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In this paper, we carry out stochastic comparisons of the largest order statistics arising
from multiple-outlier gamma models with different both shape and scale parameters in the
sense of various stochastic orderings including the likelihood ratio order, star order and
dispersive order. It is proved, among others, that the weak majorization order between the
scale parameter vectors along with the majorization order between the shape parameter
vectors imply the likelihood ratio order between the largest order statistics. A quite gen-
eral sufficient condition for the star order is presented. The new results established here
strengthen and generalize some of the results known in the literature. Numerical examples
and applications are also provided to explicate the theoretical results.

1. INTRODUCTION

Order statistics play a prominent role in statistical inference, reliability theory, life testing,
operations research, and many other areas. The kth order statistic Xk:n arising from the
sample X1, . . . , Xn corresponds to the lifetime of a (n− k + 1)-out-of-n system, which is
a very popular structure of redundancy in fault-tolerant systems that have been studied
extensively. In particular, Xn:n and X1:n correspond the lifetimes of parallel and series
systems, respectively. A large number of papers have appeared on various aspects of order
statistics when the observations are independent and identically distributed (i.i.d.), but for
the case when observations are non-i.i.d., not too much work is available in the literature
due to the complexity of the distribution theory; see, for example, David and Nagaraja [9],
Balakrishnan and Rao [3,4] and Balakrishnan [2] for comprehensive discussions on this topic.

Pledger and Proschan [23] may be the first to stochastically compare the order statistics
arising from independent but non-identically distributed (i.ni.d.) exponential random vari-
ables. After that, many researchers have paid attentions to this topic and established colorful
results, including Proschan and Sethuraman [24], Boland, EL-Neweihi, and Proschan [6],
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Hu [11], Kochar and Rojo [15], Dykstra, Kochar, and Rojo [10], Khaledi and Kochar [13],
Bon and Pǎltǎnea [8], Kochar and Xu [16], Pǎltǎnea [22], Zhao and Balakrishnan [29], Joo
and Mi [12], Mao and Hu [18], Khaledi, Farsinezhad, and Kochar [14] and Kochar and
Xu [17]. Gamma distribution is one of the most commonly used distributions in reliabil-
ity and life testing. If X is a gamma random variable with shape parameter r and scale
parameter λ, in its standard form X has the probability density function

f(x; r, λ) =
λr

Γ(r)
xr−1e−λx, x > 0.

It is a quite flexible family of distributions with decreasing, constant, and increasing failure
rates when 0 < r < 1, r = 1 and r > 1, respectively. Meanwhile, gamma distribution has
been widely used to describe the lifetime of components in shock model and minimal repairs.
In this paper, we will focus our attentions on the stochastic comparisons of the largest order
statistic arising from multiple-outlier gamma models with different both shape and scale
parameters.

Let X1 and X2 be independent gamma variables with Xi having shape parameter ri and
scale parameter λi, i = 1, 2, and X∗

1 ,X
∗
2 be another set of independent gamma variables

with X∗
i having shape parameter r∗i and scale parameter λ∗i , i = 1, 2. Suppose r1 ≥ r2,

r∗1 ≥ r∗2 and λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2. Zhao and Zhang [32] proved that

(r1, r2)
m� (r∗1 , r

∗
2), (λ1, λ2)

w� (λ∗1, λ
∗
2) =⇒ X2:2 ≥lr X

∗
2:2. (1)

The pertinent definitions and notions such as stochastic orders, majorization and related
orders may refer to Barlow and Proschan [5], Bon and Pǎltǎnea [7], Marshall and Olkin
[19], Shaked and Shanthikumar [27] and Marshall, Olkin, and Arnold [20]. Furthermore, it
was also proved that, if r1 = r∗1 ≥ r∗2 = r2, λ1 ≤ λ2, and λ∗1 ≤ λ∗2, then

λ2

λ1
≥ λ∗2
λ∗1

=⇒ X2:2 ≥� X
∗
2:2. (2)

With the help of (2), they further proved, if r1 = r∗1 ≥ r∗2 = r2 and λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2, then,

(λ1, λ2)
w� (λ∗1, λ

∗
2) =⇒ X2:2 ≥disp X

∗
2:2. (3)

These results in (1)–(3) generalize and strengthen some results established earlier in the
literature for the exponential case. It should be also mentioned that Zhao [28] and Zhao
and Balakrishnan [30] established some results similar to those in (1) and (3) for the special
case when all the shape parameters are common.

On the other hand, Zhao and Balakrishnan [31] studied the stochastic properties on
the largest order statistics arising from multiple-outlier gamma models with common shape
parameter. To be specific, let X1, . . . , Xn be independent random variables following the
multiple-outlier gamma model with common shape parameter r > 0 and scale parameters

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

),

where p, q ∈ Z+ = {1, 2, . . .} and p+ q = n. For simplicity, we will use λ11p to denote
(λ1, . . . , λ1︸ ︷︷ ︸

p

), where 1p is a p-dimensional vector with all values being 1. Therefore, the

scale parameters vector can be written as (λ11p, λ21q). And let Y1, . . . , Yn be another set
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of independent random variables following the multiple-outlier gamma model with common
shape parameter r and scale parameters (λ∗11p, λ

∗
21q). They proved, under the condition

λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2 and 0 < r ≤ 1, that

(λ11p, λ21q)
w� (λ∗11p, λ

∗
21q) =⇒ Xn:n ≥lr Yn:n (4)

and

(λ11p, λ21q)
p

� (λ∗11p, λ
∗
21q) =⇒ Xn:n ≥hr[disp] Yn:n. (5)

Moreover, they further obtained that

λ2

λ1
≥ λ∗2
λ∗1

=⇒ Xn:n ≥� Yn:n. (6)

However, all the results in (4)–(6) require that all the shape parameters are common
and restricted in the interval (0,1]. Motivated by this, we will pursue the ordering prop-
erties on the largest order statistics arising from multiple-outlier gamma models having
different shape parameters. Let X1,X2, . . . , Xn be independent random variables following
the multiple-outlier gamma model with respective shape parameters and scale parameters
(r11p, r21q), (λ11p, λ21q), where p, q ∈ Z+ and p+ q = n. Let Y1, Y2, . . . , Yn be another set
of independent random variables following the multiple-outlier gamma model with respec-
tive shape parameters and scale parameters (r∗11p, r

∗
21q), (λ∗11p, λ

∗
21q). Under the conditions

that p ≥ q, r1 ≥ r2, r∗1 ≥ r∗2 and λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2, it is proved that

(r1, r2)
m� (r∗1 , r

∗
2), (λ1, λ2)

w� (λ∗1, λ
∗
2) =⇒ Xn:n ≥lr Yn:n. (7)

We also prove that, if r1 = r∗1 ≥ r∗2 = r2, λ1 ≤ λ2 and λ∗1 ≤ λ∗2, then

λ2

λ1
≥ λ∗2
λ∗1

=⇒ Xn:n ≥� X
∗
n:n. (8)

Based on (8), we establish that, if p ≥ q, r1 = r∗1 ≥ r∗2 = r2 and λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2, then,

(λ1, λ2)
w� (λ∗1, λ

∗
2) =⇒ Xn:n ≥disp X

∗
n:n. (9)

It can be seen that the new results in (7)–(9) generalize and strengthen all the results in
(1)–(6) established earlier in the literature.

Throughout this paper, the term increasing is used for monotone non-decreasing and
decreasing is used for monotone non-increasing.

2. LIKELIHOOD RATIO ORDERING

In this section, we stochastically compare the largest order statistics arising from two
multiple-outlier gamma samples in terms of the likelihood ratio ordering. First, we present
several lemmas that will be helpful for proving the main results. The first one turns out to be
a useful tool for showing the monotonicity of a fraction whose numerator and denominator
are integrals or summations.

Lemma 2.1 (Misra and van der Meulen [21]): Let Θ be a subset of a real line and U be a
nonnegative random variable having a cumulative distribution function (c.d.f) belonging
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to a stochastically ordered family P = {H(·|θ), θ ∈ Θ}; that is, for θ1, θ2 ∈Θ, H(·|θ1) ≤st

[≥st]H(·|θ2) whenever θ1 < θ2. Suppose a real function ψ(u, θ) on � · Θ is measurable in u
for each θ such that Eθ[ψ(U, θ)] exists. Then the following hold:

(i) Eθ[ψ(U, θ)] is increasing in θ if ψ(u, θ) is increasing in θ and increasing [decreasing]
in u;

(ii) Eθ[ψ(U, θ)] is decreasing in θ if ψ(u, θ) is decreasing in θ and decreasing [increasing]
in u.

