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We develop a general procedure that finds recursions for statistics counting isomorphic copies of
a graph G0 in the common random graph models G(n,m) and G(n, p). Our results apply when the
average degrees of the random graphs are below the threshold at which each edge is included in
a copy of G0. This extends an argument given earlier by the second author for G0 = K3 with a
more restricted range of average degree. For all strictly balanced subgraphs G0, our results give
much information on the distribution of the number of copies of G0 that are not in large ‘clusters’
of copies. The probability that a random graph in G(n, p) has no copies of G0 is shown to be
given asymptotically by the exponential of a power series in n and p, over a fairly wide range of
p. A corresponding result is also given for G(n,m), which gives an asymptotic formula for the
number of graphs with n vertices, m edges and no copies of G0, for the applicable range of m. An
example is given, computing the asymptotic probability that a random graph has no triangles for
p = o(n−7/11) in G(n, p) and for m = o(n15/11) in G(n,m), extending results of the second author.

2010 Mathematics subject classification: Primary 05C80, 05A16
Secondary 60C05

1. Introduction

Our topic is the number of subgraphs of a random graph that are isomorphic to some given graph
G0. The perturbation method of [11] is used to derive recursions of ratios of random graph stat-
istics describing the occurrence of different types of clusters formed as edge-overlapping groups
of copies of G0. These recursions are used to investigate the probability of no occurrences of
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G0, as well as other aspects of the distribution of clusters. For certain graphs G0 and restrictions
on p, we show that the probability that there are no copies of the graph in G(n, p) is the expo-
nential of an appropriate truncation of a power series in n and p, with error factor (1 + o(1)).
(As is usual, G(n, p) denotes the random graph on n vertices obtained by choosing each edge in
the graph to be present independently with probability p and G(n,m) denotes the random graph

on n vertices obtained by choosing uniformly at random from the
((n

2)
m

)
graphs having m edges.)

By considering recursions involving both G0 and isolated edges, we build on this result to show
that the probability that there are no copies of G0 in G(n,m) is given in the same way but by a
different power series in n and d, where

d =
m(n
2

) , (1.1)

under corresponding restrictions on d.
Let ν(G) and μ(G) denote the number of vertices and number of edges of a graph G. A graph

G0 is strictly balanced if all its subgraphs are strictly less dense than G0; that is,

μ(G0)
ν(G0)

>
μ(G1)
ν(G1)

for all non-trivial proper subgraphs G1 of G0. For example, the graph Kn is strictly balanced for
all n � 2, as is every cycle. Let G0 be strictly balanced, and let X be the number of copies of G0

in the random graph G(n, p). Denote the set of proper subgraphs of G0 which contain at least one
edge by E and let χ > 0 be defined by

χ = χ(G0) = max
G1∈E

ν(G0)−ν(G1)
μ(G0)−μ(G1)

. (1.2)

We will restrict the growth of p to p = O(n−χ−ε) for some ε > 0. The reason for this restriction
is that when p is a little larger than n−χ (sometimes called the 2-threshold), each edge of G(n, p)
will expect to be contained in many copies of G0. Thus, there will be subgraphs consisting of
arbitrarily large numbers of copies of G0 ‘chained’ together by shared edges. In this case our
analysis will not apply, since it relies on a copy of G0 being unlikely to overlap with any others,
as happens when restricting to p = O(n−χ−ε).

Here is our main result. Note that χ should not be confused with the chromatic number, which
does not appear in this paper.

Theorem 1.1. Let G0 be strictly balanced and put χ = χ(G0). Let X be the number of copies
of G0 in G(n, p), or let X be the number of copies of G0 in G(n,m) and set p = m/

(n
2

)
. In each

case, there is a formal power series F = F(G0) = ∑��0 c�n
i� p j� , with i� and j� strictly positive

for all �, depending only on G0, such that the following holds. For any ε > 0, if p = O(n−χ−ε),
then

P(X = 0) = exp

( Mε

∑
�=0

c�n
i� p j� +o(1)

)
, (1.3)

where the bound implicit in o(1) is uniform over all such p (but depends on ε), and Mε is a
constant depending only on ε and G0. Moreover, � > Mε if and only if i� < j�(χ + ε).
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Remarks. (1) The theorem immediately gives an asymptotic formula for the number of G0-free
graphs on n vertices and m edges, for the values of m covered, by multiplying the G(n,m) case
of (1.3) by

(n(n−1)/2
m

)
.

(2) Note that i� < j�(χ + ε) if and only if ni� p j� = o(1) when p = n−χ−ε , so each term with
� > Mε is o(1). We also note that the issue of non-convergence of the power series F(G0) for a
given fixed n and p is not relevant in the present context.

(3) The proof of the theorem contains a definition of the coefficients c� in Theorem 1.1 in terms
of an algorithm by which they may be computed. It involves summing over a set of graphs whose
size is bounded for fixed ε > 0, but not as ε → 0.

We next give two specific examples of the main result, by restricting to the case that G0 is a
triangle, or K3, and computing only the first few terms of the power series explicitly.

Theorem 1.2. If p = p(n) = o(n−7/11), then the probability that the random graph G(n, p) is
triangle-free is asymptotic to

exp

(
−1

6
n3 p3 +

1
4

n4 p5 − 7
12

n5 p7 +
1
2

n2 p3 − 3
8

n4 p6 +
27
16

n6 p9

)
.

Similarly, we determine the coefficients c� in the case of G(n,m) where G0 = K3 and d =
o(n−7/11), or equivalently m = o(n15/11), in the next theorem.

Theorem 1.3. If m = m(n) = o(n15/11), then the probability that the random graph G(n,m) is
triangle-free is asymptotic to

exp

(
−1

6
n3d3 − 1

8
n4d6 +

1
2

n2d3

)
,

where d = m/
(n

2

)
.

These two results on triangles agree with and extend those of the second author in [11], which
applied for p = o(n−2/3). The result for G(n,m) extended an earlier one of Frieze [3] which
applied for even smaller p.

For G(n,m), the expected value of X is easily found to be

λ (G0) :=
(

n
ν

)(
m
μ

)((n
2

)
μ

)−1

ν!|aut(G0)|−1

∼ λ̂ (G0) :=
(2m)μ

n2μ−ν |aut(G0)|
,

where ν = ν(G0), μ = μ(G0), and |aut(G0)| denotes the number of automorphisms of G0.
Ruciński [10] showed that the distribution of X is asymptotically Poisson essentially for d up to
n−χ . Frieze [3, Remark 2, p. 69] raised the possibility that, for the same range of d, the number
of graphs with k copies of G0 in G(n,m) is asymptotic to the probability that the Poisson random
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variable with mean λ̂ (G0) is equal to k, for all ‘small’ k. Theorem 1.3 shows (for the first time!)
that this is false in particular for k = 0 and G0 = K3, since in this case, χ = 1/2, but already for
m = n4/3, other terms are entering the asymptotic formula in a significant way. Moreover, the
situation is not remedied by using (the more natural) Poisson with mean λ (G0), since

λ (G0) =
1
6

n3d3 − 1
2

n2d3 +o(1)

(using nd2 = O(m2/n3) = o(1) for the range of m under consideration).
We note that it may be possible to modify our approach to cater also for subgraphs that are not

strictly balanced. In some cases, for instance where G0 has a unique densest subgraph, the desired
result can be deduced immediately from our results. However, other cases are more delicate, with
different subgraphs of G0 ‘competing’. One would need to incorporate considerations similar to
those in the determination the threshold of appearance of G0, as was done by Bollobás [1].

Our concern here is to obtain an asymptotic formula for the probability that a random graph
in G(n, p) or G(n,m) is G0-free, for a fixed graph G0, where the density of the random graph
is small enough that there are no large clusters of copies of G0. Our methods will not work for
the denser case, but some results are already known there, and for arbitrary densities. Recall, as
in Remark (2) above, that for G(n,m) our problem is equivalent to enumerating m-edged graphs
with a forbidden subgraph. The classic paper of Erdős, Kleitman and Rothschild [2] gives the
number of triangle-free graphs with n vertices, in total, asymptotically (and asymptotics of the
logarithm of the number when G0 = Kt). These results also demonstrate the connection between
enumeration and the extremal numbers of edges for G0-free graphs. There are many other similar
results, which we refrain from mentioning as they do not take into account the edge density of
the host graph. More related to the problem at hand, Prömel and Steger [9] found an asymptotic
formula for the number of triangle-free graphs with n vertices and m edges when m > cn7/4 logn,
by showing that they are almost all bipartite. This was extended by Osthus, Prömel and Taraz [7]
to cover all m that are at least slightly above n3/2. Before this, Łuczak [6] had found asymptotics
of the logarithm of the number.

For more general subgraphs than the triangle, and general p, asymptotic formulae for the actual
numbers (or probabilities) are elusive. The logarithm of the probability that G(n, p) is G0-free
was estimated within a constant factor by Janson, Łuczak and Ruciński [4]. This was extended
by Prömel and Steger [8] to similar bounds on P(G(n,m) is G0-free).

Many results are known on the distribution of the number of copies of a fixed subgraph in
G(n, p) and G(n,m); see for example [5, Chapter 6], but this is not our concern in this paper.

Our basic approach, and its background, are discussed in [11]. The proof for G(n, p) estimates
ratios of numbers of graphs using induction on the numbers of edge-overlapping clusters of
copies of G0 up to a given size; for G(n,m) the number of edges not in copies of G0 is also
used, and the base step of this induction is essentially given by the n-vertex graph with no edges.
There are two major extensions to the argument in [11]. One is that the graph G0 is no longer
restricted to K3. This extension requires mainly graph theoretic arguments related to the ways that
multiple copies of a graph can overlap. The other is that the range of p permits edge-overlapping
clusters containing arbitrarily many copies of G0 to appear in the typical random graph under
consideration. Thus our asymptotic estimates involve polynomials of unbounded size, and this
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poses significant problems in characterizing and managing those estimates (see Corollary 2.7 for
example).

The working assumption on p = p(n) we will make in our proofs is p = n−κ+o(1) where κ �
χ +ε is fixed. This assumption can be weakened to obtain asymptotic results that hold uniformly
over more general p = p(n) = O(n−χ−ε) by using the following lemma. Here a and b are finite
but the same result holds (with appropriate interpretation) without this assumption.

Lemma 1.4. For a closed interval [a,b], suppose that f (n, p) is a function such that f (n, p)→ 0
as n → ∞ for all p of the form p = n−κ+o(1) when κ ∈ [a,b] is fixed. Then f (n, p) → 0 uniformly
for all p(n) satisfying p(n) = n−κ(n) with κ(n) ∈ [a,b] for all n.

Proof. If p(n) satisfies − logn p ∈ [a,b] for all n, then any subsequence of (p(n))n�1 has a
subsubsequence for which − logn p → κ ′ for some fixed κ ′ ∈ [a,b]. On this subsubsequence,
f (n, p) → 0 by assumption. So the lemma follows from the subsubsequence principle (see [5,
p.12]) applied to the sequence ( f (n, p(n)))n�1.

Our results will give information on the distribution of the number of copies of a strictly
balanced subgraph, not just the probability that the number is 0, but we postpone this invest-
igation to another paper. We believe that it should be possible to modify our approach so as
to obtain accuracy in the formulae to any desired power of n−1. Specifically, the power series
in Theorem 1.1 should give valid lower-order correction terms to the asymptotic formulae.
However, we have avoided attempting this and there are some steps in the present argument
that would have to be replaced in order to carry it out.

Some basic definitions are made and results are proved in Section 2. The G(n, p) case of
Theorem 1.1 is proved in Section 3. The G(n,m) case is proved in Section 4. Theorems 1.2
and 1.3 are proved in the Appendix.

2. Clusters and recursions for counting maximal clusters

We assume for a general framework that Ω is any finite set. A family K of subsets of Ω is called
a clustering if C1 ∈ K, C2 ∈ K and C1 ∩C2 �= /0 imply that C1 ∪C2 ∈ K. The elements of K are
called clusters.

We will consider here only the case that Ω = Ωn is the set of edges of the complete graph Kn

on n vertices, although the same principles can also be applied to clusterings in general. As a
further restriction, to focus on small subgraph counts, we only consider very special clusterings,
for which simplification occurs by taking advantage of the symmetries of Kn. We take a fixed
graph G0 throughout this paper, and will investigate the distribution of the number of subgraphs
of a random graph isomorphic to G0. The edge set of any subgraph of Kn isomorphic to G0 is
called an elementary G0-cluster. Mostly, we deal with the minimal clustering which has every
elementary G0-cluster as a member. We call this the G0-clustering of Ω. Equivalently, J ⊆ Ω is
in the G0-clustering if and only if there is a sequence J1, . . . ,Ji of subsets of Ω such that each Jj

is an elementary G0-cluster,
⋃i

j=1 Jj = J, and Jk ∩
⋃k−1

i=1 Jj �= /0 for 2 � k � i. (This definition of
clusters corrects an error in the definition in [11]. The usage of it in [11] is consistent with the
present definition.)
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More generally, suppose R is any fixed set of non-empty graphs, and information is desired on
the joint distribution of the subgraph counts for the graphs in R. Then the appropriate clustering
to consider is the minimal clustering containing every elementary G-cluster for every G ∈R. We
call this the clustering generated by R. Of course, if R = {G0}, this is simply the G0-clustering.

Henceforth in this paper we consider the clustering generated by a fixed set of graphs R, and
assume that each graph in R has no isolated vertices. Our first proposition considers a general
set R, and after that we restrict to only two kinds of clustering: the G0-clustering, and the one
generated by R = {G0,K2}, which we call the G∗

0-clustering. Note that a 1-element subset of
Ω cannot have a non-trivial proper intersection with any other cluster. It follows that the G∗

0-
clustering consists of the clusters of the G0-clustering, together with all the 1-element subsets of
Ω. We assume in all cases that |E(G0)| � 2.

For H ⊆ Ω, a cluster of H is any cluster in K contained in H. A maximal cluster Q of H is a
cluster of H which is contained in no larger cluster of H. Equivalently, Q is a subset of H such
that Q ∈ K and such that for every J ∈ K with J ⊆ H, either J ⊆ Q or J ∩Q = /0. (The case of
a non-empty intersection is excluded by the definition of a clustering.) For example, if K is the
G0-clustering and H is an arbitrary subset of Ω, a maximal cluster of H whose cardinality is
|E(G0)| must be an elementary G0-cluster contained in H having empty intersection with every
other elementary G0-cluster in H.

Being a subset of Ω, a cluster induces a subgraph of Kn. The isomorphism class of the subgraph
is called the type of the cluster and also of the subgraph. The set of types will be denoted T , and
we use τ to denote the function which maps a cluster or the corresponding graph to its type. Given
t ∈ T , we use the notation |t| := |{S ⊆ Ω : τ(S) = t}|. Note that this depends on n, whereas t is
fixed.

We will define a special non-empty finite set S of types which is closed under taking subsets,
that is, which satisfies

if S, S′ ∈ K, τ(S) ∈ S and S′ ⊆ S then τ(S′) ∈ S.

Let s = |S| be the number of types in S.
The types in S will be called small, and any cluster Q with τ(Q) ∈ S is also called small.

