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When an explosive burns, gaseous products are formed as a result. The interaction of the burning
solid and gas is not well understood. More specifically, the process of the gaseous product heating
the explosive is yet to be explored in detail. The present work sets out to fill some of that gap using
mathematical modelling: this aims to track the temperature profile in the explosive. The work begins
by modelling single-step reactions using a simple Arrhenius model. The model is then extended
to include three-step reaction. An alternative asymptotic approach is also employed. There is close
agreement between results from the full reaction-diffusion problem and the asymptotic problem.
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1 Introduction

High explosives (HEs) provide a low mass source of massive energy release, but this stored
energy can pose a major hazard and even cause disaster if accidentally released. There is a long
and sad history of serious accidents that have resulted from both mechanical and thermal abnor-
mal and unexpected loadings of diverse severities. Therefore, safety is paramount in the handling
and storage of explosives. Understanding the circumstances in which an explosive can ignite,
burn and detonate is essential if we are to predict the severity of likely hazards and understand
the associated risks [14, 13].

The high cost and danger of experimentation have necessitated the modelling of scenarios
of potential danger. The great flexibility and power of hydrocode packages implementing finite
element and difference methods [22, 3] have made their use the natural choice to address this
need. However, the use of these codes has often revealed that localised effects arise that are
hard to resolve with standard computation meshes; often shear bands or local regions of extreme
heating are observed. The question thus arose: could mathematical analysis and/or new sophisti-
cated adaptive methods offer further advances both in understanding the governing physics and
chemistry and in achieving improved computational models?

Let us attempt to summarise our current understanding of the processes happening in a reacting
high explosive. HEs may be distinguished from other types by their capability to detonate rather
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than burn if sufficient stimulus is applied to them. Under lesser stimuli they may burn [17], and
the resulting reaction can diminish, remain steady or grow to more violent deflagration or even
to detonation, where the stored explosive energy is released in times typically in the order of
nanoseconds. What is governing these very diverse outcomes?

It is established that, when a HE is subject to significant heating as a result of either mechanical
dissipation caused by accidental severe deformation or direct heating from a heat source, it begins
to react. The solid material reacts, i.e. burns to form high-pressure gaseous products [8, 28, 26,
23, 7]. As the reaction proceeds, more and more gas is formed. The porosity of the explosive
increases and as more and more surface area becomes exposed the reaction can accelerate and
propagate with the increasing porosity and permeability [5] until all the explosive is consumed
or until some mechanism releases the pressure and the reaction is quenched. Violent reaction or
even disastrous detonation can be achieved in some cases [19]. We believe that it is fair to say that
the interplay between the burning (and thereby disintegrating) solid matrix and gaseous products
is still ill understood. Plainly there are confined locations where flames may be interacting with
flames from nearby surfaces, probably in highly complex ways.

Baer and Nunziato [4] and subsequent workers have explored the two-phase problem of react-
ing solid and gaseous products from a macroscopic continuum viewpoint, but detailed treatments
of the internal burning process and of how the hot gas heats the explosive up are lacking. The
problem is compounded by the complexity of modern heterogeneous explosives in which crys-
tals of pure HE are embedded in polymer binders, which themselves can be reactive. The creation
and propagation of flames in this type of explosive have not been modelled in detail; the com-
putational costs would be prohibitive even were this possible. Therefore, burn models in current
use are generally empirically based macroscopic models rather than being based upon first princi-
ples. Their calibration often depends on the experiment or geometry being modelled. That being
so, we asked ourselves the question: would it be possible to gain deeper understanding of the
physical processes at work in real HEs by looking at scenarios with idealised geometries lending
themselves to analytical modelling?

We believe this is a question worthy of attention, and the present paper reports one research
line taken in attempting to answer. We additionally comment that the recent advances in addi-
tive manufacturing of explosives provide enhanced motivation for the investigation of idealised
explosive geometries, which are becoming realisable in practice while being potentially more
amenable to mathematical modelling [9, 18, 29, 30]. The modelling to be used herein is based
on a continuum assumption.

Our aims, then, include gaining further insight, providing comparisons or alternatives for direct
computation and adding to the portfolio of methodologies available in this area [11]. Section 2
describes the model of interaction evolving between thermal diffusion effects in one spatial
dimension and a single reactant [28, 15, 9, 27, 30], along with a computational study. Here
reference is made to ODTX (one-dimensional time to explosion methods) [25, 4, 15] and HMX
(octogen explosive) for which the values of certain parameters in the model turn out to be sig-
nificantly small or large. This leads on to an investigation of asymptotic properties presented in
Section 3 accompanied by comparisons with the direct computations. Section 4 then addresses
the evolution between thermal diffusion and three reactants [20] computationally followed by
corresponding asymptotic analysis and comparisons given in Section 5. Section 6 provides the
conclusion, including a further discussion of the continuum assumption.
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FIGURE 1. Schematic of the solid explosive (left) and hot gas (right).

2 One-reactant problem and computational properties

The problem area of concern here arises as follows. A simple configuration is considered, with
a slab of solid explosive confined at one end with a burning surface at the other end. A layer of
hot gas is adjacent to the burning surface, itself confined by a non-conducting wall opposite to
the burning surface, see Figure 1. When the hot gas is assigned a temperature value that is in the
vicinity of the activation temperature for the explosive, this acts as a trigger for the ignition of
the explosive. Classical heat conduction [1, 2, 6] in the explosive is one feature with a significant
role in the model here.

We then enhance the model by considering the effects of adding a reaction term to the heat
conduction equation [10]. To begin modelling the reaction-diffusion process, we consider the
simple and well-known Arrhenius reaction equation [14].

The Arrhenius equation [14] is used to calculate the effect of a change in temperature on
reaction rates. It is commonly used to calculate chemical reactions, particularly in heat-induced
problems. The combustion of explosives depends heavily on chemical processes which take
place. Heating and impact both can trigger a reaction process which leads to significant burning,
and they are the main two reasons why an explosive combusts. Once the temperature reaches a
certain level, commonly known loosely as the critical temperature, the reaction process becomes
significantly large. When the reaction has started, the speed of the reaction increases as the tem-
perature increases. The Arrhenius reaction equation has been used in several explosives models
including [28] and is given by

k = A exp(−E/Ru), (2.1)

where k is the reaction rate constant, u is the temperature, E is the activation energy required for
the reaction, R is the universal gas constant and A is the frequency factor, which is also known
as the pre-exponential constant.
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Table 1. Physical parameters used in model

Parameter with units Symbol Value

Conductivity (W/m/K) κ 0.44
Specific heat (J/kg/K) cv 1255.0
Density (kg/m3) ρ 1800.0
Heat of reaction (J/kg) � 5.0208e6
Molar gas constant (J/mol/K) R 8.314
Activation energy (J/mol) E 2.2e5
Pre-exponential constant (s−1) A 5.011872336e19
Wall temperature oK B 570
Initial solid temperature oK C 293

Following the works of [28, 21, 10], for example, we consider a variation of (2.1). Namely,

we consider the reaction α with rate such that k → ∂α
∂t

(1−α) which mimics the general form (2.1)
but varies with time t. The reaction rate is restricted by the term (1 − α), which represents the
fraction of unreacted material remaining. In other words, 0 ≤ α(x, t) ≤ 1 for all spatial positions
x ∈ D and t ∈ T where α = 0 is the initial state (unreacted) and α = 1 is the final state (fully
reacted). Here T = [0, Tmax], where Tmax is the period of time over which we model the event,
and D is the bounded spatial domain, which can be taken as [−1, 1] without loss of generality
by working with x/a and κ/a2 for a domain [−a, a], where the diffusion coefficient κ is defined
below. We use the reflected geometry to avoid the requirement to impose a zero flux condition
for simplicity. However, if we did adhere to x ≥ 0, we would need to impose that condition but
might reduce the computational time.

