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An experimental study of wall shear stress in an accelerating flow of water in a
pipe ramping between two steady turbulent flows has been undertaken in a large-scale
experimental facility. Ensemble averaged mean and r.m.s. of the turbulent fluctuations
of wall shear stresses have been derived from hot-film measurements from many
repeated runs. The initial Reynolds number and the acceleration rate were varied
systematically to give values of a non-dimensional acceleration parameter k ranging
from 0.16 to 14. The wall shear stress has been shown to follow a three-stage
development. Stage 1 is associated with a period of minimal turbulence response;
the measured turbulent wall shear stress remains largely unchanged except for a very
slow increase which is readily associated with the stretching of existing turbulent
eddies as a result of flow acceleration. In this condition of nearly ‘frozen’ turbulence,
the unsteady wall shear stress is driven primarily by flow inertia, initially increasing
rapidly and overshooting the pseudo-steady value, but then increasing more slowly and
eventually falling below the pseudo-steady value. This variation is predicted by an
analytical expression derived from a laminar flow formulation. The start of Stage 2 is
marked by the generation of new turbulence causing both the mean and turbulent wall
shear stress to increase rapidly, although there is a clear offset between the responses
of these two quantities. The turbulent wall shear, reflecting local turbulent activities
near the wall, responds first and the mean wall shear, reflecting conditions across the
entire flow field, responds somewhat later. In Stage 3, the wall shear stress exhibits
a quasi-steady variation. The duration of the initial period of nearly frozen turbulence
response close to the wall increases with decreasing initial Reynolds number and with
increasing acceleration. The latter is in contrast to the response of turbulence in the
core of the flow, which previous measurements have shown to be independent of the
rate of acceleration.

Key words: boundary layer, pipe flow, unsteady, wall shear stress

1. Introduction
Unsteady turbulent flows in pipes and channels include periodic and non-periodic

flows. Both cases have been studied experimentally as well as theoretically, but greater
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attention has been paid to periodic flows. This is justified in the sense that
many practical applications involve pulsations. However, non-periodic flows with
uniform acceleration/deceleration have advantages for unravelling the non-equilibrium
behaviour of turbulence dynamics in unsteady flows. This paper focuses on near-
uniform accelerating flows and, in particular, on the response of the wall shear stress
to acceleration.

Detailed studies of pulsating flows in pipes have been described by, for example,
Gerrard (1971) and Ronneberger & Aherens (1977), followed by Tu & Ramaprian
(1983), Shemer, Wygnanski & Kit (1985) and, more recently, by Scotti & Piomelli
(2001) and He & Jackson (2009). Tardu and coworkers conducted a series of studies
of flows in channels (Tardu & Binder 1993; Tardu, Binder & Blackwelder 1994; Tardu
& Da Costa 2005), Brereton, Reynolds & Jayaraman (1990) and Brereton & Reynolds
(1991) studied pulsating flows of a developing boundary layer.

Studies of wall shear stress in pulsating flows have been undertaken by a number
of researchers, including Mao & Hanratty (1986, 1992) for pipe flows and Tardu &
Binder (1993) and Tardu et al. (1994) for channel flows. Mao and Hanratty used
an electrochemical technique to measure wall shear stresses in a 194 mm diameter
pipe for a range of pulsating frequencies (ω+ = 0.0075–0.21, where ω+ = ων/u2

τ ).
Tardu and coworkers used flush mounted hot-film anemometry to measure wall
shear stresses in flows in a channel of cross section of 100 mm × 1000 mm. These
papers reported outcomes for high-frequency (up to ω+ = 0.24) and low-frequency
(ω+ < 0.03) ranges, respectively. It has been established that, for pulsating flows with
a non-zero mean flow, the long time averaged mean and root mean square (r.m.s.) of
turbulent fluctuations of the wall shear stress (referred to hereafter as the turbulent
wall shear stress) are unaffected by pulsation of the flow, but that the phase-averaged
mean wall shear stress lags behind the centre-line velocity. This phase lag varies from
almost zero at very low frequencies (approaching quasi-steady flow) to about 45◦ for a
Stokes flow at ω+ = 0.02–0.045, but then decreases with further increases of frequency.
In the case of slow pulsations, the amplitude of the phase averaged wall shear stress
is significantly greater than that predicted using Stokes’ theory. However, it decreases
with increasing frequency and, at sufficiently high frequencies, it is smaller than that
in Stokes flow. The phase-averaged wall shear stress is found to be well represented
by the fundamental harmonic component, but the phase-averaged turbulent wall shear
stress intensity is not. It exhibits a more nonlinear response, although the fundamental
mode still contains more energy than higher modes. Tardu & Binder (1993) showed
that the amplitude of the modulation of the turbulent wall shear relative to quasi-steady
values reduces from unity to around 0.1 as ω+ increases from zero (quasi-steady flow)
to around 0.02. With further increases in frequency, however, the amplitude increases
again and reaches around 0.6. The time lag (t+ = tU2

τ/ν) between the phase-averaged
mean wall shear stress and the corresponding turbulent shear stress intensity is found
to be constant (around 130) for all medium and low frequencies, but it increases when
ω+ exceeds ∼0.025, which is of the order of the turbulent burst frequency. Tardu and
Binder considered the above results to be an indication that interactions between the
imposed flow pulsation and turbulence cause an enhancement in turbulence.
Non-periodic unsteady flows in which a turbulent flow increases or decreases

monotonically have been studied experimentally by Maruyama, Kuribayashi &
Mizushima (1976), Greenblatt & Moss (1999, 2004) and He & Jackson (2000), and
numerically, using direct numerical simulation (DNS), by Chung (2005). In addition,
Piomelli, Balaras & Pascarelli (2000) studied spatially accelerating flow numerically.
Many of the experimental observations can be related to turbulence responses,
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including turbulence production near the wall, turbulence energy redistribution among
the components and radial propagation into the core of the flow. In particular, the
finite time scales of these activities cause ‘delays’ that characterize the response of
turbulence. As a result, the response at any radial location exhibits a three-stage
development, namely a delay (during which the turbulence remains largely frozen),
a rapid response and a ‘developed’ stage. In comparison with quasi-steady flow, the
turbulence intensity tends to be reduced in an accelerating flow and increased in
a decelerating flow, mainly due to delayed responses of turbulence. For a rapidly
accelerating flow, Greenblatt & Moss (2004) found that turbulence production could
first occur at a location well beyond the buffer layer (say y+ = 300) and that the new
turbulence propagates towards the wall as well as into the core of the flow. They
regarded this as a consequence of a strongly distorted velocity profile.

