i = 1, 2. The SDE (1) has a unique non-exploding solution by the observation
that the existence and uniqueness of weak solutions hold for the log process {Xt = log (Yt),
t ≥ 0},

dXt = [
μ(eXt ) − 1

2
σ 2(eXt )

]
dt + σ (eXt )dBt,

according to Theorem 1.3 in [24], and Feller’s test for explosions guarantees the non-explosion.
When μ1 = μ2 and σ1 = σ2, {Yt, t ≥ 0} degenerates to the classical geometric Brownian
motion model prevailing in the field of financial engineering.

In this paper we focus on a new process {St, t ≥ 0} which will be introduced through the
standard approach based on the random time change (see, e.g., [20], [23], [28], and [29]). First
note that since {Yt, t ≥ 0} is a continuous semimartingale, it has the symmetric semimartingale
local time process {LY

t (a), t ≥ 0} at each a > 0 defined (see, e.g., page 150 in [12] or page 212
in [26]) by

LY
t (a) = |Yt − a| − |Y0 − a| −

∫ t

0
sgn(Ys − a) dYs,

with sgn being the sign function of the form

sgn(x) =

⎧⎪⎨⎪⎩
1, x > 0,

0, x = 0,

−1, x < 0.

Also, denoting by {〈Y〉t = ∫ t
0 σ 2(Ys)Y2

s ds, t ≥ 0} the quadratic variation process of {Yt, t ≥ 0},
we have the occupation time formula (see, e.g., page 216 in [26])∫

R

LY
t (a)g(a) da =

∫ t

0
g(Ys) d〈Y〉s

for any given bounded Borel measurable function g. Now introduce the random time

η(t) = t + αLY
t (S∗), α > 0. (2)

Apparently, η(t) is continuous and strictly increasing, which enables us to define its inverse
function η−1(t). Then {St, t ≥ 0} is constructed as the time-changed version of {Yt, t ≥ 0}:

St = Yη−1(t). (3)

Furthermore, in light of the definition of the symmetric semimartingale local time, it is
straightforward to show that LS

t (S∗) = LY
η−1(t)

(S∗), which in turn indicates that (see Lemma 2.2
in [29])

η−1(t) = t − αLS
t (S∗). (4)
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On the other hand, using the definition (2) and the equality
∫ t

0 1{Ys = l} ds = 0 for any l > 0 and
t > 0, we have ∫ t

0
1{Ss=l} ds =

∫ η−1(t)

0
1{Ys=l} dη(s)

=
∫ η−1(t)

0
1{Ys=l} ds + α

∫ η−1(t)

0
1{Ys=l} dLY

s (S∗)

=
{

αLS
t (S∗), l = S∗,

0, l �= S∗.
(5)

Combining this result with (4) yields

η−1(t) =
∫ t

0
1{Ss �= S∗} ds. (6)

Consequently,

St = Y0 +
∫ η−1(t)

0
μ(Ys)Ys ds +

∫ η−1(t)

0
σ (Ys)Ys dBs

= Y0 +
∫ t

0
μ(Yη−1(s))Yη−1(s) dη−1(s) +

∫ t

0
σ (Yη−1(s))Yη−1(s) dBη−1(s)

= S0 +
∫ t

0
μ(Ss)Ss1{Ss �=S∗} ds +

∫ t

0
σ (Ss)Ss dVs,

where for the last equality we use the expression (6) and the notation Vt = Bη−1(t). Then, we
define, as in [29], the Brownian motion

Wt = Bη−1(t) + B̃∫ t
0 1{Ss=S∗}ds,

with {̃Bt, t ≥ 0} being a Brownian motion that is independent of {Bt, t ≥ 0}. In this way,

Vt =
∫ t

0
1{Ss �=S∗} dWs,

and we finally have

St = S0 +
∫ t

0
μ(Ss)Ss1{Ss �=S∗} ds +

∫ t

0
σ (Ss)Ss1{Ss �=S∗} dWs. (7)

The above semimartingale representation will facilitate the discussion on the properties of
{St, t ≥ 0} in the next section.

The formula (5) tells us that once the process {St, t ≥ 0} reaches the level S∗ the amount of
time spent at S∗ will be positive, since the symmetric semimartingale local time increases only
when S = S∗. By comparison, the process spends zero time at l �= S∗. So S∗ is called the ‘sticky’
point of {St, t ≥ 0}. More generally, we may construct {St, t ≥ 0} with multiple sticky points
in a manner similar to the above. In fact, [29] demonstrated that all one-dimensional sticky
diffusions can be built by time-changing diffusions with no sticky points, thereby obtaining
the pathwise descriptions of this kind of process. It is noteworthy that we can alternatively
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characterize a sticky diffusion through its infinitesimal generator and the generator’s domain
of definition (see, e.g., [15], [20], and [29]), so that the speed measure of the process puts
positive masses at the sticky points. In our case, the infinitesimal generator of {St, t ≥ 0} has
the form

(A f )(x) = 1

2
σ 2(x)x2f ′′(x) + μ(x)xf ′(x), x �= S∗, (8)

and (A f )(S∗) = limx→S∗ (A f )(x), with domain of definition

D(A) ={
f ∈ C2

b ((0, ∞)\{S∗}) ∩ Cb((0, ∞)):

A f ∈ Cb((0, ∞)), f ′(S∗ + ) − f ′(S∗ − ) = 2α(A f )(S∗)
}
.