We now consider the reaction-diffusion PDE

ρcv

∂u

∂t
= κ

∂2u

∂x2
+ ρ�

∂α

∂t
, (2.2)

with the reaction term given by

∂α

∂t
= A(1 − α) exp

(
− E

Ru

)
, (2.3)

where the constant � is the heat of reaction. Equations (2.2) and (2.3) combine to form a
non-linear coupled system of PDEs for u(x, t) and α(x, t).

Here ρ, cv , κ , �, R, E and A are dimensional parameters with realistic values and units listed
in Table 1. The typical boundary and initial conditions are

u(−1, t) = u(1, t) = B, for 0 < t ≤ Tmax, (2.4a)

u(x, 0) = C, for x ∈ D, (2.4b)

where quite realistic temperature values are B = 570, C = 293 say. This spatially symmetric
scenario with constant boundary and initial temperatures is to be generalised later, whereas the
initial value of α is taken to be zero in all the present studies.

Given the extremely large dimensional values appearing in Table 1 and in the conditions
(2.4a), (2.4b), we turn to a non-dimensional form of the governing equations and conditions and
note a need for caution concerning numerical results at this stage. To deal with the parameters,
then, we introduce the non-dimensional variables t̄ and ū that satisfy
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t = A−1 t̄, u = E

R
ū, (2.5a)

having recognised the fact that A is likely to be responsible for main changes in u and α happening
on different time scales and that E

R is relatively large. There is no need to scale α since it is already
non dimensional and O(1).

The substitutions lead to the non-dimensional system of PDEs

∂ ū

∂ t̄
= κ̄

∂2ū

∂x2
+ �̄

∂α

∂ t̄
, (2.6a)

∂α

∂ t̄
= (1 − α) exp

(
−1

ū

)
, (2.6b)

where from Table 1 the non-dimensional parameters present now are κ̄ := κ
ρcvA ≈ 10−25 � 1, and

�̄ := �R
cvE ≈ 0.15. The boundary and initial conditions also need scaling and are given by

ū(−1, t) = ū(1, t) = B̄, for 0 < t̄ ≤ Tmax, (2.7a)

ū(x, 0) = C̄, for x ∈ D, (2.7b)

where B̄ := RB
E ≈ 0.02 and C̄ := RC

E ≈ 0.01. We note that the initial condition for α remains
unchanged of course and that quite extreme parameter values are still present, particularly the
κ̄ value.

Numerical solutions were sought first, using a semi-implicit scheme of second-order accuracy
in x, t. This adopts three-point backward differencing in t and three-point centred differencing in
x. The discretisation replaces (2.2)–(2.3) by

−μUj−1,i+1 + (3 + 2μ)Uj,i+1 − μUj+1,i+1 = 4Uj,i − Uj,i−1 + · · ·
· · · + 2�t

A�

cv

(1 − 2αj,i + αj,i−1) exp

(
− E

R(2Uj,i − Uj,i−1)

)
, (2.8a)

αj,i+1 =
2A�t exp

(
−E

RUj,i+1

)
+ 4αj,i − αj,i−1

3 + 2A�t exp
(

−E
RUj,i+1

) , (2.8b)

and it acts similarly on the form (2.6a), (2.6b). Here i, j refer to time t and space x, respec-
tively, with grid sizes �t, �x, the arrays Uj,i, αj,i represent discretised u, α and μ = r 2�t

(�x)2 , where
r = κ

ρcv
. We remark that, to keep the scheme quasi-linear at each new time step, lagging of terms

in the exponential effects in (2.8a), (2.8b) is present. For example in the exponential effect in
(2.8a), the expression (2Uj,i − Uj,i−1) is used in place of Uj,i+1 and preserves the desired second-
order accuracy. The parameter values involved are of much interest. The fairly realistic values
in practice shown in Table 1 are potentially quite extreme values; indeed, we investigate the
influences of a quite wide range of values of the parameters below.

In fact cautiously obtaining and then considering the computational solutions is felt to be very
desirable for mild, less mild and realistic cases. We defer further discussion of the realistic cases
such as in Table 1 until Section 6. Figures 2–6 show the numerical results for mild cases. They
exhibit a number of interesting features. There is analytically a classical similarity solution [12]
with spatial thickness of order t1/2 holding in each thin edge layer at small time astride each
wall, a property which is captured satisfactorily by the current numerical scheme. One can see
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FIGURE 2. The finite difference solution to u (a) and α (b) in the coupled system of PDEs (2.2) and
(2.3) using a second-order implicit scheme. We chose Tmax = 10 with �x = 0.05 and �t = 0.01. Here
ρ, cv , κ , �, A, E, R are set to unity. Also B = 45 and C = 15 (in non-dimensional terms, �̄ = 1, κ̄ = 1, B̄ = 45
and C̄ = 15). On the bottom left (c), we plot the solution for small time t = 0 to t = 1 to show the rise of
the temperature, u. Notice how the inclusion of a reaction term causes the temperature profile to surpass the
temperature value at the boundary before plateauing (d).
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FIGURE 3. Solutions to u and α over the spatial range x for fixed values of t. Here we have used the same
parameters and temperature conditions as shown in Figure 2.
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FIGURE 4. The numerical finite difference solutions to u (left) and α (right) satisfying the PDEs (2.2)–
(2.3) using a second-order implicit scheme with mild physical parameters. Here ρ = 1800, cv = 1255,
κ = 0.44, � = 5.0108 × 106, A = 200, E = 10, R = 8.314, B = 45 and C = 15. In non-dimensional terms,
�̄ ≈ 3319.505, κ̄ ≈ 9.7 × 10−10, B̄ ≈ 37.413 and C̄ ≈ 12.471.
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FIGURE 5. The numerical results for u and α satisfying equations (2.2)–(2.3) with very mild parameter
values E = R = A = ρ = � = cv = B = C = 1 and κ = 0.1, 0.01, 0.001 (top to bottom). In non-dimensional
terms, �̄ = 1, B̄ = 1, κ̄ = 0.1, 0.01, 0.001 (top to bottom) and C̄ = 1.
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FIGURE 6. The numerical results for u at x = 0 satisfying equations (2.2)–(2.3) with very mild parameter
values E = R = A = ρ = � = cv = B = C = 1 and κ = 0.1, 0.01, 0.001 (top to bottom). Overshoot is clearly
seen for all cases here and lasts longest for the lowest κ value.

