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We study the lower tail large deviation problem for subgraph counts in a random graph.

Let XH denote the number of copies of H in an Erdős–Rényi random graph G(n, p). We are

interested in estimating the lower tail probability P(XH � (1 − δ)EXH ) for fixed 0 < δ < 1.

Thanks to the results of Chatterjee, Dembo and Varadhan, this large deviation problem

has been reduced to a natural variational problem over graphons, at least for p � n−αH

(and conjecturally for a larger range of p). We study this variational problem and provide

a partial characterization of the so-called ‘replica symmetric’ phase. Informally, our main

result says that for every H , and 0 < δ < δH for some δH > 0, as p → 0 slowly, the main

contribution to the lower tail probability comes from Erdős–Rényi random graphs with a

uniformly tilted edge density. On the other hand, this is false for non-bipartite H and δ

close to 1.

2010 Mathematics subject classification: Primary 05C80

Secondary 05C35, 60F10

1. Background

We consider large deviations of subgraph counts in Erdős–Rényi random graphs. Fix a

graph H , and let XH denote the number of copies of H in an Erdős–Rényi random graph

G(n, p). For a fixed δ > 0, we consider the problem of estimating the probabilities

(upper tail) P(XH � (1 + δ)EXH ) and

(lower tail) P(XH � (1 − δ)EXH ).

This problem has a long history (see [7] and its references). For the order of the logarithm

of the tail probability, the upper tail problem is considered more difficult and it was

resolved only fairly recently [7, 13], whereas the corresponding lower tail problem had

been solved earlier [16, 17]. We are now interested in the finer question of determining
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the large deviation rate, or equivalently the first-order asymptotics of the logarithm of the

tail probability.

Chatterjee and Varadhan [10] (the dense setting, with p constant) and more recently

Chatterjee and Dembo [8] (the sparse setting, with p → 0 and p � n−αH for some αH > 0)

showed that this large deviation problem reduces to a natural variational problems in the

space of graphons, which are a certain type of graph limit. We begin by reviewing this

connection, and then we shift our attention to analysing the variational problem.

The language of graph limits is used throughout our discussion, so let us review some

terminology. We refer the readers to the beautifully written monograph by Lovász [25] or

the original sources (e.g. [5, 6, 26, 27]) for more on the subject. A graphon is a symmetric

measurable function W : [0, 1]2 → [0, 1] (here symmetric means W (x, y) = W (y, x)). We

write V (H) and E(H) to mean the vertex and edge set of a graph H , respectively, and

v(H) = |V (H)| and e(H) = |E(H)| to denote their cardinalities. For any graphs H and G,

we write hom(H,G) to denote the number of graph homomorphisms from H to G. We let

t(H,G) := hom(H,G)/v(G)v(H)

denote the H-density in G. The H-density of a graphon W is defined by

t(H,W ) :=

∫
[0,1]V (H)

∏
ij∈E(H)

W (xi, xj)
∏

i∈V (H)

dxi

(here W could be R-valued). As usual, Kt denotes the complete graph on t vertices. As

an example, we have

t(K3,W ) =

∫
[0,1]3

W (x, y)W (x, z)W (y, z) dx dy dz.

The notion of cut distance is mentioned a few times in this paper, but it is not used in a

substantial way, so we refer the readers to [25, Chapter 8] for details.

We write

Ip(x) := x log
x

p
+ (1 − x) log

1 − x

1 − p

for the relative entropy function. For any function f, we write

E[f(W )] :=

∫
[0,1]2

f(W (x, y)) dx dy.

We begin with a review of what is known for upper tails. In the dense case, for fixed

0 < p � q < 1, it was shown in [10] that as n → ∞,

log P(t(H,G(n, p)) � qe(H)) = −(1 + o(1))
n2

2
UTp(H, q), (1.1)

where UTp(H, q), for any graph H , is given by the upper tail variational problem:

UTp(H, q) :=

{
minimize E[Ip(W )]

subject to t(H,W ) � qe(H).
(1.2)
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Here W is taken over all graphons. We shall use UTp(H, q) to refer to the variational

problem as well as its value, that is,

min{E[Ip(W )] : t(H,W ) � qe(H)}

(it is known that the minimum is always attained by some W : see Lemma 5.1 below).

Furthermore, as shown in [10, Theorem 3.1], the set of minimizing W in UTp(H, q)

represents the most likely models for G(n, p) conditioned on the rare event of t(H,G(n, p)) �
qe(H), in the sense that the random graph conditioned on this rare event is exponentially

more likely to be close (in cut distance) to the minimizing set of W . This motivates the

study of UTp(H, q) and related variational problems.

We currently have few tools for solving variational problems of the type (1.2). Note

that W ≡ q always satisfies the constraint in (1.2). We focus on the basic question: Does

the constant graphon W ≡ q minimize UTp(H, q)? The answer depends on the graph

H and parameters (p, q). For a fixed H , we wish to determine for each (p, q) whether

UTp(H, q) = Ip(q) or UTp(H, q) < Ip(q), and in the former case, whether the constant

function W ≡ q is the unique minimizer.1 The separation of these two cases can be

illustrated via a phase diagram, as in Figure 1, by plotting the phases in the (p, q)-plane

according to the behaviour of UTp(H, q).