Measurements of wall shear stresses in non-periodic unsteady flows are very sparse.
Shuy (1996) presented an experimental study of wall shear stress in a pipe. He found
that the wall shear stress was smaller than the quasi-steady value in accelerating flows
and greater than the quasi-steady value in decelerating flows. This ‘contradicted’ the
predictions of widely used unsteady friction models, e.g. Vardy & Brown (2003), and
led to discussions contributed by several authors, including Proudovsky (1997) who
revealed several studies carried out in former USSR, which were largely documented
in Russian but were also summarized in English at international conferences, e.g.
Ainola et al. (1983) and Proudovsky & Oreshkin (1985). These studies showed that
the wall shear stress in an accelerating flow is initially greater than the corresponding
quasi-steady values, but that it subsequently becomes smaller. This behaviour is
supported by experimental data presented by He & Jackson (2001). Whereas the above
qualitative picture of unsteady wall shear stress variation is now widely accepted,
quantitative analysis is still at a preliminary stage and there is a lack of systematically
conducted experiments to assist in its development.

The present authors reported a numerical study of wall shear stresses in accelerating
pipe flows using a Reynolds averaged Navier–Stokes (RANS) modelling approach
incorporating a low Reynolds number turbulence model (He, Ariyaratne & Vardy
2008). Predictions for systematically varied flow conditions (including acceleration,
Reynolds number, fluid and dimensions) were consistent with the experimental
observations described above. In each case, the wall shear stress first overshoots
and then undershoots the quasi-steady value before approaching an asymptotic state
quite close to quasi-steady conditions. This characteristic behaviour was attributed to
two mechanisms, namely (i) inertia and (ii) delays in the response of turbulence to
changes in the mean flow. The numerical results, which were validated by comparison
with available measurements in the core of the flow, led to increased understanding of
turbulence dynamics in unsteady flows. The influence of varying flow conditions on
wall shear response was predicted although the primary emphasis was on qualitative
rather than quantitative trends (acknowledging potential limitations of turbulence
models).

The objective of the present paper is to present results of a detailed experimental
study of wall shear stress using flush-mounted hot-film sensors in an accelerating flow
in a large-scale flow loop. Ensemble averaging was performed based on measurements
from many repeated runs. This has yielded definitive measurements of mean wall
shear stresses and has established experimentally the characteristics of wall shear
stress responses for a range of flow conditions. It has also provided measurements
of turbulent wall shear stress that extend the body of data on turbulence in non-
periodic flows, currently available only in the core of the flow, thereby helping to
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FIGURE 1. Plan view of the experimental facility.

develop a fuller understanding of the flow behaviour. The behaviours of the mean wall
shear stress and the turbulent wall shear stress are characterized and key features are
correlated using a normalized acceleration parameter.

2. Experimental arrangement
The experiments were undertaken in a large-scale flow loop (figure 1) in which

water was supplied from a 28 m high, 1 m diameter constant-head tank. Detailed flow
control was achieved using a computer-operated, pneumatically driven globe valve at
the end of a long test section. Water discharged from the pipe was collected in a large
sump, from which it was pumped back to the water tower. The test section was within
a length of straight pipe, 23 m long and 206 mm in diameter. Most of the pipe was
formed from flush-connected, galvanized-steel tubes, but the main measurement region
was a 300 mm long Perspex tube immediately downstream of a 3.25 m long stainless
steel pipe. These sections had the same nominal diameter as the galvanized steel pipe.
The Perspex section was manufactured by an external specialist company to ensure
that the internal diameter (i.d.) of the two sections were closely matched. A 150 mm
long honeycomb flow straightener made of 12 mm i.d. stainless steel tubes was located
at the beginning of the straight pipe section to eliminate any large-scale swirl caused
by bends further upstream. The main measurement section was placed in the middle of
the long section because some of the experiments within the series (not reported here)
involved flow in the reversed direction.

Each accelerating flow case is defined by the initial and final Reynolds numbers
(Re0,Re1) and by the duration of the ramp (T). During each experiment, the flow
was initially held steady for 60 s at the prescribed initial Reynolds number Re0. It
was then ramped up at an approximately constant rate in an interval T by gradually
opening the control valve in a pre-determined manner and was then held constant at a
Reynolds number Re1 for a further 30 s. This procedure was repeated many times to
enable ensemble averaging to be performed. Experiments were conducted for several
values of Re0, Re1 and T , corresponding to values of a non-dimensional acceleration
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FIGURE 2. (Colour online available at journals.cambridge.org/flm) Flow histories of the
various test cases.

Case Number of repeats Re0 Re1 T (s) δ k

A310 117 13 200 160 000 7.9 0.094 1.563
A125 133 11 750 105 000 9.6 0.067 1.093
A002 24 4 500 100 000 9.6 0.973 14.083
A034 39 9 800 97 500 17.3 0.059 0.947
A488 161 20 700 120 000 9.9 0.015 0.260
A085 35 19 300 122 500 5.6 0.033 0.583
A454 33 20 700 210 000 5.6 0.050 0.878
A654 30 31 350 145 000 6.0 0.009 0.162

TABLE 1. Summary of experimental conditions. δ = (ν/U2
τ0)(1/U0)/(dU/dt), non-

dimensional parameter for accelerating flow based on turbulence production time scale
(He & Jackson 2000). k = −(ν/ρU3

0)(dp/dx) ≈ (ν/U3
0)(dU/dt), non-dimensional parameter

for spatially accelerating flow.

parameter k(k ≡ −(ν/ρU3
0)(dp/dx) ≈ (ν/U3

0)(dU/dt)), ranging from 0.16 to 14. Here,
U0 is the bulk velocity at the start of the acceleration and dU/dt is the nominal
or mean acceleration of the near-linear accelerating flow. In addition, steady-flow
experiments were undertaken for the whole of the flow range covered in the unsteady
flows. These data were processed using conventional averaging to provide quasi-steady
data for comparison with the accelerating flow cases. A summary of the experimental
conditions is given in table 1. Owing to practical constraints, the flow acceleration was
not exactly constant. Representative actual flow histories are shown in figure 2.