The next two lemmas can be found in Zhao [28] and Zhao and Zhang [32], respectively.

Lemma 2.2 (Zhao [28]): For r > 0 and y ∈ �+, the function

fr,y(x) = x+
yr−1e−xy∫ y

0
ur−1e−xudu

is increasing in x ∈ �+.

Lemma 2.3 (Zhao and Zhang [32]): For λ > 0 and t ∈ �+, the function

gλ,t(r) = r − tre−λt∫ t

0
ur−1e−λudu

is increasing in r ∈ �+.

Lemma 2.4: Suppose 0 < λ1 ≤ λ2, 0 < λ∗1 ≤ λ∗2, p ≥ q ≥ 1 (p, q ∈ Z+) and 0 < r2 ≤ r1. If

(λ1, λ2)
m� (λ∗1, λ

∗
2), then the function

Ψ(y, t) =
pe−λ1(1−y)t + qyr1−r2e−λ2(1−y)t

pe−λ∗
1(1−y)t + qyr1−r2e−λ∗

2(1−y)t

is increasing in t ∈ �+, while is decreasing in y ∈ (0, 1).

Proof: For simplicity, denote λ1(1 − y) = a1, λ2(1 − y) = a2, λ
∗
1(1 − y) = a∗1, and λ∗2(1− y) =

a∗2, which satisfied (a1, a2)
m� (a∗1, a

∗
1). Taking the derivative of Ψ(y, t) with respect to t gives

rise to

Ψ′
t(y, t)

sgn
=

[−a1pe
−a1t − a2qy

r1−r2e−a2t
] [
pe−a∗

1t + qyr1−r2e−a∗
2t

]

− [
pe−a1t + qyr1−r2e−a2t

] [
−a∗1pe−a∗

1t − a∗2qy
r1−r2e−a∗

2t
]

= (a∗1 − a1)p2e−(a∗
1+a1)t + (a∗2 − a2)q2y2(r1−r2)e−(a∗

2+a2)t

+ (a∗2 − a1)pqyr1−r2e−(a∗
2+a1)t + (a∗1 − a2)pqyr1−r2e−(a∗

1+a2)t

≥ q2e−(a∗
2+a2)t [a∗1 − a1 + a∗2 − a2] + [a∗2 − a1 + a∗1 − a2] pqyr1−r2e−(a∗

1+a2)t

= 0,

where the last inequality holds due to a1 + a2 = a∗1 + a∗2, p ≥ q and y ∈ (0, 1). Then, Ψ(y, t)
is increasing in t ∈ �+.
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We next prove that, for each fixed t ∈ �+, the function Ψ(y, t) is decreasing in y ∈ (0, 1).
Notice that

Ψ′
y(y, t)

sgn
=

[
pλ1te

−λ1(1−y)t + q(r1 − r2)yr1−r2−1e−λ2(1−y)t + qλ2ty
r1−r2e−λ2(1−y)t

]

×
[
pe−λ∗

1(1−y)t + qyr1−r2e−λ∗
2(1−y)t

]

−
[
pλ∗1te

−λ∗
1(1−y)t + q(r1 − r2)yr1−r2−1e−λ∗

2(1−y)t + qλ∗2ty
r1−r2e−λ∗

2(1−y)t
]

×
[
pe−λ1(1−y)t + qyr1−r2e−λ2(1−y)t

]
= p2(λ1 − λ∗1)te

−(λ1+λ∗
1)(1−y)t + q2(λ2 − λ∗2)ty

2(r1−r2)e−(λ2+λ∗
2)(1−y)t

+ pqe−(λ2+λ∗
1)(1−y)tyr1−r2−1[yt(λ2 − λ∗1) + (r1 − r2)]

+ pqe−(λ1+λ∗
2)(1−y)tyr1−r2−1[yt(λ1 − λ∗2) − (r1 − r2)]

≤ p2e−(λ1+λ∗
1)(1−y)t[(λ1 − λ∗1) + (λ2 − λ∗2)]t

+ pqe−(λ1+λ∗
2)(1−y)tyr1−r2−1[yt(λ1 + λ2 − λ∗1 − λ∗2)]

= 0,

where the last inequality holds due to p ≥ q ≥ 0, y ∈ (0, 1) and λ1 + λ2 = λ∗1 + λ∗2. So,
Ψ(y, t) is decreasing in y ∈ (0, 1), and the proof is completed. �

Lemma 2.5: Suppose 0 < r2 ≤ r1, 0 < r∗2 ≤ r∗1, p ≥ q ≥ 1 (p, q ∈ Z+) and b ≥ 0. If

(r1, r2)
m� (r∗1 , r

∗
2),

then the function

ν(y, t) =
pyr2eb(1−y)t + qyr1

pyr∗
2 eb(1−y)t + qyr∗

1

is increasing in t ∈ �+, while is decreasing in y ∈ (0, 1).

Proof: It is known from the assumption that r2 ≤ r∗2 ≤ r∗1 ≤ r1 and r1 + r2 = r∗1 + r∗2 .
Taking the derivative of ν(y, t) with respect to t yields that

ν′t(y, t)
sgn
=

[
b(1 − y)pyr2eb(1−y)t

] [
pyr∗

2 eb(1−y)t + qyr∗
1

]

−
[
b(1 − y)pyr∗

2 eb(1−y)t
] [
pyr2eb(1−y)t + qyr1

]
sgn
= yr∗

1+r2 − yr∗
2+r1

sgn
= r∗2 + r1 − r∗1 − r2

≥ 0,

which implies that ν(y, t) is increasing in t ∈ �+.
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Taking the derivative of ν(y, t) with respect to y, we have

ν′y(y, t)
sgn
=

[
pr2y

r2−1eb(1−y)t − pbtyr2eb(1−y)t + qr1y
r1−1

]
×

[
pyr∗

2 eb(1−y)t + qyr∗
1

]

−
[
pr∗2y

r∗
2−1eb(1−y)t − pbtyr∗

2 eb(1−y)t + qr∗1y
r∗
1−1

]
×

[
pyr2eb(1−y)t + qyr1

]
= p2(r2 − r∗2)yr2+r∗

2−1e2b(1−y)t + pq(r2 − r∗1 − bty)yr2+r∗
1−1eb(1−y)t

pq(r1 − r∗2 + bty)yr1+r∗
2−1eb(1−y)t + q2(r1 − r∗1)yr1+r∗

1−1

≤ p2(r1 + r2 − r∗1 − r∗2)yr2+r∗
2−1 + pq(r1 + r2 − r∗1 − r∗2)yr2+r∗

1−1eb(1−y)t

= 0,

which implies that ν(y, t) is decreasing in y ∈ (0, 1). Hence, the desired result follows. �

We are now ready to present the main results of this section.

Theorem 2.6: Let X1,X2, . . . , Xn be independent random variables following the multiple-
outlier gamma model with respective shape and scale parameters (r11p, r21q), (λ11p, λ1q),
where p, q ∈ Z+ and p+ q = n. Let Y1, Y2, . . . , Yn be another set of independent random vari-
ables following the multiple-outlier gamma model with respective shape and scale parameters
(r11p, r21q), (λ21p, λ1q). Suppose r1 ≥ r2 and λ ≥ λ2 ≥ λ1, then

Xn:n ≥lr Yn:n.

Proof: To obtain the desired results, it is enough to show that Xn:n ≥rh Yn:n and the ratio
of their reversed hazard rate functions (i.e., φ(t) = rXn:n/rYn:n) is increasing in t ∈ �+.
Notice that rXn:n = prX1 + qrXn

and rYn:n = prY1 + qrYn
. Due to the facts that rXn

= rYn

and rX1 ≥ rY1 , it follows that rXn:n ≥ rYn:n . To simplify the notations, we define

hr,λ(t) =
tr−1e−λt∫ t

0
ur−1e−λudu

and

kr,λ(t) =
e−λt∫ t

0
ur−1e−λudu

.

