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ABSTRACT

Accurate and reliable airdata systems are critical for aircraft flight
control system. In this paper, both extended Kalman filter (EKF) and
unscented Kalman filter (UKF) based various multi sensor data
fusion methods are applied to dynamic manoeuvres with rapid varia-
tions in the aircraft motion to calibrate the angle-of-attack (AOA)
and angle-of-sideslip (AOSS) and are compared. The main goal of
the investigations reported is to obtain online accurate flow angles
from the measured vane deflection and differential pressures from
probes sensitive to flow angles even in the adverse effect of wind or
turbulence. The proposed algorithms are applied to both simulated as
well as flight test data. Investigations are initially made using
simulated flight data that include external winds and turbulence
effects. When performance of the sensor fusion methods based on
both EKF and UKF are compared, UKF is found to be better. The
same procedures are then applied to flight test data of a high perfor-
mance fighter aircraft. The results are verified with results obtained
using proven an offline method, namely, output error method (OEM)
for flight-path reconstruction (FPR) using ESTIMA software
package. The consistently good results obtained using sensor data
fusion approaches proposed in this paper establish that these
approaches are of great value for online implementations.

NOMENCLATURE

Czα non dimensional derivative

m mass of the aircraft

M Mach number

P̂ i
k/k estimated state error covariance of sensor i at kth instant 

rk diagonal elements of measurement covariance matrix

S reference area of aircraft

u,v,w velocity components along the three body-fixed axes

u– average of inputs at points k and k+1

V true airspeed

x̂ i
k/k estimated state of sensor i at kth instant

Zk observation vector

Greek symbols

α angle-of-attack (AOA)

β angle-of-sideslip (AOSS)

dpα differential pressure for AOA

dpβ differential pressure for AOSS

η additive measurement noise
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Subscripts

0 initial value
bturb turbulence in body axes
fs free stream quantity
fturb turbulence in flight path axes
g gust/turbulence quantity  
loc_ladt local measurement from left air data transducer 
loc_radt local measurement from right air data transducer 
m measured quantity
nadt quantity from nose airdata transducer
npb quantity from nose probe
nfs free stream quantity from nose probe.
spb quantity from side probe
vane vane measured quantity

Superscripts 

m computation of mean
c computation of  covariance 
a augmented state vector
o angular unit degree

1.0 INTRODUCTION

One of the aims of airdata systems on aircraft is the determination of
flight parameters AOA and AOSS from measurements of local
pressures and of local flow angles on wings or fuselage using an
appropriate set of sensors. Typical airdata systems include (a) pitot
tubes with vanes, (b) multi-function probes, and (c) flush-port
airdata systems (FADS). These airdata systems provide measure-
ments of static pressure, total pressure, total temperature, AOA and
AOSS(1,3). These signal measurements are then processed to compute
flight control system parameters such as airspeed, dynamic pressure,
AOA and AOSS, which are then used as feedback control signals
within the flight control architecture. As a result, these signals are
flight critical and airdata systems are required on aircraft as part of
the flight control system. These airdata sensors installed on high
performance modern aircraft must be carefully calibrated to achieve
accurate onboard airdata measurements of AOA and AOSS(4,5).
Accuracy of these measurements should be always pursued for a
multitude of tasks, including in-flight simulation, flight safety and
aircraft performance evaluation, air traffic control, and navigation.
These airdata measurements are affected by several flight variables
that may vary over a very wide range; thus, airdata sensors
calibration must be treated as a multidimensional and nonlinear
problem(6,7).

Data compatibility check(8), sometimes called FPR, ensures that
the measurements are consistent and error free. For example, the
measured AOA must match with that reconstructed from the inertial
measurements of accelerations and angular rates. Such verification is
possible in the case of flight data because the well-defined kinematic
equations of aircraft motion provide a convenient means to bootstrap
the information through a numerical procedure. Because no uncer-
tainties are involved in the kinematic model, the compatibility check
provides accurate information about the aircraft states. In addition, it
provides the estimates of sensitivity factors, zero shifts, and time
delays in the recorded data(9,10). This approach is followed to calibrate
the AOA and AOSS from dynamic manoeuvres(2). Sensitivity
factors, biases, and initial conditions are estimated by application of
offline method, say OEM(2,9,11).