2.1. Instrumentation
The flow loop had two electromagnetic flowmeters, an ABB model 50SM1000 and
an Endress–Hauser model Promag 50W. The former was configured to provide
instantaneous flow readings. It responded rapidly to flow changes, but its signal tended
to be noisy. The latter was configured to measure low-frequency changes and a low-
noise signal was assured using filtering and integration techniques. Three differential
pressure transducers were used simultaneously to measure the pressure drop along the
test section (figure 1). The transducers had different measuring ranges, which were set
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to 7.5 mbar, 60 mbar and 600 mbar. This enabled pressure gradients corresponding to
a large range of flow rates and accelerations to be measured reliably. The transducers
were connected to tappings at locations of 21 and 90 diameters downstream of the
honeycomb straightener, which is expected to provide a true representation of the
mean pressure drop in spatially developed flows. For example, the hydrodynamic entry
length is ∼20D at Reynolds number 50 000 estimated using the empirical expression
of L − h/D = 1.359Re1/4

D (Kasar, Shah & Aung 1987), beyond which the change on
wall friction is expected to be small (typically less than 2 %). Although differential
pressures were recorded for both steady and unsteady flows, only the steady flow
data were used for validating flow measurements. Theoretically, frictional loss can be
deduced for unsteady flows by subtracting inertial pressure gradients from measured
overall gradients, but this method involves large uncertainties and so it has not been
used in the present study.

Wall shear stresses were measured using fast response hot-film anemometry
comprising glue-on sensors and a multi-channel constant temperature anemometer
(CTA) system all supplied by Dantec Dynamics. The sensors are 0.1 mm in diameter
and 0.9 mm long and hence have small inertia. The response rate is estimated to
be up to 0.5–1 kHz (depending on flow rate) by the manufacturer. This is typical
of liquid flow applications due to the thermal boundary layer around the probe. The
hot-film sensors operated in a constant-temperature mode with 45 ◦C over-heating.
This relatively high value was chosen to increase the sensitivity of the measurements.
In general, the response of the hot-film sensor used to measure wall shear stress can
be an issue of concern due to the attenuation of turbulent fluctuations resulting from
conduction through the substrate. Numerous studies have been carried out on this topic
over the years, examples of which include an experimental investigation of Ruedi et al.
(2004), a series of studies by Chew, Khoo and colleagues (e.g. Chew et al. 1998), and
a numerical study by Tardu & Pham (2005). The problem is pronounced when the
ratio of the conductivities of the fluid and substrate is large. As such it is less of a
problem with water applications. As shown later, the wall shear stress intensity (i.e.
the ratio of the r.m.s. wall shear stress over the mean wall shear stress, τ ′w/τw) obtained
for steady flows in the present study was ∼0.4, as would be expected for such flows,
thereby confirming satisfactory performance of the sensors used in this application.
The sensors were mounted on Perspex plugs shaped to match the curvature of the
pipe internal surface. It was ensured that unevenness between the inner surfaces of
the pipe and the plug was typically less than 0.1 mm (although, as discussed below,
film 3 might have failed to achieve this). Three sensors were installed in each of
two axial locations, respectively 11 m and 12 m from the upstream end of the test
section. Location 1 was within the stainless steel pipe and location 2 was within the
Perspex pipe (figure 1). The three sensors at each station were distributed uniformly
(circumferentially) with one at the bottom of the pipe. This avoided placing sensors at
the top of the pipe where air bubbles could have led to false readings and to damage
from over-heating.

The hot-film sensors were calibrated in situ three times a day for a range of steady
flows. Each time, the flow was varied, typically, from Re= 5000 to 200 000 in around
25 steps, with each step lasting for over 60 s to ensure that the flow reached a
steady state. Data were collected throughout the entire period although only those
in the last 20 s of each step were used for calibration. Each calibration exercise
lasted ∼30 min. Two sets of wall shear stress measurements (τw) were available for
use in calibration: (i) τw directly obtained from pressure gradient measured from
the differential pressure transducers and (ii) τw derived from flow measurements in
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conjunction with the Haaland correlation. Wall shear stresses obtained by these two
methods were found to overlap each other within experimental uncertainty. Although
the differential pressure is a more direct measurement of wall shear, careful switching
between the three transducers was needed to cover the whole range of flow rate, and
hence flow measurements were used for calibration for the data presented in this paper.
It was found that the shear stress–voltage calibration curves, one for each sensor,
followed the ‘standard’ relationship E2 = A + Bτ n

w quite well, where E is the voltage
of the sensors, A and B are calibration constants and n = 1/3. However, an alternative
expression in the form of log(τw)= A′ + B′E, where A′ and B′ are calibration constants,
was found to correlate the data slightly better (i.e. with a smaller deviation) and was
therefore used. For very low flow rates, larger scatter was observed and neither of
the above expressions was able to correlate the data, so polynomial fitting was used.
During the whole period of experiments, four sensors behaved very consistently with
very little drift, therefore one calibration for each sensor was used for the entire period.
The fifth sensor needed a calibration for each day whereas the last one failed at the
beginning of the test programme.

The data acquisition and flow control were computer-based using a 14-bit,
multi-channel, analogue–digital converter interface board. In addition to flow rate,
differential pressure and hot-film input signals, measurements included the absolute
pressure, water temperature and the flow control signal. Data were sampled at a rate of
1 kHz for each channel.

2.2. Accuracy
The main sources of potential uncertainty in the experimental measurements are (i)
calibration and drifting of the hot-film anemometer, (ii) repeatability of flow control,
(iii) disturbance of flow due to misalignment of the hot-film sensors with the wall and
(iv) the number of repeat runs available for ensemble averaging.