The scale density s(x) and the speed measure m(dx) of {St, t ≥ 0} are given by

s(x) =

⎧⎪⎪⎨⎪⎪⎩
( x

S∗
)− 2μ1

σ2
1 , x < S∗,( x

S∗
)− 2μ2

σ2
2 , x ≥ S∗,

m(dx) = m(x)dx + αδS∗(dx),

where

m(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

σ 2
1(S∗)2

( x

S∗
) 2μ1

σ2
1

−2
, x < S∗,

2

σ 2
2(S∗)2

( x

S∗
) 2μ2

σ2
2

−2
, x ≥ S∗,

and δS∗ (dx) denotes the delta measure with unit mass concentrated at S∗.

3. Main theorem

The aim of this section is to provide a theorem concerning the Green operators of {St, t ≥ 0}.
To achieve this, we need explicit expressions for the Laplace transform of the first hitting
time for the process {St, t ≥ 0}. Define the first hitting time τ S

z = inf{t ≥ 0: St = z} and let
S0 = Y0 = x (>0). By Ex[·] we denote the conditional expectation E[·| S0 = Y0 = x]. Then the
result is exhibited in the following proposition.

Proposition 3.1. Set

γ
(i)
1 =

−(μi − 1
2σ 2

i ) −
√

(μi − 1
2σ 2

i )2 + 2θσ 2
i

σ 2
i

,

γ
(i)
2 =

−(μi − 1
2σ 2

i ) +
√

(μi − 1
2σ 2

i )2 + 2θσ 2
i

σ 2
i

for i = 1, 2. If 0 < L ≤ x ≤ U, then

Ex[e−θτ S
U ] = Iθ (x)

Iθ (U)
, Ex[e−θτ S

L ] = Dθ (x)

Dθ (L)
,
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where

Iθ (x) =
{

xγ
(1)
2 , 0 < x < S∗,

a1xγ
(2)
1 + a2xγ

(2)
2 , x ≥ S∗,

(9)

Dθ (x) =
{

a3xγ
(1)
1 + a4xγ

(1)
2 , 0 < x < S∗,

xγ
(2)
1 , x ≥ S∗,

and the coefficients are given by

a1 = 2αθS∗ + γ
(1)
2 − γ

(2)
2

γ
(2)
1 − γ

(2)
2

(S∗)γ
(1)
2 −γ

(2)
1 , a2 = −2αθS∗ + γ

(2)
1 − γ

(1)
2

γ
(2)
1 − γ

(2)
2

(S∗)γ
(1)
2 −γ

(2)
2 ,

a3 = 2αθS∗ + γ
(1)
2 − γ

(2)
1

γ
(1)
2 − γ

(1)
1

(S∗)γ
(2)
1 −γ

(1)
1 , a4 = −2αθS∗ + γ

(2)
1 − γ

(1)
1

γ
(1)
2 − γ

(1)
1

(S∗)γ
(2)
1 −γ

(1)
2 .

Proof. Write τY
z = inf{t ≥ 0: Yt = z} as the first time for the process {Yt, t ≥ 0} to reach z.

Noting that τ S
z = η(τY

z ), we have

Ex[e−θτ S
U ] =Ex[e

−θτY
U−αθLY

τY
U

(S∗)
] (10)

and

Ex[e−θτ S
L ] =Ex[e

−θτY
L −αθLY

τY
L

(S∗)
]. (11)

To save space, we only provide the proof for the up-hitting case (10); the down-hitting case
(11) can be addressed by similar arguments.

First, one can easily verify that the function Iθ given by (9) is a solution of the ODE

(A f )(x) = θ f (x), x ∈ (0, ∞)\{S∗},

where the operator A is defined in (8). Also, Iθ belongs to C([0, ∞)) ∩ C2((0, ∞)\{S∗}) (noting
that γ

(1)
2 > 0) and satisfies

1

2
I′
θ (S∗ + ) − 1

2
I′
θ (S∗ − ) − αθ Iθ (S∗) = 0. (12)

Now, since Iθ can be written as the difference of two convex functions (see Problem 3.6.24 in
[22]), the generalized Itô formula (i.e., formula (4.3) on page 150 in [12]) can be applied:

Iθ (Yt) = Iθ (x) +
∫ t

0
(AIθ )(Ys)ds +

∫ t

0
σ (Ys)YsI

′
θ (Ys)dBs

+ 1

2
[I′

θ (S∗ + ) − I′
θ (S∗ − )]LY

t (S∗),
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where (AIθ )(S∗) = limx→S∗ (AIθ )(x) = θ Iθ (S∗), and I′
θ should be understood as the symmetric

derivative of Iθ with I′
θ (S∗) = [I′

θ (S∗ + ) + I′
θ (S∗ − )]/2. Hence,

e−θ t−αθLY
t (S∗)Iθ (Yt) = Iθ (x) +

∫ t

0
e−θs−αθLY

s (S∗)Iθ (Ys) d[ − θs − αθLY
s (S∗)]

+
∫ t

0
e−θs−αθLY

s (S∗) dIθ (Ys)

= Iθ (x) + [
1

2
I′
θ (S∗ + ) − 1

2
I′
θ (S∗ − ) − αθ Iθ (S∗)]

×
∫ t

0
e−θs−αθLY

s

(
S∗)

dLY
s (S∗)

+
∫ t

0
e−θs−αθLY

s (S∗)σ (Ys)YsI
′
θ (Ys) dBs

= Iθ (x) +
∫ t

0
e−θs−αθLY

s (S∗)σ (Ys)YsI
′
θ (Ys) dBs, (13)

where for the last equality we use (12). Next we show that the Laplace transform of τ S
U can be

expressed in terms of Iθ (x). In fact, it follows from (13) that

{Zt∧τY
U

= e
−θ(t∧τY

U )−αθLY
t∧τY

U
(S∗)

Iθ (Yt∧τY
U

), t ≥ 0}
is a local martingale. Also, since Y0 = x ≤ U, we have 0 < Yt∧τY

U
≤ U. Therefore,

supt≥0,ω∈� |Zt∧τY
U

(ω)| is bounded above, implying that {Zt∧τY
U
, t ≥ 0} is actually a martingale.

Then the dominated convergence theorem leads to the desired result via

Iθ (x) = lim
t→∞ Ex[e

−θ(t∧τY
U )−αθLY

t∧τY
U

(S∗)
Iθ (Yt∧τY

U
)]

= Iθ (U)Ex[e
−θτY

U−αθLY
τY
U

(S∗)
1{τY

U<∞}]

= Iθ (U)Ex[e−θτ S
U ]. �

In the study of diffusion processes or their applications, it is usually of vital importance to
consider the Green operators defined on some function space D,

Gθ : f ∈D →E•·
[ ∫ ∞

0
e−θ tf (Xt) dt

]
, θ > 0,

for some process {Xt, t ≥ 0}. In the theorem below, the ODE satisfied by the function Gθ f
associated with {St, t ≥ 0} under certain restrictive conditions is provided. One way to obtain
the results in subsequent sections is to utilize this theorem.

Theorem 3.1. Let f : [0, ∞) → [0, ∞) be a piecewise continuous function with the discon-
tinuity set D, which does not include the point S∗. Assume that v is a function of the class
C([0, ∞)) ∩ C1([0, ∞)\{S∗}) ∩ C2((0, ∞)\(D ∪ {S∗})) with finite left and right derivatives of
orders one and two at S∗, and satisfies

|v(x)| ≤ H1 + H2x, x ∈ [δ, ∞), (14)
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for some constants δ > 0, Hi ≥ 0, i = 1, 2. In addition, for some nonnegative constant Q, if v
satisfies⎧⎨⎩

1

2
σ 2(x)x2v′′(x) + μ(x)xv′(x) + f (x) = θv(x), x ∈ (0, ∞)\(D ∪ {S∗}), θ > Q, (15)

v′(S∗ + ) − v′(S∗ − ) = 2α[θv(S∗) − f (S∗)], (16)

then it must be nonnegative and admit the following stochastic representation:

v(x) =Ex

[ ∫ ∞

0
e−θ tf (St) dt

]
, x ∈ (0, ∞), (17)

for any θ > max{Q, μ2}. In particular, when H2 = 0 (17) holds for all θ > Q.

Proof. Recalling the definition of the operator A in (8), we conclude from the ODE (15)
as well as the continuities at S∗ of f and v that Av is continuous at S∗. Then, on the basis
of the semimartingale representation (7), an application of the generalized Itô formula (i.e.,
formula (4.3) on page 150 in [12]) to the process {v(St), t ≥ 0} produces

v(St) = v(x) +
∫ t

0
(Av)(Ss)1{Ss �=S∗}ds +

∫ t

0
σ (Ss)Ssv

′(Ss)1{Ss �=S∗}dWs

+ 1

2
[v′(S∗ + ) − v′(S∗ − )]LS

t (S∗)

= v(x) +
∫ t

0
(Av)(Ss)ds +

∫ t

0
σ (Ss)Ssv

′(Ss)1{Ss �=S∗}dWs

+ [1

2
v′(S∗ + ) − 1

2
v′(S∗ − ) − α(Av)(S∗)

]
LS

t (S∗)

= v(x) +
∫ t

0
(Av)(Ss)ds +

∫ t

0
σ (Ss)Ssv

′(Ss)1{Ss �=S∗}dWs,

where the second equality comes from (5), and the third equality comes from (16) and the fact
that

(Av)(S∗) = θv(S∗) − f (S∗).