Online analysis is an attempt to validate the test point before
concluding the flight. This procedure using stochastic filtering(12),
provides better efficiency and minimises flight test repetitions.
Recursive methods have adequate characteristics for online
processing. The sensor and the acquisition system characterise the
measurement noise, and that should be enough for a FPR problem to

provide the input and output covariance noise matrix. Nevertheless,
there are some particularities regarding the atmospheric disturbances
and the aircraft flexibility, usually not considered in a FPR formu-
lation that requires special treatment. The velocity field within the
atmosphere varies in space and time in a random manner, what is
called atmospheric turbulence. The airdata sensors, unlike other
sensors such as accelerometer and rate gyros, require not only
laboratory analysis but also an in-flight calibration. Their responses
should be corrected to compensate the disturbances of the air
surrounding the aircraft while in flight.

The EKF is a rigorous approach for the nonlinear FPR problem
when input and output noises are to be considered. Its solution
requires some hypotheses on the system model and noise statistics.
System modeling should be done based on physics and engineering
experience. Aircraft kinematic modeling is already a well-solved
problem. However, noise modelling is a cumbersome task(13) and
unfortunately it directly affects filter performance. Strong system
nonlinearities, or in other words the higher-order terms neglected in
the propagation of states and error covariances, and wrong values of
noise statistics may result in biased estimates and in the worst-case
lead to divergence(14). In contrast to the first order approximation
used in the EKF for covariance propagation, in the UKF, a finite set
of points, called sigma points, are propagated through nonlinear
dynamics without approximations. The flaw in the EKF of calcu-
lating mean and covariance of random variables undergoing a
nonlinear transformation is thus eliminated in the UKF. This
difference leads to a better performance of the UKF, which is shown
to be equivalent to the second order EKF, but without calculating the
Jacobian or Hessian. This characteristic, namely propagation, does
not require computations of first or higher-order approximations of
system functions, which together with the resulting improved perfor-
mance makes it better suited for real time applications(15).

A recent research study uses a detailed aerodynamic model of the
aircraft within an EKF framework(16) offers the potential to eliminate
the sensors required to measure AOA and AOSS. Today’s modern
computers have the computational throughput to functionally
estimate these parameters accurately, thus eliminating these sensors,
or at a minimum providing a functional backup for improved relia-
bility. Unfortunately, there is no way to use such estimation
framework prior to the validation of aerodynamic database
consisting of force and moment coefficients, because estimation
accuracy is directly tied to the aerodynamic data base accuracy(16).
This is because the models of aerodynamic forces, propulsive forces,
and moments are embedded in the EKF formulation. So, measure-
ments of AOA and AOSS are primary requirements for the aircraft,
which is new or which does not have a validated aerodynamic
database. For an angle with multiple sensors, sensor fusion
algorithms yield good results since the fusion of data from multiple
sensors results in both qualitative and quantitative benefits(17-19).

Moreover, the effectiveness of another Kalman Filter (KF)
algorithm incorporating GPS(2,20) for real time airdata calibration is
directly dependent on the GPS error as it uses differential GPS
(DGPS) position and velocity data for the measurements in
framework. GPS has the advantages of all weather, globality and
consistently high precision. But data update rate of a GPS receiver is
low (normally at 1Hz) and the performance is dependent on the
number and geometry of satellites being tracked. In comparison, the
proposed approach in our paper overcomes this deficiency because
multiple airdata sensors outputs are taken as measurements. By
fusing valuable information from sensors into the EKF algorithm
helps in estimating each sensor’s calibration parameters separately in
terms of sensor offset error and sensitivity factor.