Calibration errors were mainly associated with the flow measurement. The precision
electromagnetic flow meter used had a small uncertainty of ±0.6 % in the range
of flow encountered in this study. Uncertainties caused by drifting were kept small
(<±1 %) by frequently checking and updating the calibration (three times daily).
The repeatability of flow control for the multiple runs used for ensemble averaging
was controlled to within ±2.5 % by rejecting occasional bad runs. In case A002,
however, the starting Reynolds number was very low (4 500) and the repeatability
criterion had to be relaxed to ±13 % to achieve an adequate number of repeat runs.
Misalignment of the hot-film sensors is believed not to be an issue because the
readings of the different sensors (except for film 3) are consistent and there are no
systematic variations between them. Uncertainty due to the limited number of repeat
runs has been reduced by using a ‘window-averaging’ approach described later. Such
uncertainties can be assessed from fluctuations in the statistics (e.g. mean and turbulent
wall shear stress) which are easily identified and estimated as shown below.

At low flow rates, another potential source of error in the sensor measurements is
locally induced buoyancy due to the heating of the hot-film sensors, resulting in scatter
of the calibration data as high as ±10 % when Re < 18 000. Likewise, in very rapid
accelerations, errors might arise from the gradual deviation from the calibration of
the hot-film established under steady flow. However a computational fluid dynamics
(CFD) analysis (reported elsewhere Ariyaratne et al. 2010) has shown that this effect
is significant for only a fraction of a second after the start of each flow excursion.

As with many experiments, it is not possible to give a definitive measure of the
residual error remaining even after taking the above steps to minimize errors. However,
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FIGURE 3. (Colour online) Comparison of measurements by the various hot-film sensors in a
typical accelerating flow (A085).

the use of multiple hot-film sensors provides one measure of the uncertainties.
Figure 3 compares the wall shear stresses measured by the five hot-film sensors in
a typical acceleration experiment. Four of the sensors agree reasonably well, but film 3
differs markedly. It is believed that this was caused by a local flow disturbance, either
by obstruction of a wire used for bubble generation for particle image velocimetry
(PIV) measurements just upstream of film 3, or by misalignment of the sensor, or
both. It is noted that the differences between the measurements of film 3 and those of
other films occur only during the transition; there are no significant differences in the
values before and after the transition (figure 3). To some extent, this demonstrates the
robustness of the method adopted here for wall shear stress measurement using flush
mount sensors. Overall, random fluctuations of the mean wall shear stress are within
±15 %, which is indicated at two locations in the figure. This is typical of all tests.
The fluctuations of the r.m.s. turbulent wall shear stress curves are more pronounced
and, for low flow rates, the uncertainty band is nearly doubled.

Ideally a very long test section, say, 150D or more, would be preferred to ensure a
fully developed flow is achieved and that turbulent quantities are stationary. However,
owing to practical limitations, the test section in the present study is ∼50D. This is
judged to be sufficient for the purpose of the present study because the variation
of the most relevant flow quantities is rather moderate after 50D and the wall
shear is among the least sensitive variables. As discussed earlier, the hydrodynamic
entrance length based on the condition that the change of wall friction is less
than 2 % is ∼20D for Re = 50 000 (Kasar et al. 1987). In the present study, there
are no systematic differences between measurements of films at the two stations
1 m apart, thus confirming that the flow is spatially developed at the measurement
stations as far as the wall shear is concerned. Further confidence in the reliability
of the data is provided by the relatively small scatter in the correlations of the data
presented below. In addition, a special focus of the present work is on differences
between unsteady and quasi-steady behaviour. These differences are less sensitive to
experimental uncertainties than are absolute values.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

32
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.328


448 S. He, C. Ariyaratne and A. E. Vardy

2.3. Ensemble average
For each unsteady flow case, many repeated runs were carried out and the results
were used for ensemble averaging. The measured raw voltage signals from the CTA
for any hot-film in a run were first converted to wall shear stress using the film-
specific calibration curve. These variations of instantaneous wall shear stresses of
the various repeated runs were then ensemble-averaged to produce mean and r.m.s.
turbulent fluctuations of wall shear stresses. This process was repeated for each film.
Consistent results have been obtained from the measurements of the various films
as discussed above in relation to figure 3. Unless otherwise stated, film 5 is the
source of measurements presented below. Mean values of the measurements from the
various films are not presented because this would smooth out sharp variations that are
important features of the true flow behaviour.

The window-averaging approach introduced by He & Jackson (2000) was used
to further reduce the scatter. This enables the ensemble averaged mean and r.m.s.
turbulent fluctuations of any quantity ϕ to be written as

ϕ̄k = 1
NM

N∑
i=1

M∑
j=1

ϕi,j+(k−1)M, k = 1, 2, 3, . . . ,L (2.1)

ϕ′k =
[

1
NM

N∑
i=1

M∑
j=1

(ϕi,j+(k−1)M − ϕ̄)2
]1/2

, k = 1, 2, 3, . . . ,L (2.2)

where L is the number of windows into which a run is divided, M is the number of
samples in each window, N is the number of repeats of the flow case and ϕi,j+(k−1)M is
the [j + (k − 1)M]th sample of the instantaneous quantity for the ith run. In this study,
N ranged from 30 to 190. Here M was chosen to be 50 to maximize the data points
used for the averaging whilst also ensuring negligible variation of the mean values in
each window. It was checked that the mean and r.m.s values were not sensitive to a
doubling of the window size. In the paper, τw and τ ′w are used to denote the ensemble
averaged mean and r.m.s. turbulent wall shear stresses respectively, noting that the
overbar for the mean quantity is omitted for simplicity.

3. Results and discussion
3.1. Responses of ensemble averaged mean and turbulent wall shear stresses: the general

picture
Figure 4 shows evolutions of wall shear stresses (τw) in two groups of tests. In one
group, the acceleration is nominally the same in each test and the measurements
highlight the influence of the initial Reynolds number. In the other, the initial Reynolds
numbers are nominally the same and the measurements highlight the influence of
acceleration. Corresponding values of measured wall shear stresses in steady flows
provide quasi-steady flow curves for comparison with the unsteady flow values.
The results are presented in two forms, with axes of time and Reynolds number,
respectively.

