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Review Article

Nonlinear acoustic–gravity waves
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Department of Physics, Ume̊a University, SE-90187 Ume̊a, Sweden

(lennart.stenflo@physics.umu.se)
2Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum,

Germany;
Department of Physics, Ume̊a University, SE-90187 Ume̊a, Sweden;
Scottish Universities Physics Alliance (SUPA), Department of Physics,

University of Strathclyde, Glasgow, Scotland;
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico,
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Abstract. Previous results on nonlinear acoustic–gravity waves are reconsidered.
It turns out that the mathematical techniques used are somewhat similar to those
already adopted by the plasma physics community. Consequently, a future interac-
tion between physicists in different fields, e.g. in meteorology and plasma physics,
can be very fruitful.

1. Introduction and linear theory
Atmospheric waves have been studied by many authors during half a century
(Hines 1960). They are also of increasing experimental interest (e.g. Bakhmeteva
et al. 2002; Koshevaya et al. 2004). Several books and numerous review articles have
been treating the linear properties of these waves, whereas comparatively much less
effort has been devoted to their very complex nonlinear behaviour. In the present
paper, we are therefore going to reconsider some main results in this field.
Neglecting for simplicity dissipative effects, one generally starts analytical invest-

igations from the continuity and momentum equations together with an equation
of state, i.e.

∂tρ + ∇ · (ρv) = 0, (1a)

∂tv+ v · ∇v = −∇p

ρ
+ g, (1b)

(∂t + v · ∇)(ρ−γ p) = 0, (1c)

where ρ is the mass density, v the fluid velocity, p the pressure, g = −gẑ the gravit-
ational acceleration and γ the ratio of specific heats. In an equilibrium atmosphere
with no drift velocities we have thus ∇p0/ρ0 = g.
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Linearizing (1), i.e. writing ρ = ρ0 +ρ1 and p = p0 +p1 , with ρ1 � ρ0 and p1 � p0 ,
considering for simplicity the equilibrium temperature to be constant and making
the ansatz ρ1 ∼ p1 ∼ exp(−iωt + ik · r− z/2H) and v ∼ exp(−iωt + ik · r+ z/2H),
with H = p0/gρ0 , we obtain the dispersion relation

ω2(ω2 − ω2
a ) − (ω2 − ω2

g )k
2c2
s − ω2

gk
2
z c2
s = 0, (2)

where ω and k are the frequency and the wave vector, respectively, cs = (γp0/ρ0)1/2

is the sound speed, ωa = (γg/4H)1/2 and the squared Brunt–Väisälä frequency is

ω2
g = (1 − 1/γ)(g/H). (3)

The constant γ is typically 1.4 in the Earth’s atmosphere, and as (γ −1)/γ ≈ 0.3
is fairly small one can clearly see that (3) has a low-frequency branch that is rather
well separated from the high-frequency acoustic branch. However, in order to shed
more light on the behaviour of atmospheric waves it may be instructive to consider
a model atmosphere where (γ − 1)/γ is much smaller than unity. In such a model
Valhalla atmosphere (Stenflo 1986, 1996a) the dispersion relation (3) simplifies to

ω2 ≈ ω2
a + k2c2

s (4a)

and

ω2 ≈
k2

⊥ω2
g

k2 + 1/4H2 , (4b)

where k2
⊥ = k2

x + k2
y and k2 = k2

⊥ + k2
z .