Any type or cluster which is not small is called large. An unavoidable cluster is any large cluster
which is a union of a small cluster Q and a set of small clusters all pairwise disjoint and all having
non-empty intersection with Q. The set of types of unavoidable clusters is denoted by U . (The
term ‘unavoidable’ refers to the fact that large clusters created in a certain way, to be specified
later, cannot avoid being in U .)

We will need to record how many subgraphs of every small type are present in a given graph.
So we consider the set F of all non-negative integer functions defined on S. For any H ⊆ Ω,
define sH to be the function in F such that, for all t ∈ S, sH(t) is the number of maximal clusters
of H of type t. The function δt ∈ F has value 1 at t and 0 elsewhere.

All our basic work is in G(n, p), the standard edge-independent (binomial) model for random
graphs, and P and E denote probability and expectation in this space. G denotes a random graph
in G(n, p) and q always denotes 1− p. For H ⊆ Ω, the event H ⊆ E(G) is denoted by AH , so that
P(AH) = p|H|. The main objects we work with are, for each f ∈F , the set C f consisting of graphs
G on n vertices containing no large clusters and such that sE(G) = f . For f /∈ F , for example if f
has a negative value on S, we define C f = /0. We write P(C f ) for P(G(n, p) ∈ C f ).
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For types u, t ∈ S and for h ∈ F , define, for any fixed cluster J of type u,

c(u, t,h) = ∑
Q∈K
Q⊆J

τ(Q)=t

∑
H⊆J

H∪Q=J
sH=h

p|Q∩H|q|J\H|. (2.1)

Since the clustering generated by any set R is symmetrical, c(u, t,h) is clearly independent of
the choice of J with τ(J) = u. Note that in the special case u = t,

c(t, t,h) = ∑
H⊆J
sH=h

p|H|q|J\H|, (2.2)

and in particular

c(t, t,0) = 1+O(p). (2.3)

We use ν(G) and μ(G) for the numbers of vertices and edges of a graph G respectively, and
extend the notation to arbitrary subsets H of Ω, so that ν(H) is the number of vertices of the
graph induced by H and μ(H) is the number of edges. In particular, this applies to clusters H.
We also use ν(t) for the number of vertices in each cluster of type t and μ(t) for the number of
edges.

Let [n]k denote n(n− 1) · · ·(n− k + 1). For t ∈ T , let Q be any cluster of type t and |aut(Q)|
the number of automorphisms of the graph induced by Q. Then

|t| =
[n]ν(Q)

|aut(Q)| , (2.4)

and

λt := |t|pμ(Q) = Θ(nν(Q) pμ(Q)) (2.5)

is the expected number of different copies, in G ∈ G(n, p), of the subgraph induced by Q.
Our first result is obtained by simple counting.

Proposition 2.1. For f ∈ F and t ∈ S,

P(C f+δt
)

P(C f )
=

λt

( f (t)+1)c(t, t,0)

(
1−Σ− θ( f ,δt)

|t|P(C f )

)
,

where

Σ = ∑
u∈S
h∈F

(u,h)�=(t,0)

( f (u)−h(u)+1)c(u, t,h)P(C f−h+δu
)

λtP(C f )
(2.6)

and

0 � θ( f ,δt) � ∑
L : τ(L)∈U

∑
Q,H⊆L
τ(Q)=t
L\Q⊆H

P(C f−sH
)
(

p
q

)|H|
. (2.7)
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Proof. Note that

c(u, t,h)p−μ(t) = ∑
Q∈K
Q⊆J

τ(Q)=t

∑
H⊆J

H∪Q=J
sH=h

q|J\H|

p|Q\H| = ∑
Q∈K
Q⊆J

τ(Q)=t

∑
H⊆J

H∪Q=J
sH=h

(
q
p

)|J\H|
, (2.8)

where we have used the fact that J \H = Q\H follows from H ∪Q = J. Consider a pair (E,Q)
where E is the edge set of a graph G in C f and Q is a cluster of type t. Let J be the maximal cluster

of E ∪Q containing Q. If G′ is the graph with edge set E ∪Q, then the expression (q/p)|J\H|

in (2.8) is P(G)/P(G′). Classifying E ∪Q according to u = τ(J), and, in the case that u ∈ S,
subclassifying according to h = sH where H = E ∩ J, gives

|t|P(C f ) =

(
∑
u∈S
h∈F

( f (u)−h(u)+1)c(u, t,h)p−μ(t)
P(C f−h+δu

)

)
+θ( f ,δt), (2.9)

where the θ -term is bounded as in the statement of the proposition. This term comes from
observing that if J is a large cluster L, then it must be unavoidable since E has no large clusters,
and from considering the subset of Ω obtained by removing the set H of all edges of E in L.
Multiplying (2.9) by pμ(t) gives

λtP(C f ) =

(
∑
u∈S
h∈F

( f (u)−h(u)+1)c(u, t,h)P(C f−h+δu
)

)
+θ( f ,δt)pμ(t),

and rearranging the terms, isolating the one with (u,h) = (t,0), finishes the proof.

We now lay the groundwork for asymptotic results. Henceforth, we consider only the G0- and
G∗

0-clusterings for some fixed graph G0 with at least two edges. Recalling that |E(G0)| � 2, we
define the extension value of G0 to be

x = x(G0, p,n) = max
G1∈E

nν(G0)−ν(G1) pμ(G0)−μ(G1). (2.10)

For example, if G0 is a triangle,

x = max(np2, p, p2) = max(np2, p). (2.11)

The significance of the extension value lies in the fact that nν(G0)−ν(G1) pμ(G0)−μ(G1) is the asymp-
totically important part of (

n−ν(G1)
ν(G0)−ν(G1)

)
pμ(G0)−μ(G1).

To interpret this quantity, first distinguish one of the subgraphs of G0 isomorphic to G1. For G2

isomorphic to G1, conditional upon G2 ⊆ G(n, p), the quantity above is the expected number of
isomorphisms from G0 to a subgraph of G(n, p) that map the distinguished copy of G1 onto G2.

For H ⊆ Ω define Φ(H,G0) to be the expected number of subgraphs of G ∈ G(n, p) that are
isomorphic to G0 and whose edge set contains H, conditional on H ⊆ E(G). If H is moreover a
non-empty proper subset of the edge set of a copy of G0, it follows from the remarks above that
Φ(H,G0) is O(x), since there is a bounded number of ways to distinguish one of the subgraphs
of G0 isomorphic to G1.
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Put a partial ordering on the set of types by defining t to be strictly less than u in the poset,
denoted by t ≺ u, if and only if any cluster of type u properly contains a cluster of type t. If t ≺ u,
then a cluster of type u can be obtained from a cluster Q of type t by a finite sequence of non-
disjoint unions with clusters Q0, . . . ,Qk such that each Qi is the edge set of a graph isomorphic to
some Gi ∈R and Qi �⊆ Q∪(

⋃i−1
j=0 Qj). (Note that, in the G∗

0-clustering, it must be that Gi = G0 for
all i.) Thus, for G ∈ G(n, p) the expected number of clusters of type u in E(G) can be bounded
above by a finite sum whose terms are all of the form λt ∏k

i=0 Φ(Hi,Gi) where Hi corresponds to
the intersection of Qi with Q∪ (

⋃i−1
j=0 Qj). Hence, from the conclusion of the previous paragraph,

provided x = o(1) we have

if t ≺ u then
λu

λt
= O(x). (2.12)

Henceforth in this paper, we assume that G0 is strictly balanced, with at least two edges. Let X
be the number of copies of G0 in the random graph G(n, p). It follows easily from the definition
(2.10) of x that the constant χ defined in (1.2) is the smallest number such that p = o(n−χ) implies
x = o(1). Hence, there are functions p = p(n) such that λτ(G0)

→ ∞ while x(G0, p,n) = o(1). We

also assume henceforth that p = p(n) is restricted so that for some fixed κ > χ ,

p = n−κ+o(1). (2.13)

This will be enough for our purposes in view of Lemma 1.4.
Fix ε > 0 and let κ � χ + ε . Since μ(G1) < μ(G0) for all G1 ∈ E , the expression maximized

in (2.10) is at most (nχ p)μ(G0)−μ(G1) � nχ p. Thus,

x(G0, p,n) = O(n−ε+o(1)). (2.14)

See [5] for a general introduction to the considerations relevant here. Note that

p � x (2.15)

by definition, as shown by setting the graph G1 in (2.10) equal to G0 minus an edge.
For our asymptotic results, we work with a particular set of small cluster types defined as

follows:

S = {t : ν(t)/μ(t) � κ}. (2.16)

Then for t ∈ S, the expected number λt of subgraphs of type t is bounded below by λt � n−o(1)

(here the negative sign is not necessary, just indicative, since o() bounds the absolute value),
since by (2.4), (2.5) and (2.13),

λt = Θ(nν(t)−κμ(t)+o(1)). (2.17)

The set S is finite by (2.14) and (2.12). Hence, defining

λL := sup
t /∈S

λt (2.18)

we obtain

λL = O(n−ε ′) (2.19)
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for some ε ′ > 0 by our definition of S. While we are at it, due to a technicality we assume κ < 2,
so that p satisfies the very weak growth condition

n2 p > nε ′′ (2.20)

for some ε ′′ > 0. This ensures that the number of edges in the random graph tends to infinity at
a reasonable rate. Imposing this condition is without loss of generality, since the omitted case
follows from the case considered. For example, the p such that p ∼ n−cν(G0)/μ(G0) are covered for
all 1 < c < 2μ(G0)/ν(G0), and this is well below the threshold of appearance of copies of G0.
Hence, each term in the power series must tend to zero for such c, and must also tend to 0 when
κ � 2. The assumption κ < 2 also ensures that, in the case of the G∗

0-clustering, the single edge
cluster is in S. Note that if n2 p = o(

√
n), the random graph is in any case not interesting, as it is

asymptotically almost surely a matching.
Define

S0 = {t : ν(t)/μ(t) = κ}, S1 = S \S0,

mt =

{
3λt if t ∈ S1,

λt logn if t ∈ S0.
(2.21)

Note that S0 will often be empty, but if it is non-empty, the types in S0 are the rarest types of
small clusters in the random graph, and for t ∈ S0, we have λt = no(1) and hence mt = no(1). Any
type in S0 is maximal in S by (2.12). Thus, for later reference we may note that, for some positive
ε ′′′,

λt > nε ′′′ for t ∈ S1, λt = no(1) for t ∈ S0. (2.22)

Let FS = FS(n) be the set containing those functions f ∈ F such that, for all t ∈ S,

f (t) � mt . (2.23)

For integer-valued h with f , f +h ∈ F , we define

ρ( f ,h) =
P(C f+h)
P(C f )

, (2.24)

and for t ∈ T , f ∈ F define

γ( f , t) =
ρ( f ,δt)( f (t)+1)

λt
. (2.25)

The motivation for focusing on γ is that if the numbers of clusters of the various small types were
independent Poisson variables, then all the γs would be exactly 1. Proving that they are close to 1
shows that the variables are approximately Poisson. We will be measuring the difference between
the Poisson probability and the true probability of C f very accurately for some values of f .

Ultimately, we wish to estimate γ( f , t), and will achieve this in Corollary 2.7. The proof is
complicated, so is broken up into several parts, obtaining progressively simpler approximations.
The downside of breaking it up like this is that it requires repeating the same kinds of inductive
arguments several times. We first obtain a more useful bound on the function θ( f ,δt) appearing
in Proposition 2.1. Let t∗ denote the type of the single edge cluster, which of course only appears
in the G∗

0-clustering.
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Proposition 2.2. Uniformly for every f ∈ FS and every t ∈ S,

θ( f ,δt)
|t|P(C f )

= O

(
φtλL

λt

)
,

where φt = no(1) for t = t∗ and φt = 1 otherwise. Moreover, for all f ∈ FS and t ∈ S, uniformly,

γ( f , t) = 1+O(xno(1)).

Note. The proof will reveal that the factor no(1) can be replaced by the maximum of f (t ′)/λt ′

for t ′ ∈ S, which is always at most logn. However, no(1) is tight enough for our purposes here.
Also, λL can be replaced by the maximum value of λu over all u ∈ L such that t ≺ u.

Proof. In this proof, as in the proposition’s statement, the constants implicit in the O()-terms
depend only on the choice of clustering and κ , as do the bounds implicit in the notation ∼ and
o(1). We will use induction on f ∈ FS . Order FS lexicographically; that is, g < f if and only if
g �= f and g has a smaller value than f in the first component at which they differ. This induction
is crucial to the whole approach of this paper, and is rather unusually complex, since for the
G∗

0-clustering, the induction actually begins with the graph on n vertices and no edges. So we
formulate a statement that pays explicit attention to the implicit constants in O(): what we claim
is that there exist constants C and C′, a number N0 and a function 1 � φ ∗ = φ ∗(n) = no(1) (all
depending only on the clustering and κ) such that, for n � N0 and all relevant f and t,

θ( f ,δt)
|t|P(C f )

� Cφt
λL
λt

, (2.26)

where φt = φ ∗ for t = t∗ and φt = 1 otherwise, and furthermore

|γ( f , t)−1| � C′φt x � 1/2. (2.27)

To prove this, we can assume that for this particular C, and n large enough, these inequalities
hold when f is replaced by any g < f (in the lexicographic ordering).

We first discuss the bound involving θ . Here, by (2.18), it is enough to show the bound
Cφtλτ(L)/λt where τ(L) /∈ S (which then justifies the second part of the note after the statement
of the proposition). Moreover, of (2.27) we will only use the inequality

|γ( f , t)−1| � 1/2. (2.28)

Since the number of clusters of the complete graph Kn which are isomorphic to a given L is
O(nν(L)), and since the number of types of unavoidable clusters is by definition bounded, we
may use (2.7) and q ∼ 1 to obtain the bound

θ( f , t)
|t|P(C f )

= O(1) max
τ(L)∈U

τ(Q)=t,Q⊆L
L\Q⊆H⊆L

nν(L)−ν(Q) p|H| P(C f−sH
)

P(C f )
(2.29)

for n sufficiently large (which in particular ensures that P(C f−sH
) �= 0). Here, recalling (2.5), we

see that

|H| � |L|− |Q|, λt = O(nν(Q) p|Q|), nν(L) p|L| = O(λτ(L)). (2.30)
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In the case f = 0, we may assume sH = 0 in (2.29), since otherwise, C f−sH
is empty. Thus, by

(2.30), we have the bound O(λτ(L)/λt) on each term in (2.29). Since τ(L) /∈ S, we are done in
this case.

In the case 0 �= f ∈ FS , suppose the claim has been shown when f is replaced by any g < f .
We need to show that, when C is large enough, the very same C applies in the statement for
f . Denoting a general term in the maximum in (2.29) by M, since τ(L) ∈ U ⊆ L, it suffices to
show that M = O(λτ(L)/λt), or M = O(no(1)λτ(L)/λt) in the case of the G∗

0-clustering (and then
choosing φ ∗ appropriately). We may write

P(C f−sH
)

P(C f )
=

k

∏
i=1

ρ( fi ,−δui
) (2.31)

for some sequence u1,u2, . . . ,uk in S such that ∑k
i=1 δui

= sH and where fi = f −∑i−1
j=1 δu j

. By
definition, an unavoidable cluster has size at most r(r−1) where r is the size of the largest small
cluster. Hence, the upper index k in the above product is at most r(r−1). Note that each fi occurs
before f in the lexicographic order, and (2.28) inductively implies 1/2 � γ( f j − δu j

,δu j
) � 3/2

for all j � 1. Note also that

ρ( f j,−δu j
) =

1
ρ( f j −δu j

,δu j
)

=
f j(u j)

λu j
γ( f j −δu j

,u j)
.