In what follows, we need to show that the function

φ(t) =
phr1,λ1(t) + qhr2,λ(t)
phr1,λ2(t) + qhr2,λ(t)

=
ptr1−r2kr1,λ1(t) + qkr2,λ(t)
ptr1−r2kr1,λ2(t) + qkr2,λ(t)
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is increasing in t ∈ �+. Taking the derivative of φ(t) with respect to t gives rise to

φ′(t)
(
ptr1−r2kr1,λ2(t) + qkr2,λ(t)

)2

=
[
−p

(
λ1 − r1 − r2

t
+ hr1,λ1(t)

)
tr1−r2kr1,λ1(t) − q (λ+ hr2,λ (t)) kr2,λ(t)

]

× (
ptr1−r2kr1,λ2(t) + qkr2,λ(t)

)
−

[
−p

(
λ2 − r1 − r2

t
+ hr1,λ2(t)

)
tr1−r2kr1,λ2(t) − q (λ+ hr2,λ(t)) kr2,λ(t)

]

× (
ptr1−r2kr1,λ1(t) + qkr2,λ(t)

)
= p2 (λ2 + hr1,λ2(t) − λ1 − hr1,λ1(t)) t

2(r1−r2)kr1,λ1(t)kr1,λ2(t)

+ pq

(
λ+ hr2,λ(t) +

r1 − r2
t

− λ1 − hr1,λ1(t)
)
tr1−r2kr1,λ1(t)kr2,λ(t)

+ pq

(
λ2 + hr1,λ2(t) −

r1 − r2
t

− λ− hr2,λ(t)
)
tr1−r2kr1,λ2(t)kr2,λ(t)

= A+B, say,

where

A = p2 (λ2 + hr1,λ2(t) − λ1 − hr1,λ1(t)) t
2(r1−r2)kr1,λ1(t)kr1,λ2(t)

= p2 (fr1,t(λ2) − fr1,t(λ1)) t2(r1−r2)kr1,λ1(t)kr1,λ2(t)

and

B = pq

(
λ+ hr2,λ(t) +

r1 − r2
t

− λ1 − hr1,λ1(t)
)
tr1−r2kr1,λ1(t)kr2,λ(t)

+ pq

(
λ2 + hr1,λ2(t) −

r1 − r2
t

− λ− hr2,λ(t)
)
tr1−r2kr1,λ2(t)kr2,λ(t).

From Lemma 2.2, we have A ≥ 0. We next show that B ≥ 0. Since the function kr,λ(t) is
decreasing in λ, it follows that

kr1,λ1(t)kr2,λ(t) ≥ kr1,λ2(t)kr2,λ(t). (10)

On the other hand, upon applying Lemmas 2.2 and 2.3, we have

fr1,t(λ) = λ+
tr1−1e−λt∫ t

0
ur1−1e−λudu

≥ λ1 +
tr1−1e−λ1t∫ t

0
ur1−1e−λ1udu

= fr1,t(λ1) (11)

and

gλ,t(r1) = r1 − tr1e−λt∫ t

0
ur1−1e−λudu

≥ r2 − tr2e−λt∫ t

0
ur2−1e−λudu

= gλ,t(r2). (12)

Combining the inequality (11) with (12), we have

λ+ hr2,λ(t) +
r1 − r2

t
− λ1 − hr1,λ1(t) = [fr1,t(λ) − fr1,t(λ1)] +

1
t

[gλ,t(r1) − gλ,t(r2)]

≥ 0.

https://doi.org/10.1017/S0269964815000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964815000212


604 P. Zhao, Y. Hu and Y. Zhang

Then, it follows from (10) and (11) that

B ≥ pq

(
λ+ hr2,λ(t) +

r1 − r2
t

− λ1 − hr1,λ1(t)
)
tr1−r2kr1,λ2(t)kr2,λ(t)

+ pq

(
λ2 + hr1,λ2(t) −

r1 − r2
t

− λ− hr2,λ(t)
)
tr1−r2kr1,λ2(t)kr2,λ(t)

sgn
= λ2 + hr1,λ2(t) − λ1 − hr1,λ1(t)

= fr1,t(λ2) − fr1,t(λ1)

≥ 0.

Therefore, φ′(t) ≥ 0, which means that φ(t) is increasing in t ∈ �+. Hence, the proof is
completed. �

Remark 2.7: The result in Theorem 2.6 has been obtained in Zhao and Zhang [32] for the
special case p = q = 1, and in Zhao and Balakrishnan [31] for the special case r1 = r2.

Remark 2.8: The result in Theorem 2.6 still holds when replacing the condition λ ≥ λ2 ≥ λ1

with λ2 ≥ λ ≥ λ1. Here we omit the proof for simplicity because it is quite similar to that
of Theorem 2.6.

The following result, however, presents a more general version.

Theorem 2.9: Under the assumptions of Theorem 2.6, if r1 ≥ r2 and λ1 ≤ min{λ2, λ},
then

Xn:n ≥lr Yn:n.

Remark 2.10: Suppose that the condition λ ≥ λ2 ≥ λ1 in Theorem 2.6 is replaced by λ2 ≥
λ1 ≥ λ with other assumptions unchanged, the reversed hazard order still holds, that is,
Xn:n ≥rh Yn:n. Here we omit the proof because it is quite similar to that of Theorem 2.6.
The likelihood ratio order, however, cannot be established. A counterexample is given to
support this assertion in the following.

Example 2.11: Set p = 3, q = 2, r1 = 3.5, r2 = 1.5, λ1 = 2.1, λ2 = 3.8 and λ = 1.5 in
Theorem 2.6, we have λ2 ≥ λ1 ≥ λ. Figure 1 plots the ratio of the density functions fXn:n(t)
and fYn:n(t). It can be observed that the ratio fXn:n(t)/fYn:n(t) is neither increasing nor
decreasing in t ∈ (0,+∞).

Theorem 2.12: Let X1,X2, . . . , Xn be independent random variables following the multiple-
outlier gamma model with respective shape parameters and scale parameters (r11p, r21q) and
(λ11p, λ21q), where p, q ∈ Z+ and p+ q = n. Let Y1, Y2, . . . , Yn be another set of indepen-
dent random variables following the multiple-outlier gamma model with respective shape
parameters and scale parameters (r11p, r21q) and (λ∗11p, λ

∗
21q). Suppose p ≥ q, r1 ≥ r2,

λ1 ≤ λ2 and λ∗1 ≤ λ∗2. We then have

(λ1, λ2)
m� (λ∗1, λ

∗
2) =⇒ Xn:n ≥lr Yn:n.

Proof: Denote fXn:n(t)[fYn:n(t)] the density function of Xn:n[Yn:n]. It suffices to prove
that Δ(t) = fXn:n(t)/fYn:n(t) is increasing in t ∈ �+. Let rX1 [rY1 ] and rXn

[rYn
] be the
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Figure 1. Plot of fX5:5(t)/fY5:5(t) when p = 3, q = 2, r1 = 3.5, r2 = 1.5, λ1 = 2.1, λ2 = 3.8
and λ = 1.5.

reversed hazard rate functions of X1[Y1] and Xn[Yn]. We first show Xn:n ≥rh Yn:n, that is,
rXn:n ≥ rYn:n , where rXn:n and rYn:n are the reversed hazard rate functions ofXn:n and Yn:n,
respectively. Thus, we need to show prX1 + qrXn

≥ prY1 + qrYn
. From Zhao and Zhang [32],

we have X2:2 ≥lr Y2:2, which implies X2:2 ≥rh Y2:2, that is, rX2:2 ≥ rY2:2 . Based on the
definition of reversed hazard rate function, we have rX1 + rXn

≥ rY1 + rYn
. Since p ≥ q,

rX1 ≥ rY1 and rXn
≤ rYn

, it follows that prX1 + qrXn
≥ prY1 + qrYn

, that is, Xn:n ≥rh Yn:n.
It is enough to prove that

Δ(t) =
fXn:n(t)
fYn:n(t)

=
pF p−1

1 (t)F q
2 (t)f1(t) + qF p

1 (t)F q−1
2 (t)f2(t)

pF ∗
1

p−1(t)F ∗
2

q(t)f∗1(t) + qF ∗
1

p(t)F ∗
2

q−1(t)f∗2 (t)

=
F p−1

1 (t)F q−1
2 (t)[pF2(t)f1(t) + qF1(t)f2(t)]