evidence of thin edge layers emerging also as κ or κ̄ is decreased. These layers, however, con-
tinue to apply over a considerable time range. The numerical results further produce overshoots
in temperature which become more pronounced and linger more (see Figure 6) as κ̄ is decreased,
for example, whereas α increases monotonically towards unity in every case. We see in addition
some pronounced differences in the apparent time scales typical of the temperature and α in the
results. These are to be considered analytically later. The results in Figures 2–6 are only showing
spatially symmetric cases but non-symmetric ones, presented in Figure 7, display similar trends.

The accuracy of the numerical solutions was checked as in [24]. We found the realistic case
with the values of Table 1 to be a very difficult one to compute reliably in view of, for example,
a sensitivity observed in the results for α as the spatial step was varied. In contrast, when we use
milder parameter values such as E = 10 and A = 200 with the boundary and initial conditions
(2.4a)–(2.4b) with B = 45, C = 15, then the finite difference approximation of α is insensitive to
the same choices of spatial step. The profiles of these solutions are given in Figure 4. A further
set of results for even milder values of the parameters is presented in Figures 5, 6, pointing to the
use of asymptotic analysis below.

To address the very small parameter κ̄ that features in the scaled PDE, we add a different
approach. It can be shown through asymptotic expansions of ū and α that by equating the coef-
ficients of like powers of κ̄ and taking O(1) terms only, the term ∂2ū

∂x2 is unlikely to have any
substantial effect for a long time, except near the boundaries, since the reaction term dominates.
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FIGURE 7. The numerical results for u, α for the non-symmetric case satisfying equations (2.2)–(2.3) with
very mild parameter values E = R = A = ρ = � = cv = 1 and κ = 0.1, 0.01, 0.001 (top to bottom). The tem-
perature u, with boundary conditions u(−1, t) = 2 and u(1, t) = 1, is shown for fixed values of t = 0 to t = 4
in steps of 1/2, where the red vertical arrows indicate time increasing. Here the initial temperature is given
by C(x) = x + 2.

Hence, asymptotically, the problem can now be viewed as the interaction of two problems: a
problem in thin wall layers at both ends of the domain and a problem in a core.

The view just mentioned in regard to the emergence of two problems accompanied by dis-
tinct regions is especially supported by the numerical results for the single-reactant cases shown
in Figures 5–7, where Figure 7 admits spatial nonsymmetry. The results in the figures, which
are for parameter values even milder than those introduced in Figures 2–4, confirm clearly the
appearance of a core in the majority of the domain and thin wall layers near the boundaries even
for values of κ , for example, that are small but, in a sense, not extremely so. This suggests that
an asymptotic approach (as described below) will be fruitful over a wide range of the parameter
space.

3 Asymptotic analysis and comparisons

Guided by the numerical solution features above, we seek extra insight by taking an asymp-
totic approach that in principle handles effectively the extreme parameter values. A core region
covering most of the domain can be anticipated along with thin wall layers close to the bound-
aries. That distinction in spatial scale is found to persist for a considerable amount of time before
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change occurs. The initial condition on the temperature is taken to be constant for now but this
is generalised later on.

3.1 Effects of κ̄

The main evidently small parameter is κ̄ . Treating it as an asymptotically small parameter leads
to two major time scales appearing as follows. The first time scale has t̄ of O(1). Here in the core
where −1 < x < 1 the variables ū, α are expected to be of order unity and so the expansions

ū = ūc + · · · , (3.1a)

α = αc + · · · (3.1b)

are called for. Terms of equal orders in the non-dimensional governing equations 2.6 then yield
a reduced system for the leading order quantities, namely

∂ ūc

∂ t̄
= �̄

∂αc

∂ t̄
, (3.2)

where

∂αc

∂ t̄
= (1 − αc) exp

(
− 1

ūc

)
. (3.3)

The leading equation above admits the simple result that ūc − �̄αc is a function of x only but
the initial condition of a constant u across the domain then establishes that function is constant.
Therefore, applying the initial conditions that ūc(x, 0) = C̄ and αc(x, 0) = 0 yields the relation

ūc(x, t̄) = �̄αc(x, t̄) + C̄, (3.4)

for all t̄ of O(1). Hence, equation (3.3) becomes one for αc alone,

dαc

dt̄
= (1 − αc) exp

(
− 1

�̄αc + C̄

)
. (3.5)

Note that since the initial condition αc(x, 0) = 0 is independent of x, (3.2) as it stands is also
independent of x and essentially represents a non-linear ODE for αc that is valid for −1 < x < 1−.
We remark in passing here that x-dependence in the initial conditions at t = 0 which can be
reflected in C̄ in (3.4), (3.5) and similarly α(x, 0) being a given function of x will be discussed
later. Clearly, the diffusive term involving a double x-derivative is negligible in the core at this
level and no boundary condition is applied. The ODE (3.5) is non-trivial to solve and so we use
ODE45 in MATLAB to integrate numerically. The core reaction αc may then be substituted back
into (3.4) to determine the leading order temperature ūc in the core.

In Figure 8, we plot the core solutions ūc and αc that satisfy (3.3) and (3.2), respectively, using
the mild parameter values E = 10 and A = 200 as well as C = 15 which is required for the initial
condition of ūc. The asymptotic analysis is still formally valid using these mild parameters since
the corresponding value of κ̄ is still exceptionally small. We use mild parameters for now so
that in a sense we may check (see Figure 9) the asymptotic analysis against the finite difference
solutions given in Section 2 before proceeding to employ the full parameter values of Table 1.
Further details on the effects of treating �̄ as a large parameter are given in a subsection below. It
is worth noting that the characteristics of the core with mild parameters and physical parameters
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FIGURE 8. The solutions α (top) and u (bottom) in the core satisfying equation (3.5).

are likely to be different because the parameters change not only the boundary layer but also the
behaviour of the core. Results for other parameter values are given in the next subsection.