Suppose firstly that, in (2.31), ui ∈ S1 for all i. Then by (2.23), f j(ui)/λui
� 3 for all i, and by

(2.28) inductively γ( fi − δui
,ui)

−1 � 2, so we deduce that the product in (2.31) is O(1). Now
(2.30) implies that M = O(λτ(L)/λt), as required.

Suppose on the other hand that, for i = j′ in (2.31), we have u j′ ∈ S0. Recall that λu
j′

= no(1)

by (2.22), and hence

P(C f−sH
)

P(C f )
= ρ( f ,−sH) = O(no(1)) (2.32)

using the same argument as for analysing (2.31) above. Also note that

nν(L)−ν(Q) p|H| = nν(L)−ν(Q) p|L\Q|p|H∩Q| = O(λτ(L)/λt)p|H∩Q|. (2.33)

There are two subcases to consider. Firstly, if |H ∩Q| � 1, then p|H∩Q|no(1) � pno(1) = o(1) and
hence M = O(λτ(L)/λt) as required. The second subcase is |H ∩Q| = 0. Then a cluster Q′ of
type u j′ that H contains must be disjoint from Q. It follows that there is a sequence Q1, . . . ,Q�

of elementary clusters, each non-trivially intersecting the next, with Q1 ∩Q′ �= /0 and Q�∩Q �= /0.
We also suppose that � is minimal, so that Qi ∩Q = /0 for all i < �, and in particular this implies
Q� �= Q. We will consider two subsubcases of this second case.

Suppose firstly that Q �⊆ Q�, and so Q′′ := Q′ ∪⋃�
i=1 Qi is a cluster satisfying Q′ ⊂ Q′′ ⊂ L,

where the inclusions are proper and τ(Q′) = u j′ . It follows by (2.12) and (2.22) that λτ(Q′′) =
O(λu

j′
x) = O(no(1)x) since u j′ ∈ S0. Thus τ(Q′′) ∈ L, and hence by the definition (2.18) of λL,

we have λτ(Q′′) � λL. Similarly, λτ(L) = O(xλτ(Q′′)) = O(xλL), and now using (2.32) and (2.33)

in (2.29) gives M = O(xλτ(L)n
o(1)/λt) = O(λτ(L)/λt) as required.

For the other subsubcase Q ⊆ Q�, recall that Q� �= Q. As Q� is elementary, it follows that this
can only occur for the G∗

0-clustering, and Q must be a single edge (and its type t equals t∗).
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Using (2.32) and (2.33) in (2.29) gives M = O(λτ(L)n
o(1)/λt) in this case, as required. We note

that in fact the bound can be strengthened to O(λτ(L)/λt) unless Q� = L, � = 1 and j = 1, and

looking back at the above argument, we may use f j(u j)/λu j
in place of no(1), as noted after the

proposition’s statement.
We turn now to proving the bounds

|γ( f , t)−1| � C′φt x

for all t ∈ S, and here we may assume by induction that (2.28) holds with f replaced by any
g < f , and that, as we have just shown, (2.26) holds. We also know that c(t, t,0) = 1+O(p) from
(2.3). So it suffices to show that Σ in the statement of Proposition 2.1 is O(φt x). Since S is fixed,
there is a bounded number of terms in the sum, and each may be written as

γ( f −h,u)
λu

λt
c(u, t,h)ρ( f ,−h). (2.34)

Note that the argument that produced (2.32) gives, in this case, ρ( f ,−h) = O(no(1)). So (again
by appropriate choice of φ ∗) we only need to show that the product of the remaining factors in
(2.34) is O(xno(1)).

Let F1 denote the set of h ∈ FS for which there are t,u ∈ S such that c(u, t,h) �= 0. Note that
the cardinality of F1 is bounded.

Inside the present main inductive step, we use a second level of induction on t, going from
greatest to smallest in the relation ‘≺’. Assume first that t is maximal. Since u ∈S, it is necessary
that u = t and h �= 0 for such a term to be included in Σ. Then γ( f − h, t) � 3/2 by (2.28)
inductively. Furthermore, since the graphs in R are non-empty and H �= /0 in (2.2), we have
c(t, t,h) = O(p) = O(x), which gives the desired result.

Suppose next that t is not maximal. A term (2.34) with u = t and h �= 0 is O(xno(1)) for reasons
as in the previous paragraph. On the other hand, for u �= t and h ∈F1, clearly c(u, t,h) = O(1). If
c(u, t,h) �= 0, then by the definition (2.1), t ≺ u, and then γ( f −h,u) � 3/2 by (2.28) inductively,
and λu/λt = O(x) by (2.12). Once again, (2.34) is O(xno(1)). For appropriate choice of φ ∗ and C′,
we now have |γ( f , t)−1|� C′φt x. Thus, in view of the bound (2.14) on x, for appropriate choice
of N0, we have (2.27) in full. This completes the inductive step, and (2.26) and (2.27) imply the
lemma.

It is useful to rewrite Proposition 2.1 in terms of the γs. It says that for f ∈ F and t ∈ S,

γ( f , t) =
1

c(t, t,0)

(
1−Σ− θ( f ,δt)

|t|P(C f )

)
, (2.35)

where Σ is defined by (2.6). Writing

P(C f−h+δu
)

P(C f )
=

P(C f−h)
P(C f )

·
P(C f−h+δu

)

P(C f−h)

and using (2.31) for the first factor gives

Σ = ∑
u∈S

h, f−h∈F
(u,h)�=(t,0)

λu

λt
c(u, t,h)γ( f −h,u)

k

∏
i=1

fi(ti)+1
λti

γ( fi, ti)
, (2.36)
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which is a function of f and t, where, for each h, ti, i = 1, . . . ,k is a sequence in S such that
h = ∑k

i=1 δti
and fi = f −∑i

j=1 δt j
. Here and henceforth, we may choose a canonical sequence

t1, . . . , tk for each h such that c(u, t,h) �= 0 for some u, t ∈ S. Note that k is bounded because S is
finite.

Approximations to the γs may be defined recursively by ignoring the term containing θ( f ,δt)
in (2.35). Thus, we define

γ̂( f , t) =
1

c(t, t,0)
(1− Σ̂),

where

Σ̂ = ∑
u∈S

h, f−h∈F
(u,h)�=(t,0)

λu

λt
c(u, t,h)γ̂( f −h,u)

k

∏
i=1

fi(ti)+1
λti

γ̂( fi, ti)
(2.37)

is a function of f and t.

Proposition 2.3. Uniformly for all f ∈ FS and t ∈ S,

|γ̂( f , t)− γ( f , t)| = O

(
x+φtλL

λt

)
,

where φt = no(1) for t = t∗ and φt = 1 otherwise.

Proof. We use an inductive scheme as we did for Proposition 2.2. The initial step of the outer
induction is f = 0, and the initial step of the inner induction has t maximal in S. The initial steps
are considered below.

We aim to show inductively that

γ( f , t) = γ̂( f , t)+Ot

(
x+φtλL

λt

)
, (2.38)

where Ot() denotes O() with the implicit constant depending on t. (Although this implies the
same statement for a uniformly defined implicit constant, the induction argument requires dif-
ferent constants for each t, larger constants for ‘smaller’ t. Constraints on the sizes of these
constants are implicitly determined in the proof below.) By (2.3), the definition (2.10) of x, and
Proposition 2.2, it suffices to show

Σ = Σ̂+Ot

(
x+φtλL

λt

)
. (2.39)

Instead of proceeding step by step through the induction, the argument is made by focusing on
the relevant considerations for an arbitrary step, whether it be an initial step (for f or for t) or an
arbitrary inductive step.

First, notice that if some ti = u in (2.37) when c(u, t,h) �= 0, then it must be that k = 1, h = δu,
f1 = f − h and the γ̂s cancel. This means that the corresponding terms in Σ and Σ̂ are equal, so
henceforth whenever k � 1, we may assume that ti ≺ u for all i.

If h = 0 in a term in Σ, or Σ̂, then the value of k in that term is 0, and the product in that
term is empty, and equal to 1. On the other hand, suppose that h �= 0. When evaluating the factor

https://doi.org/10.1017/S0963548318000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000202


686 D. Stark and N. Wormald

γ̂( fi, ti) in (2.37), the definition of Σ̂ invokes (2.37) a second time (recursively); for the second
level of invocation we will use j in place of i, as the index of the product. As shown above,
we may assume that each t j ≺ u. Since u ∈ S, we have λu � n−o(1). Thus, for all j in (2.37),

λt j
= Ω(λu/x) > nε−o(1) by (2.14). The ratios ( fi(ti)+ 1)/λti

in (2.36) and (2.37) are therefore
O(1) by (2.23). We have from Proposition 2.2 that γ( f , t)∼ 1 uniformly, and it is also immediate
that c(u, t,h) = O(1), and 1/c(t, t,0) = O(1) by (2.3). The combination of these facts shows that
each γ̂( fi, ti) in (2.37) is 1+o(1), with the convergence uniform over all fi and ti. This implies in
particular that the product in (2.37) is in all cases O(1).

We will estimate the difference between the summands in (2.36) and (2.37) using

(A+δA)(B+δB)−AB = O(|δAB|+ |AδB|), (2.40)

which holds provided that δA = O(A) or δB = O(B). We will show that for (u,h) as in the scope
of the summation in (2.36),

|γ̂( f −h,u)− γ( f −h,u)|λu

λt
c(u, t,h) =

⎧⎪⎪⎨⎪⎪⎩
Ou

(
x+λL

λt

)
if t ≺ u,

Ot

(
x

x+φtλL
λt

)
if u = t,

(2.41)

and, for factors appearing in the product in (2.37) with ti ≺ u,

|γ̂( fi, ti)− γ( fi, ti)|
λu

λt
= Oti

(
x ·

x+φti
λL

λt

)
. (2.42)

In view of the above observations, these imply

Σ = Σ̂+ ∑
u∈S: t≺u

x+φtλL
λt

Ou(1)+ ∑
v∈S

x+φt∗λL
λt

Ov(x).

Equation (2.39) will then follow, since the summations contain a bounded number of terms,
and in the first summation the constant implicit in Ou() may be used in defining the constant
implicit in Ot(), whilst in the second summation the bound is o((x + φtλL)/λt) by induction
using xφt∗ = o(1). Note that for the initial step of the inner induction, when t is maximal in S, it
must be that u = t.

For each term in (2.36) and (2.37) we have (u,h) �= (t,0), so the inductive statement (2.38)
implies

|γ( f −h,u)− γ̂( f −h,u)|λu

λt
= Ou

(
x+φuλL

λt

)
.

Note that t ≺ u implies u �= t∗ and hence φu = 1. Recalling c(u, t,h) = O(1), and noting that
in particular c(t, t,h) = O(x) when t = u (as h �= 0 in that case), we have (2.41). By the outer
induction (which is on f ) using (2.38), the left side of (2.42) is of order

Oti

(
x+φti

λL
λti

λu

λt

)
= Oti

(
x+φti

λL
λt

λu

λti

)
, (2.43)

and by (2.12) and (2.14) (noting that ti ≺ u as discussed above), λu/λti
= O(x), which completes

the proof.
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A recursive calculation of γ̂ using its definition, including (2.37), would need to keep track of
γ̂( f , t) for each f ∈ FS and t ∈ S. By making further approximations, we may obtain a simpler
recursion for functions which are explicitly defined in a compact form, and not depending on f .
Recalling that |S| = s, without loss of generality we denote S by [s] = {1, . . . ,s}. (Thus t ∈ S
is represented by an integer. We apologize to the reader for the possible confusion resulting:
in particular, the definition (2.4) of the function |t|, where t is a type, overrides the notation
for absolute value of the integer. It only appears once or twice more.) The simpler recursion
will define γ t ∈ R[[n, p,g1, . . . ,gs]], that is, a formal power series in n, p and g1, . . . ,gs with real
coefficients. Occasionally it will be useful to regard γ t also as an element of R[[n, p]][[g]] where
g = (g1, . . . ,gs), meaning a formal power series with indeterminates g1, . . . ,gs and coefficients
in R[[n, p]]. Later, we will calculate the new estimates of γ( f , t) by setting gi = f (i)/λi in γ t for
each i.

Note that c(u, t,h) is a polynomial in p, and 1/c(t, t,0) = 1 + O(p) and can be expanded as
power series in p. Also, by (2.5), for t ≺ u, λu/λt is a polynomial in n and p with terms of the form
pμ(u)−μ(t)ni, and, since μ(u) > μ(t), λu/λt has zero constant term. With these interpretations, we
will define γ t = γ t(n, p,g) ∈ R[[n, p,g1, . . . ,gs]] using

γ t =
1

c(t, t,0)

(
1− ∑

u∈S
h∈F

(u,h)�=(t,0)

λu

λt
c(u, t,h)γu

k

∏
i=1

gti

γ ti

)
, γ t(0,0,0) = 1 (2.44)

simultaneously for all t ∈ S, where the ti are defined as in (2.36). Since c(t, t,h) = O(p) for h �= 0
and (λu/λt)c(u, t,h) has zero constant term for u �= t, there is a unique set of formal power series
γ t(n, p,g), t ∈ S, defined by (2.44), and they all have constant term 1. It will also be useful to
rewrite (2.44) as

γ t = 1+w0(t)− ∑
u∈S
h∈F

(u,h)�=(t,0)

w(u, t,h)γu

k

∏
i=1

1
γ ti

, (2.45)

w0(t) =
1

c(t, t,0)
−1, w(u, t,h) =

λuc(u, t,h)
λt c(t, t,0)

k

∏
i=1

gti
. (2.46)

Here (2.45) defines γ t as a power series in the ws, which, if substituted appropriately as power
series in n, p and g using (2.46), results in the same series as defined in (2.44).

Given a function f ∈ F , with a slight abuse of notation, define

γ t( f ) = γ t(n, p, g̃), (2.47)

where

g̃ = ( f (1)/λ1, . . . , f (s)/λs).

Thus, given n and p, γ t(·) maps functions f ∈ F to numbers, whereas γ t is a power series.
Returning to our original setting, f ∈ FS (as defined at (2.23)), and p is a function of n such

that x = x(n, p) = O(n−ε) by (2.14). It might help to observe at this point that, for given n, p
and f satisfying these constraints, there is a unique value of γ t( f ) determined from the equations
(2.44) and (2.47), as long as n is large enough. One way to prove this is to consider an initial
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approximation for each γ t( f ), and then, iterating the approximations using (2.44), with gt set
equal to f (t)/λt , the current values of γ t on the right side giving rise to updated values on the
left side. This determines a contractive mapping on the vector whose entries are γ t( f ) (t ∈ S)
which has a fixed point near the initial approximate solution determined by γ t( f ) = 1 for all t. To
flesh this out, we first examine the definition of γ t in order to bound the error of approximations.
Recalling (2.13) and (2.14), we have the following lemma.

First, given particular values of n, p and f , we define

g̃t = f (t)/λt ,

so that g̃ = (g̃1, . . . , g̃s), and let w̃(u, t,h) denote the value of w(u, t,h) obtained if we replace gti
by g̃ti

in (2.46). For convenience, similarly set w̃0(t) = w0(t). Recall that p has been assigned a
function of n satisfying (2.13), which is significant when considering issues of uniformity.