Fusion processes are often categorised as low, intermediate or
high level fusion depending on the processing stage at which fusion
takes place. Low-level fusion, also called data fusion, combines
several sources of raw data to produce new raw data that is expected
to be more informative and synthetic than the inputs. There are two
approaches for fusion of multiple sensor data: measurement fusion
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and state vector fusion (SVF). In measurement fusion, sensor
measurements are combined and an optimal estimate of target state
vector is obtained. Since this approach is optimal, it is theoretically
superior. Currently there exist two commonly used measurement
fusion methods for KF based multi sensor data fusion. The first
measurement fusion (MF-I) simply merges the multi sensor data
through the observation vector of the KF, whereas the second
measurement fusion (MF-II) combines the multi sensor data based
on a minimum mean square error criterion. But for various reasons,
measurement fusion may not be practical for field implementation.
This is so because volume of the sensor data to be transmitted to the
fusion center from different stations could overwhelm the capacity
of the existing data links among those stations(19). For this reason,
SVF is preferable for implementation in a variety of practical
systems. It has been pointed out that SVF methods are only effective
when the KF are consistent(18), which restricts the practical applica-
tions of SVF methods. Many realistic applications are often
nonlinear and the consequent KF are based on linearised process
models and usually are inconsistent due to the model errors intro-
duced by the linearisation process. This motivates the use of the
UKF for the SVF, because it determines the mean and covariance
accurately to the second order.

The primary aim of the presented data fusion approach for airdata
calibration is to accurately estimate airdata parameters or to make
inferences that may not be feasible from a single sensor alone as in
FPR using EKF(8,13). In addition, reduced ambiguity, increased confi-
dence and improved system reliability are the main benefits
applicable to majority of the data fusion applications. The main
contribution of this work is to online estimate, AOA and AOSS
using various multi sensor data fusion methods within both EKF and
UKF framework, aiming at an online application and to compare the
relative performance of each method within different framework. In
our approach, we have also given special attention to the presence of
turbulence during the flight manoeuvres. These methods are applied
to flight data of a high performance fighter aircraft. Major contri-
bution occurs in situations where there is a significant sensors noise
property variation. FPR using OEM is also applied to analyse the
flight manoeuvres and to calibrate AOA and AOSS using
ESTIMA(21).  It helps to reconfirm the results obtained from KF
based sensor fusion real time approach, by comparing these results
with this standard method(11). 

In the following section, the sensor fusion approaches are applied to
dynamic manoeuvres with rapid variations in the aircraft motion to
calibrate the flow angles. Section 2 briefly explains the EKF and UKF,
and Section 3 represents the proposed KF based multi sensor data
fusion approaches. Section 4 describes system dynamic and
measurement models, and the following one represents the
measurement model. The validation using simulated and flight test
data is performed in Section 5 and conclusions are drawn in Section 6.

2.0 STATE AND PARAMETER ESTIMATION 
USING KALMAN FILTER

One of the most popular forms of representing aircraft equations of
motion in the time domain is the state space form(22). The dynamic
and measurement model is assumed to be described by the following
continuous-discrete state space models: 

Functions f ∈ ℜn and h ∈ ℜm are general nonlinear functions; vector
x ∈ ℜn is the state vector; u ∈ ℜ1 is the input/control vector; y ∈ ℜm

is the output vector, and z ∈ ℜm is sampled at discrete points with a
uniform Δt sampling time; vectors w and v are process and
measurement noises and have covariance matrices Q and R, respec-

tively. More precisely, noises are considered to be zero mean, white,
and with Gaussian distribution. They are also assumed to be
independent between themselves and also with respect to the initial
condition x(0), that is,

Measured flight data can contain considerable amount of noise,
furthermore there might be biases and unobserved states in the
system model which must be estimated; hence filtering techniques
are generally employed. The most popular nonlinear filtering
technique is the extended Kalman filter (EKF) and their details are
not described here for brevity, and they are illustrated in Ref. 23 and
24. Although widely used, EKFs have some deficiencies, including
the requirement of differentiability of the state dynamics as well as
susceptibility to bias, hard to tune and implement when dealing with
significant nonlinearities and exhibits divergence in estimates.
Unscented Kalman filter, on the contrary, uses the nonlinear model
directly instead of linearising it(15).