Thus, given (15), it follows immediately that

e−θ tv(St) = v(x) +
∫ t

0
e−θs[(Av)(Ss) − θv(Ss)]ds

+
∫ t

0
e−θsσ (Ss)Ssv

′(Ss)1{Ss �=S∗}dWs

= v(x) −
∫ t

0
e−θsf (Ss)ds +

∫ t

0
e−θsσ (Ss)Ssv

′(Ss)1{Ss �=S∗}dWs. (18)

What is more, noting that for any n > x there exists a constant V > 0, which may depend on n,
such that

Ex

[ ∫ ∞

0
1{Ss �=S∗,s≤τ S

n }e−2θsσ 2(Ss)S
2
s (v′(Ss))

2 ds

]
≤ Vn2,
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it follows that the process {∫ t∧τ S
n

0 e−θsσ (Ss)Ssv′(Ss)1{Ss �=S∗} dWs, t ≥ 0} is a martingale.
Therefore, (18) results in

v(x) =Ex

[ ∫ t∧τ S
n

0
e−θsf (Ss)ds

]
+Ex[e−θ(t∧τ S

n )v(St∧τ S
n
)].

Thanks to the nonnegativeness of f , it holds that

lim
t→∞ Ex

[ ∫ t∧τ S
n

0
e−θsf (Ss)ds

]
=Ex

[ ∫ τ S
n

0
e−θsf (Ss)ds

]
by the monotone convergence theorem. Also, since 0 < St∧τ S

n
≤ n for n > x and the function v

is continuous in [0, n], we have by the dominated convergence theorem that

lim
t→∞ Ex[e−θ(t∧τ S

n )v(St∧τ S
n
)] =Ex[e−θτ S

n v(Sτ S
n
)].

Hence,

v(x) =Ex

[ ∫ τ S
n

0
e−θsf (Ss)ds

]
+Ex[e−θτ S

n v(Sτ S
n
)].

Then, again from the monotone convergence theorem, we deduce that the first term on the right-
hand side converges to Ex[

∫ ∞
0 e−θsf (Ss)ds] as n → ∞. Now, if the second term converges to

0 we can obtain (17). This is indeed the case because by virtue of Proposition 3.1 and the
assumption (14), for any n ≥ max{δ, S∗} and θ > max{Q, μ2},

|Ex[e−θτ S
n v(Sτ S

n
)]| ≤ |v(n)|Ex[e−θτ S

n ]

≤ (H1 + H2n)
Iθ (x)

a1nγ
(2)
1 + a2nγ

(2)
2

→ 0

as n → ∞, thanks to

γ
(2)
2 − 1 =

−(μ2 + 1
2σ 2

2) +
√

(μ2 + 1
2σ 2

2)2 + 2σ 2
2(θ − μ2)

σ 2
2

> 0.

In particular, when H2 = 0 only θ > Q is required. This completes the proof. �
We state that the growth rate (14) is satisfied by the respective v for all the examples in the
subsequent sections.

4. Distributional properties

In this section we show how to derive some distributional properties associated with {St, t ≥
0} by using Theorem 3.1. To start with, we prove that the distribution of {St, t ≥ 0} may contain
a point mass at the sticky point S∗ by presenting the Laplace transform of Px(St = S∗) with
respect to t. Similarly, the probability mass can also appear at the absorbing boundary (if it
exists) of a diffusion process (see [23]).
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Proposition 4.1. ∫ ∞

0
e−θ t

Px(St = S∗)dt =
{

q1xγ
(1)
2 , 0 < x < S∗,

q2xγ
(2)
1 , x ≥ S∗,

where

q1 = 2α(S∗)1−γ
(1)
2

γ
(1)
2 − γ

(2)
1 + 2αθS∗ , q2 = 2α(S∗)1−γ

(2)
1

γ
(1)
2 − γ

(2)
1 + 2αθS∗ .

Proof. Note that Px(St = S∗) =Ex(1{St=S∗}) and we cannot apply Theorem 3.1 directly
because the function

ζ (x) �
{

1, x = S∗,
0, x �= S∗

is discontinuous at S∗. Instead, we turn to computing, for a sufficiently small ε, the expectation
Ex[

∫ ∞
0 e−θ t1{S∗−ε<St<S∗+ε} dt]; then the result follows by letting ε → 0. To be specific,

denote

vε(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1xγ
(1)
2 , 0 < x < S∗ − ε,

1

θ
+ h2xγ

(1)
1 + h3xγ

(1)
2 , S∗ − ε ≤ x < S∗,

1

θ
+ h4xγ

(2)
1 + h5xγ

(2)
2 , S∗ ≤ x < S∗ + ε,

h6xγ
(2)
1 , x ≥ S∗ + ε,

which is a solution of the ODE (15) on [0, ∞)\{S∗ ± ε, S∗} with

f (x) =
{

1, x ∈ (S∗ − ε, S∗ + ε),

0, x ∈ [0, ∞)\(S∗ − ε, S∗ + ε).