In all cases, the wall shear stress in the unsteady flow deviates significantly from
quasi-steady behaviour. Its development can conveniently be considered in three stages.
Consider, for example, the measurements shown for case A310 in figure 4(b). Stage 1
extends up to a Reynolds number of ∼125 000. Stage 2 is much shorter, namely from
∼125 000 to 135 000. Stage 3 covers all Reynolds numbers beyond Stage 2 and is
limited only by the range covered in the experiments. The period of constant Reynolds
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FIGURE 4. Variation of wall shear stress in ramp up flows. (a, b) influence of the initial
Reynolds number; (c, d) influence of the acceleration.

number after the imposed acceleration ceases can be identified from the quasi-steady
curves in figures 4(a) and 4(c). During Stage 1, the wall shear stress first exceeds the
quasi-steady value and then falls below it. In some cases, this stage ends soon after
the actual wall shear stress becomes smaller than the quasi-steady value. In others,
however, it extends long after this instant and the actual stress is sometimes less than
half the quasi-steady value. In Stage 2, the wall shear stress increases rapidly and
monotonically (within experimental tolerances). Irrespective of the undershoot in the
start of Stage 2, the wall shear stress at the end of the stage is slightly greater than
the quasi-steady value. During Stage 3, the stress approaches the quasi-steady value
asymptotically.

Figure 5 shows evolutions of the ensemble averaged r.m.s. of turbulent wall shear
stresses (τ ′w) for the two groups of experiments and the three stages are again seen.
In contrast with the mean wall shear stress, which increases suddenly and then more
slowly in Stage 1, τ ′w remains almost unchanged. This is followed by a period (Stage
2) when it increases rapidly, approaching the quasi-steady value in a short interval.
Thereafter (Stage 3), it tends to be a little smaller than the quasi-steady value, but it
evolves broadly in line with quasi-steady behaviour.

The variation of the turbulent wall shear stress shown above is characteristically
similar to the three-stage response of turbulence previously measured in the core
of the flow field (see for example He & Jackson 2000; Greenblatt & Moss 2004).
Nevertheless, as discussed in § 3.3, some aspects of the behaviour of turbulence near
the wall differ from the behaviour in the core region. At this stage, it is of most
interest to note the broad similarity between the three-stage responses of the mean and
turbulent shear stresses. This provides direct evidence that the response of the wall
shear stress is associated with the turbulence response in the flow. That is, in Stage 1,
the response of the shear stress at the wall reflects the condition that turbulence
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FIGURE 5. Variation of r.m.s. turbulent wall shear stress. (a, b): influence of the initial
Reynolds number; (c, d): influence of the acceleration.

over the whole flow section remains largely frozen. As a result, and as discussed in
detail below, the developing behaviour is driven mainly by flow acceleration (inertia).
Next (Stage 2), the strong response of turbulence causes the mean wall shear to
increase rapidly, approaching quasi-steady values as the turbulence evolves towards an
equilibrium state (Stage 3). Consequently, the wall shear stress development can be
conveniently described in terms of turbulence responses in the three stages, namely
approximately frozen, transitional and quasi-equilibrium turbulence, respectively. For
the same reasons, the first two stages can be regarded as delay and recovery stages.

The distinctive behaviours of the wall shear stress in the three stages are supportive
of previous measurements by, for example, Ainola et al. (1983) and Proudovsky &
Oreshkin (1985). At first sight, however, they are in conflict with the measurements
reported by Shuy (1996), because all values of the ratio of the unsteady and quasi-
steady wall shear stresses that he reported were smaller than unity. However, Shuy’s
measurements did not include the early stages of the accelerations, i.e. the data were
for a period starting 5 s after the commencement of the acceleration. It is likely
that his measurements corresponded to the later part of Stage 1 when the present
experiments also yield values smaller than unity.

3.2. Stage 1 responses
It is now shown that the qualitative trends of the wall shear stress histories seen in
figures 4 and 5 in Stage 1 can be expressed in a unified manner with the aid of simple
theoretical considerations. The governing equation derived from the Reynolds averaged
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Navier–Stokes equation for a spatially fully developed, axisymmetric unsteady pipe
flow is

∂ ū

∂t
=− 1

ρ

dp̄

dx
+ 1

r

∂

∂r

[
r

(
ν
∂ ū

∂r
− u′′v′′

)]
(3.1)

where ū and p̄ are the ensemble averaged mean velocity and pressure respectively,
and u′′v′′ is the ensemble averaged turbulent shear stress based on the axial and radial
fluctuating velocities u′′ and v′′. The pressure gradient dp̄/dx is a function of time
only (i.e. not of axial or radial position) and the initial steady flow just before the
commencement of the flow excursion is described by

0=− 1
ρ

dp̄0

dx
+ 1

r

∂

∂r

[
r

(
ν
∂ ū0

∂r
− (u′′v′′)0

)]
, (3.2)

where the suffix 0 denotes the steady flow condition during t 6 0. Subtracting (3.2)
from (3.1) gives

∂ ū∧

∂t
=− 1

ρ

dp̄∧

dx
+ 1

r

∂

∂r

[
r

(
ν
∂ ū∧

∂r
− (u′′v′′)∧

)]
(3.3)

where ū∧ = ū − ū0, p̄∧ = p̄ − p̄0, (u′′v′′)∧ = (u′′v′′) − (u′′v′′)0 and −(1/ρ)(dp̄∧/dx) =
−(1/ρ)(d(p̄ − p̄0)/dx) = −((1/ρ)(dp̄/dx) − (1/ρ)(dp̄0/dx)), denoting changes of the
various quantities from their corresponding steady flow values.

Now we focus on Stage 1 where turbulence is nearly frozen. In the unsteady
friction community, the ‘frozen turbulence’ is commonly interpreted as the eddy
viscosity remaining unchanged (e.g. Vardy & Brown 2003). Under this assumption,
(u′′v′′)∧ = νt(∂ ū/∂y)− νt0(∂ ū0/∂y) becomes (u′′v′′)∧ = νt0(∂(ū− ū0)/∂y)= νt0(∂ ū∧/∂y).
By substituting this into (3.3), it is clear that the evolution of the flow field (ū∧) will
be affected by the initial turbulence through νt0.