The UKF was developed with the underlying assumption that
approximating a Gaussian distribution is easier than approximating a
nonlinear transformation. The UKF uses deterministic sampling to
approximate the state distribution as a Gaussian random variable
(GRV). The sigma points are propagated through the nonlinear
system. The posterior mean and covariance are then calculated from
the propagated sigma points. The UKF determines the mean and
covariance accurately to the second order, while the EKF is only
able to obtain first order accuracy. Therefore, the UKF provides
better state estimates for nonlinear systems.  

To implement the UKF, it is necessary to define (2na + 1) sigma
points, where na is the total number of states to be estimated, which
include the basic system state, the unknown system parameters, as
well as the process and measurement noise disturbances. One of the
sigma vectors is the expected value of the augmented state vector,
and the remaining 2na points are obtained from the columns of the
matrix square root ±(γP) for i = 1,2, …, na, where P is the covariance
matrix of the augmented state vector xa,                       and γ = α1

2(na

+ κ) – na are scaling parameters. The constant α1 determines the
spread of the sigma points around the estimated xa; it is set equal to
small positive value of less than 1 and κ = 0 or 3 – na for state or
parameter estimation(11).

The weights required in the computation of mean and covariance
are defined as

where the subscripts ‘0’ corresponds to the estimated states and i =
1,2, ... 2na the other sigma points. The constant β1 is used to incor-
porate prior knowledge of distribution of x in the computation of
weights for covariances W0

c; the optimum value is β1 = 2 for
Gaussian distribution. The augmented state vector of the size (na × 1)
is given by

where Θk the (nq × 1) vector of unknown parameters and na = nx + nq

+ nw + nv. 
Pseudo-code for unscented Kalman filter

● Initialisation

. . . (3)

. . . (1)

. . . (4)

. . . (5)
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directly fuse the sensor measurements to obtain a weighted or
combined measurement and then use a single KF to obtain the final
state estimate based upon the fused observation. Measurement fusion
methods generally provide better overall estimation performance,
while SVF methods have a lower computation and communication
cost and have the advantages of parallel implementation and fault-
tolerance.

Aircraft equation of motion is represented in Equation (1) but
measurement equation for sensors i and j is given by Zm

k = cm
k x

m
k + vm

k,
m = i,j where zk is the measurement at time k and νk is measurement
noise with

Fusion of these sensors can now take place at either the state vector
or measurement level.

3.1.1 State vector fusion

In SVF, state and state error covariance estimates of KF for each of
the sensors are then used to obtain the fused state according to the
following equations(28). Fused state and covariance of fused state are
given by Equations (18) and (19) respectively.

In this case, the common process noise affecting the target dynamics
corresponding to each of sensors is assumed to be negligible.  

1. Set discrete time point k = 1
2. Calculate the (2na +1) sigma points: 

3. Compute the predicted (time updated) states and covariances:

4. Perform the measurement update:

5. Increment k and jump back to step 2 to continue.
denotes the sigma points, χx corresponds to the

system states and unknown parameters.

3.0 PROPOSED APPROACH FOR 

CALIBRATION OF AIRDATA SYSTEMS

The proposed procedure is a KF-based multi sensor data fusion
algorithm, which is applied to dynamic manoeuvres (say doublet,
3211, pull up and AOA sweep) with rapid variations in the aircraft
motion to calibrate AOA and AOSS.