Wall layers are necessary partly because the core equations have no spatial dependence and
represent in effect only initial value problems. As a result, the loss of the derivative term in x
means that the underlying boundary conditions in (2.7a) cannot be satisfied in the core, in the
general case. We seek an accompanying solution to the core solutions by considering the system
(2.6) near the boundaries. To handle the extreme parameter κ̄ we set in the left-hand thin wall
layer,

x = −1 + κ̄1/2x̄ (3.6)

and expand

ū = ūe(x̄, t̄) + · · · , (3.7a)

α = αe(x̄, t̄) + · · · . (3.7b)

Substitution into (2.6) implies that the governing equations are

∂ ūe

∂ t̄
= ∂2ūe

∂ x̄2
+ �̄

∂αe

∂ t̄
, (3.8a)

∂αe

∂ t̄
= (1 − αe) exp

(
− 1

ūe

)
, (3.8b)
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FIGURE 9. Comparison of core (round markers) and full solutions for varying κ = 1, 0.1, 0.01 (represented
by the dot-dashed black, solid blue and dashed red lines, respectively).

in the wall layer. (For the most realistic cases described earlier, the edge layer is remarkably thin,
having an approximate non-dimensional thickness of order 10−12 from (3.6). The validity of the
continuum model may become questionable there for such cases. Further discussion on this is
presented in Section 6.)

It is notable that since at present the core problem is independent of x, the solutions at the
inside edges of the wall layers are valid across the entire core. In other words, the solutions ūe

and αe satisfying (3.8) coincide with the core solutions at x̄ = ∞ effectively. We therefore subject
(3.8) to the boundary conditions

ūe(∞, t̄) = ūc, αe(∞, t̄) = αc.

It also holds that

ūe(0, t̄) = B̄, (3.9)

and, as before, the boundary solution for αe at the wall can be determined by solving the second
equation in (3.8) using the condition (3.9). That yields

αe(0, t̄) = 1 − exp

(
−t̄ exp

(
− E

RB

))
, (3.10)
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FIGURE 10. The wall-layer solutions ūe and αe satisfying (3.8) using a second-order numerical scheme
with the mild parameters E = 20; A = 200; C = 15 and B = 45. Note that the x̄ range has been truncated to
facilitate a numerical implementation.

at the wall. We also have the initial conditions

ūe(x̄, 0) = C̄, αe(x̄, 0) = 0, 0 < x̄ < ∞.

Again we note that there is a similarity solution for small times t̄ near x̄ = 0, [12]. To solve the
system (3.8), we use the finite difference schemes of Section 2. Typically, we took 0 ≤ x̄ ≤ 1000,
to ensure the spatial domain was large enough to demonstrate the true solution behaviour. In
Figure 10, we plot the numerical solutions to ūe and αe using the mild parameters E = 20; A =
200; C = 15 and B = 45. In Figure 11, we compare the full non-asymptotic solutions given in
Figure 4 (top) with the present asymptotic wall solutions (bottom). Note that to compare these
solutions directly, we must scale u and Tmax in Figure 4 by R

E and A, respectively. We observe
that the solutions not on the boundary (which is ultimately what we are interested in, since we
do not know them a priori) match almost perfectly.

At sufficiently large times t̄ the wall layer solution acquires a similarity form. This is because
the core temperature and αe both asymptote to constants then, in particular with the core temper-
ature being C̄ + �̄ and αe being unity to a first approximation, and on the other hand the sidewall
temperature B̄ is taken to be constant. So in the wall layer ūe is expected to be of O(1) and αe

is anticipated as being unity with only an exponentially small correction in view of (3.8b). The
orders of magnitude involved then suggest that the x̄ scale grows as t̄1/2, leading to the expression

ūe = f1(ξ ) + · · · , αe = 1 + f2(ξ ) + · · · (3.11)

where ξ = x̄/t̄1/2 is of order unity and the function f2 is exponentially small. Substituting into
(3.8) we obtain the equation − 1

2ξ f ′
1 = f ′′

1 for f1(ξ ), with no influence retained now from the
reaction effects. The equation is a classical thermal one and yields the solution

f1(ξ ) = (C̄ + �̄ − B̄)I−1
∫ ξ

0
exp

(
−1

4
ξ 2

)
dξ + B̄. (3.12)

Here I = π1/2.
The second major time scale arises because on a longer time scale the wall layers penetrate

into the core and become one with it. The wall layer thickness increases like t̄1/2 and so makes its
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FIGURE 11. Comparison of solutions u and α for the full system (top) corresponding to equations (2.2),
(2.3) and the wall-layer (bottom) solutions corresponding to equation (3.8).

presence felt in the core over a long time scale t̄ of order κ̄−1, from the scalings above, specifically
in (3.7a). The evolution at that stage takes the form

ū =O(1), α = 1 + ε, (3.13)

x =O(1), t̄ = κ̄−1 t̂ (3.14)

over the entire domain, where ε denotes an exponentially small term. The governing equation
(2.6a) thus reduces to the classical thermal one

∂ ū

∂ t̂
= ∂2ū

∂x2
(3.15)

while (2.6b) gives only effects of higher order. The boundary and initial conditions for (3.15) are

ū = B̄ at x = ±1 for t̂ > 0, (3.16)

ū = C̄ + �̄ at t̂ = 0+ for |x| < 1. (3.17)

The problem can be transformed to one solved in Carslaw and Jaeger [12], showing similarity
behaviour near each wall at early times but a steady state of ū equal to B̄ being approached at
late times. The initial (core) temperature can clearly be substantially larger than the steady-state
temperature over this time scale. Moreover, the complete behaviour of the temperature ū is seen
to be on a different (longer) time scale than the reaction rate α.
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FIGURE 12. Core solutions ūc (red) and αc (blue) corresponding to equation (3.19) for parameters
(�̄, C̄) = (1, 0.1), (0.1, 1), (0.1, 0.1), (10, 1), (1, 1), (left to right top to bottom: (a)–(e) respectively). In the
bottom figure, the arrows represent the highest and mid-values of the temperature ūc.

3.2 Effects of other parameters (�̄, C̄, B̄)

Although κ̄ is by far the most extreme parameter, the small typical values of the scaled initial
temperature C̄ and the scaled reaction constant �̄ still play important roles in the core of the
interaction. Numerical solutions obtained for (�̄, C̄) values of (1, 0.1), (0.1, 1), (0.1, 0.1), (10, 1),
(1, 1) are shown in Figure 12(a)–(e), respectively.

Suppose first that C̄ is small and �̄ is O(1). Then in the core equation (3.5) the right-hand
side, when plotted as a function of αc, is exponentially small of order c = exp(−1/C̄) at zero αc

but rises rapidly as αc increases to O(C̄) and it asymptotes towards unity as αc increases further.
The influence of the (1 − αc) term then gradually reduces the right-hand side over a slower scale.
The function dt̄/dαc therefore decreases rapidly from its initial exponentially large value at zero
αc to unity when αc becomes larger than O(C̄) but still small. Clearly αc as a function of time
begins small, of order C̄, and remains so for a considerable time. This slow effect on the reaction
when the initial temperature is small makes sense physically. The main evolution of αc into an
O(1) quantity occurs when time t̄ is exponentially large,

t̄ = exp

(
1

C̄

)
+ ¯̄t (3.18)
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with ¯̄t being of O(1) and the governing equation then becoming

dαc

d¯̄t = (1 − αc) exp

(
− 1

�̄αc

)
. (3.19)

See Figure 12(a). The march back in time corresponds to αc being small, such that (3.19) gives,
after some working,

αc ∼ �̄−1(ln | ¯̄t |)−1 (3.20)

which confirms the slow progress of the evolution. The march forward in time is effectively
displayed in Figure 12(a), giving rise to αc tending to unity at large ¯̄t.