The constant graphon W ≡ q is the limit of random graphs G(n, q) as n → ∞, so if it

were the unique minimizer of UTp(H, q) then G(n, p), conditioned on having H-density at

least qe(H), approaches the typical G(n, q) in cut distance; this is not the case when W ≡ q

is not a minimizer. Borrowing language from statistical physics, informally, when W ≡ q

is a minimizer we say that there is replica symmetry,2 and otherwise there is symmetry

breaking.

In a previous paper with Lubetzky [28], we completely identified the upper tail replica

symmetric phase whenever H is a d-regular graph. The phase diagram depends only on

d. The diagram for H = K3 is shown in Figure 1 in the upper portion (i.e. q > p) of the

diagram.3 The lower portion of the diagram illustrates new results in paper concerning

the lower tail problem.

1 We identify graphons differing on a measure zero set, as well as up to a measure-preserving transformation

on [0, 1], that is, denoting Wσ(x, y) := W (σ(x), σ(y)), graphons W and U are identified if Wσ and Uτ agree

up to a measure zero set for some measure-preserving maps σ, τ : [0, 1] → [0, 1] [4].
2 There is a subtle issue of uniqueness of minimizer. When the constant graphon W ≡ q is the unique minimizer,

G(n, q) represents the most likely model for the conditioned random graph (in terms of cut metric). However,

it may be the case that W ≡ q is a non-unique minimizer (which is provably not the case for UTp(K3, q), but

I suspect that it is the case for the corresponding lower tail problem LTp(K3, q)). When there are multiple

distinct minimizers to the variational problem, all minimizers give rise to the same exponential rate, but one

minimizer might still dominate by a lower-order exp(o(n2)) factor, which I do not know how to discern purely

from the variational problem.
3 The boundary curve for the upper tail phase diagram for K3 is given by the equation

(1 + (q−1 − 1)1/(1−2q))p = 1.
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Figure 1. The phase diagram for triangle density upper tail variational problem UTp(K3, q) (when q > p) and

lower tail variational problem LTp(K3, q) (when q < p). In regions marked ‘=’, the constant graphon W ≡ q is

the unique minimizer to the variational problem. In regions marked ‘<’, the constant graphon does not minimize

the variational problem. The region marked ‘?’ is unresolved. The results on lower tail are new. See Theorem 2.1.

In this paper we study the corresponding lower tail variational problem. For 0 < q �
p < 1, let

LTp(H, q) :=

{
minimize E[Ip(W )]

subject to t(H,W ) � qe(H).
(1.3)

The connections between the large deviation problem and the variational problem

discussed earlier hold for the lower tail just as they do for the upper tail. For example, as

in (1.1), for fixed 0 � q � p � 1, we have

log P(t(H,G(n, p)) � qe(H)) = −(1 + o(1))
n2

2
LTp(H, q). (1.4)

As observed in [28], if H is a bipartite graph satisfying Sidorenko’s conjecture [37],

then W ≡ q is the unique minimizer of LTp(H, q). Recall that Sidorenko’s conjecture

asserts that for every bipartite graph H , we have t(H,W ) � E[W ]e(H) for all graphons

W . For any given H , if t(H,W ) � E[W ]e(H) holds for all graphons W , then from the

constraint t(H,W ) � qe(H) of LTp(H, q) we deduce E[W ] � q. Since Ip(·) is a convex

function, from E[W ] � q it follows that W ≡ q is the unique minimizer of LTp(H, q).
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Sidorenko’s conjecture remains open,4 though it has been proved for certain families of

bipartite graphs H such as trees, cycles, hypercubes, and bipartite graphs containing one

vertex adjacent to all vertices on the opposite side [11, 15, 22, 24, 38]. Even if Sidorenko’s

conjecture were false, it could still be true that W ≡ q minimizes LTp(H, q) for every

bipartite H .

For the first non-bipartite case, namely K3, new results in this paper partially character-

ize the lower tail phase diagram, as depicted in Figure 1. The region marked ‘?’ remains

unresolved. For other non-bipartite graph H , it is possible to draw similar partially

identified phase diagrams using techniques in this paper. We will pay special attention to

the slopes of the boundary curves at the origin.

The lower tail variational problem seems to be harder than the corresponding upper

tail problem. By analogy, for the classical extremal graph theory problem of determining

the range of possible triangle densities in a graph of fixed edge density, the maximization

problem (analogous to the upper tail) follows as a corollary of the classic Kruskal–

Katona theorem [19, 23],5 whereas the corresponding minimization problem (analogous

to the lower tail) was solved only relatively recently by Razborov [35] using his flag

algebra machinery (also later solved for K4 by Nikiforov [30] and all Kt by Reiher [36]).

Furthermore, the qualitative nature of the phase transition seems to be different for the

upper tail and the lower tail. It seems likely that the optimizing graphon W changes

continuously as (p, q) crosses the upper tail phase boundary, but discontinuously for the

lower tail.