Lemma 2.4. Suppose that 0 � g̃t = g̃t(n) = O(no(1)), with g̃t(n) = O(1) if t ∈ S1. Then w̃0(t) =
O(p) and w̃(u, t,h) = O(x) for each term in (2.45), where the bounds in the O()-terms are
uniform.

Proof. From (2.3), w̃0(t) = O(p) and, recalling that k is bounded in (2.46) and that c(t, t,0)∼ 1,

w̃(u, t,h) = O

(
λuc(u, t,h)

λt
(max

i
g̃ti

)k

)
. (2.48)

Firstly, if h = 0, then k = 0, and u � t by the condition in the summation. So w̃(u, t,h) = O(x)
by (2.12).

Secondly, suppose that h �= 0 and u = t. If h = δt∗ (recall that t∗ is the type of the single-
edge cluster), then c(u, t,h) = O(p) in view of (2.2). By (2.20), we have t∗ ∈ S1. So, using the
hypothesis of this lemma, the maximum in (2.48) is O(1), and thus w̃(u, t,h) = O(p) = O(x). In
all other cases, if c(u, t,h) �= 0 then (2.2) gives c(t, t,h) = O(p2) since sH = h implies |H| � 2.
By (2.48), again w̃(u, t,h) = O(x).

Lastly, suppose that h �= 0 and u � t. Here λu/λt = O(x) by (2.12), and so we are done if the
maximum in (2.48) is O(1). But this must happen unless ti ∈ S0 for some i. Since H contains
only subclusters of a cluster of type u ∈ S, (2.12) shows that this requires ti = u. Then we have
h = δu, and hence in (2.1), Q ⊆ J and |Q∩H| � 1, and so c(u, t,h) = O(p) = O(x). Since the
maximum in (2.48) is O(no(1)), the bound obtained is O(x2no(1)), and the result follows in this
case also.

Recall that γ t( f ) is a function of n, p and f .

Lemma 2.5. For f ∈ FS and p satisfying (2.13), the series definition of γ t( f ) in (2.47) con-
verges absolutely for n sufficiently large, and γ t( f ) = 1 + O(x), where the bound in the O()
notation is uniform.

Proof. For any t ∈ S0, it follows from the definition of g̃t , the upper bounds (2.21) and (2.23)
on f (t), and the asymptotics (2.13) of p, that g̃t = O(no(1)). On the other hand, if t ∈ S1 then
g̃t ∈ [0,3] for similar reasons. Thus the conditions of Lemma 2.4 are satisfied.
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For polynomials or formal power series P and P̂, denote by P+ the formal power series
obtained by replacing all coefficients of P by their absolute values, and write P � P̂ if the
coefficient of any monomial in P is no greater than the corresponding coefficient in P̂. We
will use the obvious fact that if P+ is absolutely convergent (for a particular assignment of the
indeterminates) then so is P.

With (2.45) in mind, and with the aim of obtaining the useful inequality (2.50) below, define
the power series γ∗t for each t ∈ S by

γ∗t = 1+w+
0 + ∑

u∈S
h∈F

(u,h)�=(t,0)

w(u, t,h)+γ∗u
k

∏
i=1

1
2− γ∗ti

, (2.49)

which by induction has a unique solution in formal power series with constant terms all 1. Then

1
2− γ∗ti

= ∑
j�0

(γ∗ti −1) j

and so by induction, all coefficients of γ∗t are non-negative for each t ∈ S. Thus

1
2− γ∗ti

� ∑
j�0

(1− γ∗ti )
j =

1
γ∗ti

and, again by induction, comparing (2.45) with (2.49) gives

γ +
t � γ∗t (2.50)

for each t ∈ S.
Now consider summing the terms of γ∗t (n, p, g̃) for p and f as in the lemma, when n is

sufficiently large. Since all coefficients of γ∗t are non-negative, we are at liberty to sum the terms
in any convenient order. It is immediate from the proof of Lemma 2.4 that w(u, t,h)+ = O(x) and
w+

0 = O(p) = O(x). It is now straightforward to verify from (2.49), by a sequence of successive
approximations beginning with γ∗ ≈ 1 for all t, that

γ∗t (n, p, g̃) = 1+O(x). (2.51)

The lemma now follows since from (2.50), and the fact that the constant terms in all γs and γ∗s
are all 1, (γ t −1)+ � γ∗t −1.

If p and f satisfy the conditions of Lemma 2.5, we may treat γ t( f ) as a number, being the
sum of the series, for n sufficiently large. Since we may ignore small values of n, and since p is
a function of n, this makes γ t( f ) a real-valued function of f and n, and henceforth in this section
we treat it as such.

Proposition 2.6. Uniformly for all f ∈ FS and t ∈ S,

|γ t( f )− γ( f , t)| = O

(
x+φtλL

λt

)
,

where φt = no(1) for t = t∗ and φt = 1 otherwise.
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Proof. An induction like the one proving Proposition 2.3 is used. The inductive hypothesis is

|γ t( f )− γ̂( f , t)| = Ot

(
x+φtλL

λt

)
,

where Ot denotes a bound depending only on t. The result then follows by Proposition 2.3.
Suppose that f = 0. Then h = 0 in (2.37) and the terms in (2.44) with h �= 0 are 0 because

g̃ti
= 0 for all i by (2.47). Hence, the products in (2.37) and (2.44) are empty, and by simple

(downwards) induction on t, γ̂( f , t) = γ t( f ) for all t ∈ S.
It remains to prove the lemma when f �= 0, which we assume henceforth.
Note that (2.44) contains terms such that, for some values of f , the corresponding terms are

excluded in (2.37) because f − h /∈ F . For the inductive step, we bound these terms first. After
this, we consider the error caused by replacing γ̂( f −h,u) by γu( f ) in (2.37), as well as γ̂( fi, ti)
by γ ti

( f ), and fi(ti)+1 by fi(ti).
Since γ t( f ) = 1+O(x) by Lemma 2.5, and w̃0 = O(p) and w̃(u, t,h) = O(x) from Lemma 2.4,

all terms in the summation in (2.45) are O(x). If f −h �∈ F in (2.45), so that f (ti′)−h(ti′) < 0 for
some ti′ , then f (ti′) = O(1) and so gt

i′
= O(1/λt

i′
). The contribution of such a term in (2.44) is

O(λu/λtλt
i′
), which in the case ti′ ≺ u is O(x/λt). On the other hand, if ti′ = u, we have the same

situation as in the second paragraph after (2.39), so the γs cancel, c(u, t,h) = O(x), and again the
term is O(x/λt).

For those h satisfying f − h ∈ F , first recall that, as observed in the middle of the proof of
Proposition 2.3, the product in (2.37), which we will denote by Π, is O(1). Analogous to (2.41)
and (2.42) in the proof of Proposition 2.3, we will show that, for the same values of (u,h) as in
that proposition,

|γ̂( f −h,u)− γu( f )|λu

λt
c(u, t,h)Π =

⎧⎪⎪⎨⎪⎪⎩
Ou

(
x+λL

λt

)
+O

(
x
λt

)
if t ≺ u,

Ot

(
x

x+φtλL
λt

)
+O

(
x
λt

)
if u = t,

(2.52)

and

|γ̂( fi, ti)− γ ti
( f )|λu

λt
c(u, t,h)Π = Oti

(
x

x+φti
λL

λt

)
+O

(
x
λt

)
, ti ≺ u, (2.53)

and, for the replacement of fi(ti)+1 by fi(ti) when evaluating gti
,

λuc(u, t,h)
λtλti

= O

(
x
λt

)
. (2.54)

The lemma follows from these claims, using (2.40) along the lines of the proof of Proposition 2.3,
combined with the observation that, by the inductive hypothesis combined with Lemma 2.5, we
may assume that γ̂( f −h,u) = Θ(1) uniformly whenever h > 0, or h = 0 and t ≺ u.

The treatment of the Ot()-terms in this proof is rather delicate and is explained in detail in
the proof of Proposition 2.3. In this case, there are extra terms O(x/λt) in (2.52–2.54), which
we write separately to make the recursive argument clearer. Note that the Ou() and Ot()-terms
contain the same implicit constants as in the inductive hypothesis.
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It is convenient to treat (2.54) first. If ti ≺ u, then we are done by (2.12) applied with t replaced
by ti, and the fact that c(u, t,h) = O(1). On the other hand, if ti = u then k = 1 and h = δu, and,
as in the last part of the proof of Lemma 2.4, c(u, t,h) = O(x), as required.

Now consider (2.52). Since either f −h < f or t ≺ u, the inductive hypothesis may be applied,
with Π referring to f −h rather than f , yielding

|γ̂( f −h,u)− γu( f −h)|λu

λt
c(u, t,h)Π = Ou(1)

x+φuλL
λu

λu

λt
c(u, t,h)Π (2.55)

= Ou

(
x+φuλL

λt
c(u, t,h)

)
.

Recalling also from the proof of Lemma 2.4 that c(t, t,h) = O(x) (and c(u, t,h) = O(1) always),
and that φu = 1 when t ≺ u, now shows that this expression is bounded by Ot(x(x + φtλL)/λt)
(respectively Ou((x+λL)/λt)) as required for the cases u = t and t ≺ u in the right-hand side of
(2.52). Next we bound

|γu( f )− γu( f −h0)| (2.56)

for any fixed h0 with bounded entries. We can assume h0 �= 0. By Lemma 2.5, equation (2.45) can
be expanded in increasing powers of the ws, which are O(x) under the substitution gv = f (v)/λv

by Lemma 2.4. By (2.14), we may ignore terms whose total degree in ws is larger than some
fixed value. Into the truncated expression, substitute f (ti)/λti

and ( f (ti)−h(ti))/λti
for gti

in the
definition of w(u, t,h) at (2.46) and subtract the two resulting expressions term by term. Since
the entries of h0 are bounded, the dominating terms are exactly of the type estimated in (2.54),
and hence are bounded by O(x/λt). Equation (2.52) now follows (with room to spare) in view of
the fact that, by Lemma 2.4,

λu

λt
c(u, t,h)Π = O(x).

The proof of (2.53) involves firstly consideration of |γ̂( fi, ti)− γ ti
( fi)| (multiplied by the other

factors). This yields an expression as in the right-hand side of (2.55), but with Ou replaced by Oti
,

λL/λu replaced with λL/λti
and f − h becoming fi. The error term is bounded similarly to the

bound (2.43) for the analogous term in the proof of Proposition 2.3, and also using λu/λti
= O(x)

(as ti ≺ u), giving the first error term in (2.53). Then, |γ ti
( fi)−γ ti

( f )| is bounded by the expression
in (2.54), by the same argument as for (2.56).

From Lemmas 2.4 and 2.5, we may use (2.45) to expand all the functions γ t (t ∈S) recursively
in power series in n, p and the variables gi. Iterating r times determines γ t to arbitrarily small
error O(xr) when the appropriate values are assigned to p and the gi. However, instead of pursuing
arbitrary accuracy in this paper, we desire a final formula which is shown to exhibit a uniformity
over all relevant κ , and for this we need the following. We use gi to denote gi1

1
gi2

2
· · ·gis

s ; if i = 0,
this is the multiplicative identity of the ring R[[n, p]][[g]] of formal power series over g whose
coefficients are in R[[n, p]].
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Corollary 2.7. There are power series ξt , t ∈ T , in n, p, g, independent of κ , and, for all ε > 0,
truncations ξt,ε of the series ξt , to a finite number of terms, such that for all t ∈ S we have the
following.

(a) For i �= 0 , we have [gi]ξt = O(x), for p satisfying (2.13) with κ � χ + ε , as n → ∞.
(b) For each i, the coefficient [gi]ξt is a multiple of ∏u∈S pμ(u)iu .
(c) With p satisfying (2.13), and ξt,ε( f ) defined from ξt,ε analogously to γ t( f ) in (2.47), there

exists ε > 0 such that uniformly for all f ∈ FS , and all κ � χ + ε ,

ξt,ε( f ) = γ t( f )+O

(
n−ε

λt

)
. (2.57)

Proof. Instead of (c) we show the obviously stronger

ξt,ε( f ) = γ t( f )+O

(
x+no(1)λL

λt

)
. (2.58)

We start by essentially focusing on this, but with one eye fixed on (a). Define the function Ft =
Ft(n, p,g,γ1, . . . ,γ s) by

Ft(n, p,g,γ1, . . . ,γ s) =
1

c(t, t,0)

(
1− ∑

u∈S
h∈F

(u,h)�=(t,0)

λu

λt
c(u, t,h)γu

k

∏
i=1

gti

γ ti

)
−1. (2.59)

We obtain successive power series approximations F ( j)
t and γ ( j)

t for all the Ft and γ t ( j = 0,1, . . .).

Initially, set F (0)
t = 0 and γ (0)

t = 1 for all t. For j � 0, substituting γ ( j)
t for γ t in (2.59) simultan-

eously for all t ∈S defines F ( j+1)
t as a power series (recalling the observations made before (2.44)

that λu/λt is a polynomial in n and p, and so on). Next, define γ ( j+1)
t = 1+F ( j+1)

t to complete the

iterative definition. Define γ (i)
t ( f ) from γ (i)

t analogously to γ t( f ) in (2.47), and similarly F (i)
t ( f ).

By Lemma 2.5, γ (0)
t ( f ) = γ t( f )(1+O(x)) for all relevant f and p. Thus

F (1)
t ( f ) = Ft(n, p, g̃,γ1, . . . ,γ s)(1+O(x)).

By Lemma 2.5, this is O(x), and so by (2.44), γ (1)
t ( f ) = γ t( f ) + O(x2). Repeating the same

argument r times shows that

γ (r)
t ( f ) = γ t( f )+O(xr+1). (2.60)

As with Lemma 2.5, the argument to this point is for fixed κ > χ . The definition of S by
(2.16), and hence the formula (2.44), depends on κ . However, for all κ � χ + ε , S is a subset
of Ŝ = {t ∈ T : ν(t)/μ(t) � χ + ε}, which is the value of S when κ = κ0 = χ + ε . So define rt

to be such that xrt = O(1/λt) when κ = κ0. Then set ξt,ε equal to the truncation of γ (rt )
t to those

terms whose value, with g set equal to 1, is not o(x/λt) (when κ = κ0). By (2.60), (2.58) holds
for κ = κ0.

Also note for later use that, in view of (2.60), using γ (r)
t for any r > rt would define the same

ξt,ε . From (2.50) and (2.51), the coefficients of any non-constant monomial gi in ξt,ε , as it arises
recursively from (2.59), are O(x), which proves part (a) with ξt interpreted as ξt,ε .

https://doi.org/10.1017/S0963548318000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000202


The Probability of Non-Existence of a Subgraph in a Moderately Sparse Random Graph 693

We next claim that (2.58) is also valid when κ > κ0. In this case, the recursive definition of
γ (r)

t is the same as for κ0 except that the definition of S is different. Any terms in the summation
in (2.44) corresponding to types t that are in S for κ0, and not in S for κ , are now missing.
These terms are of the form λu/λt times a finite product of gi, for some u /∈ S. Since all gi are
substituted with values no(1), the claim holds.

The remaining portion of the claim in part (c) of the corollary relates to uniformity. This
follows from the above observations once we show that these functions ξt,ε are all common
truncations of the power series ξt . Now of course (a) is justified in its original form, for ξt .