Second, if on the other hand C̄ is of order unity but �̄ is small as in Figure 12(b), then the
contribution �̄αc in (3.5) simply plays a negligible part throughout the interaction. The governing
equation reduces to a linear ODE for αc to leading order and the form

αc = 1 − exp(−ct̄) (3.21)

describes the solution, where c = exp(−1/C̄) is now a given O(1) constant in the present case of
C̄ being uniform. The time scale in terms of t̄ thus remains of order unity. The low reaction rate
here means physically that the core temperature remains constant to leading order.

Third, if C̄ and �̄ are both small as in Figure 12(c) and of order �, say �( ¯̄C, ¯̄�) respectively,
then again consideration of the graph of the function dt̄/dαc is helpful. Its initial value is large,
being 1/c, and the function remains large and positive through the entire interaction, reaching an
exponentially large minimum value of

¯̄��−1( ¯̄C + ¯̄�)−2 exp(�−1( ¯̄C + ¯̄�)−1), (3.22)

at the value

αc = 1 − �( ¯̄C + ¯̄�)2

¯̄�
, (3.23)

i.e. near the end of the reaction. Hence, the time t̄ taken for the reaction to be completed such that
αc grows from zero to unity is exponentially large again. The physical sense is similar to that in
the case of (3.18)–(3.20) concerning relatively slow reaction.

By contrast, if either or both of C̄ and �̄ is or are large, then the representative scale t̄ remains
O(1), with αc given by 1 − exp(−t̄) and the scaled temperature ūc given by

ūc = C̄ + �̄(1 − exp(−t̄)). (3.24)

An example is shown in Figure 12(d). The maximum temperature C̄ + �̄ is approached at times
t̄ which are large but not as large as in the cases of (3.18)–(3.20) and (3.23).

The effect of the sidewall temperature B̄ is felt only in the wall layer, at least for times t̄ of order
unity because the core is unaffected to leading order by diffusion in x. This is discussed further
now. The case of relatively small B̄, corresponding to a relatively low temperature imposed at the
wall, is also of some mathematical concern although of little likely relevance to real application.
Since any ū of O(1) leads to αe tending to unity at large t̄, the similarity solution (3.11)–(3.12)
still holds then for most ξ values but with the inner boundary condition of ū(= f1 to leading order)

equalling 0+ at ξ = 0+ and ū tending linearly to zero with ξ . Hence, if B̄ = εB̂ say with ε being
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small and B̂ of order unity, then there is a sublayer close to the wall where ξ , ū are both O(ε) and
ū is affected by the low wall temperature. The second stage where t̂ is O(1) is perhaps clearer to
analyse. Here the majority of the domain is governed by (3.15)–(3.17) but subject to ū → 0+ as
x → −1+ and similarly as x → 1− . So the behaviour

ū ∼ (x + 1)β(t̂) at x = −1+ (3.25)

is expected near the left-hand wall where β is an order-unity function of t̂ determined by the
forward-marching solution of (3.15)–(3.17). Essentially, the same response occurs at the right-
hand wall. The function β(t̂), and indeed the entire ū(x, t̂) solution, tends to zero at large times t̂,
while at small times β(t̂) is large, varying as t̂−1/2. Near the wall on the other hand a sublayer is
present in which

ū = εû + · · · , α = α̂ + · · · , with x = −1 + εx̂, (3.26)

where α̂ is non-trivial because of the low wall temperature. The governing equations (2.6a),
(2.6b) in this sublayer reduce to

∂2û

∂ x̂2
= 0, (3.27a)

κ̄
∂α̂

∂ t̂
= (1 − α̂) exp

(
− 1

εû

)
. (3.27b)

Here (3.27a) gives, on matching with (3.25),

û = â(t̂) + x̂β(t̂), (3.28)

with â = B̂ independently of t̂ due to the wall condition. The balance in (3.27b) which is akin to
those operating in (3.18)–(3.24) is associated with a critical size of ε being

ε = −G/(ln κ̄), (3.29)

with G being an O(1) positive constant and a critical temperature being reached at which

û = G−1 + εu1 + · · · (3.30)

where (3.27b) becomes at leading order

∂α̂

∂ t̂
= (1 − α̂) exp(G2u1(x̂, t̂)). (3.31)

The form (3.31) containing O(1) quantities ensures, when combined with (3.28), (3.30), that α̂

tends to unity as time increases over the present scale.

3.3 Comparisons

The asymptotic description in the previous two subsections appears to capture all the major trends
of the full solutions as κ or κ̄ is decreased and hence the major trends for the realistic case also
in which κ and κ̄ are extremely small. The main quantitative comparisons are shown by means
of the arrows displayed in Figure 12(e) as well as the round markers in Figure 9, for the same
case. To clarify, the arrows in Figure 12(e), which indicate the maximum α value reached and
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the time taken for α to attain the average of its maximum and its initial value, tend to confirm
the agreement seen in Figure 9. See also the comparisons presented in Figure 11. Overall, the
analysis is seen to ‘work’ for values of κ̄ below about 0.01 say and hence for the extremely small
κ̄ values of the realistic setting.

Further it is notable that the maximum temperature attained can be predicted in analytical form
very readily from the core responses: the maximum is

ūmax = �̄ + C̄ (3.32)

in non-dimensional terms. This is because of the result (3.4) in the core when αc tends to unity
at the completion of the reaction. In dimensional terms (3.32) yields

uc,max = 3840oK (3.33)

for the maximum, based on the parameters (C̄, �̄, E/R) being (0.01, 0.15, 24 000) as represen-
tative values from Table 1. The predicted maximum temperature in (3.32), (3.33) is independent
of the imposed wall temperatures and is of much potential interest.

4 Computational properties for three reactants

A multi-kinetic reaction process is now introduced into the model to provide an improved repre-
sentation of the physical and chemical processes that may occur in practice. See [14] for further
detail of the model. Following the work of [20], [15], for example, we consider here a three-step
reaction to model better the endothermic and exothermic chemical processes.