Alternatively, ‘frozen turbulence’ can be interpreted as implying that the turbulent
shear stress (u′′v′′) remains unchanged from (u′′v′′)0, namely,

(u′′v′′)∧ = (u′′v′′)− (u′′v′′)0 = 0. (3.4)

There have not been sufficient measurements which can be used to discern which
of the above assumptions is closer to reality although unpublished recent DNS
results suggest that the former is closer to reality for a longer period than the latter.
Nevertheless, the latter assumption (3.4) is adopted here because it leads to a much
simpler formulation. Small deviations from reality are not a major concern for the
purposes of this particular discussion because the analysis is used only to establish a
framework for data reduction.

Using (3.4), (3.3) reduces to

∂ ū∧

∂t
=− 1

ρ

dp̄∧

dx
+ ν

r

∂

∂r

[
r
∂ ū∧

∂r

]
(3.5)

where ū∧ = 0 at t = 0. The turbulent shear stress has now disappeared from the
equation and so the incremental velocity (ū∧ = ū − ū0) of the unsteady turbulent
flow behaves approximately like an unsteady laminar flow accelerating from rest in
response to an imposed time-varying pressure gradient −(1/ρ)(dp̄∧/dx). The first two
authors of this paper have taken this idea further and have shown from analytical
solutions of (3.5) (now effectively a formulation for laminar flow) that the wall shear
stress during Stage 1 in a uniformly accelerating turbulent flow (i.e. dU/dt = const.
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FIGURE 6. (Colour online) Dependence of normalized perturbation wall shear stress on
normalized time.

where U is the bulk velocity) can be expressed as (He & Ariyaratne 2011):

fu = 4√
π
ψ1/2 + 3ψ (3.6)

where fu ≡ τ∧w /((1/2)ρR(dU/dt)), τ∧w ≡ τw(t) − τw(0), ψ ≡ ν t/R2 and R is the radius
of the pipe. That is, the normalized incremental wall shear stress is a function of the
normalized time only.

In the present experiments, the acceleration dU/dt is not exactly constant, but
varies with time. To utilize the general idea of (3.6), dU/dt is replaced by the
instantaneous acceleration. This enables the experimental data to be presented in the
non-dimensional form shown in figure 6, from which it is apparent that, in Stage 1,
data for all experiments collapse almost onto a common curve that is independent
of the acceleration and of the initial Reynolds number. The curve is consistently
above the prediction based on (3.6), but not greatly so, thereby suggesting that the
unsteady component of the flow does indeed behave almost in a laminar-like manner.
In other words, the differential wall shear stress (τw(t) − τw(0)) depends primarily on
the flow acceleration (inertia). As far as this quantity is concerned, not only is the
turbulence almost frozen, but also the level of initial turbulence or indeed its existence
is irrelevant. The differences between predictions of (3.6) and the experimental data
cannot be attributed to experimental uncertainties. Instead, they arise because (i)
the flow acceleration is not linear and (ii) turbulence does not remain completely
unchanged. The latter is discussed below.

Although the increase of turbulent wall shear stress is small in comparison with the
increase of quasi-steady values (figure 5), the increasing trend is clearly identifiable.
To investigate this trend, figure 7 shows the turbulence intensity for a range of
cases studied, i.e. τ ′w normalized using the corresponding mean wall shear stress.
The relatively large scatters are the results of small ensemble samples (of the order
of 100). Nevertheless, the trends are persistent. Immediately after the commencement
of the flow exertion, the intensity reduces rapidly to a low level and then remains
nearly constant throughout the delay period. This constant level of wall turbulence
intensity is of significant interest, implying that the rate of increase of τ ′w is directly
proportional to that of the mean wall shear itself throughout most of Stage 1 although
at a much lower level than in a steady flow. In some cases, this means that the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

32
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.328


Wall shear stress in accelerating turbulent pipe flow 453

A034
A125
A310
A002
A654
A454

0.8

0.6

0.4

0.2

5 10 15 20
t (s)

0

w
w

FIGURE 7. Evolution of turbulent wall shear stress normalized using mean wall shear stress
(turbulence intensity) in a number of unsteady flows.

absolute value of the turbulent shear stress increases by several times towards the end
of Stage 1 in spite of it being much lower than in a steady flow. At first sight, this
observation appears to contradict the concept of ‘frozen’ turbulence in the early stage
of response discussed above. However, the following hypothesis is offered to reconcile
the apparent conflict. Following the conclusions of previous studies, assume that no
new turbulence structures (bursts) are produced in Stage 1, during which the influence
of the flow acceleration on the velocity gradient is confined primarily to a region
very close to the wall (y+ < 5, say). Turbulent activities/eddies at this stage are those
associated with the initial conditions before the commencement of the acceleration.
Along with the increase of the velocity gradient, these eddies are stretched streamwise
near the wall, leading to increased fluctuations in the stream velocity and hence to
the observed increases in τ ′w. This increase is proportional to the increase of the
bulk velocity (hence, the constant intensity in figure 7), but it is nevertheless much
smaller than would exist in a quasi-steady flow. During this period, there is little direct
influence on the other two velocity components. Although no direct measurements of
turbulence close to the wall are available to assess this hypothesis, measurements in
the buffer and core regions in previous studies (He & Jackson 2000; Greenblatt &
Moss 2004) are consistent with it. That is, they show slow, but definite, increases in
streamwise turbulent fluctuations, but not in normal and spanwise fluctuations. More
directly, a DNS study of a spatially accelerating flow by Piomelli et al. (2000) has
shown that turbulent structures are significantly stretched in the stream direction as a
result of flow acceleration.

