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SUMMARY
Latency hinders a mobile robot teleoperator’s ability to perform remote tasks. However, this effect is
not well modeled. This paper develops a model for teleoperator steering behavior as a PD controller
based on projected lateral displacement, which was tuned to reflect user performance determined
by a 31-subject user study under constant and variable latency (having mean latencies between 0
and 750 ms). Additionally, we determined that operator performance under variable latency could be
mapped to the expected performance of an equivalent constant latency. We then tested additional
latency distributions in simulation and demonstrated equivalent steering performance among several
different latency distributions.
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1. Introduction
Latency is a significant factor affecting teleoperated robot performance. Whether the latency
originates in the system communications network, processing routines, or sensing hardware, it
can negatively impact a human operator’s ability to perform even basic remotely-operated tasks,
such as navigation and object manipulation. Moreover, while operators can sometimes adapt to
system delay if it remains relatively consistent, variable latency makes it difficult for humans
to predict how the robot will respond.1, 2 While many teleoperated industrial or surgical robots
have the benefit of communicating over wired networks, mobile robots generally must utilize
wireless protocols, which typically have more latency and latency variation. The effects of
variable latency are known to be detrimental; however, they are not well modeled in telerobotic
systems.

Modeling human performance in teleoperation systems has multiple potential benefits.
Performance models can predict the relationship between overall system performance and factors that
affect teleoperator ability, such as the presence of latency or the use of haptic feedback. Behavioral
models can be used in place of a real human operator and can enable evaluation of a large number
of design iterations and broader test conditions than would otherwise be feasible and cost-effective.3

Models can be used for early testing in the design process, before using human subjects and developing
full prototypes.3 Model development can also reveal underlying patterns related to human–robot
interaction that can be used to inform future design decisions.

Previous studies on human performance modeling of teleoperated robots have primarily
developed performance models. For example, Yip et al.4 investigated how the interaction between
communication latency and haptic feedback affects performance. The model developed in the study
showed that in the presence of high communication latency, haptic feedback can decrease the
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magnitude of the operator-commanded force the robot exerts on the environment, but the addition
of haptic feedback increased the task completion time. Yang et al.5 found that using analog (rather
than digital) controllers can significantly improve system performance. In both cases, these studies
demonstrated useful relationships; however, the performance models cannot be used to replace a
human operator and simulate additional test conditions.

The automotive industry has a long history of developing and testing driver models that can be
used to replace a human operator in system simulations.6 However, these models may not be directly
applicable to teleoperation, as the two tasks are quite different. Although vehicle drivers have a wide
variety of sensory feedback available, teleoperators generally rely solely on visual feedback, which
is often delayed and has a limited field of view.7 Additionally, input devices for automobiles (e.g.,
steering wheels with haptic feedback) may not be the same as those used in teleoperation, which
can be as simple as off-the-shelf video game controllers, tablet computers, or mice and keyboards.
Finally, the internal mental models automobile drivers have for their vehicles are likely far more
developed than those of even experienced teleoperators.

Thus, there is a need to develop models that describe the performance of human operators steering
teleoperated wheeled robots in the presence of latency. Such models could be useful as a substitute
for a real teleoperator when testing mobile robot designs for tasks requiring steering inputs. For
example, a designer wishing to optimize a robot’s suspension could use simulated inputs of realistic
user steering behavior in conjunction with dynamic physical models of the chassis to evaluate design
options. A user model could also be used as a first-pass test to quickly tune parameter values for a
new steering-assist behavior before experimenting with human subjects.

In this paper, we develop such a model, based on a 31-subject user study designed to measure
the effects of both constant and variable latency on a simulated teleoperation steering task using a
commercially available gamepad input device. The input commands from the human to the robot
were recorded and used to develop a driver model that simulates human behavior for simple steering
tasks under different latency conditions. The two key contributions of this work are as follows: (1)
We show that a teleoperator’s steering commands with a gamepad can be modeled as a PD controller
based on the preview of the robot’s anticipated lateral displacement. To the best of our knowledge,
this is the first control theoretic steering model that captures the changes in teleoperated mobile robot
performance with constant and variable latencies. (2) We show that under the conditions tested in
this study, there is a relationship between the characteristics of a variable latency distribution and
operator performance. This relationship indicates that a variable latency distribution can be considered
equivalent to a constant latency (independent of speed) when comparing steering performance. The
equivalent constant latency is greater than the mean delay of the variable distribution. This relationship
enables the prediction of steering model gains for a range of latency distributions without requiring
human-in-the-loop testing for each latency type.

The remainder of the paper is organized as follows: First, prior work regarding the effect of latency
on teleoperation as well as human operator models is discussed in Section 2. Then, Section 3 presents
a user study designed to characterize human teleoperators’ responses to different latency scenarios.
A driver model is developed, tuned, and validated using the test data in Section 4. An equivalence
between operator performance under constant latency and multiple variable latency distributions is
found and discussed in Section 5. Finally, Section 6 discusses conclusions and future work regarding
the direction of this research.

2. Background

2.1. Latency in teleoperation
It is well established that latency has a detrimental impact on teleoperation performance, and time
delay is known to be one of the most significant factors affecting remote perception and manipulation.7

Sources of latency in a teleoperated robot system include network delays, sensing delays, and
processing delays.8

One of the earliest studies in this domain investigated open-loop position control of a remote
manipulator, and found that users adopted a move-and-wait strategy when the delay was above
1.0 s.9 Since Sheridan’s early work,9 many researchers have focused on methods of reducing the
impact of communication delay on teleoperation performance. Strategies include using predictors,10
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using augmented reality,11 adapting control gains,12 automating subtasks,13 and using different input
modalities (e.g., hands-free operation using gestures14 or voice15).

Many of these methods have been shown to be effective at improving teleoperation performance.
However, it may be difficult for designers of robot teleoperation systems to decide when it
is appropriate to include such methods. That is, when does the improvement in teleoperation
performance justify the added cost to include such teleoperation assistance features? To answer
that question, an understanding of the relationship between performance and latency is required.