3.1 Sensor fusion algorithms 

Methods for KF based data fusion, including SVF and measurement
fusion, have been widely studied over the last decade(25,27). As shown
in Fig.1(a), SVF methods use a group of KF to obtain individual
sensor-based state estimates, which are then fused to obtain an
improved joint state estimate. Whereas measurement fusion methods

Figure 1. Extended/unscented Kalman-filter-based multi sensor data fusion.

(a) Sate-vector fusion

(b) Measurement fusion

. . . (6)

. . . (7)

. . . (8)

. . . (9)

. . . (10)

. . . (11)

. . . (12)

. . . (13)

. . . (14)

. . . (15)

. . . (16)

. . . (17)

. . . (18)

. . . (19)
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3.2 Alpha-Beta estimation algorithm

The main goal of the investigations is to obtain online accurate flow
angles from the data measured by both vane and multifunction
airdata probes even with the adverse effect of wind or turbulence.
The investigations are made with both simulated and flight test data
of a high performance aircraft. The schematic block diagram of
Alpha-Beta Estimation Scheme is shown in Fig. 2.

Multi-function five-hole pressure probe (Fig. 3) provides
measurements of total pressure ptot, differential pressures pα1 –
pα2(=dpαladt,dpαradt) for AOA and pβ1 – pβ2(=dpβnadt) for AOSS. The
static pressure ps also measured very close to the tip of the nose
boom. There are two local measurements (αloc_ladt,αloc_radt) from
pressure probes on left and right sides, which are given by

where (pt – ps) is dynamic pressure, K = f(mach) is the sensitivity
coefficient specified by the manufacturer(2). Each local measurement
is a function of free stream values alpha, beta and Mach. The free
stream flow angles (αfs, βfs) are inversely functions of mach and two
local measurements of pressure probes at both sides,

Other KF measurements are, corrected vane deflection AOA (αvane)
accounted by position error correction from digital flight control
computer using wind tunnel facility and free stream beta from nose
probe (βnfs) as shown in the Fig. 2. The free stream nose probe beta is
directly computed through functional look up table with the differ-
ential pressure (dpβnadt) for AOSS. The concept of considering the
vane deflection AOA corrected through position error correction is
to estimate the discrepancy in measurement in terms of sensitivity
factor and offset error, associated with use of scaled version aircraft
at wind tunnel test facility where does not have process disturbance
like gust or turbulence. 

4.0 SYSTEM DYNAMIC AND 
MEASUREMENT MODELS

To summarise the system dynamic and measurement models, it must
be noted that all calibration parameters are considered as random
walk and incorporated into the state vector, via state augmentation.
These groups of first order differential equations are necessary to

3.1.2 Measurement fusion method I

The MF-1 integrates the sensor measurement information by
augmenting the observation vector as follows.  

3.1.3 Measurement fusion method II

The MF-II obtains the fused measurement information by weighted
observation as(23):

In the presence of wind or atmospheric disturbances, a single sensor
doest not give the optimum result due to its discrepancy with true
value, but more than one sensor will do the task through integration
(fusion) of information with the application of KF algorithm. The
flow distortion at fuselage and wings of the aircraft make sensing
device even more complex and provides the local measurements,
which need to convert in free stream. Under these situations,
measurement errors are accumulated, if no corrections are applied
and free stream computation provides this correction in a nominal
way. To solve this problem, KF based sensor fusion approach by
using measurements at various sensors for AOA (vane deflection,
side pressure probe) and AOSS (side pressure probe and nose
pressure probe), together with free stream computation of AOA and
AOSS is proposed and is unlike KF algorithm incorporating
GPS(2,20). This procedure is similar to flight path reconstruction using
EKF, wherein the fusion of data from multiple flow angle sensors
results in both qualitative and quantitative benefits. The comparison
study of different fusion algorithms are made within the framework
of both EKF and UKF.

Figure 2. Alpha-Beta Estimation Scheme.

Figure 3. Five hole probe: port configuration.