2. Wave–wave interactions
In an atmosphere where the equilibrium density decreases exponentially with height
(ρ0 ∼ exp(−z/H)) we note that the velocity perturbation instead increases expo-
nentially (v ∼ exp(z/2H)), whereas the energy ρ0v2 is constant as long as the at-
mosphere can be described by (1), where the dissipative terms have been neglected.
It is then obvious that nonlinear effects will become increasingly important when
a wave propagates upwards through the atmosphere. Considering for simplicity
first a Valhalla atmosphere with (γ − 1)/γ�1, we then analyse the propagation of
the high-frequency wave (4a) in a background that is slowly varying due to the
presence of waves with frequencies determined by (4b). We then analyse how this
modified high-frequency wave nonlinearly excites the low-frequency modes (4b).
Our description of this coupling is thus somewhat similar to that of an electron–ion
plasma where the small electron to ion mass ratio plays the role of separating the
high-frequency (the electron plasma wave) and the low-frequency (the ion acoustic
wave) branches. As a result, one obtains a system of two nonlinearly coupled
equations for the high-frequency and low-frequency waves. It should be stressed,
however, that the Zakharov-like equations (Stenflo 1986) thus derived for a neutral
atmosphere are significantly more complex than those of the well-known plasma
equations (Zakharov 1972).
Considering next an atmosphere with arbitrary γ (e.g. the Earth’s atmosphere

where γ ≈ 1.4) we note that the resonance conditions for three-wave interactions
can be approximately satisfied (e.g. Yeh and Liu 1970; Juren and Stenflo 1973) and
that three-wave interactions thus can play a major role in the amplitude develop-
ment of atmospheric waves. Due to algebraic difficulties the coupling coefficients
appeared first as rather complex expressions (Dysthe et al. 1974; Ostrovskii and
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Petrukin 1981), which limited the interest in applying them. After two decades of
efforts, it was however fortunately possible to present them in their final explicit
form (Axelsson et al. 1996a, 1996b) consistent with the wave action conservation
laws.

3. Acoustic–gravity modons
In 1987 it was shown that the equations governing low-frequency acoustic–gravity
waves can have localized (Stenflo 1987; Wu and Yao 1990) dipole-vortex solutions
(modons). They propagate in the horizontal direction with a speed that is larger
than that of the linear internal waves. In their two-dimensional version (∂y = 0)
these equations appear in the form (Stenflo 1987, 1994; Stenflo and Stepanyants
1995; Horton et al. 2008)

dt

(
∇2ψ − ψ

4H2

)
= −∂xχ (5a)

and

dtχ = ω2
g∂xχ, (5b)

where ψ(x, z, t) is the stream function, χ(x, z, t) is the normalized density perturb-
ation, dt = ∂t − (∂zψ)∂x + (∂xψ)∂z and ∇2 = ∂2

x + ∂2
z .

In this case we allow the equilibrium temperature (p0/ρ0) to be an arbitrary
function of z, and thus use the squared Brunt–Väisälä frequency expressions

ω2
g =

(
ρ0

dρ−1
0

dz
− p0

γ

dp−1
0

dz

)(
p0

dp−1
0

dz

)
p0

ρ0
. (6)

We note that ω2
g reduces to the positive quantity (3) for an atmosphere with

constant equilibrium temperature. In the Earth’s atmosphere there are regions
where the expression (6) can be positive, whereas in other regions it is negative.
Equations (5) indicate that a nonlinear energy transfer from small- to large-

scale fluctuations (inverse cascade) is possible. Thus, using (5), it has been shown
that low-frequency large-scale zonal flows can be generated by higher-frequency
small-scale internal gravity waves (Horton et al. 2008).
Let us now consider perturbations moving with a constant velocity V in the

x-direction. Thus, we replace ∂t by −V ∂x . The simplest solution of (5b) is then

ψ = −(V/ω2
g )χ. (7)

Inserting (7) into (5a), one then obtains an equation which we here study in a polar
coordinate system so that x−V t = r sin θ and z = r cos θ, where r2 = (x−V t)2 +z2 ,
to look for a solution of (5a) in the form ψ = R(r) cos θ.
Outside the vortex the solution is then

Re(r) = αeK1(r/λe), (8)

where K1 is the modified Bessel function of order one, λ−2
e = 1/4H2 − ω2

g/V 2 and
αe is a constant.
Inside the vortex the solution is

Ri(r) = αiJ1(r/λi) − (λi/λ)2V r, (9)

where J1 is the Bessel function of order one, λi = (λ−2 − λ−2
e )−1/2 and αi and

λ are constants. Using the boundary conditions at the vortex radius r0 , we can
then determine the constants αe and αi, and also obtain the relation (Stenflo and
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Stepanyants 1995)
λiJ2(r0/λi)
J1(r0/λi)