The diffusion process with a three-step reaction present is described by

ρcv

∂u

∂t
= κ

∂2u

∂x2

+ NAQ1Z1 exp
(
− E1

Ru

)
+ NBQ2Z2 exp

(
− E2

Ru

)
+ N2

CQ3Z3 exp
(
− E3

Ru

)
. (4.1)

Coupled with (4.1) are the following ODEs governing the rates of change of the reactions NA,
NB, NC , respectively,

ṄA = −NAZ1

ρ
exp

(
− E1

Ru

)
, (4.2)

ṄB = NAZ1

ρ
exp

(
− E1

Ru

)
− NBZ2

ρ
exp

(
− E2

Ru

)
, (4.3)

ṄC = NBZ2

ρ
exp

(
− E2

Ru

)
− N2

CZ3

ρ
exp

(
− E3

Ru

)
, (4.4)

and

NA + NB + NC + ND = 1. (4.5)

Here the dots denote derivatives with respect to time. The constants Q1–Q3 in the reactant equa-
tions stand for the heats of reaction, whereas E1–E3 are the corresponding activation energy
constants of the reactions and Z1–Z3 are the corresponding pre-exponential constants. Table 2
presents a list of realistic values for the parameters here.
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Table 2. Additional parameters used in ODTX model for HMX explosive assuming multi-step
kinetics as in [20], converted into SI units

Parameter with units Symbol Value

Heat of first reaction (J/kg) Q1 −4.2e5
Heat of second reaction (J/kg) Q2 1.26e6
Heat of third reaction (J/kg) Q3 5.04e6
Activation energy of first reaction (J/mol) E1 2.21e5
Activation energy of second reaction (J/mol) E2 1.85e5
Activation energy of third reaction (J/mol) E3 1.43e5
First pre-exponential constant (kg m−3 s−1) Z1 1.4e24
Second pre-exponential constant (kg m−3 s−1) Z2 1.9e19
Third pre-exponential constant (kg m−3 s−1) Z3 1.5e15

The boundary and initial conditions for u(x, t) are set as in (2.4a), (2.4b), while the initial
conditions on the reactants are

(NA, NB, NC) = (1, 0, 0) at t = 0. (4.6)

That leaves our task then as solving (4.1)–(4.4) subject to (2.4a), (2.4b), (4.6). No boundary
conditions need to be set on the reactant quantities because of the absence of spatial derivatives
in the balances (4.2)–(4.4). The value of NA at the boundary where u = uA can be obtained directly
from integration of (4.2) and application of (4.6) as

NA = exp

(
−Z1

ρ

t

exp
(

E1
RuA

)
)

. (4.7)

Hence, NB is given by solving (4.3) combined with (4.7) to yield

NB =
A exp

(
−A t

exp(C) + D
)

B exp(C) − A exp(D)
− A exp(D)

B exp(C) − A exp(D)
exp

(
−B

t

exp(D)

)
, (4.8)

where A = Z1
ρ

, B = Z2
ρ

, C = E1
RuA

and D = E2
RuA

. This is shown graphically in Figure 13, while NC

then stems from (4.4) with (4.7), (4.8), giving the numerical solution presented in Figure 14.
These two figures are for the relatively mild parameter values shown in Table 3 together with the
boundary condition uA = 45 which again is comparatively mild.

The computational approach of Section 2 was extended and adapted for the present task.
Second-order accuracy in time and space and appropriate lagging were notable features again.
Results are plotted in Figure 15. More realistic cases will be re-addressed in Section 6 after the
discussion of analytical properties in the following section.

5 Analytical solutions and comparisons for three reactants

Turning to asymptotic analysis for the multi-kinetics interactions, we observe that in effect Qn,
Zn terms here replace the ρ� and A terms in the one-reactant case in Section 2 and the N’s here
correspond to the reactant α in the single-reactant case. We use the same scalings as before in
Section 3, that is, we set t = A−1 t̄ and u = E

R ū and expand the solution. In addition, to account
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FIGURE 13. The numerical approximation (using ODE45 in MATLAB) compared with the analytical
solution of equation (4.3).
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FIGURE 14. The numerical approximation (using ODE45 in MATLAB) of equation (4.4).
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FIGURE 15. The numerical solutions ū, NA, NB and NC satisfying (4.1)–(4.4), using a second-order
numerical scheme, with the relatively mild parameters supplied in Table 3.

for the new parameters Zn = AZ̄nρ and En = EĒn, we choose E2 as a representative value of E to
try to ensure Z̄n ∼O(1), Ēn ∼O(1), Nn ∼O(1) and x ∼O(1) to begin. We have again used mild
values of En, Zn and A in the first instance, see Table 3 for exact values. With the scalings above,
the controlling equations become

∂ ū

∂ t̄
= κ̄

∂2ū

∂x2
+ NA�̄1 exp

(
− Ē1

ū

)
+ NB�̄2 exp

(
− Ē2

ū

)
+ N2

C�̄3 exp
(
− Ē3

ū

)
, (5.1)

dNA

dt̄
= −NAZ̄1 exp

(
− Ē1

ū

)
, (5.2)

dNB

dt̄
= NAZ̄1 exp

(
− Ē1

ū

)
− NBZ̄2 exp

(
− Ē2

ū

)
, (5.3)

dNC

dt̄
= NBZ̄2 exp

(
− Ē2

ū

)
− N2

CZ̄3 exp
(
− Ē3

ū

)
, (5.4)

where κ̄ = κ
ρcvA which when using the full parameter values gives us κ̄ ≈ 3.8863e − 27 and

�̄n = QnZ̄n

(
R

cvE2

)
, for n = 1, 2, 3. When using relatively mild parameter values, we have instead

A = 200, κ̄ = 9.7388e − 10. Thus, κ̄ is the most extreme parameter in both cases, using the
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Table 3. Mild parameters used in analysis of Sections 4, 5

Parameter with units Symbol Value

Heat of first reaction (J/kg) Q1 −10
Heat of second reaction (J/kg) Q2 20
Heat of third reaction (J/kg) Q3 30
Activation energy of first reaction (J/mol) E1 70
Activation energy of second reaction (J/mol) E2 60
Activation energy of third reaction (J/mol) E3 50
First pre-exponential constant (kg m−3 s−1) Z1 300
Second pre-exponential constant (kg m−3 s−1) Z2 200
Third pre-exponential constant (kg m−3 s−1) Z3 100
Pre-exponential constant (s−1) A 200

full parameter values and milder values. Hence, we base our asymptotic analysis on κ̄ << 1
as before in Section 3. We proceed by again separating the problem into a core and wall layers
with equations describing the behaviour in each.