If ε ′ < ε is considered, then new types enter S, but the terms in ξt,ε ′ due to these are of smaller
order (as with consideration of κ > κ0 above) and cannot be included in ξt,ε . Also, the appropriate
value of rt may be larger for ε ′ than for ε , but as noted above, truncating with the larger value
of r gives the same function ξt,ε , so the extra terms generated cannot include any of the same
monomials as appearing in ξt,ε . The power series ξt is now well-defined to be the termwise limit
of ξt,ε as ε → 0.

Finally, to verify part (b), note that in the recursive use of (2.59), every new product ∏k
i=1 gti

that is introduced is accompanied by the factor (λu/λt)c(u, t,h). By its definition (2.1), each term
of c(u, t,h) is associated with a cluster of J of type u, a cluster Q of type t, and pairwise edge-
disjoint clusters J1, . . . ,Jk of types t1, . . . , tk, with c(u, t,h) divisible by pa where a = |Q∩

(⋃
Ji

)
|.

Since λu/λt is divisible by pb where b = μ(u)− μ(t) = μ(u)− |Q|, the term itself must be
divisible by p∑ |Ji|, as required for part (b). Of course, the expansions of 1/c(t, t,0) and 1/γ ti

do
not affect this as their terms have non-negative exponents.

3. Graphs with forbidden subgraphs in G(n, p)

In this section we prove our main result for subgraphs of the random graph G(n, p). Let G0 be a
strictly balanced graph and recall that χ is defined by (1.2). Let X be the number of copies of G0

in G(n, p).

Proof of the G(n, p) case of Theorem 1.1. The proof works roughly as follows. We estimate
the ratios of ‘adjacent’ probabilities P(C f ) by estimating γ( f , t) defined in (2.25). This is approx-
imated by γ t( f ), as shown in Proposition 2.6, which in turn is approximated by ξt,ε as found in
Corollary 2.7. Fix ε > 0. We assume at first that p = n−κ+o(1) for fixed κ � χ +ε , in accordance
with (2.13), so that (2.14), Proposition 2.6 and Corollary 2.7 can be applied. The theorem will
then be shown in full generality, with assistance from Lemma 1.4. In this section, we work only
with the G0-clustering. As a consequence of this, the parts of the theorems in the previous section
relating to t∗ are not needed. The set S is defined, as before, to contain just those types t in this
clustering for which ν(t)/μ(t) � κ . Recall by the discussion after (2.13) that S is finite.

The expected number of sets of j disjoint clusters of type t ∈ S is, recalling (2.4) and (2.5), at
most (

|t|
j

)
pμ(t) j �

(
e|t|pμ(t)

j

) j

=
(

eλt

j

) j

.

Taking j = �mt�+1 for each t ∈ S shows by (2.21) (using e < 3) that ∑ f �∈FS
P(C f ) = o(1). (This

reveals the relevance of the constant 3 in the definition of mt .) Furthermore, every large cluster
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contains an unavoidable cluster, of which there are a finite number. Applying (2.19) to all such
clusters, we see that ∑ f∈F P(C f ) ∼ 1. Hence

P(X = 0)−1 =
1

P(C0)
∼ ∑

f∈FS

P(C f )
P(C0)

. (3.1)

By renaming the cluster types in S if necessary, extend the poset on S to a unique linear
ordering on S = [s] := {1,2, . . . ,s} denoted by <, in decreasing order of ν(t)−κμ(t), breaking
ties in a canonical way independent of the choice of κ (i.e. depending only on the graph structure
of the types). This is possible in view of (2.4), (2.5) and (2.12). Although the values of p can
‘wobble’ around p−κ , so that λt+1 and λt are not always in the same order when a tie occurred,
we do have

λt+1 < no(1)λt for all t < s. (3.2)

(That observation is in fact the main motivation behind the restriction of p in (2.13).)
Fix ( j1, j2, . . . , js) with ju ∈ [0,mu] for all u ∈ S and define f so that f (t) = jt for each t ∈ S.

Then for each t and j define the function ft, j on S by ft, j(t
′) = jt ′ for t ′ < t; ft, j(t) = j; ft, j(t

′) = 0
for t ′ > t. Then fs, js = f .

By Proposition 2.6, we have γ t( f ) = γ( f , t)+ O((x + λL)/λt) uniformly for all f ∈ FS and
t ∈ S. Moreover, by Proposition 2.2, γ( f , t) ∼ 1 uniformly, so that γ t( f ) = γ( f , t)(1 + O((x +
λL)/λt)). Note that (1 + O((x + λL)/λt)) = (1 + O(n−ε/λt)) by (2.14) and (2.19). Using these
estimates, then Corollary 2.7, and finally the fact that (1 + O(n−ε/λt))mt = 1 + o(1) by the
definition of mt in (2.21), we have

P(C f )
P(C0)

=
s

∏
t=1

jt−1

∏
j=0

ρ( ft, j,δt)

=
s

∏
t=1

λ jt
t

jt!

jt−1

∏
j=0

γ( ft, j, t)

=
s

∏
t=1

λ jt
t

jt!

jt−1

∏
j=0

γ t( ft, j)(1+O((x+λL)/λt)) (3.3)

=
s

∏
t=1

λ jt
t

jt!

jt−1

∏
j=0

ξt,ε( ft, j)(1+O(n−ε/λt))

= (1+o(1))
s

∏
t=1

λ jt
t

jt!

jt−1

∏
j=0

ξt,ε( ft, j). (3.4)

Our basic method is to sum the above expression over all f for which P(C f ) is significant,
thereby obtaining an estimate for the reciprocal of P(C0). To facilitate analysis of the summation,
we employ various partial sums defined as follows. For t ∈ S ∪{0}, define the functions St by
Ss( j1, j2, . . . , js) = 1, and recursively for t decreasing from s−1 to 0, by

St( j1, j2, . . . , jt) =
�mt+1�

∑
j=0

St+1( j1, j2, . . . , jt , j)
( j−1

∏
i=0

γ t+1( ft+1,i)
)λ j

t+1

j!
. (3.5)
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We next show (see (3.6)) that this quantity approximates the reciprocal of the conditional probab-
ility of having no small clusters of type u > t, given ju clusters of type u for all u � t. Recalling
the error bounds involved in (3.3), and then the bound on mt used in deriving (3.4), we have,
uniformly,

St( j1, j2, . . . , jt) ∼
�mt+1�

∑
j=0

St+1( j1, j2, . . . , jt , j)
( j−1

∏
i=0

γ( ft+1,i, t +1)
)λ j

t+1

j!

=
�mt+1�

∑
jt+1=0

St+1( j1, j2, . . . , jt , jt+1)
P

(
C ft+1, jt+1

)
P

(
C ft+1,0

) .

An inductive argument immediately shows that for all t < s and ji ∈ [0,mt ], i ∈ [1, t],

St( j1, j2, . . . , jt) ∼
�mt+1�

∑
jt+1=0

· · ·
�ms�

∑
js=0

P

(
C ft+1,0+ jt+1δt+1+···+ jsδs

)
P

(
C ft+1,0

) . (3.6)

Therefore, by (3.1), noting that S0 has no arguments,

S0 ∼ P(X = 0)−1. (3.7)

Thus, we have reduced the problem to that of estimating S0.
For use in the following, we define

ζ ( j) = ( j1/λ1, . . . , jt−1/λt−1, j/λt) (3.8)

(with the dependence on j1, . . . , jt−1 suppressed for compactness of notation), and we say that
ζ ( j) is appropriate if ji ∈ [0,mi] for all i ∈ [1, t −1] and j ∈ [0,mt ].

It is useful to define P+(gt) to be the ring of polynomials in gt = (g1, . . . ,gt) whose coefficients
are polynomials in n, p and n−1 (as formal indeterminates), and P(gt) to be the subring of
P+(gt) consisting of those polynomials whose coefficient of gi1

1
· · ·git

t is divisible by p∑ j μ( j)i j .
By permitting p, n and n−1 to commute, and setting n ·n−1 = 1, we can regard these coefficients
as a ring consisting simply of the union of the set of polynomials in n and p with the set of
polynomials in n−1 and p.

We will use the definition of St , together with Lemma 2.5 and Corollary 2.7 and an induction
argument to prove that

S0 = exp(P0,κ +o(1)), St( j1, . . . , jt) = exp(Pt,κ(ζ ( jt))+o(1)) (1 � t � s) (3.9)

for all j1, . . . , jt such that ζ ( jt) is appropriate, for some polynomials Pt,κ such that the following
hold.

(i) Pt,κ ∈ P(gt) (and so in particular for t = 0, P0,κ is a polynomial in n, p and n−1).

(ii) The constant coefficient of Pt,κ (i.e. Pt,κ(0,0, . . . ,0)) is equal to (1 + O(xno(1)))∑s
t ′=t+1 λt ′

and the other coefficients are O(xno(1)Pt,κ(0,0, . . . ,0)), where the implicit bounds in O(·) are
independent of ε . Note that by (3.2), it follows that the constant coefficient is O(no(1)λt).

(iii) The convergence expressed by o(1) in (3.9) is uniform over all appropriate j1, j2, . . . , jt .
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The induction begins with t = s and then proceeds through decreasing values of t. It finishes with
the case t = 0 of (3.9), which is used to show that the polynomials Pt,κ(gt) are of such a form
that the theorem follows using (3.7).

The initial step of the induction argument, t = s, is trivial, since Ss is identically equal to 1 and
we may set Ps,κ = 0. So now suppose that (3.9) holds for some particular value of t. We must
prove that it also holds when t −1 is substituted for t. Define Tj by

Tj = exp(Pt,κ(ζ ( j)))
( j−1

∏
i=0

ξt,ε( ft,i)
)

λ j
t

j!
. (3.10)

We now use (3.5), (3.9) and Corollary 2.7 to replace γ in (3.5) by ξ , the fact that ζ ( j) is
appropriate and mt = O(λt logn), together with (2.19), to obtain

St−1( j1, j2, . . . , jt−1) ∼
�mt�

∑
j=0

Tj. (3.11)

First assume that t ∈ S0. Note that (with square brackets for extraction of coefficients)

expPt,κ(ζ ( j))
expPt,κ(ζ (0))

= exp∑
i

([gi]Pt,κ)
(t−1

∏
�=1

( j�/λ�)
i�

)
(( j/λt)it −0it ),

where 00 = 1 as usual, and the summation is over the set of i for which the coefficient is non-
zero. The number of such i is bounded, given Pt,κ . The only terms contributing have it > 0, and
in particular the constant term does not contribute. Let vmax be the total degree of Pt,κ(gt). Each
factor j�/λ� is by (2.22) at most logn = no(1), and the same goes for j/λt . By the inductive
hypothesis (ii) and (2.21), we now obtain

expPt,κ(ζ ( j))
expPt,κ(ζ (0))

= exp(xno(1)(no(1))vmax) = 1+O(xno(1)).

By Lemma 2.5, γ(t) = 1+O(x), and so Corollary 2.7 gives that each factor ξt,ε( ft,i) in (3.10) is
1+O(x+n−ε+o(1)). Hence for j � mt = no(1), the product of j factors in (3.10) is

(1+O(x+no(1)−ε ′))
mt ∼ 1

using (2.14). Thus

Tj ∼ expPt,κ(ζ (0))λ j
t / j! ∼ St( j1, j2, . . . , jt−1,0)λ j

t / j!

by the inductive hypothesis (3.9). Since in this case mt = λt logn, it follows that

St−1( j1, j2, . . . , jt−1) = St( j1, j2, . . . , jt−1,0)exp(λt +o(1)).

Here we used the uniformity of the convergence in the estimates, including that asserted in part
(iii) of the induction hypothesis. To establish the inductive hypothesis in this case, we thus set
Pt−1,κ equal to Pt,κ +λt , which is a polynomial in n and p (thus a constant in P(g)) by (2.4) and
(2.5). This clearly gives the inductive hypotheses (i) and (ii), whilst the uniformity in (iii) implies
that (iii) holds with t replaced by t −1.

https://doi.org/10.1017/S0963548318000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000202


The Probability of Non-Existence of a Subgraph in a Moderately Sparse Random Graph 697

We next suppose that t ∈ S1, so that in particular λt → ∞ by (2.22). We need to estimate the
ratio of consecutive terms Tj quite accurately. We have

Tj

Tj−1
= exp(Pt,κ(ζ ( j))−Pt,κ(ζ ( j−1)))ξt,ε( ft, j−1)

λt

j
. (3.12)

Let Rv = [gv
t ]Pt,κ(gt), so that Rv ∈ P(gt−1). Put

ζ̂ = ( j1/λ1, . . . , jt−1/λt−1)

and

η = n−ε/2/λt . (3.13)

Then

Pt,κ(ζ ( j))−Pt,κ(ζ ( j−1)) =
vmax

∑
v=1

Rv(ζ̂ )
((

j
λt

)v

−
(

j−1
λt

)v)
=

vmax

∑
v=1

Rv(ζ̂ )
(

v jv−1 +O( jv−2)
λ v

t

)
=

vmax

∑
v=1

vRv(ζ̂ )
λt

· jv−1

λ v−1
t

+O(Rv(ζ̂ )/λ 2
t )

= O(η)+
vmax

∑
v=1

vRv(ζ̂ )
λt

· jv−1

λ v−1
t

,

since j = O(λt) by (2.21) (and ji = O(λi) for i < t), and using the inductive hypothesis (ii), which
implies that the coefficients of Rv for v � 1 are all O(no(1)xλt) = O(ηλ 2

t ) by (2.14). For the same
reason, the terms in this summation are all O(no(1)x).

We call a polynomial P̃ acceptable if P̃ = 1+P for some polynomial P ∈ P(g) whose coeffi-
cients are all O(no(1)x) for the range of p under consideration, i.e. satisfying (2.13). Note that
no(1)x = o(n−ε/2) = o(1) by (2.14). A polynomial P̃ is t-acceptable if P̃ = 1 + P for some
polynomial P ∈ P+(gt) whose coefficient of gi1

1
· · ·git

t is divisible by p∑ j<t μ( j)i j , and whose coef-

ficients are all O(no(1)x) for p satisfying (2.13). That is, P̃ satisfies the definition of an acceptable
polynomial in P(gt) except that the powers of p in the terms in P are only required to pay their
respect to the variables g1, . . . ,gt−1.

By (2.5), λ−1
t can be expanded as p−μ(t) times a power series in n−1. So by the inductive

assumption that Pt,κ ∈ P(gt), it follows that there exists R̃v ∈ P(gt−1) such that Rv(ζ̂ )/λt =
R̃v(ζ̂ )+O(η). To verify this, we note that gt does not appear in Rv and hence the lower bound on
the exponent of p required for Pt,κ ’s membership in P(gt) is enough to compensate for p−μ(t);
the power series in n−1 can be truncated at an appropriate point to obtain a polynomial in n−1,
producing the error term O(η).

We conclude that

exp(Pt,κ(ζ ( j))−Pt,κ(ζ ( j−1))) = A(1)
t,κ (ζ ( j))(1+O(η))

for a t-acceptable polynomial A(1)
t,κ (with constant term precisely 1 in this case).