Sheridan’s early studies on time-delayed space telerobotics provided a theoretical basis for
predicting performance as measured by task completion time under constant delay, assuming operators
performed tasks as a series of discrete open-loop movements.9 Since then, significant research has
been done to describe the relationship between constant latency and mobile robot teleoperation
performance under conditions ranging from 2D driving1, 2 to 3D underwater navigation tasks.16

The directionality of the latency (whether user-to-robot or robot-to-user) has also been investigated,
where it has been found that users felt robot control was more difficult when the latency was in the
robot-to-user direction, but no objective difference in performance was observed.1

Much of the work investigating the impact of communication latency on wheeled mobile robot
teleoperation performance has focused on designing stable haptic control devices,17 incorporating
techniques such as asymptotic tracking of position and force.18 Studies have investigated how
communication latency combined with human operator training19 or additional sensor feedback or
assistance20 impacts mobile robot teleoperation performance. However, these studies only consider
constant communication delay.

Real-world communication latency is often time-varying. For example, Ford demonstrated a
“remote repositioning” system capable of cross-country vehicle teleoperation. The cellular networks
used for communications had variable latencies and bandwidth restrictions.21 Research that has
investigated the impact of time-varying latency on performance metrics other than stability (e.g., time
to complete a task, number of collisions with obstacles) has only compared time-varying latency with
constant latencies.1, 2 To the best of our knowledge, no prior work has suggested how features of a
time-varying latency distribution (e.g., mean and variance) could be quantitatively related to other
time-varying or constant latencies in terms of teleoperation performance metrics beyond stability.

2.2. Human operator models
Human operator models have been used to model performance in applications ranging from aircraft
control to human–computer interface design. In this brief literature overview of human operator
models, we will discuss three categories of models stemming from: (1) Fitts’ law, (2) control theoretic
approaches, and (3) cognitive architectures.

2.2.1. Fitts’ law models. Fitts’ law is a human operator model that was originally developed to predict
the time required to point to a target area, modeled as a function of the ratio between the distance to
the target and the width of the target.22 Fitts’ law can be generalized to predict the time required to
point to a target as a function of a difficulty index. Accot and Zhai expanded Fitts’ law to show that
the time T to steer through a path is governed by23

T = a + b · ID (1)

where a and b are constants and ID is a difficulty index. While this steering law was originally
developed for 2D trajectory-based interactions, such as menu navigation with a mouse,23 it has been
demonstrated that this relationship also holds for locomotive steering tasks in virtual environments.24

The steering law does not account for constant or variable communication latencies.24

Although this law has not been directly tested in the presence of latency, similar work has found
that performance in 2D target-following tasks using a computer mouse is significantly degraded by
latencies over 110 ms and for latency variations over 40 ms.25

Kaber et al.26 found that the task completion time for a virtual surgical target-acquisition task in
the presence of latency (between 0 and 150 ms) could be predicted by a modified Fitts’ law using
an additional parameter to account for latency. A similar result was found by MacKenzie for planar
mouse-pointing tasks.27 This indicates that the steering law may also require corrective terms to
accommodate latency.

https://doi.org/10.1017/S0263574716000679 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574716000679


170 Operator Steering Model for Teleoperated Mobile Robots under Latency

2.2.2. Control theoretic models. Control theoretic human operator models allow for analysis of
overall teleoperation system performance from a controls perspective, which can result in improved
performance and proven stability properties for such systems. A control system formulation of the
problem can leverage the larger body of work that has analyzed time-delay systems in domains such
as network control systems28 or using transforms such as the delta operator.29

Control theoretic based human operator models have roots in modeling airplane pilots,30

automobile drivers,31 and manipulator arm operators.32 Slawiñski and Mut10 have developed a human
operator model for use in simulation of teleoperated mobile robots. However, the focus of their model
is for control design and stability analysis, and does not capture how human operator behavior changes
with different levels of latency.

Most relevant to the present study is the modeling of human driver behavior in the automotive
domain.6, 31, 33 From transfer function models to nonlinear and adaptive controllers,6, 33 there
are myriad methodologies for modeling vehicle lateral control (steering), longitudinal control
(acceleration and braking), and combined control. These models can be used to simulate human
drivers when testing new vehicle designs and technologies,6, 33 and despite the complexity of human
behavior, low order models are often sufficient for many control tasks.34

In our prior work, we introduced8 and performed a stability analysis35 on a low-order model
inspired by MacAdam31 that can be used to simulate human steering behavior in a teleoperated
navigation task in the presence of latency. In this paper, we discuss the development of this model
in further detail. We note that a model based solely on constant latency is limited in applicability, so
we developed a method by which such a model could be applied to multiple distributions of variable
latency.

2.2.3. Cognitive architecture models. Cognitive architectures have been used to model higher-level
robot operator behavior. For example, Ritter et al.36 developed a cognitive model of a user for a
robotic navigation and pick-and-place task. The goal of their model is to aid in HRI design and
predict human performance during teleoperation tasks. This model was developed in the ACT-R
cognitive architecture.37 While cognitive architecture models can capture many human behavior
characteristics and features, they are more computationally expensive to simulate than many of the
control theoretic models discussed. Cognitive architecture models often must be run in real-time, so
they are not suitable for optimizations requiring thousands of simulated iterations or in situations
where processing power is limited.

3. User Study
A user study was performed to gather data on task performance and operator driving behavior in robot
steering tasks using a simulation of a teleoperated mobile robot driving on a test track of constant
width. The user’s goal was to steer the robot such that it followed the track’s indicated centerline as
closely as possible. The results of the study were used to tune the gains of the model described in
Section 4.