F ∗
1

p−1(t)F ∗
2

q−1(t)[pF ∗
2 (t)f∗1 (t) + qF ∗

1 (t)f∗2 (t)]

is increasing in t ∈ �+. Since Xn−2:n−2 ≥rh Yn−2:n−2, it holds that

F p−1
1 (t)F q−1

2 (t)
F ∗

1
p−1(t)F ∗

2
q−1(t)

is increasing in t ∈ �+. Hence, it suffices to show that

δ(t) =
pF2(t)f1(t) + qF1(t)f2(t)
pF ∗

2 (t)f∗1 (t) + qF ∗
1 (t)f∗2 (t)

=
p

λ
r1
1

Γ(r1)
tr1−1e−λ1t

∫ t

0

λ
r2
2

Γ(r2)
ur2−1e−λ2udu+ q

λ
r2
2

Γ(r2)
tr2−1e−λ2t

∫ t

0

λ
r1
1

Γ(r1)
ur1−1e−λ1udu

p
λ∗

1
r1

Γ(r1)
tr1−1e−λ∗

1t
∫ t

0

λ∗
2

r2

Γ(r2)
ur2−1e−λ∗

2udu+ q
λ∗

2
r2

Γ(r2)
tr2−1e−λ∗

2t
∫ t

0

λ∗
1

r1

Γ(r1)
ur1−1e−λ∗

1udu

∝ ptr1−1e−λ1t
∫ t

0
ur2−1e−λ2udu+ qtr2−1e−λ2t

∫ t

0
ur1−1e−λ1udu

ptr1−1e−λ∗
1t

∫ t

0
ur2−1e−λ∗

2udu+ qtr2−1e−λ∗
2t

∫ t

0
ur1−1e−λ∗

1udu
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=

∫ 1

0
pyr2−1e−(λ1+λ2y)t + qyr1−1e−(λ2+λ1y)tdy∫ 1

0
pyr2−1e−(λ∗

1+λ∗
2y)t + qyr1−1e−(λ∗

2+λ∗
1y)tdy

= EtΨ(Y, t)

is increasing in t ∈ �+, where

Ψ(y, t) =
pyr2−1e−(λ1+λ2y)t + qyr1−1e−(λ2+λ1y)t

pyr2−1e−(λ∗
1+λ∗

2y)t + qyr1−1e−(λ∗
2+λ∗

1y)t
, y ∈ (0, 1),

and the distribution function of the random variable Y belongs to the family P = {H(·|t), t ∈
R+} with density function

h(y|t) = c(t)[pyr2−1e−(λ∗
1+λ∗

2y)t + qyr1−1e−(λ∗
2+λ∗

1y)t]

and a normalizing constant c(t) such that
∫ 1

0
h(y|t)dy = 1. Observe that

Ψ(y, t) =
pe−λ1(1−y)t + qyr1−r2e−λ2(1−y)t

pe−λ∗
1(1−y)t + qyr1−r2e−λ∗

2(1−y)t
,

is increasing in t, while is decreasing in y ∈ (0, 1) due to Lemma 2.4. Denote by
a= r1 − r2 ≥ 0, for t2 ≥ t1 ≥ 0, we can show

ω(y) =
h(y|t2)
h(y|t1)

∝ pyr2−1e−(λ∗
1+λ∗

2y)t2 + qyr1−1e−(λ∗
2+λ∗

1y)t2

pyr2−1e−(λ∗
1+λ∗

2y)t1 + qyr1−1e−(λ∗
2+λ∗

1y)t1

∝ peλ∗
2t2(1−y) + qyaeλ∗

1t2(1−y)

peλ∗
2t1(1−y) + qyaeλ∗

1t1(1−y)

is decreasing in y ∈ (0, 1) by observing

ω′(y)
sgn
=

[
pλ∗2t1e

λ∗
2t1(1−y) + q

(
λ∗1t1 −

a

y

)
yaeλ∗

1t1(1−y)

] [
peλ∗

2t2(1−y) + qyaeλ∗
1t2(1−y)

]

−
[
pλ∗2t2e

λ∗
2t2(1−y) + q

(
λ∗1t2 −

a

y

)
yaeλ∗

1t2(1−y)

] [
peλ∗

2t1(1−y) + qyaeλ∗
1t1(1−y)

]

= p2λ∗2 (t1 − t2) eλ∗
2(1−y)(t1+t2) + pq

(
λ∗2t1 − λ∗1t2 +

a

y

)
yae(λ

∗
2t1+λ∗

1t2)(1−y)

+ pq

(
λ∗1t1 − λ∗2t2 −

a

y

)
yae(λ

∗
1t1+λ∗

2t2)(1−y) + q2λ∗1 (t1 − t2) y2aeλ∗
1(t1+t2)(1−y)

≤ p2λ∗2 (t1 − t2) eλ∗
2(1−y)(t1+t2) + pq

(
λ∗2t1 − λ∗1t2 +

a

y

)
yae(λ

∗
2t1+λ∗

1t2)(1−y)

+ pq

(
λ∗1t1 − λ∗2t2 −

a

y

)
yae(λ

∗
1t2+λ∗

2t1)(1−y) + q2λ∗1 (t1 − t2) y2aeλ∗
1(t1+t2)(1−y)

= p2λ∗2 (t1 − t2) eλ∗
2(1−y)(t1+t2) + q2λ∗1 (t1 − t2) y2aeλ∗

1(t1+t2)(1−y)

+ pq (λ∗2 + λ∗1) (t1 − t2)yae(λ
∗
2t1+λ∗

1t2)(1−y)

≤ 0.
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Figure 2. Plot of fX5:5(t)/fY5:5(t) when p = 2, q = 3, r1 = 2, r2 = 1.2, λ1 = 0.8, λ2 = 3.2,
λ∗1 = 1.5 and λ2 = 2.5.

We then have H(·|t1) ≥lr H(·|t2), which implies that H(·|t1) ≥st H(·|t2) whenever t2 ≥ t1 ≥
0. Upon using Lemma 2.1, we conclude that EtΨ(Y, t) is increasing in t ∈ (0,∞). Hence,
the proof is completed. �

One may wonder whether the result in Theorem 2.12 holds when p < q, we will show
that the answer is negative by adopting the following example.

Example 2.13: Set p = 2, q = 3, r1 = 2, r2 = 1.2, λ1 = 0.8, λ2 = 3.2, λ∗1 = 1.5 and λ∗2 =

2.5 in Theorem 2.12, we have (0.8, 3.2)
m� (1.5, 2.5). Figure 2 plots the ratio of density

functions fXn:n(t) and fYn:n(t). It can be observed that the function fXn:n(t)/fYn:n(t) is
neither increasing nor decreasing in t ∈ (0,+∞).

Combining the result in Theorem 2.6 with that in Theorem 2.12, we have the following
theorem.

Theorem 2.14: Under the assumptions of Theorem 2.12, if p ≥ q, r1 ≥ r2 and λ1 ≤ λ∗1 ≤
λ∗2 ≤ λ2, we then have

(λ1, λ2)
w� (λ∗1, λ

∗
2) =⇒ Xn:n ≥lr Yn:n.

Proof: It is known from the assumption that λ1 + λ2 ≤ λ∗1 + λ∗2. The result follows from
Theorem 2.12 for the case when λ1 + λ2 = λ∗1 + λ∗2. In what follows, we only need to consider
the case when λ1 + λ2 < λ∗1 + λ∗2. In this case, there exists some λ satisfying λ1 < λ ≤ λ∗1
and λ+ λ2 = λ∗1 + λ∗2. Let Zn:n denote the lifetime of the parallel system consisting of n
independent gamma variables Z1, Z2, . . . , Zn, where Z1, . . . , Zp have common shape param-
eter r1 and common scale parameter λ and Zp+1, . . . , Zn have common shape parameter r2
and common scale parameter λ2. Apparently, (λ, λ2)

m� (λ∗1, λ
∗
2). Upon using Theorem 2.12,

it holds that Zn:n ≥lr Yn:n. On the other hand, we have Xn:n ≥lr Zn:n for λ1 < λ ≤ λ2 from
Theorem 2.6. Then, the desired result can be obtained immediately. �

The following corollary is a direct consequence of Theorem 2.14.
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Corollary 2.15: Let X1,X2, . . . , Xn be independent random variables following the
multiple-outlier gamma model with respective shape parameters and scale parameters
(r11p, r21q), and (λ11p, λ21q), where p, q ∈ Z+ and p+ q = n. Let Y1, Y2, . . . , Yn be another
set of independent random variables following the multiple-outlier gamma model with respec-
tive shape parameters (r11p, r21q) and common scale parameter λ. Suppose p ≥ q, r1 ≥ r2
and λ ≤ max{λ1, λ2}. Then,

λ ≥ λ1 + λ2

2
=⇒ Xn:n ≥lr Yn:n.