By Lemma 2.5 and Corollary 2.7(b), ξt,ε is acceptable and consequently t-acceptable. Con-
sequently, ξt,ε( ft, j−1) that occurs in (3.12) is equal to ξt,ε( ft, j)(1+O(η)). Moreover, the product
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of two t-acceptable polynomials is t-acceptable. Thus (3.12) gives

Tj

Tj−1
=

A(2)
t,κ (ζ ( j))λt(1+O(η))

j
(3.14)

for the t-acceptable polynomial

A(2)
t,κ (gt) := A(1)

t,κ · ξ̃t,ε , (3.15)

where ξ̃t,ε is obtained from ξt,ε by setting gt+1 = · · · = gs = 0.
To identify (approximately) the maximum term of the summation in (3.11), we note that

since A(2)
t,κ is t-acceptable, A(2)

t,κ (ζ ( j)) ∼ 1 and so (3.14) shows that we are interested in j ∼ λt .

Furthermore, again using t-acceptability, the derivative of A(2)
t,κ (g1, . . . ,gt−1,y) with respect to y is

o(n−ε/2) when gt−1 is set equal to ζ̂ . So, at least for large n, this function has a fixed point y that
is 1+o(1). In other words, there must exist j∗ ∼ λt satisfying

j∗ = λtA
(2)
t,κ (ζ ( j∗)). (3.16)

Since A(2)
t,κ is t-acceptable, we can use repeated substitutions in

Q� = A(2)
t,κ (g1, . . . ,gt−1,Q�−1)

beginning with Q0 = 1 to obtain a polynomial Q� ∈P(gt−1) such that Q�(ζ̂ ) is an approximation
to j∗/λt . Clearly, replacing the variable gt of a t-acceptable polynomial by another t-acceptable
polynomial produces yet another t-acceptable polynomial. So each Q� is t-acceptable. For each
iteration, the error in the approximation is multiplied by o(n−ε/2). Hence, for � sufficiently large,
Q� is an acceptable polynomial A(3)

t,κ ∈ P(gt−1) satisfying

j∗ = λtA
(3)
t,κ (ζ̂ )+o(1) (3.17)

uniformly for all ζ̂ under consideration.
For the product in (3.10) we will use the following. Recall that ξt,ε is a polynomial, whereas

ξt,ε( ft,i) is a number given n and p (and in the present context n determines p). Since ξt,ε is
acceptable, we may expand its logarithm and hence obtain

logξt,ε( ft,i) =
v(1)
max

∑
v=0

R(1)
v (ζ̂ )

(
i

λt

)v

+o(λ−1
t ) (3.18)

for some v(1)
max, with R(1)

v ∈ P(gt−1) having all coefficients O(no(1)x) for all v � vmax. (That is,
1+R(1)

v is acceptable.) Then

j−1

∑
i=0

logξt,ε( ft,i) =
j−1

∑
i=0

v(1)
max

∑
v=0

R(1)
v (ζ̂ )

(
i

λt

)v

+o( j/λt)

=
v(1)
max

∑
v=0

R(1)
v (ζ̂ )
v+1

· jv+1

λ v
t

+
v(1)
max

∑
v=0

O( jv)R(1)
v (ζ̂ )

λ v
t

+o( j/λt)

= o(1)+λt

v(1)
max

∑
v=0

R(1)
v (ζ̂ )
v+1

(
j

λt

)v+1

. (3.19)

https://doi.org/10.1017/S0963548318000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000202


The Probability of Non-Existence of a Subgraph in a Moderately Sparse Random Graph 699

We wish to approximate the terms in (3.11) by expanding the formula for Tj given in (3.10)
about j = j∗, beginning with (3.14) written as

log(Tj/Tj−1) = q( j)+O(η), (3.20)

where

q( j) = logA(2)
t,κ (ζ ( j))+ logλt − log j. (3.21)

Note that this equation also defines q(y) for an arbitrary non-integer real y, so we can consider
its derivative q′(y). Since A(2)

t,κ is t-acceptable, we have for some v(2)
max and R(2)

v ∈ P(g1, . . . ,gt−1)
with all coefficients of size O(no(1)x) that

q′(y) =
d
dy

(vmax
(2)

∑
v=0

R(2)
v (ζ̂ )

(
y
λt

)v)
− 1

y

= −1
y

+O

(
no(1)x

λt

)
(3.22)

= − 1
j∗

+O

(
no(1)x

λt
+

|y− j∗|
( j∗)2

)
for |y− j∗| = o( j∗), and on the other hand, from the definition of j∗, q( j∗) = 0. It follows that
for k = j∗ +O(

√
j∗ log j∗), we have (again noting j∗ ∼ λt)

q(k) =
∫ k

j∗
q′(y)dy = −k− j∗

j∗
+o(( j∗)−1/2xno(1)).

Thus, for the same range of k, summing (3.20) over j between j̃ := � j∗� and k gives

log(Tk/T
j̃
) =

−(k− j̃)2

2 j∗
+o(1) (3.23)

(and this argument applies whether k is smaller or larger than j̃). Hence, the sum of Tk for k =
j∗ + O(

√
j∗ log j∗) is asymptotic to T

j̃
times the sum of e−(k− j̃)2/2 j∗ over the same range, and is

hence

(2π j∗)1/2T
j̃
(1+o(1)).

Also, (3.23) is valid at the extreme ends of the range, that is, k = j∗ + Θ(
√

j∗ log j∗). Thus,
recalling (3.14), all the terms in (3.11) outside the range k = j∗ + O(

√
j∗ log j∗) are negligible

and

�mt�

∑
j=0

Tj ∼ (2π j̃)1/2T
j̃
. (3.24)

To estimate T
j̃
, we use Stirling’s formula and then j∗ ∼ λt and | j̃− j∗| < 1 to write

λ j̃
t

j̃!
∼ (eλt/ j̃) j̃√

2π j̃
∼ (eλt/ j∗) j∗√

2π j̃
. (3.25)
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Using (3.17) we may expand the logarithm of 1/A(3)
t,κ to obtain, for some acceptable polynomials

A(4)
t,κ and A(5)

t,κ in P(gt−1),

log(λt/ j∗) = A(4)
t,κ (ζ̂ )−1+o(1/λt)

and then

(eλt/ j∗) j∗ = exp( j∗ log(eλt/ j∗)) = exp(λtA
(5)
t,κ (ζ̂ )+o(1)). (3.26)

(Here A(5)
t,κ just contains the significant terms of A(3)

t,κ ·A(4)
t,κ .) Next, from (3.19) with j = j̃ we have,

for some t-acceptable polynomial A(6)
t,κ ,

j̃−1

∑
i=0

logξt,ε( ft,i) = λt(A(6)
t,κ (ζ ( j̃))−1)+o(1). (3.27)

For example, if ξt,ε happens not to contain gt , then A(6)
t,κ is equal to 1 + gt l̂ogξt,ε , where l̂og

denotes the logarithm truncated to significant terms. Since | j∗ − j̃| < 1 and A(6)
t,κ is t-acceptable,

we may replace j̃ in the right-hand side of (3.27) by j∗, with no other change to the equation.
Using this, together with (3.25) and (3.26), in (3.10) with j = j̃, we may transform (3.24) into

�mt�

∑
j=0

Tj ∼ exp(Pt,κ(ζ ( j̃))+λtA
(6)
t,κ (ζ ( j∗))−λt +λtA

(5)
t,κ (ζ̂ )). (3.28)

Note that A(6)
t,κ −1 + A(5)

t,κ is t-acceptable. Then the expansion (3.17) calls for replacing gt in A(6)
t,κ

by A(3)
t,κ (ζ̂ ):

A(6)
t,κ (ζ ( j∗))−1+A(5)

t,κ (ζ̂ ) = A(6)
t,κ (ζ (λtA

(3)
t,κ (ζ̂ )))−1+A(5)

t,κ (ζ̂ ) = A(7)
t,κ (ζ̂ )+o(1/λt)

for some acceptable polynomial A(7)
t,κ ∈ P(gt−1). Also, by hypothesis (ii) and the fact that | j∗ −

j̃| < 1, we have Pt,κ(ζ ( j̃)) = Pt,κ(ζ ( j∗))+ o(1). Again replacing gt by A(3)
t,κ (ζ̂ ), using (3.17) we

obtain

Pt,κ(ζ ( j̃)) = P̃t,κ(ζ̂ )+o(1)

for a polynomial P̃t,κ ∈ P(gt−1) that has exactly the properties described in (ii) for Pt,κ .
Note that there are multiple valid choices for P̃t,κ at this point, due to the possible inclusion

of negligible terms. To avoid ambiguity, we specify that the terms that are retained are exactly
those that are significant in this argument when p is precisely n−κ , that is, terms of order na pb

for which a/b � k.
Now from (3.11) and (3.28) we have

St−1( j1, j2, . . . , jt−1) ∼ exp(P̃t,κ(ζ̂ )+λtA
(7)
t,κ (ζ̂ )). (3.29)

We may now set

Pt−1,κ = P̃t,κ +λtA
(7)
t,κ
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to obtain parts (i) and (ii) of the inductive hypothesis. Indeed, by this recursive definition we
obtain that

Pt,κ =
s

∑
t ′=t+1

λt ′At ′,κ

for some acceptable polynomials At ′,κ . Verifying part (iii) of the inductive hypothesis requires
simply noticing that the estimates in the above derivation are, inductively, uniform over all
appropriate ζ̂ . This uses the uniformity of the estimates in Lemma 2.5 and Corollary 2.7.

The inductive step is now fully established, and we have (3.9) for all t. Taking t = 0, (3.7)
shows that

P(X = 0) ∼ exp(−P0,κ). (3.30)

By part (ii) of the inductive hypothesis, P0,κ = (1+O(no(1)x))∑t∈S λt .
We now show that

the polynomial P0,κ is a truncation of P0,χ+ε for all χ + ε � κ < 2− ε ′′ (3.31)

(where the upper bound 2− ε ′′ arises from (2.20)). This statement immediately requires some
qualification. In the definition of Pt,κ , it is important to note that any expansions during the proof
above must be taken in the formal sense. For instance, if χ + ε happens to take certain rational
values, then some terms in an expansion of the form na pb might happen to be equal to other terms
nc pd , but these terms should be kept separate when comparing polynomials.

We begin by showing that there is no ambiguity in the definition of Pt,κ due to the arbitrariness
of ordering of the types in S. That is, we show that the various orderings of types that are valid
all lead to the same terms in Pt,κ . Consider two possible orderings of types π and π̃ . For each
choice of ordering there corresponds a polynomial Pt,κ in (3.30). Let us refer to the function o(1)
in (2.13) as g(n). Since g(n) may be taken so that ng(n) is any positive constant function, and for
all such functions the two polynomials must have equal values to within o(1), all terms in the
polynomials that are bounded below when ng(n) is constant must be equal. Terms that tend to 0
when ng(n) is constant must be n−ε ′ for some ε ′ > 0 and hence cannot occur in these polynomials.

We continue with the main part of the proof of (3.31). Note first, as an easy argument shows,
that as κ increases smoothly from χ +ε to 2−ε ′′, there is a finite number of values of κ at which
the ordering of the types can change, or a type changes from small to large. (Recall that, as κ
increases, p decreases, and hence every λi decreases, and hence a type can move from S1 to S0,
and at essentially the same κ from S0 to large, but not in the reverse direction.) These are special
values for our argument, since the ordering of types determines the order of expansions in the
inductive arguments concerning St . We designate the minimum value, χ +ε , also as one of these
special values, κ0, and let the others be κ1,κ2, . . . , with κ0 < κ1 < · · · .

Let us first fix two of these distinct values of κ , κi < κi+1, and consider κ in the open interval
(κi,κi+1). First, we will show that in the inductive argument given above, for such κ , we may use
Pt,κi

in the argument in place of Pt,κ (subject to some near-trivial modification we will describe).
We show moreover that Pt,κ is a truncation of Pt,κi

. To be precise, we claim that all the expansions
in the argument for κ can be replaced by the corresponding ones from the argument for κi. The
difference between the corresponding expansions lies only in the terms that are absorbed by the
error terms in the argument for κ . To see this inductively, we need only to modify the argument
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for κ slightly. We describe various aspects of the two arguments as being ‘for κ’ or ‘for κi’ to
distinguish between the two versions.

The inductive argument for κ begins with a maximal t ∈ S. Since κ is not a special value, it
cannot be true that t ∈ S0. However, it may happen that a type t ′ is large for κ but small (and
hence in S0) for κi. By what has been shown about ordering types arbitrarily, we may assume
that types that are small for κ have the same ordering for κ as they do for κi. For any type like the
above-mentioned t ′, we may extend the definitions in the argument for κ by putting St ′ = 1, and
it is easy to verify that Pt ′,κi

= o(1) when evaluated at the value of p occurring in the argument

for κ , that is, p = n−κ+o(1). As the remaining types have identical order, it remains to be shown
that if t ∈ S for κ , then Pt,κ equals Pt,κi

except for those terms of Pt,κi
which are o(1) for κ .

At every point in the argument above for arbitrary κ that an expansion is called for, beginning
with the use of γ in (3.12), we may add the extra terms called for in the κi argument, and note
that they fall into the error terms in the equation concerned. In particular, for (3.12) this is true
because of the assertion about the truncations in Corollary 2.7. Then, since this equation (and
those following it) is true with these extra terms, the argument works as before, with expansions
being carried out and with truncations determined by the argument for κi rather than κ . Every
step of the argument then preserves the expansions obtained in the argument for κi, but all other
aspects of the argument are as for κ . This is immediately obvious in places where products of
series, and logarithms, are expanded, but it is a little more subtle in the part involving j∗, so we
examine this in more detail.

We need to show that A(3)
t,κ equals A(3)

t,κi
up to insignificant terms. Let λ̃t be λt with p = n−κi+o(1).

Let Ã(3)
t,κi

be the polynomial derived with p = n−κi+o(1) but evaluated at p = n−κ+o(1). We can write

A(3)
t,κi

as A(3)
t,κi

= B(3)
t,κi

+C(3)
t,κi

+ D(3)
t,κi

, where D(3)
t,κi

= o(1/λ̃t) and where C(3)
t,κi

is significant for p =

n−κi+o(1) but such that C̃(3)
t,κi

= o(1/λt). We constructed D(3)
t,κi

from a given number of contractions
and the contraction constant is smaller for κ than it is for κi (for the contractions obtained when
the coefficients in A(2)

t,κi
and A(2)

t,κ are replaced by their absolute values), hence D̃(3)
t,κi

� D(3)
t,κ and

D̃(3)
t,κi

= o(1/λt). All of the remaining steps in the argument for p = n−κ+o(1) involve sums,
products, expansions of logarithms or substitutions into polynomials and so everything arising
from C̃(3)

t,κi
is of the order o(1/λt). Thus, ignoring o(1/λt)-terms, Ã(3)

t,κi
= A(3)

t,κ .
Next, we will show that the inductive argument given above, for κi+1, remains valid if we use

Pt,κ in the argument in place of Pκi+1
, and that Pκi+1

is a truncation of Pt,κ . In this case, no type can
move from being small for the κ argument to being large for the κi+1 argument (since κi+1 > κ),
but possibly a type t is in S1 for the case of κ and in S0 for the case of κi+1. By part (ii) of
the inductive hypothesis, the contribution from the type t to Pt,κ is λt + o(1) when p is taken in
the appropriate range for κi+1 because then λt = no(1), and moreover this is also the contribution
to Pt,κi+1

. The rest of the argument for this case only involves considering the expansions, so is
similar to the argument above.