3.1. Task setup
3.1.1. Simulation environment. A custom simulation environment for this set of tests (with a look
inspired by the classic arcade game Pole Position) was written in Java using the April Robotics
Toolkit38 and Lightweight Communications and Marshalling (LCM)39 libraries. A block diagram of
the teleoperation system, including the human operator, is shown in Fig. 1. The simulation uses a
kinematic driving model of a representative skid-steer robot chassis (see Fig. 2). The realism of a
physics-based simulation is not as crucial for this teleoperation task as it might be in an automotive
driving task since teleoperators do not experience any of the dynamic physical feedback cues (such
as lateral acceleration) that affect the robot while in motion.

3.1.2. User interface. The user provides steering commands to the robot using an analog mini joystick
on a standard computer gamepad (Logitech Cordless Rumblepad 2). A gamepad was chosen for use
in the study rather than a steering wheel or other input devices such as multi-degree-of-freedom
haptic devices because of its widespread usage in mobile robot teleoperation systems.40, 41 A small
amount of noise was artificially added to the gamepad input, generated from a uniform distribution
on the range of [−10%, 10%] of the maximum possible input command, to simulate the noise present
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Fig. 1. Block diagram of the teleoperated robot simulation. Noise and delay are added to the input command
from the user. There is no additional delay in the loop other than delays associated with sampling, display
refresh rate, and computer processing, which are all negligible in comparison to the induced delay.

(a) Simulated Robot (b) Third-Person Viewpoint (c) First-Person Viewpoint

Fig. 2. Renderings of (a) the simulated robot, (b) the exocentric (third-person) viewpoint, and (c) the egocentric
(first-person) viewpoint presented to the users in the study.

in a physical robot system. Because the focus of this study is to investigate steering behavior rather
than combined longitudinal and lateral control, operators do not have control over the robot speed.
The simulation visualization is displayed to the user via the Operator Control Unit (OCU) on a 25′′
(63.5 cm) monitor with a resolution of 1920 × 1200 pixels in a full-screen window. Two different
viewpoints are used in this study. A third-person view (Fig. 2(b)) shows the scene from a virtual
camera following behind the robot, which can also be described as a “rigidly tethered” viewpoint.42

A first-person view (Fig. 2(c)) shows the scene from the point of view of the robot’s camera, with a
small portion of the robot’s gripper visible in the bottom portion of the window. Both viewpoints are
aimed at a point having the same distance in front of the robot, giving both views identical lookahead
distances.

3.1.3. Insertion of delay. Gamepad instruction packets are read by the OCU and enter a queue waiting
to be read by the simulation, representing a delay in the human-to-robot direction (see Fig. 1). For
each incoming instruction, a simulated delay (δ) inserted between the gamepad instruction and the
simulation is determined by

δ(δmin, σ ) = δmin + |δX| (2)

where δmin is a minimum baseline delay, and δX ∼ N (0, σ 2) is a continuous random variable having
a normal distribution with variance σ 2. This results in a stochastic latency distribution approximating
the qualitative shape of packet intervals for wireless networks specified by the IEEE 802.11 standard.43

A sample distribution of instruction delay values is shown in Fig. 3. These wireless networks
characteristically appear to have a random distribution in addition to a baseline delay, the parameters
of which depend on network type, distance between devices, the type of hardware used, and other
environmental factors, such as interference from walls or other wireless networks. For simulation of
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Fig. 3. Distribution of gamepad instruction packet delays with δmin = 150 ms, σ = 125 ms, and mean delay
E[δ] = 250 ms. The quantization is due to the gamepad sampling rate of 40 Hz, which also causes the delay
minimum (and therefore the mean delay) to be slightly greater (<10 ms) than the nominal value (negligible
compared to the induced delay).

constant latency, we set σ = 0 such that δ = δmin. Once the delay is determined for the current time
step, the newest gamepad instruction in the queue that is at least δ milliseconds old is used as the
command input to the driving simulation, and older instructions are discarded. If no instruction is
older than the desired delay, the previous instruction is used until the oldest instruction is older than
δ milliseconds.

This induced delay is added to the system and does not include or compensate for delays due to
the simulation rate (60 Hz), gamepad sampling rate (40 Hz), or display refresh rate (15 Hz), which
are negligible compared to the magnitude of the latencies induced in the trials.

3.1.4. Test track. Sixteen non-self-intersecting test tracks were randomly generated that each contains
exactly one of the following elements: Right Turn, Left Turn, U-Turn Right, U-Turn Left, S-Turn
Right-Left, and S-Turn Left-Right. All turns have a constant radius of 2 m, and the width of the
track is 2 m, with 0.125 m borders on either side. This is similar to the tests described by ASTM
Standard E2829-11 for evaluating robot mobility in maneuvering at sustained speeds,44 which uses
a figure-eight track with a 2 m turning radius. The width of the robot (wheel-to-wheel) is 0.74 m.
The turn gain of the gamepad input is scaled by robot speed such that the minimum turning radius
of the robot is always 1.6 m, preventing users from relying on the actuator limits of the gamepad to
execute ideal turning motions. Each track element has a section of straight-line path at least 5 m long
immediately following it to allow the user to try to recover from any deviation sustained during the
turn. Additionally, there is a 10 m straight-line warm-up section at the start of each track in which
the user can familiarize him/herself with the test condition. A sample track is shown in Fig. 4.

3.1.5. Scoring. The path-following score for each trial is determined as a function of the robot’s
distance from the centerline over the course of the path, after the robot has passed the start line. The
normalized score at each time step i of the simulation is given by

Si = max

(
0,

w/2 − |yi |
w/2

)
(3)

where yi is the lateral displacement at step i, and w is the width of the test track (in this case, 2 m).
Then, the total score is determined as the average of the scores at each time step:

S = 1

n

n∑
i=1

Si. (4)
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Fig. 4. Representative track with dimensions for simulated driving tasks. Sixteen total tracks were randomly
generated for use in the study, all with the same set of features and dimensions. A section was included at the
beginning of each track to enable users to familiarize themselves with the test conditions. Scoring for each trial
commenced after the robot passed the “Start” line.