By assuming the continuity of vε at the points S∗ ± ε and S∗, the continuity of v′
ε at the

points S∗ ± ε, and the condition (16), we can determine the coefficients hi, i = 1, 2, . . . , 6.
In particular, we have

h1 = (S∗)−γ
(1)
2 (S∗ − ε)−γ

(1)
1 −γ

(1)
2 (S∗ + ε)−γ

(2)
2

θ (γ (1)
2 − γ

(1)
1 )(γ (1)

2 − γ
(2)
1 + 2αθS∗)

[ − γ
(2)
1 (γ (1)

1 − γ
(1)
2 )(S∗)γ

(2)
2 (S∗ − ε)γ

(1)
1 +γ

(1)
2

− γ
(1)
1 (γ (1)

2 − γ
(2)
1 )(S∗)γ

(1)
2 (S∗ − ε)γ

(1)
1 (S∗ + ε)γ

(2)
2 + γ

(1)
2 (γ (1)

1 − γ
(2)
1 )(S∗)γ

(1)
1 (S∗ − ε)γ

(1)
2

× (S∗ + ε)γ
(2)
2 −2αθγ

(1)
1 (S∗)1+γ

(1)
2 (S∗ − ε)γ

(1)
1 (S∗ + ε)γ

(2)
2 + 2αθγ

(1)
2 (S∗)1+γ

(1)
1 (S∗ − ε)γ

(1)
2

× (S∗ + ε)γ
(2)
2 ],

h6 = (S∗)−γ
(2)
1 (S∗ − ε)−γ

(1)
1 (S∗ + ε)−γ

(2)
1 −γ

(2)
2

θ (γ (2)
1 − γ

(2)
2 )(γ (2)

1 − γ
(1)
2 − 2αθS∗)

[γ (1)
2 (γ (2)

1 − γ
(2)
2 )(S∗)γ

(1)
1 (S∗ + ε)γ

(2)
1 +γ

(2)
2

+ γ
(2)
1 (γ (2)

2 − γ
(1)
2 )(S∗)γ

(2)
2 (S∗ − ε)γ

(1)
1 (S∗ + ε)γ

(2)
1 − γ

(2)
2 (γ (2)

1 − γ
(1)
2 )(S∗)γ

(2)
1 (S∗ − ε)γ

(1)
1

× (S∗ + ε)γ
(2)
2 −2αθγ

(2)
1 (S∗)1+γ

(2)
2 (S∗ − ε)γ

(1)
1 (S∗ + ε)γ

(2)
1 + 2αθγ

(2)
2 (S∗)1+γ

(2)
1 (S∗ − ε)γ

(1)
1

× (S∗ + ε)γ
(2)
2 ].
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It can be readily checked that vε satisfies (14) where δ = S∗ + ε, H1 = h6(S∗ + ε)γ
(2)
1 , and

H2 = 0. Consequently,

vε(x) =Ex

[ ∫ ∞

0
e−θ t1{S∗−ε<St<S∗+ε} dt

]
by Theorem 3.1, and thus q1 and q2 are the limit values of h1 and h6 as ε → 0, respectively. �
Note that when α = 0 both q1 and q2 become zero, suggesting that Px(St = S∗) = 0.

Now set p(t; x, y) to be the transition density of {St, t ≥ 0} in the sense that

Px(St ∈ dy) = p(t; x, y) dy + Px(St = y)δS∗ (dy). (19)

Here we work with the transition density with respect to the Lebesgue measure (this setting
was also adopted, for example, in [2], [9], and [10]), while [6] and [20] defined it with respect
to the speed measure. For the relationship between these two definitions, see the remark at
the end of this section. Since it is difficult to get the explicit form of p(t; x, y), we turn to the
characterization of the Green’s function defined as the Laplace transform of p(t; x, y):

Gθ (x, y) =
∫ ∞

0
e−θ tp(t; x, y) dt. (20)

Proposition 4.2.

1. For y > S∗,

Gθ (x, y) =

⎧⎪⎪⎨⎪⎪⎩
p1(y)xγ

(1)
2 , 0 < x < S∗,

p2(y)xγ
(2)
1 + p3(y)xγ

(2)
2 , S∗ ≤ x ≤ y,

p4(y)xγ
(2)
1 , x > y,

where

p1(y) = γ
(2)
1 γ

(2)
2 y−γ

(2)
2 −1(S∗)γ

(2)
2 −γ

(1)
2

θ (γ (2)
1 − γ

(1)
2 − 2αθS∗)

,

p2(y) = γ
(2)
1 γ

(2)
2 y−γ

(2)
2 −1(S∗)γ

(2)
2 −γ

(2)
1 (γ (1)

2 − γ
(2)
2 + 2αθS∗)

θ (γ (2)
1 − γ

(2)
2 )(γ (2)

1 − γ
(1)
2 − 2αθS∗)

,

p3(y) = γ
(2)
1 γ

(2)
2 y−γ

(2)
2 −1

θ (γ (2)
1 − γ

(2)
2 )