The steady value of the turbulence intensity of the wall shear stress (τ ′w/τw)

in Stage 1 (figure 7), referred to herein as the Stage 1 turbulent wall shear
intensity, ranges from 0.02 in case A002 to 0.2 in case A654, showing that it
is influenced by both the initial Reynolds number and the acceleration. A closer
inspection reveals that, as a trend, the Stage 1 turbulent intensity increases with
the increase of the initial Reynolds number, but reduces with the increase of the
flow acceleration. To quantify the effects, non-dimensional parameter groups have
been sought to correlate Stage 1 turbulent intensity. In particular, the acceleration
parameter group ((1/U0)(dU/dt)) was combined with an ‘inner’, ‘outer’ and a
‘mixed’ time scale, ν/U2

τ0, D/U0 and D/Uτ0 leading to (ν/U2
τ0)((1/U0)(dU/dt)),

(D/U0)((1/U0)(dU/dt)) and (D/Uτ0)((1/U0)(dU/dt)). These are all based on initial
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FIGURE 8. Correlation of maximum reduction of turbulent wall shear stress intensity.
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FIGURE 9. Correlation of the delay of wall turbulence.

flow conditions. Figure 8 shows that the Stage 1 turbulent wall shear intensity is well
correlated using the inner-scale based parameter, but the other two parameters failed
to correlate the data (results are not shown). As shown in the figure, the data is well
represented by the expression (

τ ′w
τw

)
Stage-1

= 0.0214δ−0.5 (3.7)

where δ = (ν/U2
τ0)(1/U0)(dU/dt). This equation shows that, for a given fluid,

Stage 1 turbulent intensity is approximately proportional to the initial friction velocity
and inversely proportional to the square root of the (relative) flow acceleration
((1/U0)(dU/dt)). It is worth noting that the largest starting Reynolds number covered
in this study is ∼31 000 which is still quite low and the validity of the results for high
Reynolds number flows needs to be checked. Similar caution needs to be applied to
results presented in figures 9 and 10.
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Expression of best curve fit:
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FIGURE 10. Critical Reynolds number at the transition from Stage 1 to Stage 2.

3.3. Stages 2 and 3 responses
Figure 5 shows that the response of the turbulent wall shear stress is influenced by the
initial Reynolds number and also by the acceleration. For any particular acceleration,
the duration of Stage 1 reduces with increasing initial Reynolds number and the
critical Reynolds number at which turbulence response begins also reduces. In contrast,
for any particular initial Reynolds number, the duration of Stage 1 reduces with
increasing acceleration, but the critical Reynolds number increases.

This behaviour can be compared with the response of turbulence in the core of the
flow, as measured by He & Jackson (2000). They found that, for a given acceleration,
the duration of Stage 1 in the core decreases with increasing initial Reynolds number
as it does at the wall. However, in contrast with the present wall measurements,
they found that, for a given initial Reynolds number, the absolute delay time of the
turbulence response in the core of the flow (i.e. the duration of Stage 1) is independent
of the acceleration rate. At the centre of the pipe, for example, this delay was found
to scale with D/Uτ0, hence being a function of the initial Reynolds number, but not of
the acceleration. Thus, the consequences of the flow response mechanisms in the core
and at the wall are different.

As mentioned earlier, it has been established in previous studies that in an
accelerating flow, turbulence first responds in the buffer layer and this response then
propagates into the core as well as towards the wall. Hence, in both the core and
the wall regions, delays arise from two causes, namely (i) delays before significant
production of new turbulence begins in the buffer layer and (ii) the time needed for the
consequences of the new turbulence to be detected at the measuring location. The first
of these is common to all measurement locations, but the second is not. In the core
region, the second phenomenon is typically much greater than the first and the time
needed for new turbulence to diffuse inwards dominates the overall delay. In contrast,
the time needed for the turbulence to propagate outwards through the viscous layer to
the wall is quite small and so the two components are of a similar order. Based on
this interpretation, the measured influence of acceleration on delay times at the wall
can arise in two ways. The more obvious of these is that larger accelerations reduce
the time before new turbulence begins. This is consistent with measurements in the
buffer layer by He & Jackson (2000) and also, for pulsating channel flows, by Tardu
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& Binder (1993). In addition, the Reynolds number at which new turbulence begins is
higher for a higher acceleration, and this increased Reynolds number in turn leads to
a thinner viscous sublayer. This then reduces the time needed for the fluctuations to
diffuse across it.

Figure 9 shows that the delay time at the wall (i.e. the duration of Stage 1) can be
correlated using the inner scale based parameter δ used in figure 8, which evidently
takes effective account of the two influencing factors, namely, the initial Reynolds
number and the acceleration. The normalized delay is seen to reduce strongly with
increasing values of δ and the dependence can be represented quite well by a power
law function, noting the use of the double logarithmic scale in the figure.

The critical Reynolds number at which significant new turbulence is detected at the
wall can be identified from figure 7 as the point when the turbulent intensity starts
to increase rapidly. Figure 10 shows that the critical Reynolds number determined
this way for the various test cases can be correlated quite well with a parameter
group γRe0, where γ = (D/Uτ0)((1/U0)(dU/dt)). The data are closely represented by
a linear relationship:

Recr × 10−3 = 0.4646(γRe0)+ 48.642. (3.8)

The parameter group γRe0 can be rearranged as (1/ReUτ0)((dU/dt)(D3/ν2)), where
the friction Reynolds number (or Kármán number) ReUτ0 = Uτ0D/ν. That is, the
critical Reynolds number is directly proportional to the normalized acceleration
(dU/dt)(D3/ν2), but inversely proportional to the starting Reynolds number ReUτ0 .
The dependence on acceleration is analogous to the delayed transition from laminar to
turbulent flow in the presence of acceleration. Recently Knisely, Nishihara & Iguchi
(2010) proposed a simple empirical expression that correlates well all of the data that
they have found from the literature as well as their own data on transitional Reynolds
number in accelerating flows starting from a laminar flow or from rest. The expression
reads

Retr = 1.33
(

dU

dt

D3

ν2

)1.83/3

. (3.9)

It is interesting that the same parameter group, (dU/dt)(D3/ν2), appears in both (3.8)
and (3.9), but the former also includes a term that is dependent on the starting
Reynolds number whereas the latter does not.