The sparse setting, with p = pn → 0 and q/p kept constant, is more difficult. Using

powerful new methods, Chatterjee and Dembo [8] showed that the large deviation problem

in sparse random graphs also reduces to the natural variational problem,6 provided that

p � n−αH for some explicit αH > 0. A similar conclusion can be made about the lower tail

variational problem using their techniques. With Lubetzky [29] we obtained the following

asymptotic solution to the corresponding variational problem: for every fixed δ > 0,

lim
p→0

UTp(K3, (1 + δ)1/3p)

p2 log(1/p)
= min

{
δ2/3,

2

3
δ

}
, (1.5)

and as a corollary, as long as p = pn → 0 with pn � n−1/42 log n, we have

P(t(K3,G(n, p)) � (1 + δ)p3) = exp

(
−(1 − o(1)) min

{
δ2/3

2
,
δ

3

}
n2p2 log

1

p

)
.

In this paper, we also study the lower tail variational problem as p → 0. A nice feature

of the lower tail problem in the sparse limit is that instead of being concerned with the

4 The first unsettled case of Sidorenko’s conjecture is for the graph H being K5,5 with a Hamiltonian cycle

removed (this H is sometimes called a ‘Möbius strip’). There is some sentiment in the community that

Sidorenko’s conjecture may be false for this graph.
5 The proof of the triangle upper tail result in [28] actually uses a strengthening of the Kruskal–Katona

theorem, as we explain in Section 3.
6 Some minor modifications need to made to the formulation variational problem LTp(H, q) in order to match

the statements in [8], namely that we only consider graphons that correspond to weighted graphs on n

vertices. This difference is minor and does not affect the rest of this paper.
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entire phase boundary curve, we can focus on its slope at the origin. In contrast, for the

upper tail boundary curve, the slope at the origin is always 1.

The lower tail problem was also recently analysed by Janson and Warnke [18] using

different methods (not relating to the variational problem). In the triangle case, for

n−1/2 � p → 0, they were able to determine the large deviation rate of P(t(K3,G(n, p)) �
(1 − δ)p3) for the two extremes δ = o(1) and δ = 1 − o(1). They left as an open question

what happens for fixed δ ∈ (0, 1), which is the subject of this paper.

There are other variants of the variational problem being studied in literature. For

exponential random graphs, see [1, 3, 9, 21, 28, 34, 40, 41, 42, 43, 44, 45]. For the

variational problem where several subgraph densities are simultaneously constrained (e.g.

edge and triangle densities both fixed), see [2, 20, 31, 32, 33].

Section 2 contains statements of the results. Section 3 reviews the techniques used in

proof of the upper tail results from [28]. Section 4 concerns the upper tail problem for

triangle densities. Section 5 concerns general H-densities. The methods in Sections 4 and

5 are different since the techniques for triangles seem to be quantitatively superior but do

not extend to all graphs. Section 6 concludes with some open problems.

2. Results

2.1. Triangle density

Here is our main result concerning the lower tail variational problem LTp(K3, q) for

triangle densities. See Figure 1. The functions q and q below arise from the proof method

as opposed to the true nature of the phase diagram. It is likely that there is a single curve

separating the two phases.

Theorem 2.1. There exist functions q, q : (0, 1) → (0, 1) satisfying 0 < q(p) � q(p) � p for

0 < p < 1 with the following properties. Whenever q(p) < q < p, the constant graphon W ≡
q is the unique minimizer for LTp(K3, q). Whenever 0 < q < q(p), the constant graphon W ≡
q does not minimize LTp(K3, q). Further, limp→0 q(p)/p = 0.209 . . . while limp→0 q(p)/p =

0.466 . . . .

The two curves q(p) and q(p) are drawn in Figure 1. The nature of LTp(K3, q) remains

unresolved for (p, q) between these two curves.7

In Theorem 2.1 and elsewhere, 0.466 . . . denotes the unique 0 < r < 1 satisfying
3
2
r log r − r + 1 = 0, and 0.209 . . . is defined as the maximum value of r < 1 such that that

the function fr(x) in (4.9) (see also Figure 4) has a zero in the open interval (0, r).

7 The lower curve q(p) is drawn by only considering graphons on two equal steps (see Section 4.2). For larger

values of p (i.e. closer to 1), the symmetry breaking region in Figure 1 can be enlarged by considering

graphons with more than two steps, though we choose not to carry out this analysis here in order to focus

on the small p regime.
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2.2. General subgraph density

We extend Theorem 2.1 to general subgraph counts. No serious effort is made here to

optimize the quantitative bounds.

Theorem 2.2. Let H be a graph. There exists q : (0, 1) → (0, 1) with limp→0 q(p)/p < 1

such that whenever q(p) < q � p, the constant graphon W ≡ q is the unique minimizer for

LTp(H, q).

Furthermore, if H is not bipartite, then there exists q : (0, 1) → (0, 1) with limp→0 q(p)/p >

0 such that whenever 0 � q < q(p), the constant graphon W ≡ q does not minimize

LTp(K3, q).

The proof of the triangle case, Theorem 2.1, makes use of Goodman’s inequality [14]:

t(K3,W ) + t(K3, 1 − W ) � 1/4.