. . . (22)

. . . (23)

. . . (24)

. . . (25)

. . . (20)

. . . (21)
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obtained by estimation. The velocity components along the three
body-fixed axes at an off-CG location are computed from u, v and w
as follows:

where (xoffcg, yoffcg, zoffcg, ) denote the offset distances from the centre
of gravity to the flow angle sensor mounted on the aircraft; (uvane,
vvane, wvane) are the velocity components along the three body-fixed
axes corresponding to the flow angle sensor-vane deflection; (uspb,
vspb, wspb) and (unpb, vnpb, wnpb) are the velocities components corre-
sponding to side airdata pressure probe and nose pressure probe
respectively. From the postulated system dynamic and measurement
models (26-28), state, input, measurement and parameter vectors are,
respectively.

Finally, the KF extended state vector is defined as

4.1 Turbulence model

In case of flight in turbulence, estimated flow angles using above-
mentioned state and measurement equations show major variation
from simulated flight values. It is mainly due to the model
deficiency in the estimation framework. Dynamical representation of
atmospheric turbulence is obtained by including Dryden model in
the system equations used for estimation. The features that distin-
guish one turbulence structure from the other are the turbulence
intensity α and integral scale of turbulence L. In the present investi-
gation L = 1,750ft and σ =10ft/sec are considered to generate
moderate turbulence condition. To account for turbulence in forward
velocity, lateral velocity and vertical velocity, the dynamic model
considered and appended to the state model in (33) has the following
form(29): 

where xu, xv, xw random numbers are generated to simulate the
random nature of turbulence; tu, tv, tw ku, kv, and kw are the time
constants that are defined as follows:

characterise the aircraft motion and are available in most of the text
books(24). The full kinematic model is represented by 

where p, q, and r are the projection of the angular rate vector along
the aircraft body axis and their biases in measurements are defined
by (Δp, Δq, Δr); θ and φ are, respectively, the pitch and the roll
angles; u, v, w are inertial speed projections along the aircraft body
axis. The linear accelerations (Ax

CG, Ay
CG, Az

GC) at the center of gravity
(CG) are computed from the accelerations (Axm

AS, Aym
AS, Azm

AS) measured
by the acceleration sensor at a point away from the CG through the
following relation(24):

Here (xASCG, yASCG, zASCG) denote the position of the accelerometer with
respect to the CG in the body-fixed co-ordinates; the biases in the
measurement of (Axm

AS, Aym
AS, Azm

AS) are denoted by (ΔAx, ΔAy, ΔAz). 
The measurement equations are given by: 

The density of air ρ can be computed from the actual measurement 

of static pressure ps using the universal gas law,                 , where R 

is the gas constant and Ts the static temperature. Kαvane
, Kαspb

, Kβspb
,

Kβnpb
are the scale factors and are the biases used to model the

measurement errors. These are the sensors calibration parameters

. . . (30)

. . . (27)

. . . (29)

. . . (31)

. . . (32)
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βm = –Ayβgain)Ay, where Ayβgain is Ay to β gain and is taken from the look up
table given as a function of dynamic pressure (q–). 

The reconstructed AOA and AOSS from estimated states are
obtained by applying KF Technique to each of the data sets with 15ms–1

wind at various heading angles. Here, we have introduced initial state x0

= (99.67587, –0.0196, 25.009, 0.0001, 0.24585, 1,800) and state propa-
gation error covariance matrix P0= diag (100.429, 15, 120.58, 20,
2.0028, 2,500). These estimated responses of α and β compare well with
the simulated flight data A typical estimation result for the case of EKF
based measurement fusion method (MF-I) is shown in Figs 4 and 5. The
Calibration parameters of AoA are noted in average as Kα = 0.9611, 

where                             ,                           ;        

;         ;                            ;                          ;                          ;

The turbulence in velocity components in flight path axes can now
be obtained using the relations(29):

,                                           , and   

Turbulence generated in flight path axes transformed to body axes
are given by

where                        and

In the influence of turbulence, the equations relating the states in x
to the measurement z in Equation (26) are modified through
replacing u, v and w by u – ubturb, v – vbturb and w – wbturb in Equation
(28) respectively.