The core problem is reduced for small κ̄ to equation (5.1) with a negligible ∂2ū
∂x2 term, as before

in Section 3. Hence, it follows that the quasi-ODE

dū

dt̄
= NA�̄1 exp

(
− Ē1

ū

)
+ NB�̄2 exp

(
− Ē2

ū

)
+ N2

C�̄3 exp
(
− Ē3

ū

)
, (5.5)

holds in the core, and we have the following ODEs for the reactants NA, NB and NC ,

dNA

dt̄
= −NAZ̄1 exp

(
− Ē1

ū

)
, (5.6)

dNB

dt̄
= NAZ̄1 exp

(
− Ē1

ū

)
− NBZ̄2 exp

(
− Ē2

ū

)
, (5.7)

dNC

dt̄
= NBZ̄2 exp

(
− Ē2

ū

)
− N2

CZ̄3 exp
(
− Ē3

ū

)
. (5.8)

Equations (5.5)–(5.8) can readily be solved numerically subject to the following initial conditions
at t̄ = 0,

NA(x, 0) = 1, (5.9a)

NB(x, 0) = NC(x, 0) = 0, (5.9b)

ū(x, 0) = C̄, C̄ = RC

E2
for x ∈ D. (5.9c)

In Figure 16, the ODEs (5.5)–(5.8) have been solved using the relatively mild parameter values
in Table 3.

In the wall layers, the same scaling as that in Section 3 applies, so that x = −1 + κ̄1/2x̄ at the
left-hand wall and similarly at the right-hand wall. This reduces equation (5.1) to the form

∂ ū

∂ t̄
= ∂2ū

∂x2
+ NA�̄1 exp

(
− Ē1

ū

)
+ NB�̄2 exp

(
− Ē2

ū

)
+ N2

C�̄3 exp
(
− Ē3

ū

)
, (5.10)

independently of κ̄ . To solve the reduced system comprising (5.10) with (5.2)–(5.4) computa-
tionally, we developed a finite difference scheme based closely on those of Sections 2–4. Results
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FIGURE 16. The numerical solutions (using ODE45 in MATLAB) to ū, NA, NB and NC satisfying equations
(5.5)–(5.8) in the core with relatively mild parameter values supplied in Table 3.

for the wall layer are presented in Figure 17 where we have used the relatively mild parameter
values of Table 3.

Comparisons given in Figure 18 between the above asymptotic solution and the full numer-
ical solution tend to indicate fair agreement for the milder parameter range of Table 3. These
comparisons also indicate significant computational savings using the asymptotic approach.

Further analysis of the core proves to be helpful. Thus, (5.5)–(5.8) imply that a certain non-
trivial linear combination of the left-hand sides sums to zero and so on integration ū can be
expressed in terms of the reactions in the form

ū = a1(1 − NA) − a2NB − a3NC + C̄. (5.11)

Here the initial conditions in (5.9), which include C̄, determine the constant of integration, and
the constant coefficients are given by

an =
∑
(n,3)

�̄n

Z̄n
(5.12)

for n = 1, 2, 3. We are left with four equations (5.6)–(5.8), (5.11) for NA, NB, NC , ū. Sample
solutions of this nonlinear system presented in Figure 19 show (NA, NB, NC) starting as (1, 0, 0)
in line with (5.9) and eventually tending to (0, 0, 0) at sufficiently large times, with ū increasing
monotonically along with other interesting behaviour during the evolution. The dashed curve for
example shows the ND evolution.
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FIGURE 17. The wall solutions ū, NA, NB and NC satisfying (5.10), with the mild parameters supplied in
Table 3. Note that the x̄ range has been truncated to facilitate a numerical implementation.

(a) (b)

FIGURE 18. Finite difference solutions to the full non-asymptotic problem shown (right) and the asymptotic
wall problem (left) using the mild parameters in Table 3. For the non-asymptotic problem, we set T̄max = 1.
In order to compare the solutions directly, we multiply the non asymptotic u by R

E .

A phase-plane view is also useful here. It follows from treating NB, NC as functions of NA by
virtue of eliminating t̄ explicitly from (5.6)–(5.8) through division to yield the two equations

dNB

dNA
= −1 + Z̄21NBN−1

A exp

(
Ē12

ū

)
, (5.13)
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FIGURE 19. The numerical approximation to equations (4.5), (5.6)–(5.8), (5.11). Here the values D̄ = 1,
dt = 0.005, �̄1 = 1, �̄2 = 2, �̄3 = 3, Z̄1 = 0.5, Z̄2 = 1, Z̄3 = 1.5, Ē1 = 1.5, Ē2 = 1 and Ē3 = 0.5 have been
used.

dNC

dNA
= −Z̄21NBN−1

A exp

(
Ē12

ū

)
+ Z̄31N2

CN−1
A exp

(
Ē13

ū

)
, (5.14)

with constants Z̄21 = Z̄2/Z̄1, Z̄31 = Z̄3/Z̄1, Ē12 = Ē1 − Ē2, Ē13 = Ē1 − Ē3. The system is uncou-
pled in the sense that (5.13) together with (5.11) acts to determine NB and then (5.14) with (5.11)
determines NC in principle. The value of NA is taken to start at unity and decrease monotonically
to zero. Solutions of (5.13), (5.14) with (5.11) are displayed in Figure 20 as NB(NA), NC(NA),
ū(NA) plots and in Figure 21 in the NB − NC plane. Subsequently from these solutions, ū can be
found from (5.11), and the time-dependence can be found by addressing (5.6) as an equation for
t̄ as a function of NA.

There are seven independent parameters in the phase plane of (5.13), (5.14), namely

(a1, a2, a3, C̄, Ē12, Z̄21, Z̄31)/(Ē13), (5.15)

or combinations thereof, and in the numerical work leading to the above figures we took those
parameters to be very mild in value. The alternative of singling out Ē12 instead of Ē13 would
also cover the entire parameter space at issue but in a different way and with equivalent results.
We set Ē13 equal to unity in the numerical study without loss of generality because here only
the ratios of coefficients matter. By contrast, typical numerical values of the parameters for the
realistic case mentioned earlier turn out to be
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FIGURE 20. The numerical approximation to equations (5.11), (5.13), (5.14) for two cases; case 1 is where
Z̄21 = 0.4 and Z̄31 = 0.16 displayed by the solid lines (blue, red and black) and case 2 is where Z̄21 = 0.2
and Z̄31 = 0.04 displayed by the green lines. In both cases, D̄ = 1, Ē12 = 0.46, Ē13 = 1, a1 = 0.5, a2 = 0.53
a3 = 0.43 and dNA = 0.000005. The dashed lines represent an accuracy check where the effective numerical
step dNA is halved.