Statement (3.31) now follows by induction from the statements that Pt,κ is a truncation of Pt,κi

and that Pκi+1
is a truncation of Pt,κ . In view of the argument above that decreasing κ simply

adds more terms to P0,κ , we see that decreasing ε does the same thing to P0,χ+ε . Hence, this is
the truncation to a finite number of terms of a power series F(G0) in n and p. Since there is a
bounded number of terms in (1.3) that are o(1) for a given κ , we have now established (1.3) for
this power series F(G0) and for p = n−κ+o(1) (whenever κ � χ +ε). In particular, with the terms
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c�n
i� p j� arranged in decreasing order of i�/ j�, the claimed characterization of Mε follows. Note

that the function represented by o(1) in (1.3) is given explicitly by

f (n, p) = log(P(X = 0))−
Mε

∑
�=0

c�n
i� p j� .

We may now apply Lemma 1.4 with a = χ + ε and b = 2− ε ′′ to deduce that the convergence in
(1.3) is uniform over all κ ∈ [χ + ε,2− ε ′′].

All that remains is to show the strict positivity of the exponents i� and j� in F(G0). Note that a
term ni� p j� with i� � 0 must have j� < 0, otherwise it is always o(1) and can simply be omitted.
However, such a term is decreasing in p, so, if it is ever significant, must be so when p � n−2+ε ′′ .
However, at that point we know P(X = 0) ∼ 1, and hence the term must be insignificant here
too. Thus, such terms can be dropped. It follows that we may assume i� > 0. Given (by the same
argument) that the term must be insignificant for small p, we deduce that j� > 0 also. The G(n, p)
case of the theorem follows.

4. Graphs with forbidden subgraphs in G(n,m)

We will show that the G(n, p) case of Theorem 1.1 can be extended to give a similar result
in G(n,m) without much difficulty. Specifically, we provide asymptotics for the probability of
G(n,m) not containing a fixed subgraph isomorphic to G0. The asymptotics could be expressed
in terms of n and m, but it is more convenient to use n and the parameter d = m/

(n
2

)
defined in

(1.1). We employ the G(n, p) case inside the proof, for a value of p that is close, but not quite
equal, to d, though for the statement of the theorem we have renamed d as p for convenience.

Proof of the G(n,m) case of Theorem 1.1. Let Y denote the number of edges of a graph. The
probability that X = 0 in G(n,m) is precisely P(X = 0 |Y = m) in G(n, p). In the rest of the proof
we estimate this quantity, with all probabilities referring to G(n, p). By Bayes’ theorem, what we
desire is

P(X = 0 | Y = m) = P(Y = m | X = 0)
P(X = 0)
P(Y = m)

. (4.1)

This formula is valid for all 0 < p < 1. The value of p we will use, which is specified below, is
asymptotic to d and hence lies in the range required for the G(n, p) case of Theorem 1.1, given
by (2.13) with the same restrictions on κ , which determines S via (2.16). Thus, Theorem 1.1
gives us P(X = 0) in G(n, p).

The main difficulty is computing P(Y = m | X = 0). For this, we will first alter the analysis
in Section 3 to consider the G∗

0-clustering in G(n, p). Recall that this is obtained by adding to S
the type t∗ of maximal cluster corresponding to a single edge. For convenience, we henceforth
denote the cluster type t∗ by 0, and modify the definition of g̃ for (2.47) accordingly with g0

substituted by f (0)/λ0.
Considering the polynomial ξ0,ε(n, p,g) in Corollary 2.7, for j/λ0 � 3 (in accordance with

(2.23)), by part (c) of that corollary

γ0( jδ0) = ξ0,ε(n, p, ĝ( j))+o(λ−1
0 ), (4.2)
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where ĝ0( j) = j/λ0, ĝi( j) = 0 for i � 1, provided that p = p(n) = O(n−χ−ε) and satisfies (2.20).
Also define g̃ by g̃0 = m/λ0 and g̃i = 0 for i � 1, and let ξ denote ξ0,ε(n, p, g̃) (noting that ξ is

a function of n, p and m). As ĝ0( j) � 3 = O(1) we have

ξ0,ε(n, p, ĝ( j)) = ξ +O(x(m− j)/λ0) (4.3)

by Corollary 2.7(a).
By the definitions of ρ( f ,h) and γ( f , t) before Proposition 2.2, one would expect that the

probability that G(n, p) has no copies of G0 and m′ edges will be maximized, given p, at m′ ≈ m
provided that ρ(mδ0,δ0) ≈ 1, or γ(mδ0,0) ≈ m/λ0. On the other hand, in G(n, p) the ratio of the
probabilities of having a given number of edges, when increasing m to m + 1, is approximately
d/p. Consequently, we define p by

p = d/ξ (4.4)

(recalling that (1.1) gives d as a function of n and m). Then (4.2) and Lemma 2.5 imply that

p = d(1+O(x+λ−1
0 )), (4.5)

and hence our assumptions on d imply the necessary properties of p such as (2.20), perhaps with
different values of the unimportant constants.

From the G(n, p) case of Theorem 1.1, P(X = 0) in G(n, p) is e−Θ(λt ), and λt = o(λ0) by (2.12).
On the other hand, the number Y of edges in G(n, p) is distributed as Bin(N, p) where N =

(n
2

)
,

with mean λ0 = N p∼m. Hence, P(Y > 2m) < e−cm < e−Ω(λ0) (for instance by Chernoff’s bound).
It follows that

P(X = 0) ∼ ∑
j�2m

P(C jδ0
). (4.6)

Using the definition of ρ , Proposition 2.6 and Lemma 2.5, and then (4.2) and (4.3), we have

ρ( jδ0,δ0) =
λ0

j +1
γ( jδ0,0)

=
λ0γ0( jδ0)

j +1
(1+o(λ−1

0 ))

=
λ0ξ
j +1

(1+o(λ−1
0 )+O(x(m− j)/λ0))

=
m

j +1
exp(o(λ−1

0 )+O(x(m− j)/λ0))

by (4.4) and (1.1). Hence (4.6) gives

P(X = 0)
P(Y = m,X = 0)

=
P(X = 0)
P(Cmδ0

)

∼ ∑
j�2m

P(C jδ0
)

P(Cmδ0
)

= ∑
j�2m

ρ(mδ0,( j−m)δ0)
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=
2m

∑
j=m

j−1

∏
i=m

ρ(iδ0,δ0)+
m

∑
j=0

m−1

∏
i= j

ρ(iδ0,δ0)
−1

=
m!
mm

2m

∑
j=0

mj

j!
exp(o((m− j)/λ0)+O(x(m− j)2/λ0))

∼ m!
mm

2m

∑
j=0

mj

j!

∼ m!em

mm
∼
√

2πm.

In the third-last line, the main terms of the summation have |m− j| ≈ √
m ∼

√
λ0, for which the

error terms are o(1) as x → 0. The remaining terms are insignificant since the absolute value of
the jth term in the sum is (mm/m!)exp(−Ω(m− j)2/λ0), which dominates the error term. The
last line uses Stirling’s formula.

Taking the multiplicative inverse of the previous asymptotic formula produces

P(Y = m | X = 0) ∼ 1√
2πm

. (4.7)

For the other factors in (4.1), first recall that ξ comes ultimately as a truncation of the power
series ξ0, in n and p (here t = 0) in Corollary 2.7. Thus, we can use (4.4) and (4.5) to expand p as
a power series in n and d. Specifically, we obtain p = dJ̃1(1+o(λ−1

0 )) where J̃1 is the truncation
of a power series J1 in n and d to significant terms. Here J1 is independent of κ , being the
termwise limit of the power series obtained for κ as κ ↓ χ (which represents increasing p). This
can be substituted into the polynomial obtained by truncating the power series for logP(X = 0)
obtained from the G(n, p) case of Theorem 1.1, at an appropriate level, to express logP(X = 0)
as J̃2 + o(1) where J̃2 is a truncation of a power series J2 in n and d, with J2 independent of κ .
Similarly, P(Y = m) is simply the binomial probability which can be estimated as follows. For
N =

(n
2

)
and rewriting p = d(1 + ε0) = m(1 + ε0)/N where ε0 = O(x + λ−1

0 ) by (4.5), we have
(using Stirling’s formula)

P(Y = m) = P(Y = dN) =
(

N
m

)
pdN(1− p)N(1−d)

∼ 1√
2πm

(
(1+ ε0)

d

(
1−d(1+ ε0)

1−d

)1−d)N

using m = o(N) (which follows since p = o(n−ε)). Then from (4.1) and (4.7), we have

P(X = 0 | Y = m) ∼ exp(J̃2)
(

(1+ ε0)
d

(
1− dε0

1−d

)1−d)−N

. (4.8)

The obvious expansion gives a power series in n and d, and due to the way we unified the
theorem statements, we must replace each ‘d’ in this expression by ‘p’ to obtain the power series
F(G0) for the G(n,m) case of the theorem. To verify that F has the required properties, we note
that 1+ ε0 = J̃1 +o(λ−1

0 ), where J̃1 was derived from the κ-free J1 as above.
The positivity of the exponents i� and j� follows by arguing as in the proof of the G(n, p)

case.
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Appendix: Calculations for triangle-free graphs

Proof of Theorem 1.2. Section 3 shows that an asymptotic formula for the probability a
subgraph G0 is not present in G(n, p) exists, but it does not state the formula explicitly. Nev-
ertheless, the proof fully prescribes a method of calculating the formula for any particular case.
At its heart, the proof uses Corollary 2.7, in which the power series ξt,ε are not stated explicitly.
To obtain a formula in practice, these must be determined to a required accuracy, along with the
quantities c(u, t,h) defined in (2.1). In this section we demonstrate how the necessary calculations
are performed in the case when G0 is a triangle.

We let G0 = K3, the complete graph on three vertices, and proceed to estimate the probability
that G(n, p) contains no triangles in the case that p < n−7/11−ε . (This constraint will be relaxed to
p = o(n−7/11) at the end.) It is easy to check that that (1.2) determines χ = 1/2 when G0 = K3.
If we make the restriction p = n−κ+o(1) with κ > 7/11, then there are ten possible cluster types
in S according to (2.16). We thus have S = {1,2, . . . ,10} as depicted in Figure 1.

All these types are present in S when κ is at most 2/3. All other cluster types have expected
number tending to 0 as κ > 7/11, and are therefore are not in S. Recall that the poset ordering ≺
on S is not necessarily a linear ordering; for example, the types {5,6,7,8,9,10} are all maximal,
and therefore not comparable. The ordering ≺ is extended to the usual real linear ordering on S
denoted by <.

The first step is to calculate λt for t ∈ S. In accordance with (2.4) and (2.5), we obtain the λt

as in Table 1.
Our next task is to find the polynomial ξt,ε of Corollary 2.7 for all t ∈ S. For this, the proof of

the corollary describes an iterative scheme to compute the F (r)
t and hence γ (r)

t .
We can drop all terms that would yield coefficients of variables gti

that are O(n−ε/λt) for
some ε > 0. This is because in ξt,ε( f ), each gti

is assigned a value that is no(1), and hence the
dropped terms are subsumed into the error term in (2.57) when ε is sufficiently small (recalling
that γ t( f )∼ 1 by Lemma 2.5). For similar reasons, we can drop any O(p2)-term in the expansion
of c(t, t,0) at the front of (2.59), as p2λt = O(p2λ1) = O(p5n3) = o(n−2/11). Note that c(1,1,0) =
1− p3 since it is simply the probability that three vertices do not form a triangle. Hence, we can
treat c(1,1,0) as 1. A similar argument applies to c(t, t,0) for all other t ∈ S.

Moving on to the quantities c(u, t,h) inside the summation in (2.59), for any non-zero h ∈ F ,
clearly c(t, t,h) = O(p3), and so these terms can be ignored completely for the same reason, for
all t.

For the other terms in the summation, we only need to compute c(u, t,h) to O(n−ε/λu). For
u = 2, note that n−ε/n4 p5 = Ω(p10/7) for sufficiently small ε since n < p−11/7. Thus, we may
drop p2-terms in c(2, t,h). First consider c(2,1,0). In (2.1), J is a cluster of type 2, that is, (the
edge set of) two triangles with a common edge. Q corresponds to one of the two triangles of J (so
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Table 1. Expected numbers of small clusters

λ1 = 1
6 [n]3 p3 λ2 = 1

4 [n]4 p5 λ3 = 1
2 [n]5 p7 λ4 = 1

12 [n]5 p7 λ5 = 1
2 [n]6 p9

λ6 = 1
6 [n]6 p9 λ7 = 1

2 [n]6 p9 λ8 = 1
2 [n]6 p9 λ9 = 1

48 [n]6 p9 λ10 = 1
24 [n]4 p6

1. .3.2

4. 5. 6.

.8.7 9.

10.

Figure 1. Ten types of cluster.

there are two choices for Q). There are four cases for H, as it must contain J \Q but no triangles.
Letting q = 1− p, we get

c(2,1,0) = 2(q3 +2pq2 + p2q) = 2(1− p).

The other cases of c(2, t,h) can be computed similarly, and only h = δ1 is significant (i.e. not
O(p2)). Similarly, for u = 3, 1/n5 p7 = Ω(p6/7) and we may drop the O(p)-terms. The same
clearly holds for all u > 3 as well. In this way, we obtain all significant terms of c(u, t,h) for
u > t, as shown in Table 2. In computing these, note that h is quite restrictive. For instance, for
c(3,1,0), the deletion of Q from J must leave no triangles, and there is only one such choice
for Q.
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Table 2. Significant contributions to (2.59)

u t h c(u, t,h) cofactor

2 1 0 2(1− p) 3
2 np2 · γ2

2 1 δ1 2p 3
2 np2 · γ2g1γ−1

1

3 1 0 1 3n2 p4 · γ3

3 1 δ1 2 3n2 p4 · γ3g1γ−1
1

4 1 0 3 1
2 n2 p4 · γ4

5 1 δ1 2 3n3 p6 ·g1

5 1 δ2 2 3n3 p6 ·g2

6 1 0 1 n3 p6

6 1 2δ1 3 n3 p6 ·g2
1

7 1 δ1 2 3n3 p6 ·g1

7 1 δ2 2 3n3 p6 ·g2

8 1 0 1 3n3 p6

8 1 δ1 2 3n3 p6 ·g1

8 1 δ2 1 3n3 p6 ·g2

9 1 0 4 1
8 n3 p6

10 1 0 4 1
4 np3

3 2 0 2 2np2 · γ3

4 2 0 3 1
3 np2 · γ4

5 2 0 1 2n2 p4

5 2 δ1 2 2n2 p4 ·g1

6 2 0 3 2
3 n2 p4

7 2 0 1 2n2 p4

7 2 δ1 2 2n2 p4 ·g1

8 2 0 3 2n2 p4

8 2 δ1 1 2n2 p4 ·g1

9 2 0 6 1
12 n2 p4

10 2 0 6 1
6 p

5 3 0 2 np2

6 3 0 3 1
3 np2

7 3 0 2 np2

8 3 0 2 np2

8 4 0 1 6np2

9 4 0 4 1
4 np2
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The ‘cofactor’ column of Table 2 shows the significant contribution to those terms in Ft from

λu

λt
γu

k

∏
i=1

gti

γ ti

.