5.0 EXPERIMENTAL RESULTS 

In this section the proposed multi sensor data fusion method is
validated via a FPR application using both simulated data with
wind/turbulence effects, generated through nonlinear simulation
software and flight test data obtained from a high performance fighter
aircraft prototype flight test. The measurement and process noise
covariance matrices are design parameters for the Kalman filter, which
were calculated from existing time histories through data filtering.

5.1 Simulated data results

The simulated data for pitch stick and rudder doublet inputs were
generated at flight condition of Mach 0.3, altitude 1,800 metres, with
15m/sec steady winds at various heading angles (0°, 90°, 180°, 270°)
and also for moderate turbulence. Simulated data were corrupted by
a time varying input and measurement noise with typical signal to
noise levels found in real applications (see Table 1). The simulated
data were generated at a sampling rate of 0.025sec. 

For the sake of defining measurements in simulation AOA and
AOSS are computed using the following equations. These measure-
ments are influenced by wind/ turbulence also. 

Table 1 
Measurement noise levels used in simulated data

Sensor Standard unit
deviation, σ

Accelerometers 0.01 m/s2

Rate gyros 0.0001 rad/s
Alpha measurement-1 0.0003 rad
Alpha measurement-2 0.0002 rad
Bata measurement 0.0008 rad
Vertical position 0.012 metre
Dynamic pressure 10 Pa
Euler angles 0.0002 rad
True airspeed 0.01 m/s

Figure 4. Comparison of estimated and flight simulated
Responses: ——— Flight simulated and - - - - -, estimated.

[Pitch stick doublet with 15m/s wind at various heading angles]

Figure 5. Comparison of estimated and flight simulated
Responses: ————- Flight simulated and - - - - -, estimated.
[Rudder doublet with 15m/s wind at various heading angles]

. . . (37)

. . . (36)
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Δα = 0.197 deg for pitch stick doublet and Kα = 1.1896, Δα = –2.223deg

for rudder doublet.

In the case of turbulence, the nominal set of kinematic state

equations used in the KF is not sufficient to extract the entire infor-

mation from the data. Therefore, investigations are made with turbu-

lence model included in the estimation framework. The estimated

responses of the flow angles obtained by applying KF to the data sets

having wind or turbulence effects compare well with the simulated

flight data. 

The performance comparison of multi sensor data fusion

approaches, which are discussed in Section 3, applied to simulated

data with wind and turbulence are given by Table 2 and 3 respectively.  

It is noted that MF-I performs better in terms of accuracy in

estimation but computational time is more, whereas   MFII is compu-

tationally effective for the cost of performance compared to other

sensor fusion methods. The mean AOA error value of MFII is away

from zero value indicates its performance reduction as shown in Fig 6.

It is observed that sample size for AOA error in UKF is high and its
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Table 2
Performance comparison study based on simulated data with wind effects

Mean
parameter

EKF UKF
MF-1 MF-1I SVF MF-1 MF-1I SVF

Time-taken 0.2626 0.05 0.1725 0.2626 0.05 6.5853
% fit error α 0.131 0.172 0.1551 0.131 0.172 0.08629

Table 3
Performance comparison study based on simulated data with turbulence effects

Mean
parameter

EKF UKF
MF-1 MF-1I SVF MF-1 MF-1I SVF

Time-taken 2.5008 1.0628 2.1443 14.5958 8.2121 12.9959
% fit error α 0.10415 2.34125 1.70286 0.0939 1.7936 1.14428

Figure 6. Error analysis of AOA based on multi sensor data fusion.