We next turn to discussing the case of comparing the largest order statistics arising
from multiple-outlier gamma models in terms of the relationship between shape parameter
vectors.

Theorem 2.16: Let X1,X2, . . . , Xn be independent random variables following the multiple-
outlier gamma model with respective shape parameters and scale parameters (r11p, r1q)
and (λ11p, λ21q), where p, q ∈ Z+ and p+ q = n. Let Y1, Y2, . . . , Yn be another set of
independent random variables following the multiple-outlier gamma model with respective
shape parameters and scale parameters (r21p, r1q) and (λ11p, λ21q). Suppose that p ≥ q,
r1 ≥ r2 ≥ r and λ2 ≥ λ1. We then have Xn:n ≥lr Yn:n.

Proof: Denote by fi[gi] and Fi[Gi] the density and distribution functions of Xi[Yi], respec-
tively, and denote by r̃Xn:n and r̃Yn:n the reversed hazard rate functions of Xn:n and Yn:n,
respectively. To reach the desired result, we will show that Xn:n ≥rh Yn:n and the ratio of
their reversed hazard rate function (i.e., φ(t) = r̃Xn:n(t)/r̃Yn:n(t)) is increasing in t ∈ �+

according to Theorem 1.C.4(b) of Shaked and Shanthikumar [27]. Notice that

r̃Xn:n(t) = pr̃X1(t) + qr̃Xn
(t) and r̃Yn:n(t) = pr̃Y1(t) + qr̃Yn

(t).

Since r̃Xn
(t) = r̃Yn

(t) and r1 ≥ r2 implies that X1 ≥rh Y1 (i.e., r̃X1(t) ≥ r̃Y1(t)), so it holds
that r̃Xn:n(t) ≥ r̃Yn:n(t). We now need to show that the function

ψ(t) =
(
ptr1−rkr1,λ1(t) + qkr,λ2(t)

) (
ptr2−rkr2,λ1(t) + qkr,λ2(t)

)−1

is increasing in t ∈ �+. Taking the derivative of ψ(t) with respect to t gives rise to

ψ′(t)
(
ptr2−rkr2,λ1(t) + qkr,λ2(t)

)2

=
[
−p

(
λ1 − r1 − r

t
+ hr1,λ1(t)

)
tr1−rkr1,λ1(t) − q (λ2 + hr,λ2(t)) kr,λ2(t)

]

× (
ptr2−rkr2,λ1(t) + qkr,λ2(t)

)
−

[
−p

(
λ1 − r2 − r

t
+ hr2,λ1(t)

)
tr2−rkr2,λ1(t) − q (λ2 + hr,λ2(t)) kr,λ2(t)

]

× (
ptr1−rkr1,λ1(t) + qkr,λ2(t)

)
= p2

[
(r1 − thr1,λ1(t) − (r2 − thr2,λ1(t))) × tr1+r2−2r−1kr1,λ1(t)kr2,λ1(t)

]
+ pq

[(
λ2 + hr,λ2(t) +

r1 − r

t
− λ1 − hr1,λ1(t)

)
× tr1−rkr1,λ1(t)kr,λ2(t)

]

− pq

[(
λ2 + hr,λ2(t) +

r2 − r

t
− λ1 − hr2,λ1(t)

)
× tr2−rkr2,λ1(t)kr,λ2(t)

]

= W + V, say,
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where

W = p2
[
(r1 − thr1,λ1(t) − (r2 − thr2,λ1(t))) × tr1+r2−2r−1kr1,λ1(t)kr2,λ1(t)

]
= p2

[
(gλ1,t(r1) − gλ1,t(r2)) × tr1+r2−2r−1kr1,λ1(t)kr2,λ1(t)

]
and

V = pq

[(
λ2 + hr,λ2(t) +

r1 − r

t
− λ1 − hr1,λ1(t)

)
× tr1−rkr1,λ1(t)kr,λ2(t)

]

− pq

[(
λ2 + hr,λ2(t) +

r2 − r

t
− λ1 − hr2,λ1(t)

)
× tr2−rkr2,λ1(t)kr,λ2(t)

]
.

From Lemma 2.3, we have W ≥ 0. We will show V ≥ 0 in the following. Since

tr∫ t

0
ure−λudu

is increasing in r ∈ (0,+∞), we then have that

tr1−re−(λ1+λ2)t∫ t

0
ur1−1e−λ1udu

∫ t

0
ur−1e−λ2udu

≥ tr2−re−(λ1+λ2)t∫ t

0
ur2−1e−λ1udu

∫ t

0
ur−1e−λ2udu

,

that is,
tr1−rkr1,λ1(t)kr,λ2(t) ≥ tr2−rkr2,λ1(t)kr,λ2(t). (13)

On the other hand, upon applying Lemmas 2.2 and 2.3, respectively, we have the
following two inequalities:

fr1,t(λ2) = λ2 +
tr1−1e−λ2t∫ t

0
ur1−1e−λ2udu

≥ λ1 +
tr1−1e−λ1t∫ t

0
ur1−1e−λ1udu

= fr1,t(λ1) (14)

and

gλ2,t(r1) = r1 − tr1e−λ2t∫ t

0
ur1−1e−λ2udu

≥ r − tre−λ2t∫ t

0
ur−1e−λ2udu

= gλ2,t(r). (15)

Using the inequalities (14) and (15), we have

λ2 + hr,λ2(t) +
r1 − r

t
− λ1 − hr1,λ1(t) = [fr1,t(λ2) − fr1,t(λ1)] +

1
t

[gλ2,t(r1) − gλ2,t(r)]

≥ 0.

Then,

V ≥ pq

[(
λ2 + hr,λ2(t) +

r1 − r

t
− λ1 − hr1,λ1(t)

)
× tr2−rkr2,λ1(t)kr,λ2(t)

]

− pq

[(
λ2 + hr,λ2(t) +

r2 − r

t
− λ1 − hr2,λ1(t)

)
× tr2−rkr2,λ1(t)kr,λ2(t)

]
sgn
= r1 − thr1,λ1(t) − (r2 − thr2,λ1(t))

= gλ1,t(r1) − gλ1,t(r2)

≥ 0,

which means that ψ′(t) ≥ 0, that is, ψ(t) is increasing in t ∈ �+. Hence, the theorem
follows. �
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Figure 3. Plot of fX5:5(t)/fY5:5(t) when p = 3, q = 2, r1 = 1.9, r2 = 0.8, r = 3.1, λ1 = 0.9
and λ2 = 1.4.

Remark 2.17: The result in Theorem 2.16 does not hold when replacing the condition r ≤
r2 ≤ r1 with r2 ≤ r1 ≤ r. We present a counterexample to clarify this. The result, however,
holds for the reversed hazard rate order, we omit the proof details for simplicity.

Example 2.18: Set p = 3, q = 2, r1 = 1.9, r2 = 0.8, r = 3.1, λ1 = 0.9 and λ2 = 1.4 in
Theorem 2.16, we have r2 ≤ r1 ≤ r. Figure 3 plots the ratio of density functions fXn:n(t)
and fYn:n(t). It can be observed that the function fXn:n(t)/fYn:n(t) is neither increasing nor
decreasing in t ∈ (0,+∞).

Theorem 2.19: Let X1,X2, . . . , Xn be independent random variables following the multiple-
outlier gamma model with respective shape parameters and scale parameters (r11p, r21q)
and (λ11p, λ21q), where p, q ∈ Z+ and p+ q = n. Let Y1, Y2, . . . , Yn be another set of inde-
pendent random variables following the multiple-outlier gamma model with respective shape
parameters and scale parameters (r∗11p, r

∗
21q) and (λ11p, λ21q). Suppose that p ≥ q, r1 ≥ r2,

r∗1 ≥ r∗2 and λ2 ≥ λ1. We then have

(r1, r2)
m� (r∗1 , r

∗
2) =⇒ Xn:n ≥lr Yn:n.

Proof: Denote fXn:n(t)[fYn:n(t)] the density function of Xn:n[Yn:n]. It suffices to prove that
η(t) = fXn:n(t)/fYn:n(t) is increasing in t ∈ �+. Using an argument quite similar to that of
Theorem 2.12, we can show Xn:n ≥rh Yn:n.