(0.498, 0.533, 0.427, 1, 0.462, 1.36e − 5, 1.070e − 9), (5.16)

approximately. The small values of Z̄21, Z̄31 here suggest consideration of an asymptotic analysis,
guided by the insight provided in the single-reactant case of Section 3. Taking ε = Z̄21 as small
and Z̄31 as of order ε2, we find that there are at least three distinct parts of the NA range to discuss
for (5.13), (5.14). For the majority of the range where NA is of order unity the solution expands as

NB = NB0 + εNB1 + · · · , (5.17)

NC = εNC1 + · · · , (5.18)

ū = ū0 + εū1 + · · · , (5.19)

where ū0 = (1 − NA)(a1 − a2) + C̄. Substitution into (5.11), (5.13), (5.14) gives successively

NB0 = 1 − NA, (5.20)

dNB1

dNA
= (1 − NA)N−1

A exp

(
Ē12

(a1 − a2)(1 − NA) + C̄

)
, (5.21)
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FIGURE 21. The numerical approximation to equations (5.11), (5.13), (5.14) for two cases; case 1 is where
Z̄21 = 0.4 and Z̄31 = 0.16 represented by the solid blue line and case 2 is where Z̄21 = 0.2 and Z̄31 = 0.04
represented by the solid red line. In both cases, D̄ = 1, Ē12 = 0.46, Ē13 = 1, a1 = 0.5, a2 = 0.53 a3 = 0.43
and dNA = 0.000005. Here the dashed black line demonstrates an accuracy check where dNA has been
halved.

dNC1

dNA
= −dNB1

dNA
, (5.22)

ū1 = −a2NB1 − a3NC1. (5.23)

The numerical value of ū0 at NA = 0.5 is 0.985, which is suitably close to the computational
finding in Figure 20. The trends of (5.20)–(5.22) are similarly close to those in the figure; for
example, the perturbation in NB about the straight line (5.20) is nearly equal and opposite to the
curve of NC indicated by (5.22). The next significant part of the range (apart from a benign region
where NA is of order ε) occurs when NA is exponentially small such that

NA = exp

(−r

ε

)
with NB of O(1). (5.24)

Here the variable r is typically O(1). Integration of (5.13) and matching to (5.17) with (5.20) at
small r gives us the solution

NB = exp(−c1r), (5.25)

at leading order, where c1 = exp
(

Ē12
a1−a2+C̄

)
is an O(1) constant. The NB solution therefore tends

to zero as NA tends to zero over this scale (when r tends to infinity), in the form Nc1ε

A , a form
which agrees with the balance in (5.13). The corresponding NC , however, is given by 1 − NB and
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so tends to unity then. This leads to the final part of the NA range in which NA is even smaller,
specifically

NA = exp
(
− s

ε2

)
with NC of O(1). (5.26)

Here we find that the leading-order solution matching to that of the previous part of the range at
small s values is

NC = c5

(s + c5)
, (5.27)

where c5 = exp
(
− Ē13

a1−a2+C̄

)
approximately is an O(1) positive constant. The NC solution

now tends to 0+ as NA tends to zero over this scale (when s tends to infinity), in the form
c5/(−ε2 ln(NA)), a form which is in balance with (5.14). The slowness of the approach of NC

to zero here compared with that for NB is notable. The trends in (5.24)–(5.27) are consistent
with the computational results for NB, NC in Figure 20 at small NA values. The associated time
dependence follows from inversion of (5.6); for instance, the first part of the NA range ends with

NA ∝ exp

(
− Z̄1 t̄

c6

)
as t̄ → ∞, (5.28)

with c6 = exp
(
− Ē1

a1−a2+C̄

)
being a known O(1) positive constant.

The analytical trends above are consistent with the full computational properties. In addition,
the result (5.11) implies that the maximum of ū is a1 + C̄; in dimensional terms, this gives for
representative realistic conditions

ūc,max = 4685 degrees K, (5.29)

which again is of potential interest.

6 Conclusions

The present work is believed to fill some of the gap in understanding concerned with interaction
between burning solid and gas during combustion, through detailed study of thermal and reac-
tant properties. Single-step reactions have been modelled first using a simple Arrhenius model.
A treatment by direct numerical simulation of the fully coupled system involved has been com-
plemented by a treatment founded on asymptotic analysis, with the predictions from the two
approaches being found to agree closely in quantitative terms. The model was then extended
to include three-step reactions and again the combination of simulation and asymptotic analysis
was applied, yielding close agreement between results from the full reaction-diffusion problem
and those from the asymptotic problem using a mild set of parameters. This verification of the
asymptotic model now makes tractable the solution of the reaction-diffusion problem over the
parameter ranges of real concern without the need for the extremely fine spatial resolution to
capture the behaviour near the wall that is needed in direct treatment of the full problem. This
has important implications for the application of the model to real problems, where often it is
desired to perform parametric studies within a reasonable timescale. Such studies can be greatly
hampered by the computational times needed, so this is a significant potential benefit of the work.
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This investigation that is based on first principles tends to suggest that scenarios with ide-
alised configurations and analytical modelling can indeed provide significant insight and make
it possible to deepen understanding of physical processes arising in real situations. In particu-
lar, the values of crucial parameters in the models studied turn out to be notably (not to say
extremely) small or large, and this leads not only to the helpful comparisons described in the
previous paragraph but also to the idea that the asymptotic treatment could act as a viable alter-
native or supplement to direct numerical simulation. Thus, the majority of the spatial domain
suffers virtually no diffusion effects, asymptotically, over the main temporal scale of interaction
and so the bulk properties of interest are then calculable in a fairly ready fashion. This simplify-
ing treatment adds to the portfolio of methodologies available in the area. In particular, we have
shown that the asymptotic approach can bring savings in computational resources.

However, there is an issue that may limit the application of the methods of this paper or at least
require care in its application. It has been noted that our model is a continuum one and that the
thickness of the boundary layer is very small, of the order of 10−12 times the macroscopic dimen-
sion of the explosive perpendicular to the surface. Under circumstances where the explosive may
be treated as entirely homogeneous, such as for a single macroscopic crystal of explosive, this
poses no difficulties and the model may be directly applied. However, many HEs contain small
crystals of the order of 10 − 50 µm embedded in a polymer binder. Here the boundary layer is
but a tiny fraction of the crystal size. There may therefore be materials of different conductivi-
ties crossing the whole or part of the thickness of the boundary layer. It may be possible to use
volume averaged properties effectively with the analysis we have presented, suitably adjusting
the parameters we have used in a straightforward manner. However, we acknowledge we may
instead need to consider a refinement of our analysis, possibly addressing three-dimensional
effects, at the mesoscopic rather than continuum scale, to reach a physically realistic model. This
issue, unforeseen at the outset of the research, may well have very important implications for
understanding the physics of burning.

A final point here, particularly relevant to the point just discussed, is that the model of interac-
tion evolving between thermal diffusion effects and a number of reactants has been considered
for one spatial dimension only. The present approach, especially the asymptotic treatment but
to some extent the direct treatment also, indicates that reliable predictions for two- and three-
dimensional configurations should be quite possible [16]. This is simply because diffusion is
virtually negligible (see previous paragraph) and so the interaction process is pointwise, unaf-
fected by the containing geometry. If we accept that then the task of prediction in both the
two- and the three-dimensional cases becomes a relatively simple calculation. The potential
for savings in computational resources as mentioned above is even greater for two-and three-
dimensional cases, which, of course, are prevalent in reality. We would add that the application
of asymptotics helps the modeller gain deeper insights into the physics of the modelled situation.
It can provide useful independent verification checks to give greater confidence in past and future
model predictions, where direct numerical simulations are applied.
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