If H satisfies t(H,W ) + t(H, 1 − W ) � 2−e(H)+1 for all graphons W (such a graph H

is sometimes called ‘common’ in the context of Ramsey multiplicities: see e.g. [12,

Section 2.6]), then the same method can be used to establish regions where W ≡ q

is a minimizer of LTp(H, q) (though the actual regions will not be the same as in Figure 1

due to other technical reasons). However, t(H,W ) + t(H, 1 − W ) � 2−e(H)+1 does not hold

in general. For example, Thomason [39] showed that Kt is a counterexample for all

t � 4. Consequently, the proof method of Theorem 2.1 does not seem to extend to all H .

Theorem 2.2 for general H is proved using a different method, which seems quantitatively

inferior to the method for triangles.

For bipartite H , I conjecture that there is no phase transition.

Conjecture 2.3. Let H be a bipartite graph. Then the constant function W ≡ q is always

the unique minimizer of LTp(H, q).

As mentioned in the Introduction, the conjecture holds for any H for which Sidorenko’s

conjecture is true, that is, t(H,W ) � E[W ]e(H) for all graphons W . Conjecture 2.3 may be

true even if Sidorenko’s conjecture were not true.

2.3. Sparse limit

Since Ip is decreasing in [0, p] and increasing in [p, 1], any minimizing W for LTp(H, q)

satisfies 0 � W � p almost everywhere. Define

h(x) := x log x − x + 1 (2.1)

so that

lim
p→0

p−1Ip(px) = h(x)

uniformly for x ∈ [0, 1]. It follows that for every graph H and 0 � r � 1 we have

lim
p→0

p−1LTp(H, pr) = LT(H, r) (2.2)
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where

LT(H, r) :=

{
minimize E[h(W )]

subject to t(H,W ) � re(H).
(2.3)

It would be interesting to solve this variational problem. As before, a basic question is

whether the constant function W ≡ r is a minimizer. Here is the main conjecture.

Conjecture 2.4. Let H be a non-bipartite graph and 0 � r � 1. There exists a 0 < r∗
H < 1

so that W ≡ r minimizes LT(H, r) if and only if r � r∗
H . Furthermore, W is the unique

minimizer for LT(H, r) if and only if r > r∗
H .

It seems likely that r∗
K3

= 0.209 . . . . The conjecture remains open for any non-bipartite

graph H . For the bipartite case we make the following conjecture.

Conjecture 2.5. The constant graphon W ≡ r is the unique minimizer for LT(H, r) for every

bipartite graph H and every 0 � r � 1.

In proving Theorem 2.1 and Theorem 2.2, we obtain the following results in the direction

of the above conjectures.

Theorem 2.6. If 0.466 · · · < r � 1, the constant graphon W ≡ r uniquely minimizes

LT(K3, r). If 0 � r < 0.209 . . . , the constant graphon W ≡ r does not minimize LT(K3, r).

Theorem 2.7. Let H be a graph. There exists rH < 1 such that W ≡ r uniquely minimizes

LT(H, r) whenever rH � r � 1. If H is non-bipartite, then there exists rH > 0 such that

W ≡ r does not minimize LT(H, r) for 0 � r < rH .

Combining these results with the framework of Chatterjee and Dembo [8], we obtain

Corollary 2.8. Let H be a graph. There is some explicit αH > 0 so that for p = pn → 0

with p � n−α, the following large deviation results hold.

There exists rH < 1 so that for any fixed r ∈ (rH , 1),

lim
n→∞

2

n2p
log P(t(H,G(n, p)) � (rp)e(H)) = −h(r).

If H is non-bipartite, then there exists rH > 0 so that for any fixed r ∈ (0, rH ),

lim inf
n→∞

2

n2p
log P(t(H,G(n, p)) � (rp)e(H)) > −h(r).

For H = K3, we may take rK3
= 0.466 . . . and rK3

= 0.209 . . . .

3. Review of the proof for triangle upper tails

We begin with a quick review of the proof of the upper tail result from [28], as some of

the ideas are used in the proof of Theorem 2.1.
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The following extension of Hölder’s inequality is very useful. See [28, Corollary 3.2].

Proposition 3.1. Let H be a graph with maximum degree Δ. For any symmetric measur-

able function W : [0, 1]2 → R, we have t(H,W ) � E[|W |Δ]e(H)/Δ. In particular, t(K3,W ) �
E[W 2]3/2.

The inequality can be proved via repeated applications of Hölder’s inequality (when

H = K3, the proof applies the Cauchy–Schwarz inequality three times). Observe that the

inequality t(K3,W ) � E[W 2]3/2 strengthens a corollary of the Kruskal–Katona theorem

on the maximum possible triangle density in a graph of given edge density: t(K3,W ) �
E[W ]3/2.

The following result from [28] gives the full replica symmetric phase for UTp(K3, q), the

upper tail problem for triangle densities.

Theorem 3.2. Let 0 < p � q < 1. If the point (q2, Ip(q)) lies on the convex minorant of the

function x 	→ Ip(
√
x), then W ≡ q is the unique minimizer of UTp(K3, q).

The upper tail boundary curve in Figure 1 is characterized by the condition in

Theorem 3.2. See [28, Lemma 3.1] for the proof of symmetry breaking, that is, UTp(K3, q) <

Ip(q), to the left of the boundary curve.

