
The aim of this study was to evaluate if children with Developmental Dyscalculia (DD) exhibit a general
deficit in magnitude representations or a specific deficit in the connection of symbolic representations
with the corresponding analogous magnitudes. DD was diagnosed using a timed arithmetic task. The
experimental magnitude comparison tasks were presented in non-symbolic and symbolic formats. DD
and typically developing (TD) children showed similar numerical distance and size congruity effects.
However, DD children performed significantly slower in the symbolic task. These results are consistent
with the access deficit hypothesis, according to which DD children’s deficits are caused by difficulties
accessing magnitude information from numerical symbols rather than in processing numerosities per se.
Keywords: size congruity effect, distance effect, dyscalculia, reaction time, size effect.

El objetivo de este estudio fue evaluar si los niños con Discalculia del Desarrollo (DD) presentan un
déficit general en la representación de las magnitudes o un déficit específico en la conexión de las
representaciones simbólicas con sus correspondientes magnitudes análogas. La DD fue diagnosticada
mediante una tarea aritmética con control del tiempo de reacción. Las tareas experimentales de
comparación de magnitudes se presentaron en formato no-simbólico y simbólico. Los resultados muestran
que en los discalcúlicos la representación numérica parece estar intacta, lo cual se expresa en efectos
de distancia numérica y congruencia de la magnitud, similares a los que exhiben los niños con un
desarrollo típico. Las diferencias respecto a este grupo se encuentran solo en la velocidad de
procesamiento en las tareas simbólicas. Se concluye que los datos se ajustan a la hipótesis del déficit
en el acceso, por lo que las dificultades de los niños discalcúlicos parecen producto de un trastorno
en la conexión entre las representaciones simbólicas y las análogas y no en la representación numérica
per se.
Palabras clave: discalculia, efecto de distancia, efecto de congruencia de la magnitud, efecto de magnitud,
tiempo de reacción.
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NUMERICAL MAGNITUDE PROCESSING IN DEVELOPMENTAL DYSCALCULIA

At present, experimental evidence shows that our
mathematical competence emerges from the interaction
between two dissociable representational systems (Barth, La
Mont Lipton, & Spelke, 2005; Halberda, Mazzocco, &
Feigenson, 2008): a system of approximate quantities
(common to animals, babies and adults) and a verbal system
capable of representing numbers exactly (Dehaene, 1997). It
has been suggested that in the approximate number system,
the quantities are represented in an analogue format, similar
to an internal “number line”, which is shared by the different
sensory modalities (Butterworth et al., 1999, Dehaene, 1997;
Halberda et al., 2008; Izard & Dehaene, 2008; Paterson, 2001;
Udwin, Davies, & Hosylin, 1996). Evidence from research
on infants supports the assumption of the inherent and innate
nature of this system (Dantzig, 1967, Dehaene, 1997).

Once language is acquired, humans develop (within an
appropriate cultural context) the ability to represent
numerosities in a symbolic format, first using number words
(for example “thirty-three”) and later using Arabic digits
(Dehaene & Marques, 2002, Gallistel & Gelman, 2005,
Moyer & Landauer, 1967, Spelke & Tsivkin, 2001). This
enables them to access a new level of competence in exact
arithmetic. Apparently, the increasing dominance of a
symbolic number system influences the improvement of
previously acquired skills for handling non-symbolic
numerical quantities (Pica, Lemer, Izard, & Dehaene, 2004).

Several current cognitive theories on developmental
dyscalculia (DD) suggest that the origin of this disorder
may be a deficit in one of the representational systems
described above. These theories assume that subtle
deficiencies in the core systems of numerical representation,
or in the connection between them, can generate a cascade
of new deficits in the development of high-level skills such
as addition and multiplication (Karmiloff-Smith, 1998).
However, currently, there is still no consensus on what
exact deficit underlies this learning disorder.