+
λeK2(r0/λe)
K1(r0/λe)

= 0. (10)

Equation (10) contains the three parameters λ, r0 and V , and two of them, for
example r0 and V , can therefore be considered as independent. Using typical
parameter values we estimate r0 to be of the order of 100–1000 m in the equatorial
atmosphere (e.g. Stepanyants 1989).
We have thus constructed a two-dimensional localized solution that decreases

exponentially far away from the vortex centre (r�r0). Our solution represents a
dipole-type vortex. Our modons can propagate faster than the maximum phase
velocity Vmax in any horizontal direction. According to crude estimates (Stenflo
1994) for an atmosphere with constant equilibrium temperature we have Vmax =
2cs(γ − 1)1/2/γ, i.e. with γ ≈ 1.4 we use Vmax = 0.9cs. However, with equilibrium
temperature gradients close to the instability threshold (Stenflo 1994) one can
obtain much slower velocities for the stationary modons.
Observations (Ramamurthy et al. 1990; Widdel et al. 1994) of nonlinear acous-

tic gravity waves in the atmosphere indicate qualitative similarities with theory
(Stenflo 1991, 1994). Further studies (Jovanovic et al. 2002) have resulted in a
catalogue of nonlinear vortex structures associated with acoustic–gravity perturb-
ations in the Earth’s atmosphere. This includes Kelvin–Stewarts cats eyes, tripolar
(Jovanovic et al. 2001) structures as well as new solutions having the form of a row
of counter-rotating vortices. Generalizations to three-dimensional solitary vortex
structures (Pokhotelov et al. 2001) show that monopole vortices of finite height can
also be found. Further studies of this kind will probably shed much light on the
interplay (Stenflo 1996b; Pokhotelov et al. 2001) between chaos and order in the
atmosphere.
Using these equations, we can also find the spectral properties of the atmospheric

wave turbulence. Thus, it has recently been shown that the characteristic turbulent
spectrum associated with (5) has a Kolmogorov-like feature (Shaikh et al. 2008).

4. Generalized Lorenz equations
Equations (5) have been generalized in order to take into account the rotation of
the Earth, as well as viscosity and thermal diffusion effects (Stenflo 1996a). Due to
the complexity of these equations one then has to adopt simplifying assumptions.
Following previous attempts (Lorenz 1963; Stenflo 1996a) we therefore characterize
the atmospheric disturbances by four time-dependent functions X(t), Y (t), Z(t)
and U(t) to obtain the so-called L-S system of equations

Ẋ = σ(Y − X) + sU, (11a)

Ẏ = rlX − XZ− Y, (11b)

Ż = XY − bZ (11c)

and

U̇ = −X − σU, (11d)

where the dot stands for the normalized time derivative, σ is the Prandtl number,
rl is the generalized Rayleigh parameter (Stenflo 1996a), b = 4k2

z /k2 and s =
4Ω2k2

z /κ2k6 , where Ω is the angular frequency of the Earth’s rotation and κ is the
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thermal diffusion coefficient. We note that in a non-rotating atmosphere we can put
Ω = 0, i.e. s = 0. The system of equations (11a), (11b) and (11c) is then identical
to that of Lorenz (1963).
The L-S equations (11) have been studied in detail by many physicists. It has

thus been shown that the physical (e.g. Yu and Yang 1996; Zhou et al. 1997a,
1997b; Yu 1999; Liu 2000; Banerjee et al. 2001; Lonngren and Bai 2001; Zhou
2002) as well as the mathematical properties of the Lorenz system (Ekola 2005)
can be significantly altered even if a very small rotation frequency is included. The
L-S equations (11) have in addition been generalized to a system of five equations
for five time-dependent amplitudes (Stenflo 1996b). Such equations could describe
both localized dipole-type vortices as well as chaotic behaviour.