Proof. By the convex minorant condition, the tangent line to the function Ip(
√
x) at

x = q2 lies below the function, so that

Ip(
√
x) � Ip(q) +

I ′
p(q)

2q
(x − q2), for all x ∈ [0, 1].

Replacing x by x2, we get

Ip(x) � Ip(q) +
I ′
p(q)

2q
(x2 − q2), for all x ∈ [0, 1]. (3.1)

Note that I ′
p(q) > 0 since q > p.

Suppose graphon W satisfies t(K3,W ) � q3. By Proposition 3.1, we have

E[W 2] � t(K3,W )3/2 � q2.

Thus (3.1) implies that

E[Ip(W )] � Ip(q) +
I ′
p(q)

2q
(E[W 2] − q2) � Ip(q).

This shows that W ≡ q is a minimizer for UTp(K3, q), and furthermore it is not too hard

to check equality conditions to verify that this is the unique minimizer.

4. Triangle lower tails

In this section we prove Theorems 2.1 and 2.6.
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4.1. Replica symmetry phase

We begin with a small modification of Goodman’s theorem [14] (which is usually generally

stated for U + W ≡ 1).

Lemma 4.1. If U and W are graphon such that U + W � 2q for some constant q � 0,

then

t(K3,W ) + t(K3, U) � 2q3.

Proof. By decreasing U and W (while remaining non-negative), we may assume that they

are graphons satisfying U + W ≡ 2q. Let U = q + X and W = q − X for some symmetric

measurable function X : [0, 1]2 → R. Then

t(K3,W ) + t(K3, U) = t(K3, q + X) + t(K3, q − X)

= 2q3 + 6q t(K1,2, X)

� 2q3 + 6q(E[X])2 � 2q3.

For any a ∈ R we write a+ := max{a, 0}. In the proposition below, a2
+ means (a+)2. The

inequality (4.1) below is motivated by considering the tangent line to x 	→ Ip(2q −
√
x) at

x = q2, as in the proof of Theorem 3.2.

Proposition 4.2. Let 0 < q � p < 1 be such that

Ip(x) � Ip(q) +
−I ′

p(q)

2q
((2q − x)2

+ − q2) for all x ∈ [0, p]. (4.1)

Then W ≡ q is the unique minimizer of LTp(K3, q).

Proof. Suppose W satisfies t(K3,W ) � q3. Apply Lemma 4.1 to W and U := (2q − W )+

to obtain

t(K3, (2q − W )+) � 2q3 − t(K3,W ) � q3.

Next, apply Proposition 3.1 and we obtain

E[(2q − W )2
+] � t(K3, (2q − W )+)2/3 � q2.

By (4.1) we have (note that I ′
p(q) � 0 as q � p)

E[Ip(W )] � Ip(q) +
−I ′

p(q)

2q
(E[(2q − W )2

+] − q2) � Ip(q).

It follows that LTp(K3, q) = Ip(q). To show that W ≡ q is the unique minimizer, observe

that in order for any other W to be a minimizer, equality must occur at every step above.

In particular, if (4.1) has single point of equality, namely for x = q, then the uniqueness of

W is clear. Otherwise, one can check (details omitted, but see Figure 2) that that (4.1) has

at most two points of equality, with one being x = q, so that if W has any positive mass
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Figure 2. Plots of fp,q from (4.3) for p = 0.1 and various values of q.

with value being the other point of equality, then it would be impossible for t(K3,W ) = q3

to hold. This shows that W ≡ q is the unique minimizer.

Using Lemma 4.3 below we obtain the 0 < p � 1/2 portion of the curve q of The-

orem 2.1, which is given implicitly by

Ip(q) +
1

2
qI ′

p(q) = 0, (4.2)

and shown in Figure 1. The rest of the curve (i.e. for 1/2 < p < 1) in Figure 1 is produced

by numerically checking (3.1). Taking the p → 0 limit of (4.2), we see that the slope at

the origin is equal to r = 0.466 . . . , where r satisfies h(r) + 1
2
rh′(r) = 0. This completes the

proof of the replica symmetric phase in Theorem 2.1.

Lemma 4.3. For 0 < q � p � 1/2, (4.1) holds for all x ∈ [0, p] if and only if it holds at

x = p.

Proof. Let

f(x) := fp,q := Ip(x) − Ip(q) +
I ′
p(q)

2q
((2q − x)2

+ − q2). (4.3)

We plotted f for some representative values of (p, q) in Figure 2.

Suppose f(p) � 0. We have

f′(x) = I ′
p(x) −

I ′
p(q)

q
(2q − x)+

and

f′′(x) = I ′′
p (x) +

I ′
p(q)

q
1x<2q =

1

x(1 − x)
+

I ′
p(q)

q
1x<2q.

Since p � 1/2, f′′(x) is decreasing for 0 < x < min{p, 2q}. Clearly f′′ is positive near x = 0.

We consider two cases.

Case I. f′′(x) > 0 for all 0 < x < min{p, 2q}. Then f is convex on (0,min{p, 2q}). We know

that f(q) = f′(q) = 0. So f(x) � 0 for all x ∈ [0,min{p, 2q}]. If 2q � p, then we are done.