A score of 1 indicates that the path was followed perfectly, and a score of 0 indicates that the robot was
never on the test track. Saturation was included to prevent high score variations as a result of singular
mistakes. This metric was chosen as a simple representation of task performance as measured by path-
following ability, and its similarity to traditional metrics is used for position tracking in teleoperation
tasks,19, 45, 46 as it is equivalent to the saturated mean error. It is also straightforward to explain to users
that might not be familiar with metrics such as root mean square error (RMSE), and is consistent
with the ‘high-score’ incentivization used in video games. A post-hoc comparison showed a strong
correlation between RMSE and Path-Following Score for these trials (r(493) = −0.98), p < 0.001).

3.2. Procedure
User tests were conducted with 32 volunteers recruited via flier and email advertisements distributed
to a population of engineering students. One participant withdrew from the study, leaving 31 users
in the dataset. A total of 22 men and 9 women completed the tasks, ranging in ages from 18 to 37
years, with a mean age of 23.5 years (S.D. = 4.2 years). Participants self-reported an average prior
experience with video games of 4.8 on a scale from 1 (least) to 7 (most) (S.D. = 1.3), and an average
prior experience with robotics as 3.4/7 (S.D. = 1.2). Users were given $10 for participating, with
the knowledge that an additional $10 bonus would be awarded to the top performer of six different
tasks as determined at the end of the trials, with a $30 bonus cap. The tests were designed to take
less than 1 h, and most participants needed approximately 45 min. These tests were approved by the
University of Michigan Health Sciences and Behavioral Sciences Institutional Review Board (UM
IRB #HUM00044265).

3.2.1. Study design. This study used a test design with three independent variables: viewpoint – first-
and third-person; latency type – see Table I; and robot speed – 1.0 m/s and 1.5 m/s. These speeds are
within the range used by ASTM E2829-11,44 and are within the middle 50% of maximum speeds for
common UGVs, as reported by the Association for Unmanned Vehicle Systems International.47 To
make the study more efficient, both speed levels for a given viewpoint-latency scenario were tested
consecutively, and a survey was administered once per scenario. Due to time constraints, six of the
scenarios were performed by all users (these were used as the basis for the bonus payments), and the
remaining two scenarios for each user were evenly drawn from the secondary set of scenarios (see
Table II). Users were not informed which scenarios were common to all participants. The order of
the viewpoint-latency scenarios, speeds, and track numbers was randomized and counterbalanced to
control for learning and fatigue effects.
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Table I. List of latency types used in the user
study. All values are listed in milliseconds. E[δ]
is the expected value of the random variable δ,
representing the delay inserted between the user

and the robot for each latency type.

Latency type δmin σ E[δ]

A 0 0 0
B 250 0 250
C 500 0 500
D 750 0 750
E 150 125 250
F 300 250 500

Table II. Number of users participating in each scenario. All users
participated in six of the scenarios (starred), while the remaining six

scenarios were distributed evenly among the participants.

Constant latency Variable latency

Visualization POV A B C D E F

Third person 31* 11 31* 10 31* 11
First person 31* 10 31* 10 31* 10

3.2.2. Test procedure. Test subjects were informed of the nature of the experiment, including the
scoring mechanism of the trials.

For each trial, users would push a button on the gamepad to initiate driving, and would steer
the robot along the test track with a joystick on the gamepad, at a constant pre-determined speed,
attempting to keep the center of the robot in line with the center of the test track. If the center of the
robot passed completely off the track, the speed of the robot was automatically reduced to half of the
original speed, and returned to normal when the user was able to get the robot back onto the track.
Without this reduction, some users would have been unable to recover from large errors, and their
test results would not have been usable. Users were not informed of their trial scores during the tests
to avoid biasing their survey responses.

Data logs recorded the user’s input to the robot as well as the robot state during all tests, and
post-trial surveys were administered on the OCU via web browser. One data log for latency scenario
C with a first-person view at a speed of 1.5 m/s did not record properly, so this trial is omitted from
the dataset, but the survey results are included.

3.3. Results and discussion
3.3.1. Task performance. To begin the analysis of human subjects’ objective performance, we
observed their path-following scores for the different viewpoint, latency and speed conditions. Figure
5 shows boxplots of trial scores under each viewpoint, latency, and speed combination. The plot
shows decreasing scores and increasing score variance for increasing amounts of latency. Both of
these trends agree qualitatively with prior experiments on task completion time in a 3D navigation
task performed by Lane et al.16 There is a clear decrease in performance for higher robot speeds
under all latency conditions, and the performance drop-off is particularly stark above 500 ms of delay.
Scenarios E and F show worse performance than B and C, respectively, indicating the scores for trials
under variable latency are lower than the scores for trials under constant latency with the same mean.

In contrast to our expectations, Fig. 5 shows that the viewpoint did not have a pronounced effect
on performance in our data. An analysis of variance, considering the user as a random variable,
confirmed that the effect of viewpoint on path-following score was not statistically significant
(F1,494 = 2.31, p > 0.1). This comes despite videogamers’ general preference for a third-person
point of view,49 and does not replicate the prior findings of Pazuchanics50 and Hollands and Lamb.42

We believe that this discrepancy could have arisen due to the relative simplicity of this task, and the
fact that robot arm’s gripper was visible in the first-person view, providing a reference point to the
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(a) User results for 1 m/s speed.
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(b) User results for 1.5 m/s speed.

Fig. 5. Boxplot showing the path-following score, as defined by Eq. (4), indicating user performance under
varying latency and viewpoint conditions. For all boxplots in this paper, the center line of each box represents
the data median, while the edges of the box correspond to the 25th and 75th percentiles (the interquartile range,
IQR), and the whiskers extend to the most extreme data points within 1.5 IQR of the 25th and 75th percentiles.
Data points outside this range are considered outliers.48 (a) User results for 1 m/s speed. (b) User results for
1.5 m/s speed.

user that is similar to the types of references available in a third-person view. As a result, we combine
data from the two viewpoints for the remainder of the analysis in this paper, focusing on delay type
only.