Observe that

η(t) =
fXn:n(t)
fYn:n(t)

=
F p−1

1 (t)F q−1
2 (t)[pF2(t)f1(t) + qF1(t)f2(t)]

F ∗
1

p−1(t)F ∗
2

q−1(t)[pF ∗
2 (t)f∗1 (t) + qF ∗

1 (t)f∗2 (t)]

and
F p−1

1 (t)F q−1
2 (t)

F ∗
1

p−1(t)F ∗
2

q−1(t)
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is increasing in t ∈ �+ due to the fact that Xn:n ≥rh Yn:n, and hence we only need to show
that

δ(t) =
pF2(t)f1(t) + qF1(t)f2(t)
pF ∗

2 (t)f∗1 (t) + qF ∗
1 (t)f∗2 (t)

=
p

λ
r1
1

Γ(r1)
tr1−1e−λ1t

∫ t

0

λ
r2
2

Γ(r2)
ur2−1e−λ2udu+ q

λ
r2
2

Γ(r2)
tr2−1e−λ2t

∫ t

0

λ
r1
1

Γ(r1)
ur1−1e−λ1udu

p λ1
r∗1

Γ(r∗
1 ) t

r∗
1−1e−λ1t

∫ t

0
λ2

r∗2
Γ(r∗

2 )u
r∗
2−1e−λ2udu+ q λ2

r∗2
Γ(r∗

2 ) t
r∗
2−1e−λ2t

∫ t

0
λ1

r∗1
Γ(r∗

1 )u
r∗
1−1e−λ1udu

=
λ

r1
1 λ

r2
2 tr1+r2−1

Γ(r1)Γ(r2)

∫ 1

0
pyr2−1e−(λ1+λ2y)t + qyr1−1e−(λ2+λ1y)tdy

λ1
r∗1 λ2

r∗2 tr∗1+r∗2−1

Γ(r∗
1 )Γ(r∗

2 )

∫ 1

0
pyr∗

2−1e−(λ1+λ2y)t + qyr∗
1−1e−(λ2+λ1y)tdy

∝
∫ 1

0
pyr2−1e−(λ1+λ2y)t + qyr1−1e−(λ2+λ1y)tdy∫ 1

0
pyr∗

2−1e−(λ1+λ2y)t + qyr∗
1−1e−(λ2+λ1y)tdy

= Etν(Y1, t)

is increasing in t ∈ �+, where

ν(y, t) =
pyr2−1e−(λ1+λ2y)t + qyr1−1e−(λ2+λ1y)t

pyr∗
2−1e−(λ1+λ2y)t + qyr∗

1−1e−(λ2+λ1y)t
, y ∈ (0, 1).

Here, the distribution function of the random variable Y1 belongs to the family P1 =
{H1(·|t), t ∈ R+} with density function

h1(y|t) = c1(t)
[
pyr∗

2−1e−(λ1+λ2y)t + qyr∗
1−1e−(λ2+λ1y)t

]

and a normalizing constant c1(t) such that
∫ 1

0
h1(y|t)dy = 1. Observe that

ν(y, t) =
pyr2e(λ2−λ1)(1−y)t + qyr1

pyr∗
2 e(λ2−λ1)(1−y)t + qyr∗

1

is increasing in t, while is decreasing in y ∈ (0, 1) due to Lemma 2.5. For t2 ≥ t1 ≥ 0 and
a = r∗1 − r∗2 ≥ 0, we have

ω1(y) =
h1(y|t2)
h1(y|t1)

=
pyr∗

2−1e−(λ1+λ2y)t2 + qyr∗
1−1e−(λ2+λ1y)t2

pyr∗
2−1e−(λ1+λ2y)t1 + qyr∗

1−1e−(λ2+λ1y)t1

=
pe−(λ1+λ2y)t2 + qyae−(λ2+λ1y)t2

pe−(λ1+λ2y)t1 + qyae−(λ2+λ1y)t1

∝ peλ2t2(1−y) + qyaeλ1t2(1−y)

peλ2t1(1−y) + qyaeλ1t1(1−y)
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is decreasing in y ∈ (0, 1) by checking that

ω′
1(y)

sgn
=

[
pλ2t1e

λ2t1(1−y) + q

(
λ1t1 − a

y

)
yaeλ1t1(1−y)

] [
peλ2t2(1−y) + qyaeλ1t2(1−y)

]

−
[
pλ2t2e

λ2t2(1−y) + q

(
λ1t2 − a

y

)
yaeλ1t2(1−y)

] [
peλ2t1(1−y) + qyaeλ1t1(1−y)

]

= p2λ2 (t1 − t2) eλ2(1−y)(t1+t2) + pq

(
λ2t1 − λ1t2 +

a

y

)
yae(λ2t1+λ1t2)(1−y)

+ pq

(
λ1t1 − λ2t2 − a

y

)
yae(λ1t1+λ2t2)(1−y) + q2 (λ1t1 − λ1t2) y2ae(λ1t1+λ1t2)(1−y)

≤ p2λ2 (t1 − t2) eλ2(1−y)(t1+t2) + pq

(
λ2t1 − λ1t2 +

a

y

)
yae(λ2t1+λ1t2)(1−y)

+ pq

(
λ1t1 − λ2t2 − a

y

)
yae(λ1t2+λ2t1)(1−y) + q2λ1 (t1 − t2) y2ae(λ1t1+λ1t2)(1−y)

= p2λ2 (t1 − t2) eλ2(1−y)(t1+t2) + q2λ1 (t1 − t2) y2ae(λ1t1+λ1t2)(1−y)

+ pq (λ2 + λ1) (t1 − t2) yae(λ2t1+λ1t2)(1−y)

≤ 0.

Thus, we have H1(·|t1) ≥lr H1(·|t2), which implies that H1(·|t1) ≥st H1(·|t2) whenever t2 ≥
t1 ≥ 0. Upon using Lemma 2.1, we conclude that Etν(Y1, t) is increasing in t ∈ (0,∞). Hence,
the proof is completed. �

A counterexample is presented here to illustrate that the result does not hold for the
case p < q in Theorem 2.19.

Example 2.20: Set p = 2, q = 3, r1 = 2.5, r2 = 0.5, r∗1 = 1.8, r∗2 = 1.2, λ1 = 1 and λ2 = 2

in Theorem 2.19, we have (2.5, 0.5)
m� (1.8, 1.2). Figure 4 plots the ratio of density func-

tions fXn:n(t) and fYn:n(t). It can be observed that the function fXn:n(t)/fYn:n(t) is neither
increasing nor decreasing in t ∈ (0,+∞).

Combining Theorem 2.14 with Theorem 2.19, we can reach the following general result.

Theorem 2.21: Let X1,X2, . . . , Xn be independent random variables following the multiple-
outlier gamma model with respective shape parameters and scale parameters (r11p, r21q)
and (λ11p, λ21q), where p, q ∈ Z+ and p+ q = n. Let Y1, Y2, . . . , Yn be another set of inde-
pendent random variables following the multiple-outlier gamma model with respective shape
parameters and scale parameters (r∗11p, r

∗
21q) and (λ∗11p, λ

∗
21q). Suppose that p ≥ q, r1 ≥ r2,

r∗1 ≥ r∗2 and λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2. We then have

(r1, r2)
m� (r∗1 , r

∗
2), (λ1, λ2)

w� (λ∗1, λ
∗
2) =⇒ Xn:n ≥lr Yn:n.

Proof: Let Zn:n be the lifetime of a parallel system consisting of n independent gamma
components Z1, Z2, . . . , Zn, where Z1, . . . , Zp have common shape parameter r1 and com-
mon scale parameter λ∗1 and Zp+1, . . . , Zn have common shape parameter r2 and common
scale parameter λ∗2. Upon applying Theorem 2.14, we have Xn:n ≥lr Zn:n. On the other
hand, we have that Zn:n ≥lr Yn:n from Theorem 2.19. Hence, the desired result follows. �
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Figure 4. Plot of fX5:5(t)/fY5:5(t) when p = 2, q = 3, r1 = 2.5, r2 = 0.5, r∗1 = 1.8,
r∗2 = 1.2, λ1 = 1 and λ2 = 2.
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Figure 5. Plot of fX5:5(t)/fY5:5(t) when p = 3, q = 2, r1 = 1.6, r2 = 0.4, r∗1 = 1.4,
r∗2 = 0.6, λ1 = 1.2, λ2 = 4.0, λ∗1 = 2.0 and λ2 = 3.8.