Otherwise, note that

f(x) = Ip(x) − Ip(q) − qI ′
p(q)/2 for x ∈ [2q, p],
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and it is decreasing on this interval. Since we assumed that f(p) � 0, we obtain f(x) � 0

for all x ∈ [0, p].

Case II. There is some x0 ∈ (0,min{p, 2q}) such that f′′(x0) = 0. So f is convex on (0, x0)

and concave on (x0,min{p, 2q}). We assumed that f(p) � 0, so f(min{p, 2q}) � 0 since if

2q < p then f is decreasing on (2q, p). Since f(q) = f′(q) = 0, an analysis of the convexity

of f shows that it is non-negative on [0, p].

For the sparse limit p → 0, the proof of the first half of Theorem 2.6 is nearly identical.

It follows from the next two propositions, whose proofs we omit.

Proposition 4.4. Let 0 � r � 1 be such that

h(x) � h(r) +
−h′(r)

2r
((2r − x)2

+ − r2), for all x ∈ [0, 1]. (4.4)

Then W ≡ r is the unique minimizer of LT(K3, r).

Lemma 4.5. The inequality (4.4) holds for all x ∈ [0, 1] if and only if holds for x = 1, which

holds if and only if r � r = 0.466 . . . , where r satisfies h(r) + 1
2
rh′(r) = 0.

4.2. Symmetry breaking phase

Now we explain the lower curve q in Figure 1. It is obtained by by restricting the

variational problem LTp(K3, q) to graphons W of the form BIPa,b, where BIPa,b, for

0 � a, b � 1, is defined by

BIPa,b(x, y) :=

{
a if (x, y) ∈ [0, 1/2]2 ∪ (1/2, 1]2,

b if (x, y) ∈ [0, 1/2] × (1/2, 1] ∪ (1/2, 1] × [0, 1/2].
(4.5)

There is symmetry breaking if we can find 0 � a, b � p satisfying

E[Ip(BIPa,b)] =
1

2
Ip(a) +

1

2
Ip(b) < Ip(q) (4.6)

and

t(K3,BIPa,b) =
1

4
a3 +

3

4
ab2 � q3. (4.7)

We can assume that 0 � a � q � b � p, since otherwise swapping a and b reduces t(K3,W )

(observe that t(K3,BIPa,b) − t(K3,BIPb,a) = 1
4
(a − b)3) while keeping E[Ip(W )] constant.

Set

b =
√

(4q3 − a3)/(3a)

so that t(K3,BIPa,b) = q3. There is symmetry breaking if

f(x) := fp,q(x) :=
1

2
Ip(x) +

1

2
Ip

(√
4q3 − x3

3x

)
− Ip(q) (4.8)

is negative for some 0 � x � q, where f is only defined for√
(4q3 − x3)/(3x) � p.
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Figure 3. The plot of fp,q from (4.8) for p = 0.1 and various values of q.
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Figure 4. The plot of fr from (4.9) for various values of r.

Some representative examples of f are plotted in Figure 3. For every p, and sufficiently

small q, f(x) becomes negative in a region away from x = q.

Now we prove the claims in Theorem 2.1 more rigorously. For every p > 0, if q is

sufficiently small that 1
2
Ip(0) < Ip(q), then W = BIP0,p satisfies t(K3,W ) = 0 while

E[Ip(W )] =
1

2
Ip(0) < Ip(q),

so that LTp(K3, q) < Ip(q).

The argument in the previous paragraph does not give the optimal q in Theorem 2.1.

To prove that q can be chosen so that limp→0 q(p)/p = 0.209 . . . , it suffices, by (2.2), to

prove the second half of Theorem 2.6, that LT(K3, r) < h(r) for all r < r1 = 0.209 . . . . As

before, we seek 0 � a � r � b � 1 with

1

2
h(a) +

1

2
h(b) < h(r)

and

1

4
a3 +

3

4
ab2 � r3.

Let

f(x) := fr(x) :=
1

2
h(x) +

1

2
h

(√
4r3 − x3

3x

)
− h(r). (4.9)

See Figure 4 for some examples of plots of fr (as before, plotted for values of

x � r satisfying
√

(4r3 − x3)/(3x) � 1). At the critical r = r1 = 0.209 . . . , there exists
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0 < a1 < r1 < b1 < 1 such that

1

4
a3

1 +
3

4
a1b

2
1 = r3

1 and
1

2
h(a1) +

1

2
h(b1) = h(r1).

Now for any 0 � r < r1, let s = r/r1, so that (a, b) = (sa1, sb1) satisfies

1

4
a3 +

3

4
ab2 = r3.

Note that

h(sx) = sx log(sx) − sx + 1

= s(x log x − x + 1) + (s log s)x − s + 1

= sh(x) + (s log s)x − s + 1.

We have

1

2
h(a) +

1

2
h(b) − h(r) =

1

2
h(sa1) +

1

2
h(sb1) − h(sr1)

= s

(
1

2
h(a1) +

1

2
h(b1) − h(r1)

)
+ (s log s)

(
1

2
a1 +

1

2
b1 − r1

)
< 0

since

1

2
h(a1) +

1

2
h(b1) = h(c1),

and we know that

1

2
a1 +

1

2
b1 > r1

from (
1

2
a1 +

1

2
b1

)3

− r3
1 =

(
1

2
a1 +

1

2
b1

)3

− 1

4
a3

1 − 3

4
a1b

2
1

=

(
1

2
b1 − 1

2
a1

)3

> 0.