3.3.2. Survey responses. Figure 6 shows the participant responses to the questions on the survey
measuring the teleoperators’ sense of the latency on a seven-point Likert scale. Responses for the
different speeds were combined for each latency type due to the structure of the experiments. The
responses show good internal consistency in measuring how much delay the user felt in the system
(Chronbach’s α = 0.87). Responses, summarized in Fig. 6, indicate a higher mean delay value caused
users to feel that there was a higher delay in the system. Additionally, responses indicate that users
sensed there was a higher delay in scenarios involving variable latency than in scenarios having
constant latency with the same mean. For example, users agreed with the statement “There was a
lot of delay between my actions and the expected outcome in the robot’s environment” more (the
response distribution is shifted more to the right) for latency scenario E than latency scenario B.

4. Driver Model
This section discusses the development and validation of a model for simulating the steering
commands issued by the teleoperator under different constant latency conditions, based on user
data described in Section 3.

4.1. Driver behavior
To act as an acceptable substitute for a human driver, the steering model must accurately replicate
the key characteristics of the human operators. Figure 7 shows two example datasets from runs under
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type. The survey with seven-point Likert items was administered at the conclusion of the two speed trials for
each latency scenario. The width of each bar represents the percentage of responses with the corresponding
Likert value.
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Fig. 7. Plots showing example datasets of low-latency and high-latency test cases. The datasets are from two
different users and are representative of the median user performance in the test. Scores were not accumulated
during the warm-up section. The path shown on the left is only a section of the whole track. Note that even
though the operators could use the joystick to command any value between −1 and 1 to the robot, users generally
only toggled to 0 or ±1.

low latency (Latency A), and under high latency (Latency D), which were chosen because their
path-following scores were close to the median user path-following score for their respective latency
types.

The first characteristic that the model should accurately reproduce is the profile of the lateral
displacement of the robot along the path. This can be represented by the path-following score, but
the simulated displacement should also show similar patterns to the measured data. Two convenient
measures to characterize the shape of the path are the maximum lateral displacement (maximum
error) and the length of the path (meandering paths will be longer).

We also wish to emulate the users’ input commands. As shown in both traces in Fig. 7, the input
command is almost always saturated. This is because most users tended to move the control stick on
the gamepad to its far left or right position rather than use an intermediate input. Thus, we characterize
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Fig. 8. Diagram illustrating the determination of the projected lateral displacement. The projected state is
the location of the robot at a future time t + Tp, assuming a constant angle and velocity. The desired state
is the position and orientation of the desired path that is closest to the projected state. The projected lateral
displacement yp(t + Tp) is then defined to be the perpendicular distance between the desired state and the
projected state.

the input command by both the average absolute input ([0–1]) and the rate at which the user toggled
the control stick in Hz.

4.2. Model development
To develop a model for teleoperated robot steering, we can draw from some of the techniques
previously developed for automotive steering models. Specifically, we use a preview of the desired
path combined with an internal model of the vehicle kinematics and an operator time delay.31, 51

MacAdam6 notes that essential requirements for a driver model include: a time delay due to human
processing, a preview of the upcoming control requirements (i.e., a mechanism for feed forward
control), the ability to adapt to different vehicle and operating conditions, and an internal model to
predict vehicle responses. Automotive steering models can use one or more feedback cues as inputs
to the driver model, including any or all of the following: lateral displacement, lateral acceleration,
roll angle, heading angle, and yaw rate. The cues can be processed by the model in one or more
forms, which may include visual cues, motion effects, sound, and tactile information.6 However, in
this teleoperation scenario, visual signals are the only cues available.

A simple steering model can be developed based on the driver’s anticipated deviation from the
desired path at some future time (t + Tp). In this case, we choose the projected lateral displacement
yp(t + Tp) of the robot as the feedback cue. Figure 8 illustrates the process of determining the
projected lateral displacement, which is based on the projected state of the robot xp(t + Tp), assuming
it continues its trajectory from the current state xc(t) at a constant velocity:

xp(t + Tp) =

⎡
⎢⎣

x
p

1

x
p

2

θp

⎤
⎥⎦ =

⎡
⎢⎣

xc
1

xc
2

θc

⎤
⎥⎦ +

⎡
⎢⎣

v cos θc

v sin θc

0

⎤
⎥⎦ Tp. (5)

The desired future state of the robot xd (t + Tp) is the point along the desired path closest to the
projected state, as measured by Euclidian distance:

xd (t + Tp) = arg min
x∈path

√
(x1 − x

p

1 )2 + (x2 − x
p

2 )2. (6)

The projected lateral displacement is the component of the difference between the projected and
desired states perpendicular to the direction of the desired path. It is obtained by rotating the vector
from xd to xp by the desired heading angle θd and taking the component perpendicular to the path:

yp(t + Tp) = (xd
2 − x

p

2 ) cos θd − (xd
1 − x

p

1 ) sin θd . (7)

https://doi.org/10.1017/S0263574716000679 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574716000679


178 Operator Steering Model for Teleoperated Mobile Robots under Latency

Fig. 9. Block diagram showing the steering control loop. The lateral displacement yp(t + Tp) is determined
from the difference between the projected and desired robot states at time t + Tp. The R(θd ) block represents
the rotation operation described in Eq. (7). Delay and noise are added in our system inside the Robot Simulation
Environment block.

For a continuous path, this is equivalent to taking the length of the vector, but for paths consisting of
a discrete set of points, this method results in smaller computational errors due to gaps in the path.