In the discussion so far, little attention has been paid to phase differences between
the responses of the mean and turbulent wall shear stresses such as those illustrated in
figure 11 for a typical case (A125). These phase differences have a strong influence
on the turbulence intensity (τ ′w/τw) shown in figure 7. Under steady conditions, the
flow is in an equilibrium state and a direct correlation exists between the turbulent and
mean shear stresses, the intensity being ∼0.4 irrespective of Reynolds number (note
that Tardu & Binder 1993 deduced 0.3–0.4 for a channel flow). The intensity tends to
reduce strongly in Stage 1, then increases sharply at the beginning of Stage 2, before
settling back to a sustained level more characteristic of quasi-steady flow at the start
of Stage 3. That is, a strong increase in τ ′w occurs before the rapid response in the
mean wall shear stress. During this period, the turbulence is strongly non-equilibrium
and near the wall it can be strongly out of phase with turbulence elsewhere in the
cross section. It is noted that when the value of τ ′w/τw is very large, there may
be instantaneous flow reversals and, under such a condition, hot-film measurements
embed higher uncertainties. However, this affects only a very limited number of
measurements in the present study.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

32
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.328


Wall shear stress in accelerating turbulent pipe flow 457

Mean
Turbulence

Intensity

Steady mean

0.4

0.6

1.0

t (s)
0 108642 12 14

0.2

0.8
w

w
w

w

FIGURE 11. Comparison of responses of mean and turbulent wall shear stresses (A125).
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FIGURE 12. Wall shear stress in a ‘short’ transient flow and its non-uniform circumferential
distribution (A002).

Before closing the paper, attention is drawn to particular flows in which the period
of mean acceleration ended whilst the flow was still in Stage 1. Figure 12 shows
wall shear stresses measured by four hot-film sensors in case A002. Three films
(i.e. 4, 5 and 6) were at one axial location and the fourth (film 2) was at the other
(see figure 1). Film 6 was at the bottom of the pipe and films 2, 4 and 5 were at 120◦

points in the upper half of the pipe.
One clear conclusion from figure 12 is that the flow behaved in a non-axisymmetric

manner. The measurements of films 5 and 6 are similar to each other, but they differ
strikingly from those of film 4 at the same axial location. The transition (Stage 2)
at film 4 occurs almost 2 s later than that at films 5 and 6. For a brief period
at around 11 s, the ratio of the stresses measured by films 4 and 6 differs by a
factor of about 3. This contrasts with the behaviour in cases in which the transition
occurred whilst the favourable pressure gradient was still present and the flow was
accelerating. In these flows, the three-dimensionality was much weaker, as illustrated
in figure 3, for example. That is, the stabilizing effect of the flow acceleration not
only caused the critical Reynolds number to increase, but also reduced asymmetry.
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Strong asymmetry was also measured experimentally by Brunone et al. (2000) and
predicted theoretically by Ghidaoui & Kolyshkin (2001) for oscillatory water hammer
flows. It was demonstrated in both studies that asymmetry is phase-dependent and is
more likely to occur in a decelerating flow than in an accelerating one. Das & Arakeri
(1998) and Zhao, Ghidaoui & Kolyshkin (2007) also studied the laminar–turbulent
transition in unsteady flows and concluded that it is likely to be caused by asymmetric
instability.

Figure 12 also shows the response of the wall shear stress when the acceleration
ceases during Stage 1. During the acceleration, the stress increases continuously
and this has been reconciled above with a gradually evolving velocity profile in an
effectively frozen-stress environment. After the acceleration ceases, however, there is a
marked change of behaviour. Films 5 and 6 show sharp increases characteristic of the
onset of Stage 2, whereas films 2 and 4 experienced a period of gradually reducing
stress before Stage 2 commenced. The reduction is consistent with a gradual relaxation
of the velocity profile from the form that exists during the steady acceleration to the
form that would exist in a steady flow with the same turbulent viscosity distribution.
The asymmetry of the responses (i.e. films 2 and 4 versus films 5 and 6) complicates
the picture, but it seems reasonable to infer that the frozen-turbulence state is not
inherently sensitive to changes in the acceleration, even though the mean wall shear
does respond to it.

4. Conclusions

An experimental study of accelerating flow in a pipe has been reported, in which
wall-mounted hot-film sensors have been used to obtain ensemble-averaged mean
and r.m.s. values of turbulent wall shear stresses. The mean wall shear stress has
been shown to respond to an imposed acceleration in three stages. Stage 1 begins
immediately after the onset of the acceleration. In this stage, the wall shear stress
initially increases rapidly, overshooting the quasi-steady value, and then increases more
gradually, at a much slower rate than would apply if the flow behaved in a quasi-
steady manner. The turbulence state is nearly frozen and the incremental wall shear
(τw(t)− τw(0)) depends primarily on the acceleration, not on the initial flow conditions
including the initial turbulence. In this stage, the incremental wall shear stress can be
predicted quite well by a laminar flow formulation. In Stage 2, the wall shear stress
increases rapidly to a value that is close to the quasi-steady equivalent. Significant
phase differences exist between the response of the turbulent wall shear and the mean
wall shear. These have been explained in relation to the time needed for fluctuations
to propagate into the core of the pipe. In Stage 3, both the turbulent wall shear and
the mean wall shear are close to values expected in a flow behaving in a quasi-steady
manner. In general, the characteristic behaviour of the conditions at the wall has been
related to the combined influences of inertia and turbulence response.

In Stage 1, the turbulent wall shear stress does not remain completely frozen but
increases steadily although at a smaller rate than in a quasi-steady flow. In Stage 2,
it increases rapidly, overshooting the quasi-steady value and then relaxing towards it.
In Stage 3, it fluctuates around the quasi-steady value. The steady increase in Stage
1 is attributed to the stretching of the turbulence eddies existing at the beginning of
the flow acceleration, such stretching being associated with increasing mean velocity
gradient near the wall. The subsequent rapid increase of τ ′w in Stage 2 is attributed to
the generation of new turbulence.
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The turbulent wall shear stress intensity reduces strongly at the beginning of Stage 1,
but then remains constant throughout this stage, indicating that the ratio of the rate of
increase of turbulent stress and that of the mean shear stress remains constant. This
intensity reduces with increasing acceleration and with decreasing initial Reynolds
number.

The delays in the responses of the mean and turbulent wall shear stresses increase
with increasing acceleration and decrease with increasing initial Reynolds number. The
latter contrasts with the response of turbulence in the core of the flow, where the
delays are independent of the rate of acceleration. The response at the wall is strongly
influenced by turbulence production time scales whereas the response in the core is
dominated by the larger time scales associated with radial propagation. The measured
delays in the various tests and also the Reynolds numbers at transition to Stage 2
have been shown to correlate in a simple manner with a non-dimensional parameter δ
characterizing the initial flow state and the subsequent mean acceleration.
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