It follows that LT(K3, r) < Ip(r) for all 0 < r < r1 = 0.209 . . . .

5. General subgraph lower tails

In this section we prove Theorems 2.2 and 2.7. I will give the details only for Theorem 2.7

concerning the sparse limit LT(H, r) as it is somewhat cleaner and contains all the ideas.

Theorem 2.2 regarding LTp(H, q) can be proved analogously by considering sufficiently

small but fixed values of p.
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5.1. Replica symmetry

For any graph H and graphon W , we define the functional derivative t′(H,W ) to be the

symmetric measurable function given by

t′(H,W ) =
∑

e∈E(H)

te(H,W ), (5.1)

where for each ab ∈ E(H) we define the graphon

tab(H,W )(xa, xb) :=

∫
[0,1]V (H)\{a,b}

∏
ij∈E(H)\{ab}

W (xi, xj)
∏

i∈V (H)\{a,b}

dxi. (5.2)

For example,

t′(K3,W )(x, y) = 3

∫
[0,1]

W (x, z)W (y, z) dz.

For any symmetric measurable U : [0, 1]2 → [−1, 1], and δ → 0, we have

t(H,W + δU) = t(H,W ) + δ E[t′(H,W )U] + O(δ2),

which justifies calling t′(H,W ) the functional derivative.

Lemma 5.1. Let H be a graph and 0 < r < 1. The variational problem LT(H, r) attains its

minimum for some graphon W , and any such W satisfies the following Lagrange multiplier

condition: for some λ � 0, we have

h′(W (x, y)) + λt′(H,W )(x, y) = 0, a.e.-(x, y) ∈ [0, 1]2.

Proof. That the minimum of LT(H, r) is always attained follows from the compactness

of the space of graphons with respect to the cut distance and the convexity of h, as was

already observed in [10].8

Suppose W minimizes LT(H, r). To prove the lemma, it suffices to prove the following

claim: for any symmetric measurable function U : [0, 1]2 → [−1, 1] such that

0 � W + U � 1 and E[t′(H,W )U] < 0,

we have E[h′(W )U] � 0.

8 We sketch here an alternative proof that the minimum is always attained. Let Wn be a sequence of graphons

with t(H,Wn) � re(H) and E[h(Wn)] → LT(H, r). By compactness of the space of graphons [27], there exists a

subsequential limit W so that δ� (Wn,W ) → 0 along some subsequence. Restrict to this subsequence. We have

t(H,Wn) → t(H,W ), so that t(H,W ) � re(H). It remains to show that E[h(W )] � lim E[h(Wn)] = LT(H, r). We

do not lose anything by assuming that ‖Wn − W‖� → 0. Let Pm denote the partition of the unit interval

[0, 1] into m equal-length intervals. Let WPm denote W with its value inside each Ii × Ij replaced by its

average, for every Ii, Ij ∈ Pm. Define (Wn)Pm similarly. Then ‖Wn − W‖� → 0 implies that (Wn)Pm → WPm

pointwise a.e. as n → ∞. By convexity, we have

lim
n→∞

E[h(Wn)] � lim inf
n→∞

E[h((Wn)Pm )] = E[h(WPm )].

Furthermore, WPm → W pointwise a.e. by the Lebesgue density theorem, so limm→∞ E[h(WPm )] = E[h(W )].

It follows that E[h(W )] � lim E[h(Wn)] = LT(H, r), as desired.
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Consider the graphon W + δU for δ ↘ 0. We have

t(H,W + δU) − t(H,W ) = δE[t′(H,W )U] + O(δ2).

Therefore t(H,W + δU) < t(H,W ) � re(H) for sufficiently small δ > 0, and hence

E[h(W + δU)] � E[h(W )] since W minimizes LT(H, r). On the other hand,

lim
δ→0

E[h(W + δU) − h(W )]

δ
= E[h′(W )U],

so that E[h′(W )U] � 0 as claimed. The interchange of limit and expectation above can

be justified by writing U = U+ − U−, where U+ = max{U, 0} and U− = max{−U, 0}.

Since h is convex, (h(W + δU+) − h(W ))/δ is pointwise monotonically decreasing as

δ ↘ 0, and likewise (h(W − δU−) − h(W ))/δ is pointwise monotonically increasing. So

the interchange of limit and expectation is justified by the monotone convergence

theorem.

Lemma 5.2. Let H be a graph with m edges, and 0 < r � 1. Let W minimize LT(H, r).

Then W � rmr
−m

almost everywhere.

Proof. Let c = rmr
−m

. Suppose on the contrary that W < c on a set of positive measure.

Let λ be the Lagrange multiplier in Lemma 5.1. From (5.1) we have t′(H,W ) � m

everywhere. By considering a positive-measure set of (x, y) such that W (x, y) < c, we find

0 = h′(W (x, y)) + λt′(H,W )(x, y) < h′(c) + mλ.