,

p4(y) = γ
(2)
1 γ

(2)
2 y−γ

(2)
1 −γ

(2)
2 −1(S∗)−γ

(2)
1

θ (γ (2)
1 − γ

(2)
2 )(γ (2)

1 − γ
(1)
2 − 2αθS∗)

[yγ
(2)
2 (S∗)γ

(2)
1 (γ (2)

1 − γ
(1)
2 − 2αθS∗)

+ yγ
(2)
1 (S∗)γ

(2)
2 (γ (1)

2 − γ
(2)
2 + 2αθS∗)];

2. for 0 < y < S∗,

Gθ (x, y) =

⎧⎪⎪⎨⎪⎪⎩
p5(y)xγ

(1)
2 , 0 < x ≤ y,

p6(y)xγ
(1)
1 + p7(y)xγ

(1)
2 , y < x < S∗,

p8(y)xγ
(2)
1 , x ≥ S∗,
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where

p5(y) = γ
(1)
1 γ

(1)
2 y−γ

(1)
1 −γ

(1)
2 −1(S∗)−γ

(1)
2

θ (γ (1)
1 − γ

(1)
2 )(γ (1)

2 − γ
(2)
1 + 2αθS∗)

[yγ
(1)
1 (S∗)γ

(1)
2 (γ (1)

2 − γ
(2)
1 + 2αθS∗)

+ yγ
(1)
2 (S∗)γ

(1)
1 (γ (2)

1 − γ
(1)
1 − 2αθS∗)],

p6(y) = γ
(1)
1 γ

(1)
2 y−γ

(1)
1 −1

θ (γ (1)
1 − γ

(1)
2 )

,

p7(y) = γ
(1)
1 γ

(1)
2 y−γ

(1)
1 −1(S∗)γ

(1)
1 −γ

(1)
2 (γ (2)

1 − γ
(1)
1 − 2αθS∗)

θ (γ (1)
1 − γ

(1)
2 )(γ (1)

2 − γ
(2)
1 + 2αθS∗)

,

p8(y) = γ
(1)
1 γ

(1)
2 y−γ

(1)
1 −1(S∗)γ

(1)
1 −γ

(2)
1

θ (γ (2)
1 − γ

(1)
2 − 2αθS∗)

.

Proof. Consider the Laplace transform u(x, y) = ∫ ∞
0 e−θ t

Px(St ≤ y) dt, for x, y > 0.
Fubini’s theorem implies that

u(x, y) =
∫ y

0

∫ ∞

0
e−θ tp(t; x, z) dt dz + 1{y ≥ S∗}

∫ ∞

0
e−θ t

Px(St = S∗) dt,

which signifies that

Gθ (x, y) = ∂u

∂y
(x, y) (21)

when y �= S∗. Now, similar to the discussion in the proof of Proposition 4.1, we can establish
an expression for u(x, y) by the method of undetermined coefficients – solving the ODE (15)
accompanied by (16) with

f (x) =
{

1, x ∈ [0, y],

0, x ∈ (y, ∞),

and using the conditions that, for the variable x, u(x, y) is continuous at y and S∗, and that
∂u(x, y)/∂x is continuous at y. Finally, the desired result can be obtained in closed form by
virtue of the relation (21). �

Next, we offer the Laplace transform of the expected value of St as another application of
Theorem 3.1.

Proposition 4.3.

∫ ∞

0
e−θ t

Ex[St] dt =

⎧⎪⎪⎨⎪⎪⎩
− x

μ1 − θ
+ b1xγ

(1)
2 , 0 < x < S∗,

− x

μ2 − θ
+ b2xγ

(2)
1 , x ≥ S∗,
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where

b1 = (S∗)1−γ
(1)
2

(θ − μ1)(θ − μ2)(γ (1)
2 − γ

(2)
1 + 2αθS∗)

[μ2( − γ
(2)
1 + 1 + 2αμ1S∗)

+ μ1(γ (2)
1 − 1 − 2αθS∗)],

b2 = (S∗)1−γ
(2)
1

(θ − μ1)(θ − μ2)(γ (1)
2 − γ

(2)
1 + 2αθS∗)

[μ2( − γ
(1)
2 + 1 − 2αθS∗)

+ μ1(γ (1)
2 − 1 + 2αμ2S∗)].

Proof. Denote v(x) = ∫ ∞
0 e−θ t

Ex[St] dt and let f (x) = x in Theorem 3.1. The result follows
by solving the ODE (15) under the auxiliary conditions including (16) and the continuity of v
at S∗. �

To close this section, we remark that the above distributional properties can also be deduced
from general diffusion theory (see, e.g., [6] and [20]). Denote by p̂(t;x, y) the transition density
of {St, t ≥ 0} with respect to the speed measure and Ĝθ (x, y) the corresponding Green’s
function. That is to say,

Px(St ∈ dy) = p̂(t;x, y)m(dy), Ĝθ (x, y) =
∫ ∞

0
e−θ tp̂(t;x, y) dt.