5. Related plasma physics phenomena
The nonlinear theory for acoustic–gravity waves has previously mainly been de-
veloped by plasma physicists who noted that the theoretical methods used in
plasma physics were also applicable to atmospheric waves (e.g. Dysthe et al. 1974;
Petviashvili and Pokhotelov 1992; Onishchenko et al. 2008). Now, however, it is
possible to reverse the exchange of ideas, i.e. the recent results found in studies of
acoustic–gravity waves could also be used for more insight into plasma physics
phenomena (e.g. Hultqvist and Stenflo 1975). Below we shall point out a few
examples.
(a) Dusty plasmas are of much interest nowadays (e.g. Shukla and Eliasson 2009).

Considering a non-uniform dusty plasma, Shukla and Shaikh (1998) found dust–
acoustic vortices which are described by (5) if ω2

g in (5b) is replaced by

ω2
d =

(
ρd0

dρ−1
d0

dz
− pi0

γi

dp−1
i0

dz

)(
pi0

dp−1
i0

dz

)
pi0
ρd0

, (12)

where ρd0 is the equilibrium dust mass density, pi0 is the equilibrium ion pressure
and γi is the adiabatic exponent of the ion fluid. These investigations were later
extended to a collisional dusty plasma (Shaikh and Bhatt 2003).
(b) The equations (Nycander et al. 1987; Shaikh and Shukla 2009) describing

magnetic-electron-drift turbulence are similar to (5) if ψ and χ are replaced by
the magnetic field and electron temperature perturbations. We then also have
to replace H by the ratio between the velocity of light and the electron plasma
frequency, whereas ω2

g in (5b) (which, due to (6), is proportional to dp0/dz) in this
case is replaced by a squared frequency that is proportional to the electron density
gradient.
(c) The interaction of acoustic–gravity waves with the ionosphere is also of much

interest (e.g. Nekrasov et al. 1995; Aburdzhaniya 1996; Kotsarenko et al. 1999;
Sorokin and Chmyrev 1999; Koshevaya et al. 2005; Kaladze et al. 2008a, 2008b).
Kaladze et al. (2008a) thus generalized (5a) to

dt

(
∇2ψ − ψ

4H2

)
= −∂xχ −

σpB
2
0

ρ0

(
∂2

z ψ − ψ

4H2

)
, (13)

where σp is the Pedersen conductivity and B0 is the geomagnetic field magnitude.
Equation (13) is supposed to be valid at high latitudes where the geomagnetic field
is essentially vertical. Together with (5b) it describes two-dimensional acoustic–
gravity waves in the Earth’s ionosphere.
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(d) Considering electromagnetic modes in non-uniform electron–ion plasmas, and
adopting mathematical techniques analogous to those used in deriving (11), it turns
out that equations similar to (11), where the number of time-dependent functions
can be three, four, five or six (Mirza and Shukla 1997; Murtaza et al. 1999; Azeem
and Mirza 2006), can appear.
Due to the examples (a), (b), (c) and (d) above it seems as if a thorough invest-

igation of acoustic–gravity-plasma waves ought to be considered as a prerequisite
to most further studies of non-uniform plasmas.

6. Summary and conclusion
In this short review paper, we have presented main theories for nonlinear acoustic–
gravity waves in non-uniformmedia. Nonlinear acoustic–gravity waves may appear
in the form of solitary dipole vortices (Stenflo 1987), and possess dual turbulence
cascades that are responsible for the formation of structures (Shaikh et al. 2008).
The nonlinear equations for the dynamics of acoustic–gravity waves can also be rep-
resented by the Lorenz–Stenflo equations (Stenflo 1996a). The latter admit chaotic
trajectories. Furthermore, equations similar to those of the nonlinear acoustic–
gravity waves also appear in the theories for dusty plasmas (Shukla and Shaikh
1998) and for the Earth’s ionosphere (Kaladze et al. 2008a, 2008b). In conclusion,
we stress that the results of the present paper describe basic nonlinear features
of middle (Fritts and Alexander 2003) and solar (McKenzie and Axford 2000)
atmospheric turbulence.
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