So that

λ >
−h′(c)

m
=

log(1/c)

m
.

Therefore, up to a set of measure zero, for every (x, y) with W (x, y) � rm, we have

t′(H,W )(x, y) =
−h′(W (x, y))

λ
<

−mh′(rm)

log(1/c)
=

m log(r−m)

log(r−mr−m
)

= mrm.

On the other hand, for every (x, y) with W (x, y) < rm, we have t′(H,W )(x, y)W (x, y) < mrm.

Thus t′(H,W )W < mrm almost everywhere. By (5.1) and (5.2), we have

t(H,W ) =
1

m
E[t′(H,W )W ] < rm.

However, any W with t(H,W ) < rm cannot minimize LT(H, r). This gives the desired

contradiction.

Lemma 5.3. If t(H,W ) � re(H), then E[logW ] � log r.

Proof. The lemma follows from Jensen’s inequality:

m E[logW ] =

∫
[0,1]V (H)

log

( ∏
ij∈E(H)

W (xi, xj)

) ∏
i∈V (H)

dxi

� log

(∫
[0,1]V (H)

∏
ij∈E(H)

W (xi, xj)
∏

i∈V (H)

dxi

)
= log t(H,W ) � m log r.
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Table 1. Some values of rm from Proposition 5.4.

m 3 4 5 6 7 8 9 10 20 100

rm 0.686 0.735 0.770 0.795 0.815 0.831 0.844 0.855 0.911 0.973

Proposition 5.4. Let H be a graph with m � 3 edges. Let r = rm (see Table 1) be the

unique solution in the interval (0, 1) to the equation

h(rmr
−m

) = h(r) + r′h(r)(log(rmr
−m

) − log r).

Then LT(H, r) is uniquely minimized by the constant function W ≡ r for all r � rm.

Note that any graph H with at most two edges always satisfies t(H,W ) � (EW )e(H), so

it follows (by the argument in the paragraph following (1.4)) that W ≡ r is the unique

minimizer. Thus it suffices to consider m � 3.

Proof. Let r � rm. Let W be a minimizer for LT(H, r). By Lemma 5.2, W � rmr
−m

almost

everywhere. Thus it follows by Lemma 5.5 below (and it can be checked that rm � 1/e)

that

h(W ) � h(r) + r log r(logW − log r) a.e. (5.3)

Taking expectation of both sides and using E[logW ] � log r from Lemma 5.3 (note that

log r � 0), we obtain E[h(W )] � h(r), as desired. To see that W ≡ r is unique, suppose

W is another minimizer of LT(H, r). Equality must hold everywhere in the argument. In

particular, (5.3) must hold almost everywhere, which easily implies that W ≡ r (for the

critical case r = rm, W might also take the value rmr
−m

, but only on a set of measure zero

since E[h(W )] = h(r)).

Lemma 5.5. If

h(x) � h(r) + rh′(r)(log x − log r) (5.4)

holds for some (x, r) = (x0, r0), with 0 � x0 � r0 � 1 and r0 ∈ [1/e, 1], then it holds for all

(x, r) ∈ [x0, 1] × [r0, 1].

Proof. The partial derivative of the right-hand side of (5.4) with respect to r is

−(1 + log r)(log r − log x),

which is at most zero as long as x � r and r � 1/e. This shows that if (5.4) holds for

some (x, r) = (x0, r0) then it automatically holds for (x, r) = (x0, r) for all r ∈ [r0, 1].

Let us now fix r. Let

f(x) := fr(x) := h(x) − h(r) − rh′(r)(log x − log r). (5.5)
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Figure 5. Plot of fr from (5.5) for various values of r.

Some examples of fr are plotted in Figure 5. We have

f′(x) = log x − r log r

x
and f′′(x) =

x + r log r

x2
.

So f′′(x) < 0 for x < −r log r and f′′(x) > 0 for x > −r log r. Note also that f(r) = f′(r) =

0, and −r log r � r as long as r � 1/e. By analysing the convexity of f (see Figure 5), we

see that f(x0) � 0 implies f(x) � 0 for all x ∈ [x0, 1].

5.2. Symmetry breaking

The proof of the second part of Theorem 2.7 is easy. One could fine-tune the bounds as

in Section 4.2, though we omit the analysis here.

Proposition 5.6. Let H be a non-bipartite graph. Then LT(H, r) < h(r) for all r < 0.186.

Proof. The graphon W = BIP0,1 satisfies t(H,W ) = 0, and E[h(W )] = 1
2
h(0), which is

strictly less than h(r) for all r < 0.186.

6. Open problems

We conclude with some open problems concerning the variational problem for upper and

lower tails.

• Upper tail phase diagram. Determine the upper tail replica symmetry phase diagram

for non-regular H .

• Lower tail phase diagram. Determine the lower tail replica symmetry phase diagram

for K3, and more generally for any non-bipartite graph H . In particular, determine

r∗
H from Conjecture 2.4. For a bipartite graph H , determine whether there is replica

symmetry everywhere (Conjecture 2.3).

• Solution in the symmetry breaking phase. Solve the variational problem UT or LT at

any non-trivial point where the constant graphon is not a minimizer.
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