Figure 7. Filter estimated AOA calibration parameters.
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manoeuvres. Of course this initial value problem does not arise for the
online application of KF based sensor fusion algorithm. Even though
the performance of SVF is not as good as measurement fusion, it can
improve by introducing more number of accurate sensors for fusion
and it is greater value in online practice as having the property of fault
tolerant and less computational complexity. 

6.0 CONCLUSION

EKF and UKF based various multi sensor data fusion methods were
applied to dynamic manoeuvres to calibrate the AOA and AOSS in
real time from both simulated and real flight data of a high perfor-
mance aircraft. Simulations in software were carried out with 15m/sec
wind effects at 1,800 metres altitude and 0.3 Mach to obtain sufficient
variations in α,β of the aircraft. The investigations were initially made
using simulated data with wind and turbulence effects and it was
shown both AOA and AOSS estimates were accurate. The same
procedure was extended to real time flight test data of a high perfor-
mance aircraft. It is observed that UKF is superior to EKF in terms of
accuracy of estimation as it equivalently captures the effects of nonlin-
earities up to second order without the need for explicit calculations of
the Jacobians. Among all the sensor fusion techniques, MF-I performs
better estimation accuracy of about ±0.5° and ±0.25°, respectively for
AOA and AOS. SVF is of a greater value for online implementation
because it is more fault-tolerant and less computationally complex. In
addition, OEM for FPR using ESTIMA was applied to the same
dynamic manoeuvres to calibrate the airdata sensors. The consistently
good results obtained using sensor data fusion techniques proposed in
this paper establish that these techniques are of great value for online
implementation. 
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error standard deviation always less than EKF. Therefore, UKF
always has better performance over EKF, but computational time is
more due to the state augmentation through process and measurement
noise. SVF shows good performance with normal computational
complexity. As it is fault tolerant and computationally effective, SVF
has great value in online practice. 

5.2. Flight test data results

To evaluate the proposed data fusion method in a real condition, high
performance fighter aircraft prototype was used to generate the data
necessary for the analysis. Dynamic manoeuvres (doublets, 3211, pull
up and AOA sweep) for the variation of mach from 0.39 to 0.95 and
altitude from 2,000 to 14,000 metres, AOA excursions up to 21° and
AOSS excursions up to ±5° were selected. The sampling period
adopted was 0.025 second. It is required to validate the sensor data
fusion approach by comparing with standard technique OEM for FPR
using ESTIMA software package(21). The OEM is successively applied
to estimate the sensitivity factor and bias of calibration parameters for
the multi sensors and use to correct the measurements AOA and
AOSS. The corrected AOA and AOSS values are to be used as refer-
ences; the filter results are compared against calibrated data based on
reference method OEM(7). The application of OEM for FPR using
ESTIMA is omitted here for brevity. It is worth noting that proposed
flow angle sensors are dissimilar since AOA senses by different
sensors vane and pressure probe, while AOSS senses by nose pressure
probe and side airdata pressure probe. In such case, MF-II is not
applicable to use. Therefore, MF-I and SVF are applied to estimate
flow angles from the flight test data. The analysis of flight manoeuvres
for various Mach numbers were carried out separately mainly because,
from a priori knowledge, the sensitivity factor is expected to vary with
speed. Figures 7 and 8 show variation of sensitivity factors and offset
errors estimated for flow angles separately from manoeuvres at
different Mach numbers. It is observed that correction factors for
AOA show a clean reduction for higher values of Mach numbers. The
difference between AOA, AOSS estimated using sensor fusion based
approaches and those obtained using ESTIMA is shown in Fig. 9.

The variation of estimation errors of alpha and beta are respectively,
almost around aerospace industry requirement values deg and deg for
the MF-I except at some certain points. The larger error in AOA and
AOSS at these points is due to mismatch in the initial values of the
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Figure 8. Filter estimated AOSS calibration parameters.
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Figure 9. Filter estimated errors of AOA and AOSS.
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