We now model the steering action of the user as a PD controller52 based on the anticipated lateral
displacement feedback cue, with an additional delay δH representing the driver’s physical actuation
time:

u(t + δH ) = Kpyp(t + Tp) + Kdẏ
p(t + Tp) (8)

The control signal generated by Eq. (8) is continuous and unbounded. However, the gamepad input
device is only capable of generating control inputs on the interval [−1, 1], and users tend to issue
commands at one extreme of the interval or the other. We can capture both the actuator saturation
and the users’ tendency to max out the limits of the gamepad by conditioning the control input with
a simple threshold (μ > 0):

u′(t) =

⎧⎪⎨
⎪⎩

−1 if u(t) ≤ −μ

0 if μ > u(t) > −μ

1 if μ ≤ u(t)

(9)

and using u′(t) as the simulated gamepad steering command issued to the robot. Removing or
modifying this conditioning could be used to model steering with other input devices. Figure 9 shows
a block diagram of the overall steering control loop.

4.3. Model parameter tuning
In this section, we find PD gains to tune the controller to behave similarly to the median operator in
our user tests for each constant latency scenario. We focus here on the case in which the robot speed
is 1 m/s.

To simplify the process of tuning this model, we can make some assumptions about the parameters.
The physical actuation time (δH ) of the model driver is assumed to be 200 ms, determined by inspecting
the log data of user inputs. Also, we assume a lookahead time (Tp) of 1250 ms based on prior work
in the automotive domain,53 which states human driver preview times are roughly between 500 and
2000 ms. Additionally, we set the threshold for conditioning the control input to μ = 0.5, as this value
resulted in qualitatively similar toggling behavior for the model as the human operators. Therefore,
the only two parameters left to tune are the control gains Kp and Kd . The gains were tuned by hand to
reflect the path-following score and average control input of the median user for each constant latency
case. It would be possible to tune the controller to represent a more- or less-skilled user by changing
the gains to match the measured performance the user at a given skill level. A summary of the model
constants and tuned parameters is shown in Table III. Additionally, a two-dimensional search was
performed in simulation over values of Kp and Kd . The controller gains in these simulations that
most closely matched the median human operator behavior (for both path-following score and control
effort) were found to be similar to the gains determined by hand-tuning the controller.

For the zero latency case, the Kd value of zero is consistent with vehicle steering models having
only proportional feedback to errors in projected lateral displacement.54 For the scenarios with latency,
the ratio of Kp/Kd decreases as the latency increases, demonstrating that the steering model more
heavily weighs the projected error for low latency, and relies more on the predicted displacement
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Table III. Tuned control gains and parameter values for constant latency cases.

Type δ [ms] Kp Kd Tp [ms] δH [ms] μ

A 0 1.7 0.0 1250 200 0.5
B 250 1.6 0.3 1250 200 0.5
C 500 1.3 0.7 1250 200 0.5
D 750 1.0 0.9 1250 200 0.5
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Fig. 10. Example paths and input profiles of the robot as commanded by the steering model. These paths and
inputs show similar qualitative characteristics to those produced by human drivers. Note that the path shown on
the left is only a section of the whole track.

trend when the delay is high. Intuitively, this reflects the strategy employed by a human teleoperator
in the control loop, who must rely more on prediction based on anticipation of the track’s features
when the latency is high rather than direct visual feedback. Additionally, the decreasing proportional
gain agrees with the qualitative analysis described by Jagacinski55 and reflects the users’ increased
tolerance for steady state errors in the difficult-to-control high latency cases.

We performed a stability analysis on this steering model for constant latencies.35 The analysis was
carried out considering the robot traveling along a straight-line path and indicated that the maximum
allowable delay, while maintaining stability, depends on robot speed, turn gain, lookahead distance,
and control gains. More specifically, the criteria found agree that the ratio of Kp/Kd must decrease
as latency increases.35

4.4. Model validation
To test the performance of the steering model, the teleoperation scenarios were run with the gamepad
command simulated in real-time by a MATLAB script running the steering model at 40 Hz and
communicating to the robot simulation via LCM over the gamepad channel. Each of latency scenarios
A-D were run 20 times on different test tracks (randomly chosen from the 16 test tracks used in the
user tests) with a robot speed of 1 m/s. Figure 10 shows two example datasets generated by the
steering model, which appear similar to the datasets produced by the human drivers shown in Fig. 7.
Path-following scores are similar for both latency scenarios A (human: 0.93; model:0.92) and D
(human: 0.77; model: 0.75). Both the saturated input behavior and the overall lateral displacement
profiles are qualitatively represented by the steering model.

Figure 11 displays both the human driver path-following scores and the path-following scores
from the steering model. The spread of the steering model data at each of the constant latencies is
smaller than that of the human driver. In its current form, the model does not capture the variability
among all users who participated in the study. However, the model could also be tuned to match the
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Fig. 11. Human driver scores of path-following alongside those from simulations of the robot at a speed of 1 m/s
with input commands from the steering model. The model was tuned using the constant latency scenarios from
the user trials. The gains used are given in Table III.
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Fig. 12. Boxplot comparison between the human drivers and steering model for path characteristics of maximum
lateral displacement (overshoot), path length, mean control input magnitude (control effort), and gamepad toggle
rate.

behavior of users who scored in a different percentile, e.g., the model could be tuned to produce user
scores in the 75th percentile to represent a more expert human operator.

The data in Fig. 11 show that simulations with the steering model line up well with the median
human user for each of the constant latencies tested. For nearly all of the constant latencies tested,
the interquartile range (IQR) of the model data falls within the IQR of the human drivers. The only
exception is Latency C. However, the range of the model data still falls within the range of the human
driver data. Figure 12 shows that the model, as tuned, accurately reproduces the overshoot (maximum
lateral displacement) produced by the human driver in constant latency scenarios. Additionally,
although they both show the same overall trends, the path lengths for the human operator are
consistently shorter than for the steering model. This is likely because the human drivers in the
trial were anticipating the turns and took the inside corner of the track more often than the model.
If desired, the model could be tuned to be more anticipatory by increasing the derivative gain Kd .
The steering model also shows reasonable agreement with the human drivers for average control
input and toggle rate. Overall, the driver model appears to be a reasonable representation of a human
driver under the conditions tested, and could be used to simulate teleoperator steering responses for
evaluation of potential robot designs and technologies. Under different conditions of track geometries
or input devices, we expect that the overall model would be applicable, but different parameter values
may be required.