Here, and in the rest of the calculation, we assume ε > 0 is as small as we like, and any terms
that are O(n−ε/λt) are dropped. In each case, λu/λt is the first item in the column, with any
others (that are not equal to 1) appearing after ‘·’. In each case only the leading term of λu/λt

turns out to be significant, since the correction terms are O(1/n) and λu/n = O(n3 p5) for u � 2.
Any other factors which appear to be missing have simply been replaced by 1, with the following
justification. In the initial iteration, for computing F (1)

t we have all γv equal to 1, and by induction,
thereafter they are 1 + O(np2) (if we treat each gti

as 1). In the end each gti
is substituted by

something that is no(1). Hence we may set any γu or γ ti
equal to 1 in all iterations for all u � 5,

since then λunp2 = O(n7 p11 + n5 p8) = O(n−ε/λt). Of course there are no contributions from
t � 5 since all such t are maximal in S, and c(u, t,h) = 0 unless t ≺ u (and we have already dealt
with the case u = t).

The significant terms of (2.59) are now deduced to be

F1 = −np2(3(1− p)γ2 +3pγ2g1/γ1)−n2 p4

(
3γ3 +6γ3g1/γ1 +

3
2

γ4

)
−n3 p6

(
18g1 +15g2 +3g2

1 +
9
2

)
−np3,

F2 = −np2(4γ3 + γ4)−n2 p4(10g1 +25/2)− p,

F3 = −7np2,

F4 = −7np2,

Ft = 0 (t � 5).

Write y = np2 and solve (2.59) iteratively as described after that equation. It may help to note that
any terms of order yp2, y2 p or y4 can be dropped. After three iterations (actually the expressions
do not change after the second update), the error is of order x4 = max{y4, p4} by (2.11), which
is negligible for each t. This gives ξt,ε = 1+F (4)

t , as follows:

ξ1,ε = 1−3y+5py−3g1 py+
21
2

y2 −6g1y2 − 81
2

y3 +36g1y3 −3g2
1y3 −15g2y3, (A.1)

ξ2,ε = 1− p−5y+
45
2

y2 −10g1y2, (A.2)

ξ3,ε = 1−7y, (A.3)

ξ4,ε = 1−7y, (A.4)

ξt,ε = 1 (t � 5). (A.5)

We will evaluate the expressions given in Section 3 with 7/11 < κ < 2/3, so that S1 = [10]
and S0 = /0 (and actually y = x as per (2.10)). The ultimate result will then be valid for all values
of κ > 7/11 by (3.31). We also fix ε in the range 0 < ε < 7/11− χ = 3/22. With κ and ε in
these ranges, the ξt,ε are given by the expressions (A.1)–(A.5).
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The recursive definition (3.5) of St for t � 10 starts with S10 = 1 and hence, in (3.9), P10,κ = 0.

Hence (just before (3.14)) A(1)
10,κ = 1. Of course there are options in choosing As since they are

only determined up to an error term; we use the natural choices.
The next step is to determine S9 and P9,κ . From (3.15), A(2)

10,κ = 1. Now (3.16) implies j∗ = λ10

and hence from (3.17) A(3)
10,κ = 1. It is now easy to check that A(4)

10,κ = A(5)
10,κ = 1 at (3.26), and

then similarly A(6)
10,κ = A(7)

10,κ = 1. (Much more detail in the steps here is provided in the less trivial

case when t = 1 below.) Finally, we conclude that, at (3.29), S9( j1, j2, . . . , j9) ∼ eλ10 and then
P9,κ = λ10. In the same way one can show that

St ∼ exp

( 10

∑
u=t+1

λu

)
for t = 8,7,6,5,4.

In particular we have

S4 ∼ exp

( 10

∑
u=5

λu

)
and P4,κ =

10

∑
u=5

λu.

Next consider S3 and P3,κ . We have that P4,κ(ζ ) is independent of ζ , and so A(1)
4,κ = 1. The ratio

in (3.12) is Tj/Tj−1 = (1− 7y)λ4(1 + O(η))/ j, so A(2)
4,κ = 1− 7y, j∗ = (1− 7y)λ4 and A(3)

4,κ =
1−7y. Moreover,

log(λ4/ j∗) = − log(1−7y) = 7y+O(y2) = 7y+O(λ−1
4 ).

so A(4)
4,κ = 1+7y and (

eλ4

j∗

) j∗
=

(
e

1−7y

)λ4(1−7y)

= eλ4+o(1)

from which we deduce A(5)
4,κ = 1. Now,

j̃−1

∑
i=0

logξ4,ε = j̃ log(1−7y) = −7y(1−7y)λ4 +o(1) = −7yλ4 +o(1)

implies that A(6)
4,κ = 1−7yg4 and A(7)

4,κ = 1−7y. Because P4,κ does not depend on g4,

P̃4,κ = P4,κ =
10

∑
u=5

λu.

Finally, we have

S3( j1, j2, j3) ∼ exp

( 10

∑
u=5

λu +(1−7y)λ4

)
and

P3,κ = P̃4,κ +λ4A(7)
4,κ =

10

∑
u=5

λu +(1−7y)λ4.
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Similar analyses which we omit show that

S2( j1, j2) ∼ exp

(
(1−7y)(λ3 +λ4)+

10

∑
u=5

λu

)
.

Next, note that A(1)
2,κ = 1, A(2)

2,κ = A(3)
2,κ = ξ2,ε , j∗ = λ2ξ2,ε , A(4)

2,κ is a truncation of the expansion of

1− logξ2,ε , A(5)
2,κ = 1− 25

2 y2, A(6)
2,κ is the truncation of 1 + g2 logξ2,ε , which is 1 + g2(−p− 5y +

(10− 10g1)y
2), and A(7)

2,κ = 1− p− 5y + 45
2 y2 − 10g1y2. Eventually S1( j1) ∼ exp(P1,κ(ζ ( j1))),

where

P1,κ =
(

1− p−5y+
45
2

y2 −10g1y2

)
λ2 +(1−7y)(λ3 +λ4)+

10

∑
u=5

λu. (A.6)

The final step of the induction is a little more involved. We have

exp(P1,κ(ζ ( j))−P1,κ(ζ ( j−1))) = exp

(
−10y2λ2

λ1

)
= exp(−15y3 +O(y3/n))

and hence A(1)
1,κ = 1−15y3. For (3.15) we set g2 = 0 to get ξ̃1,ε and obtain

A(2)
1,κ = 1+ c1 + c2g1 + c3g2

1,

where

c1 = −3y+5py+
21
2

y2 − 81
2

y3 −15y3

= −3y+5py+
21
2

y2 − 111
2

y3,

c2 = −3py−6y2 +36y3,

c3 = −3y3.

The equation (3.16) for j∗ becomes

j∗

λ1
= 1+ c1 + c2

(
j∗

λ1

)
+ c3

(
j∗

λ1

)2

. (A.7)

Since the ci are O(yi), j∗ ∼ λ1 and λ1y4 = o(1), we find iteratively that

j∗ = (1+ c1 + c2 + c1c2 + c3)λ1 +o(1),

and so

A(3)
1,κ = 1+ c1 + c2 + c1c2 + c3. (A.8)

Expanding 1− logA(3)
1,κ gives

A(4)
1,κ = 1− c1 − c2 − c3 + c2

1/2− c3
1/3,

and then truncating A(3)
1,κ ·A

(4)
1,κ gives

A(5)
1,κ = 1− c1c2 − c2

1/2+ c3
1/6.
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Next, referring to (A.9) and writing c̃1 = c1 +15y3,

j̃−1

∑
i=0

logξ1,ε( f1,i) =
j̃−1

∑
i=0

log

(
1+ c̃1 +

c2i
λ1

+
c3i2

λ 2
1

)

= o(1)+
j̃−1

∑
i=0

(
c̃1 −

c̃2
1

2
+

c̃3
1

3
+

(c2 − c̃1c2)i
λ1

+
c3i2

λ 2
1

)
=

[(
c̃1 −

1
2

c̃2
1 +

1
3

c̃3
1

)
j̃

λ1
+

(
1
2

c2 −
1
2

c̃1c2

)(
j̃

λ1

)2

+
1
3

c3

(
j̃

λ1

)3]
λ1 +o(1),

so

A(6)
1,κ = 1+

(
c̃1 −

1
2

c̃2
1 +

1
3

c̃3
1

)
g1 +

(
1
2

c2 −
1
2

c̃1c2

)
g2

1 +
1
3

c3g3
1. (A.9)

Substituting (A.8) for g1 in (A.9), dropping insignificant terms, and adding −1 + A(5)
t,κ , we

obtain after some algebra

A(7)
1,κ = 1+ c̃1 + c̃1c1 −

1
2

c̃2
1 +

1
2

c2 +
1
2

c̃1c2 +
1
3

c̃3
1 −

1
2

c̃2
1c1 +

1
3

c3 −
1
2

c2
1 +

1
6

c3
1 +o(λ−1

1 )

= 1−3y+
7
2

py+
15
2

y2 − 29
2

y3.

Since j∗ = λ1(1+O(y)), changing from g1 = j̃/λ1 or g1 = j∗/λ1 to g1 = 1 in (A.6) induces a
change to P1,κ of order

O(( j∗ −λ1)y
2λ2/λ1) = O(y3λ2) = o(1)

and therefore P̃1,κ = P1,κ |g1=1. Finally,

P0,κ = P̃1,κ(1)+λ1A(7)
1,κ

=
10

∑
u=5

λu +(1−7y)λ4 +(1−7y)λ3 +
[

1− p−5y+
25
2

y2

]
λ2

+
[

1−3y+
7
2

py+
15
2

y2 − 29
2

y3

]
λ1 +o(1).

The remaining task is to plug in the expansions for the λts given in Table 1, simplify, and apply
(3.30). Since p = o(n−7/11), we approximate λ1 by 1

6 n3 p3 − 1
2 n2 p3, whilst for λt , t � 2 only the

first order term is important: λ2 ∼ 1
4 n4 p5, etc. This determines P0,κ and hence the coefficients in

the statement of Theorem 1.1, resulting in the statement of Theorem 1.2 for p < n−7/11−ε . To
relax this to p = o(n−7/11), we only need to note that, from this conclusion, all other terms in the
series F in Theorem 1.1 must have i�/ j� � 7/11. Such terms tend to 0 for p = o(n−7/11), and the
theorem follows.

Proof of Theorem 1.3. Here we extend the previous proof to obtain the probability that
G(n,m) contains no copies of K3. We just need to find J̃2 and ε0 in (4.8). We require additive
error o(1) for the former. For the latter, we note that expanding the logarithm of the large factor in
(4.8) gives − 1

2 dε2
0 + · · · . Since this factor is raised to the power −N and ε0 = O(x), this indicates

that the absolute error required for ε0 is simply o(1/dNx) = o(1/n3d3). (This assumes x = np2.
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Table 3. Significant contributions to (2.59)

u t h c(u, t,h) cofactor

0 0 δ0 p γ0

1 0 2δ0 3(1− p) 1
3 np2 · γ1

1 1 δ0 3p γ1

2 0 4δ0 1 1
2 n2 p4 · γ2

4 0 6δ0 1 1
6 n3 p6

2 1 2δ0 2 3
2 np2 · γ2

3 1 4δ0 1 3n2 p4

4 1 4δ0 3 1
2 n2 p4

3 2 2δ0 2 2np2

4 2 2δ0 3 1
3 np2

In the other case, when x = p, we have np � 1 and the main result follows from known results
easily.) Since p = d(1+ε0) = d/ξ as per (4.4), we will need to find the asymptotic expansion of
ξ = ξ0,ε(n, p, g̃) to relative error o(1/n3d3).

The existing terms in Table 2 have the accuracy desired for the present computation. Table 3 is
essentially an extension of Table 2, showing significant contributions to Ft from (2.59) as needed
to calculate γ0(n, p, g̃), under the same assumption that p = O(n−7/11−ε). Note that F1 and F2

need to be recomputed in this new clustering as the expression for γ0 contains γ1 and γ2.
Since

g̃0 = m/λ0 = mp−1

(
n
2

)−1

= d/p = ξ = ξ0,ε(n, p, g̃) = γ0(mδ0)+o(λ−1
0 ) (A.10)

by (4.2), it is straightforward to see that the factors g̃0/γ0 can at this point be replaced by 1.
Strictly this needs to be justified in the context of the recursive computation of ξ in Corollary 2.7,
and this can be seen in a straightforward way by going back to the original equations in Propos-
ition 2.1 with the altered equations and observe that the same argument as in Section 2 applies
to these altered equations, resulting in the modified definition of Ft in (2.59); alternatively, one
could include the factors explicitly and watch them turn naturally into 1. Note that terms like
c(1,0,δ1) cannot affect this computation since they contain a factor gt for t > 0, and to evaluate
ξ we must set such gt equal to 0.

The denominator of (2.59) is c(0,0,0) = 1 − p in the case of t = 0. As with the G(n, p)
calculation, we can ignore certain terms in the product of c(u, t,h) with its cofactor. In the case of
t = 0, as explained above for calculating ε0 or ξ we can ignore any terms that are O(n−ε/n3 p3).
Note that λ0 = n(n− 1)p/2. Since γ1 only arises in terms with a cofactor that is O(np2), we
ignore terms in its expression that are O(n−ε/n4 p5) such as p2. For similar reasons, terms in γ2

of order O(n−ε/n5 p7) are ignored.
Note that we now have c(1,1,0) = (1− p)3 ≈ 1−3p since the only relevant possibility for H

in (2.1) in this case is the empty set. Plugging the values in Table 3 into (2.44) or (2.59) gives the
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following partly truncated expressions for γ0, γ1 and γ2:

γ0 =
1

1− p

(
1− pγ0 − (1− p)np2γ1 −

1
2

n2 p4γ2 −
1
6

n3 p6

)
,

γ1 = (1+3p)
(

1−3pγ1 −3np2γ2 −
9
2

n2 p4

)
,

and

γ2 = 1−5np2.

Solving for γ0 gives

γ0 = 1−np2 +
5
2

n2 p4 − 49
6

n3 p6 +np3 +O(n2 p5)

to additive error o(1/λ0) = o(1/n2 p). By (A.10) we can use this expression for ξ and find

1/ξ ≈ 1+ y− 3
2

y2 +
25
6

y3 − yp,

where y = np2 and the terms of order y4, y2 p and p2 are omitted. Substituting p = d/ξ into itself
three times gives

p =
(

d +nd3 −nd4 +
1
2

n2d5 +
1
6

n3d7

)
(1+o(1/n3d3)). (A.11)

This lets us eliminate p from the formula for P(X = 0) obtained from Theorem 1.2, which gives
exp(J̃2) asymptotically as required for (4.8). The other ingredient for that estimate is the value of
ε0, to additive error o(1/n3d3), which is determined directly from (A.11). Then (4.8) gives the
probability that X = 0 in G ∈ G(m,n), and simple computations give

P(X = 0|Y = m) ∼ exp

(
−1

6
n3d3 − 1

8
n4d6 +

1
2

n2d3

)
.

For the same reasons as in the G(n, p) case, the validity extends to all d = o(n−7/11).
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[4] Janson, S., Łuczak, T. and Ruciński, A. (1990) An exponential bound for the probability of
nonexistence of a specified subgraph in a random graph. In Random Graphs ’87 (M. Karoński,
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