Recalling the definitions of p(t;x, y) and Gθ (x, y) – see (19) and (20) – we have, for t > 0 and
x > 0,

p̂(t;x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

m(y)
p(t;x, y), y > 0, y �= S∗,

1

α
Px(St = S∗), y = S∗;

Ĝθ (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

m(y)
Gθ (x, y), y > 0, y �= S∗,

1

α

∫ ∞

0
e−θ t

Px(St = S∗) dt, y = S∗.

On the other hand, it is not hard to verify that Iθ and Dθ given in Proposition 3.1 are increasing
and decreasing functions, respectively. Then, from [6] (page 19, No. 11), the Wronskian
defined by

wθ = I+
θ (x)Dθ (x) − Iθ (x)D+

θ (x) = I−
θ (x)Dθ (x) − Iθ (x)D−

θ (x)

is a constant independent of x. Here we use the notations

f +(x) = lim
ε↓0

f (x + ε) − f (x)

S(x + ε) − S(x)
, f −(x) = lim

ε↓0

f (x) − f (x − ε)

S(x) − S(x − ε)
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for a given function f , where S(x) = ∫ x
s(y) dy represents the scale function of {St, t ≥ 0}.

The Green’s function Ĝθ (x, y) can now be obtained from the relation

Ĝθ (x, y) = 1

wθ

Iθ (x ∧ y)Dθ (x ∨ y).

The results in Propositions 4.1 and 4.2 thus follow. Additionally, the function v in (17) can also
be expressed as

v(x) =
∫ ∞

0
f (y)Ĝθ (x, y)m(dy), (22)

based on which we may calculate directly the Laplace transform in Proposition 4.3 by letting
f (x) = x. Similarly, the forthcoming Proposition 5.1 corresponds to the case when f (x) = (x −
K)+ = max (x − K, 0).

5. A financial application

In much of the literature on option pricing where the underlying prices are described by
ordinary diffusions, there is a commonly used but hidden assumption that no price clustering
phenomenon exists. However, if a certain price level, say S∗, appears obviously more often
than other prices over a long time horizon, then it is reasonable to regard S∗ as a sticky point of
the price process. In this section we take into account this factor by modeling the underlying
price by the sticky diffusion {St, t ≥ 0} defined in Section 2. The use of such a process has two
advantages. First, it incorporates the price clustering effect through the sticky point. Secondly,
the discontinuities of the coefficient functions in the semimartingale representation (7) for
{St, t ≥ 0} coincide with the empirical observation that the underlying price may show notable
differences in the conditional moments of returns and the conditional variance after S∗ is
crossed; see [21].

A European vanilla call option is a contract that gives the buyer of that option the
right, but not the obligation, to buy an underlying asset at a pre-specified price (formally
called the strike price) on the expiration date. For now we concentrate on the valuation
of this option written on the commodity whose price dynamics obeys {St, t ≥ 0} under the
pricing (or risk-neutral) measure. Here we do not need the discounted commodity price
{e−rtSt, t ≥ 0} to be a martingale under the pricing measure, as implied, for example, by
[19] (Section 33.4) and [7] (page 108, paragraph 5). In classical dynamic hedging (see, e.g.,
[19], Section 14.6), the instantaneously riskless portfolio consisting of the underlying and the
option must have the same rate of return as the risk-free interest rate, which indicates that the
discounted underlying price should be a martingale in a risk-neutral world. However, because
commodities like agricultural products are not traded directly on exchange, the above dynamic
hedging method no longer works. In other words, compared to exchange-traded securities
like stocks, the lack of liquidity and short-selling mechanism for commodities leads to the
result that the position in the commodity cannot be adjusted frequently. This suggests that the
discounted underlying commodity price need not be a martingale under the pricing measure.
In practice, the parameters in the underlying dynamics are calibrated to the observed futures
term structure. Therefore, the risk-neutral commodity price is allowed to follow {St, t ≥ 0}
given by (3).

The option value is given by

C(x, T) = e−rT
Ex[(ST − K)+],
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where r is the constant risk-free interest rate, K is the strike price, and T is the expiration date.
We expect to get the Laplace transform

�(x) =
∫ ∞

0
e−θ t

Ex[(St − K)+] dt, (22)

and thus

C(x, T) = e−rTL−1{�(x)}(T),

with L−1 representing the inverse Laplace operator. A somewhat tedious calculation leads to
the following expression for �.

Proposition 5.1.