Remark 2.22: The result of Theorem 2.21 generalizes that of Theorem 3.11 in Zhao and
Zhang [32] from p = q = 1 to the general case p ≥ q ≥ 1.

Finally, we present an example to illustrate the validity of the result of Theorem 2.21.

Example 2.23: Set p = 3, q = 2, r1 = 1.6, r2 = 0.4, r∗1 = 1.4, r∗2 = 0.6, λ1 = 1.2, λ2 = 4.0,

λ∗1 = 2.0 and λ∗2 = 3.8 in Theorem 2.21, we have (1.6, 0.4)
m� (1.4, 0.6) and (1.2, 4.0)

w�
(2.0, 3.8). Figure 5 plots the ratio of density functions fXn:n(t) and fYn:n(t). It can be
observed that the function fXn:n(t)/fYn:n(t) is increasing in t ∈ �+, which is in accordance
with the result of Theorem 2.21.
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3. STAR ORDERING

The following useful lemma, originally due to Saunders and Moran [25, p. 429], will be
helpful for proving the main results.

Lemma 3.1: Let {Fλ|λ ∈ �+} be a class of distribution functions, such that Fλ is supported
on some interval (a, b) ⊆ (0,∞) and has density fλ which does not vanish on any subinterval
of (a, b). Then,

Fλ ≤� Fλ∗ , λ ≤ λ∗

if and only if

F ′
λ(x)

xfλ(x)
is decreasing in x,

where F ′
λ is the derivative of Fλ with respect to λ.

Theorem 3.2: Under the assumptions of Theorem 2.12, if r1 ≥ r2, λ2 ≥ λ1 and λ∗2 ≥ λ∗1,
then,

λ2

λ1
≥ λ∗2
λ∗1

=⇒ Xn:n ≥� Yn:n.

Proof: Here we will adopt the proof idea of Theorem 4.2 in Zhao and Zhang [32].
Case 1 : λ1 + λ2 = λ∗1 + λ∗2.
Without loss of generality, assume λ1 + λ2 = λ∗1 + λ∗2 = 1. In this case, we have

(λ1, λ2)
m� (λ∗1, λ

∗
2).

Denote λ = λ2 and λ∗ = λ∗2, and it is known that λ ≥ λ∗ and λ ∈ [1/2, 1). It suffices to show
that

F ′
λ(t)

tfλ(t)

is decreasing in t ∈ �+ for λ ∈ [1/2, 1), where the distribution function of Xn:n can be
written as

Fλ(t) =
[∫ t

0

(1 − λ)r1

Γ(r1)
ur1−1e−(1−λ)udu

]p [∫ t

0

λr2

Γ(r2)
ur2−1e−λudu

]q

,

with its density function as

fλ(t) = p

[∫ t

0

(1 − λ)r1

Γ(r1)
ur1−1e−(1−λ)udu

]p−1 [∫ t

0

λr2

Γ(r2)
ur2−1e−λudu

]q

× (1 − λ)r1

Γ(r1)
tr1−1e−(1−λ)t + q

[∫ t

0

(1 − λ)r1

Γ(r1)
ur1−1e−(1−λ)udu

]p

×
[∫ t

0

λr2

Γ(r2)
ur2−1e−λudu

]q−1
λr2

Γ(r2)
tr2−1e−λt.
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Taking the derivative to Fλ(t) with respect to λ yields that

F ′
λ(t) = p

[∫ t

0

(1 − λ)r1

Γ(r1)
ur1−1e−(1−λ)udu

]p−1 [∫ t

0

λr2

Γ(r2)
ur2−1e−λudu

]q

×
[
−r1

∫ t

0

(1 − λ)r1−1

Γ(r1)
ur1−1e−(1−λ)udu+

∫ t

0

(1 − λ)r1

Γ(r1)
ur1e−(1−λ)udu

]

+ q

[∫ t

0

(1 − λ)r1

Γ(r1)
ur1−1e−(1−λ)udu

]p [∫ t

0

λr2

Γ(r2)
ur2−1e−λudu

]q−1

×
[
r2

∫ t

0

λr2−1

Γ(r2)
ur2−1e−λudu−

∫ t

0

λr2

Γ(r2)
ur2e−λudu

]
.

Upon using integration by parts, one has

r

∫ t

0

λr−1

Γ(r)
ur−1e−λudu =

λr−1

Γ(r)
tre−λt +

∫ t

0

λr

Γ(r)
ure−λudu,

and thus F ′
λ(t) can be reduced to

F ′
λ(t) = p

[∫ t

0

(1 − λ)r1

Γ(r1)
ur1−1e−(1−λ)udu

]p−1 [∫ t

0

λr2

Γ(r2)
ur2−1e−λudu

]q

×
[
− (1 − λ)r1−1

Γ(r1)
tr1e−(1−λ)t

]
+ q

[∫ t

0

(1 − λ)r1

Γ(r1)
ur1−1e−(1−λ)udu

]p

×
[∫ t

0

λr2

Γ(r2)
ur2−1e−λudu

]q−1 [
λr2−1

Γ(r2)
tr2e−λt

]
.

We can compute that

F ′
λ(t)

tfλ(t)
=

−pλtr1e−(1−λ)t
∫ t

0
ur2−1e−λudu+ q(1 − λ)tr2e−λt

∫ t

0
ur1−1e−(1−λ)udu

pλ(1 − λ)tr1e−(1−λ)t
∫ t

0
ur2−1e−λudu+ qλ(1 − λ)tr2e−λt

∫ t

0
ur1−1e−(1−λ)udu

∝ −pλe(2λ−1)t
∫ 1

0
yr2−1e−λytdy + q(1 − λ)

∫ 1

0
yr1−1e−(1−λ)ytdy

pe(2λ−1)t
∫ 1

0
yr2−1e−λytdy + q

∫ 1

0
yr1−1e−(1−λ)ytdy

= −λ+

∫ 1

0
qyr1−1e−(1−λ)ytdy∫ 1

0
[qyr1−1e−(1−λ)yt + pyr2−1e(2λ−1−λy)t]dy

.

Now, it is enough to show the function

Λ(t) =

∫ 1

0

qyr1−1e−(1−λ)ytdy

∫ 1

0
[qyr1−1e−(1−λ)yt + pyr2−1e(2λ−1−λy)t]dy

= Etk(Y2, t)

is decreasing in t ∈ �+ for λ ∈ [1/2, 1), where

k(Y2, t) =
qyr1−1e−(1−λ)yt

qyr1−1e−(1−λ)yt + pyr2−1e(2λ−1−λy)t
, y ∈ (0, 1).

https://doi.org/10.1017/S0269964815000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964815000212


616 P. Zhao, Y. Hu and Y. Zhang

Here, the distribution function of the random variable Y2 belongs to the family P2 =
{H2(·|T ), t ∈ �+} with densities

h2(y|t) = c2(t)[qyr1−1e−(1−λ)yt + pyr2−1e(2λ−1−λy)t]

and a normalizing constant c2(t) such that
∫ 1

0
h2(y|t)dy = 1. It is easy to see that

k(y, t) =
q

q + pyr2−r1e(2λ−1)(1−y)t

is decreasing in t ∈ �+ while is increasing in y ∈ (0, 1). On the other hand, for t2 ≥ t1 ≥ 0
and a = r1 − r2 ≥ 0, the function

ι(y) =
h2(y|t2)
h2(y|t1)

=
qyr1−1e−(1−λ)t2y + pyr2−1e(2λ−1−λy)t2

qyr1−1e−(1−λ)t1y + pyr2−1e(2λ−1−λy)t1

=
qyae−(1−λ)t2y + pe(2λ−1−λy)t2

qyae−(1−λ)t1y + pe(2λ−1−λy)t1

is decreasing in y ∈ (0, 1) by checking that

ι′(y)
sgn
=

[
q(
a

y
− (1 − λ)t2)yae−(1−λ)t2y − pλt2e

(2λ−1−λy)t2

]

×
[
qyae−(1−λ)t1y + pe(2λ−1−λy)t1

]

−
[
q(
a

y
− (1 − λ)t1)yae−(1−λ)t1y − pλt1e

(2λ−1−λy)t1

]