5. Variable Latency Equivalence
The model described in the previous section was developed and tuned for constant latency scenarios.
However, the latency profile of communications networks is often stochastic. In this section, we use
both experimental user data and steering model simulations to propose an equivalence relation for
driver performance between variable and constant latency scenarios. Understanding the relationship
between latency distribution and performance could greatly simplify the process of developing user
models for telerobotic tasks with variable latency characteristics.
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Fig. 13. Model of user performance as measured by the path-following score for various latencies and robot
speeds. The data in this plot is the same as in Fig. 5, but the scores are now plotted by numerical latency value
on the horizontal axis. The trendline runs through the median score for each constant latency case (A–D), and
the variable latency cases (E, F) are then shown at their corresponding equivalent constant latencies.

5.1. Performance modeling and variable latency equivalence
Based on user scores for the constant latency scenarios tested, scores at intermediate constant latencies
not explicitly tested in this study can be predicted by interpolation. Figure 13 shows the score
distribution of the constant latency scenarios plotted with a trendline fit to the median user for each of
the two speeds. By determining the point at which the median path-following scores for the variable
latency scenarios intersect with the trend for the constant latency scenarios (see Fig. 13), we can
find a magnitude of constant latency that would likely result in similar path-following performance
as a given variable latency distribution. Figure 13 indicates that for variable latency scenario E, the
median scores at the two different speeds correlate with the same constant latency, 380 ms. Similarly,
latency scenario F corresponds to a constant latency of 660 ms for both speeds.

Figure 6 in Section 3.3.2 shows that users also reported experiencing the variable latency at a
similar equivalence, in that the users’ sense of the delay in the system followed the same trend as the
objective score, wherein variable latency type E fell in between constant latency types B and C, and
type F was between C and D. Figure 14 shows the sum of responses to these five Likert items (with
the responses to “There was a lot of delay between my actions and the expected outcome in the robot’s
environment” reversed to make the sentiment of the statements consistent). A linear trend can be
found between the constant latency scenarios and the sum of the ratings. By plotting the survey results
of variable latencies E and F at their constant equivalent latencies of 380 and 660 ms, respectively,
it is shown that the constant equivalences determined by the objective scores are consistent with the
trend in the survey responses. This indicates that users’ perceptions of the variable latency agree with
their objective performance on the tasks, despite their not being informed of their scores during the
trials.

Based on the quantitative path-following performance and qualitative survey responses, we
conjecture that for this steering task, a variable source of latency can be mapped to an equivalent
constant latency, independent of speed. This mapping could simplify the process of understanding
user responses to delay for teleoperated tasks, as once an equivalence is found, it may be possible to
use this equivalence instead of the latency distribution for modeling and predicting user behavior. Put
another way, if a subset of latency distributions D = {δ1, δ2, . . . , δn} was found to result in the same
user performance as some constant latency δc ∈ D, then characterizing system response to δc also
characterizes the system response to each δ ∈ D, and the number of characterizations that must be
performed is reduced from n to 1. Section 5.2, below, shows how we can find such subsets of latency
distributions with equivalent steering performance using a small number of experimental tests. Note
that this equivalence is with regards to the system performance under the different latency scenarios,
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Fig. 14. Boxplot of user responses to survey questions related to operator sense of delay. The fit line is generated
from the constant-latency cases (A–D), and the variable latency scenarios (E, F) are plotted at their constant
latency equivalents, as determined by path-following score in Fig. 13.

and does not imply that pure delay and latency variability have equivalent underlying mechanisms
resulting in decreased performance.

5.2. Expected performance for different latency distributions
The relationship determined above between human performance under variable latencies E and F
and the expected performance under constant latencies of 380 and 660 ms inspired exploration to
find similar patterns among several different variable latency distributions. Recall that the variable
latency distribution used in this study δ (δmin, σ ) has two parameters: the minimum baseline delay
δmin and the variance parameter σ 2. We predict that in terms of path-following score, there exists a
relationship between the variable latency distribution and an equivalent constant latency δequiv that
can be described with a linear function of δmin and σ 2:

f (δmin, σ ) = α · δmin + β · σ 2 = δequiv (10)

where α and β are scaling factors for δmin and σ 2, respectively.
The terms α and β can be estimated by solving a linear system of equations. Based on the results

of our human subjects’ tests, latency types E and F yield

f (150 ms, 125 ms) = 380 ms

f (300 ms, 250 ms) = 660 ms.
(11)

We can select another two distributions with a known constant latency equivalence trivially:

f (380 ms, 0 ms) = 380 ms

f (660 ms, 0 ms) = 660 ms.
(12)

These four linear equations can be represented in matrix form Ax = b, where

A =

⎡
⎢⎢⎢⎢⎣

0.15 0.1252

0.3 0.252

0.38 0

0.66 0

⎤
⎥⎥⎥⎥⎦ , x =

[
α

β

]
, b =

⎡
⎢⎢⎢⎢⎣

0.38

0.66

0.38

0.66

⎤
⎥⎥⎥⎥⎦ . (13)

https://doi.org/10.1017/S0263574716000679 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574716000679


Operator Steering Model for Teleoperated Mobile Robots under Latency 183

0.4

0.5

0.6

0.7

0.8

0.9

1

P
at

h−
F

ol
lo

w
in

g 
S

co
re

F:δ(300,250) δ(660,0) F:δ(300,250) δ(500,161) δ(100,301)

User
Data

Controller Data
(K

p
=1.11, K

d
=0.83)

Latency Type
(b)

0.4

0.5

0.6

0.7

0.8

0.9

1
P

at
h−

F
ol

lo
w

in
g 

S
co

re

E:δ(150,125) δ(380,0) E:δ(150,125) δ(250,145) δ(50,231)

User
Data

Controller Data
(K

p
=1.44, K

d
=0.51)

Latency Type
(a)

 

 

Human Driver, v=1 m/s
Steering Model, v=1 m/s

Fig. 15. Boxplot comparison between the steering model and human users for the proposed equivalent latencies.
The gains used in the steering model for the distributions equivalent to latency types E and F were selected
based on their equivalent constant latencies of 380 and 660 ms, respectively. The results for the model steering
boxplots are based on 20 runs at each latency type. The user data for latency types E and F are based on sample
sizes of 62 and 21 runs, respectively.