1. For K ≥ S∗,

�(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c1xγ
(1)
2 , 0 < x < S∗,

c2xγ
(2)
1 + c3xγ

(2)
2 , S∗ ≤ x ≤ K,

−K

θ
− x

μ2 − θ
+ c4xγ

(2)
1 , x > K,

where

c1 = (μ2γ
(2)
1 − θ )K1−γ

(2)
2 (S∗)γ

(2)
2 −γ

(1)
2

θ (θ − μ2)(γ (2)
1 − γ

(1)
2 − 2αθS∗)

,

c2 = (μ2γ
(2)
1 − θ )K1−γ

(2)
2 (S∗)γ

(2)
2 −γ

(2)
1 (γ (2)

2 − γ
(1)
2 − 2αθS∗)

θ (θ − μ2)(γ (2)
2 − γ

(2)
1 )(γ (2)

1 − γ
(1)
2 − 2αθS∗)

,

c3 = (θ − μ2γ
(2)
1 )K1−γ

(2)
2

θ (θ − μ2)(γ (2)
2 − γ

(2)
1 )

,

c4 = K1−γ
(2)
1 −γ

(2)
2 (S∗)−γ

(2)
1

θ (θ − μ2)(γ (2)
1 − γ

(2)
2 )(γ (2)

1 − γ
(1)
2 − 2αθS∗)

[(θ − μ2γ
(2)
1 )Kγ

(2)
1 (S∗)γ

(2)
2

× (γ (2)
2 − γ

(1)
2 − 2αθS∗) − (θ − μ2γ

(2)
2 )Kγ

(2)
2 (S∗)γ

(2)
1 (γ (2)

1 − γ
(1)
2 − 2αθS∗)];

2. for K < S∗,

�(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c5xγ
(1)
2 , 0 < x < K,

−K

θ
− x

μ1 − θ
+ c6xγ

(1)
1 + c7xγ

(1)
2 , K ≤ x < S∗,

−K

θ
− x

μ2 − θ
+ c8xγ

(2)
1 , x ≥ S∗,
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The case S* = 110 The case S* = 90(a) (b)
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FIGURE 1: Call option values as functions of the initial underlying price S0 ∈ [80, 120]. The solid and
dashed lines correspond to the cases when α = 0 and 0.02, respectively. The common parameters are

given by r = 0.05, T = 1, μ1 = 0.1, μ2 = 0.2, σ1 = 0.3, σ1 = 0.4, and K = 100.

where

c5 = (S∗)−γ
(1)
2

θ (θ − μ1)(θ − μ2)(γ (1)
1 − γ

(1)
2 )(γ (1)

2 − γ
(2)
1 + 2αθS∗)

{−(θ − μ1γ
(1)
1 )(θ − μ2)

× K1−γ
(1)
2 (S∗)γ

(1)
2 (γ (1)

2 − γ
(2)
1 + 2αθS∗) + (θ − μ1γ

(1)
2 )(θ − μ2)K1−γ

(1)
1 (S∗)γ

(1)
1

× (γ (1)
1 − γ

(2)
1 + 2αθS∗) − θ (γ (1)

1 − γ
(1)
2 )S∗[μ2(γ (2)

1 − 1) − μ1(γ (2)
1 − 1

+ 2αS∗(μ2 − θ ))]},

c6 = (μ1γ
(1)
2 − θ )K1−γ

(1)
1

θ (θ − μ1)(γ (1)
1 − γ

(1)
2 )

,

c7 = K−γ
(1)
1 (S∗)−γ

(1)
2

θ (θ − μ1)(θ − μ2)(γ (1)
1 − γ

(1)
2 )(γ (1)

2 − γ
(2)
1 + 2αθS∗)

{(θ − μ1γ
(1)
2 )(θ − μ2)

× K(S∗)γ
(1)
1 (γ (1)

1 − γ
(2)
1 + 2αθS∗) − θ (γ (1)

1 − γ
(1)
2 )Kγ

(1)
1 S∗[μ2(γ (2)

1 − 1)

− μ1(γ (2)
1 − 1 + 2αS∗(μ2 − θ ))]},

c8 = K−γ
(1)
1 (S∗)−γ

(2)
1

θ (θ − μ1)(θ − μ2)(γ (1)
1 − γ

(1)
2 )(γ (1)

2 − γ
(2)
1 + 2αθS∗)

{(θ − μ1γ
(1)
2 )(θ − μ2)

× K(S∗)γ
(1)
1 − θKγ

(1)
1 S∗[μ2(γ (1)

2 − 1 + 2αθS∗) − μ1(γ (1)
2 − 1 + 2αμ2S∗)]}.

Proof. The proof is very similar to those of the propositions in the previous section (or we
can use (22) with f (x) equal to (x − K)+) and is thus omitted. �

For illustration, we plot in Figure 1 the values of call options against the initial underlying
price S0. The Gaver–Wynn–Rho algorithm is adopted to numerically invert the Laplace
transform (22); for more details on the algorithm, see [32]. The most salient feature of the

https://doi.org/10.1017/jpr.2019.22 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.22


414 Y. JIANG ET AL.

figure is that, when a sticky point exists, the option value is remarkably lower than in the case
with no sticky points. The reason for this is that the emergence of price clustering reduces
the uncertainty of the underlying price, or in other words, drags down the underlying price
volatility. It is also evident that no matter whether the stickiness effect exists (α = 0.02) or not
(α = 0), the option value is always an increasing function of S0. This accords with our intuition
that the growth of S0 makes option holders more likely to exercise their options.
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