×
[
qyae−(1−λ)t2y + pe(2λ−1−λy)t2

]
= q2(1 − λ)(t1 − t2)y2ae−(1−λ)(t1+t2)y

+ pq

[
(1 − λ)t1 − λt2 − a

y

]
yae−(1−λ)t1ye(2λ−1−λy)t2

+ pq

[
a

y
− (1 − λ)t2 + λt1

]
yae−(1−λ)t2ye(2λ−1−λy)t1 + λ(t1 − t2)e(2λ−1−λy)(t1+t2)

≤ q2(1 − λ)(t1 − t2)y2ae−(1−λ)(t1+t2)y

+ pq

[
(1 − λ)t1 − λt2 − a

y

]
yae−(1−λ)t2ye(2λ−1−λy)t1

+ pq

[
a

y
− (1 − λ)t2 + λt1

]
yae−(1−λ)t2ye(2λ−1−λy)t1 + p2λ(t1 − t2)e(2λ−1−λy)(t1+t2)

= q2(1 − λ)(t1 − t2)y2ae−(1−λ)(t1+t2)y + pq(t1 − t2)yae−(1−λ)t2ye(2λ−1−λy)t1

+ p2λ(t1 − t2)e(2λ−1−λy)(t1+t2)

≤ 0, (16)

where the inequality in (16) holds due to

(1 − λ)t1 − λt2 − a

y
≤ (1 − 2λ)t2 − a

y
≤ 0
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and

−(1 − λ)t1y + (2λ− 1 − λy)t2 ≥ −(1 − λ)t2y + (2λ− 1 − λy)t1.

Hence, we have H2(·|t1) ≥lr H2(·|t2), which in turn implies that H2(·|t2) ≥st H2(·|t2) when-
ever t2 ≥ t1. Using Lemma 2.1 once again, we conclude that Etk(Y2|t) is decreasing in
t ∈ (0,∞) for λ ∈ [1/2, 1).

Case 2 : λ1 + λ2 �= λ∗1 + λ∗2.
Assume that λ1 + λ2 = c(λ∗1 + λ∗2), where c is a scalar. We then have

(λ1, λ2)
m� (cλ∗1, cλ

∗
2).

Let Yn:n be the lifetime of a parallel system with n independent gamma components having
respective shape parameters r1 and r2 and respective scale parameters cλ∗1 and cλ∗2. From
the discussion of Case 1, we have

Xn:n ≥� Yn:n.

On the other hand, since the star order is scale invariant, it follows that

Xn:n ≥� X
∗
n:n.

�

Actually, the condition in Theorem 3.2 is quite general and includes many special cases
(see Kochar and Xu [17]). Furthermore, due to the fact that the star order implies the
Lorenz order, we have the following result which will be great interest in economics.

Corollary 3.3: Under the assumptions of Theorem 2.12, if r1 ≥ r2, λ2 ≥ λ1 and λ∗2 ≥ λ∗1,
then,

λ2

λ1
≥ λ∗2
λ∗1

=⇒ Xn:n ≥Lorenz Yn:n.

Finally, we present a result for the dispersive order.

Theorem 3.4: Under the assumptions of Theorem 2.12, if p ≥ q, r1 ≥ r2 and λ1 ≤ λ∗1 ≤
λ∗2 ≤ λ2, we then have

(λ1, λ2)
w� (λ∗1, λ

∗
2) =⇒ Xn:n ≥disp Yn:n.

Proof: In light of Theorem 2.14, it follows that

(λ1, λ2)
w� (λ∗1, λ

∗
2) =⇒ Xn:n ≥lr Yn:n =⇒ Xn:n ≥st Yn:n.

On the other hand, we have from Theorem 3.2 that,

Xn:n ≥� Yn:n.

Also, it is known from Ahmed et al. [1] that, for two continuous random X and Y , if
X ≥� Y , then X ≥st Y =⇒ X ≥disp Y . Hence, the theorem follows. �
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4. APPLICATION

Suppose that there exists two parallel systems each consisting of 10 components which
have exponential lifetimes. For the first parallel system (denoted by I), we consider the
case that these ten components have hazard rates vector (0.5 × 17, 2.6 × 13). For the other
parallel system (denoted by II), the components are assumed to have hazard rates vec-
tor (1.2 × 17, 2.1 × 13). In order to enhance the reliability, we are allowed to take minimal
repairs (see Shaked and Shanthikumar [26]) when the components fail. For the system I,
each of components X1, . . . , X7 is allocated eight minimal repairs while each of compo-
nents X8,X9,X10 is allocated three minimal repairs. For the system II, each of components
Y1, . . . , Y7 is allocated six minimal repairs while each of components Y8, Y9, Y10 is allocated
five minimal repairs. Now, a factory needs such a parallel system and the reliability engi-
neer need to take into consideration which system should be chosen. At a first glance, it is
difficult to make a decision. Denote by Xi(ri) the lifetime of component Xi with ki minimal
repairs. It is known that, by Gamma–Poisson relationship,

FXi(ki)(t) = P(Xi(ki) ≤ t)

=
∞∑

j=k+1

e−λit(λit)j

j!

=
∫ t

0

λki+1
i

Γ(ki + 1)
xkie−λixdt.

Thus, Xi with ki minimal repairs has a gamma distribution with scale parameter λi and
shape parameter ki + 1, that is, Γ(k1 + 1, λi). So the lifetime of system I can be expressed
as the maximum of ten gamma random variables with shape and scale parameters

(9 × 17, 4 × 13), (0.5 × 17, 2.6 × 13).

Similarly, the lifetime of system II can be expressed as the maximum of ten gamma random
variables with shape and scale parameters

(7 × 17, 6 × 13), (1.2 × 17, 2.1 × 13).

Observe that p = 7, q = 3,

(9, 4)
m� (7, 6) and (0.5, 2.6)

w� (1.2, 2.1),

which satisfy the conditions of Theorem 2.21. Hence, we can conclude that the lifetime of
system I is superior to that of system II in terms of the likelihood ratio order, which states
that the factory should choose system I in order to make the system more reliable.

5. DISCUSSION

Let X1,X2, . . . , Xn be independent random variables following the multiple-outlier gamma
model with respective shape parameters and scale parameters (r11p, r21q), (λ11p, λ21q),
where p ≥ 1 and p+ q = n. Let Y1, Y2, . . . , Yn be another set of independent random vari-
ables following the multiple-outlier gamma model with respective shape parameters and
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scale parameters (r∗11p, r
∗
21q), (λ∗11p, λ

∗
21q). Suppose that r1 ≥ r2, r∗1 ≥ r∗2 and λ1 ≤ λ∗1 ≤

λ∗2 ≤ λ2. If p ≥ q, we then have

(r1, r2)
m� (r∗1 , r

∗
2), (λ1, λ2)

w� (λ∗1, λ
∗
2) =⇒ Xn:n ≥lr Yn:n. (17)

Especially, if r1 = r∗1 ≥ r2 = r∗2 , it is shown that

λ2

λ1
≥ λ∗2
λ∗1

=⇒ Xn:n ≥� Yn:n.

Besides, under the condition r1 = r∗1 ≥ r2 = r∗2 , λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2 and p ≥ q, we also prove
that

(λ1, λ2)
w� (λ∗1, λ

∗
2) =⇒ Xn:n ≥disp Yn:n.

The results established here have generalized and extended those for the case when
p = 1 and q = 1 and the case when the shape parameter r is common in the literature. We
partially answer the problem for the case when r > 1 posed by Zhao and Balakrishnan [31].

Note that (r1, r2)
m� (r∗1 , r

∗
2), p ≥ q and r2 ≤ r∗2 ≤ r∗1 ≤ r1 does not imply

(r11p, r21q)
m� (r∗11p, r

∗
21q).

However, the condition (λ1, λ2)
w� (λ∗1, λ

∗
2) implies that

(λ11p, λ21q)
w� (λ∗11p, λ

∗
21q),

under the assumptions that p ≥ q and λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2. Thus, it will be very interesting
to check whether the results in (17) still holds under the conditions

(r11p, r21q)
m� (r∗11p, r

∗
21q)

and

(λ11p, λ21q)
w� (λ∗11p, λ

∗
21q).

Similarly, it would be also of interest to check that if r1 ≥ r2, r∗1 ≥ r∗2 , λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2,

(r11p, r21q)
m� (r∗11p, r

∗
21q)

and

(λ11p, λ21q)
p

� (λ∗11p, λ
∗
21q),

whether it holds
Xn:n ≥hr Yn:n?

We are currently working on these problems and hope to report these findings in a future
paper.
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