Since there is no exact solution to this set of equations, the least squares solution for α and β (defined
as x̂T = [α̂ β̂]T ) will be used: x̂ = (AT A)−1AT b. The least squares solution of Eq. (13) yields
α̂ = 1.02 and β̂ = 6.20. Thus, the equivalent constant latency for any latency distribution of the type
tested can be estimated.

To test whether these different latency distributions result in similar performance, 160 additional
simulations were run and compared to user data for four new latency distributions. Based on Eq. (13),
δ (50, 231) and δ (250, 145) are predicted to be equivalent to δequiv = 380 ms, and δ (100, 301) and
δ (500, 161) are predicted to be equivalent to δequiv = 660 ms. Figure 15 displays user data from the
variable latencies tested along with the results of the steering model (run 20 times each at the latencies
displayed on the horizontal axis). The data from the steering model in Fig. 15 was simulated using
controller gains linearly interpolated from Table III based on constant equivalent latencies of 380 and
660 ms, respectively.

Figure 15 compares the steering model at constant latencies of δ(380, 0) and δ(660, 0) to user data
with variable latencies E and F, respectively. It shows that the steering model captures the variable to
constant latency equivalence. Figure 15 also shows that the steering model is a good predictor of user
performance when run with variable latencies. This is evident when comparing the human steering
data with the model steering data each for latency E:δ(150, 125) and latency F:δ(300, 250).

Figure 15(a) supports our prediction that variable latencies of δ (50, 231) and δ (250, 145) would
result in similar performance as latencies of δ (380, 0) and δ (150, 125). In fact, the median scores of
the four latencies tested with the steering model are within 2% of the median human score (latency
E) and nearly all of the path-following scores fall within the interquartile range (IQR) of the human
users. Figure 15(b) also supports our prediction that variable latencies of δ (100, 301) and δ (500, 161)
would result in similar performance as latencies of δ (660, 0) and δ (300, 250). The median scores of
the four latencies tested with the steering model are within 3% of the median human score (latency
F) and nearly all of the path-following scores fall within the IQR of the human users. Overall, Fig. 15
supports our claim that several variable latency distributions can result in similar path-following
performance with the steering model developed in this paper. Therefore, steering performance results
from simulations under a constant delay of (for example) 380 ms would be applicable to the subset of
latency distributions satisfying Eq. (10) for δequiv = 380 ms, reducing the need to test different latency
distributions explicitly. Further work is required to investigate whether this variable latency-equivalent
constant latency relationship holds for humans steering the robot.

6. Conclusions and Future Work
This paper presents the results of a user study exploring the effects of constant and variable latency
on teleoperated steering tasks using a simulated mobile robot receiving input commands from a
teleoperator via computer gamepad. Using fundamental concepts from automotive steering models,
and examining the users’ input commands to the simulated robot under different latency conditions,
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a model of human teleoperator behavior for a steering task was developed, tuned, and validated. The
model is a PD controller with feedback based on the projected lateral displacement of the robot. The
tuning of the model gains for different latency scenarios reflects the real-world control strategies that
users employ when adapting to system latency.

The objective results of the study indicate that variable latency distributions can have equivalent
performance to a particular constant latency, independent of speed. User responses to survey
questions related to sense of delay further supported the proposed variable to constant latency
equivalence. Results from simulations run with the steering model support the idea that variable
latency distributions can be related to an equivalent constant latency through a linear combination
of the delay minimum and variance for the latency distributions tested. These results serve as a
foundation for future user tests that can explore whether the variable to constant latency equivalence
relationship holds for users with respect to their performance.

It should be noted that the application of the results presented in this paper are constrained to the
type of teleoperation scenario tested in the study. Vehicles having different steering characteristics
(such as Ackerman vehicles), user interfaces with different input modalities (such as steering wheels),
and scenarios having different latency ranges (such as space teleoperation experiencing multi-second
delays) may not show the same behavior. Additionally, these results are limited to steering commands
only, rather than full teleoperated driving control, or other types of teleoperation, such as remote arm
manipulation. However, designers can use the models and techniques demonstrated in this paper to
assist in robot design and optimization by rapidly simulating multiple design options without the
need for full user testing. In the future, such models could also be used in conjunction with processed
data from robot sensors to predict user intent to aid in human–robot collaboration.

This paper raises new questions about the relationships between system latency and operator
performance. Thus, one area of future work is further exploration of the possible mapping between
variable latency and equivalent constant latencies. It remains to be studied under which conditions
of latency distribution, task type and difficulty, and output measures such an equivalence may exist.
Additionally, more work can be performed on teleoperation driver models, including the validation
of the steering model developed in this work by using more varied track configurations and latency
scenarios, as well as more realistic robot simulations or hardware. Although one clear extension
of this work is the development of longitudinal and/or combined (lateral and longitudinal) driver
models for teleoperated mobile robots, it may also be possible to model teleoperators similarly in
other contexts, such as pointing or object manipulation tasks. Additionally, input devices other than
the gamepad, such as steering wheels, joysticks, and devices with bilateral (force) feedback could
also be investigated.
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