Two of the theories that propose that DD may be caused
by damage to the numerical representation are the “number
sense” hypothesis (Dehaene, 1997; 2001) and the “defective
number module” hypothesis (Butterworth, 1999; 2005). S.
Dehaene suggests that we have two core knowledge systems
with “numerical content”: 1) an approximate representation
system, which allows to extract the approximate numerosity
of the stimuli or to represent them as analogous magnitudes,
and, 2) an “object file“ system. This is an attentional system
that allows “the exact representation of different elements”
(up to 3 or 4 objects) (Carey, 2001; Feigenson, Dehaene, &
Spelke, 2004; Wilson & Dehaene, 2007; Simon, 1999; Xu
& Spelke, 2000). As consequence of the visuospatial nature
of non-symbolic tasks, a deficit in the latter system could
lead to difficulties in subitizing (which is the basic numerical
ability that allows instant and accurate estimation of amounts
of up to four visually presented elements, Mandler & Shebo,
1982), and generally, in the perception of non-symbolic
numerical information. However, in the deficit in number

sense as the underlying cause of DD proposal, it is assumed
that the deficit is in the analogous system. According to this
idea, children with DD would show difficulties in the ability
to represent continuous quantities (analogue and approximate
representation of quantity) and to relate them to word lists
that designate integers, which allows the development of
representations for discrete quantities greater than four.
Therefore, DD children can present deficits in understanding
the meaning of numbers, difficulties in tasks related to this
domain (non-symbolic tasks such as approximate comparison
and dot addition and also for symbolic comparison, addition
and subtraction tasks), and difficulties in the magnitude
spatial representation within the mental number line
(Butterworth, 2010). These deficits would prevent a normal
development of numerical concepts (Ashkenazi, Mark-
Zigdon, & Henik, 2009).

On the contrary, unlike the deficits in number sense
hypothesis, B. Butterworth (1999, 2005, 2010) suggests that
DD results from deficits in the representation of exact
numerosities (discrete quantities in a set) that generate
difficulty in understanding the concept of number and,
consequently, in the learning of numerical information.
Although this might seem like a simple extension of the
encoding of small numbers, no upper quantity limit or
attentional role is assumed (Butterworth, 2010). According
to this hypothesis, subjects can perform normally in
approximate numerosity and analogous magnitude tests
(Butterworth, 1999, 2005, Butterworth & Reigosa-Crespo,
2007; Landerl, Bevan, & Butterworth, 2004).

Several behavioural evidences support that DD’s
difficulties in number comparison and in subitizing may
be the result of a disorder in numerical representation, as
children with DD are slower than typically developing
children (TD) in digit naming and subitizing, but not in
letter and geometric figure naming (Landerl, Fussenegger,
Moll, & Willburger, 2009; van der Sluis, de Jong, & van
der Leij, 2004). Also, DD children have shown a
significantly lower performance than normal children in
basic number processing tasks that include reading and
comparison of non-symbolic and symbolic quantities,
repeating numbers sequences and/or dot counting (Iuculano,
Tang, Hall, & Butterworth, 2008; Landerl et al., 2004;
Landerl et al., 2009; Landerl & Kölle, 2009; Mussolin,
Mejias, & Nöel, 2010). It has also been reported that
children with DD show persistent difficulties in learning
simple addition and subtraction strategies, which suggests
a reduced comprehension of number meaning or the ability
to manipulate numbers (Wilson & Dehaene, 2007).

Other elements supporting predictions of a deficit in
number representation in DD are the difficulties in the
automatic processing of quantities when these are presented
using number words and digits (Dehaene, 1997, 2001;
Wilson & Dehaene, 2007). These difficulties are expressed
in a reduced size congruency effect (interference between
physical and numerical size of the numerosities to be

953

https://doi.org/10.5209/rev_SJOP.2012.v15.n3.39387 Published online by Cambridge University Press

https://doi.org/10.5209/rev_SJOP.2012.v15.n3.39387


compared) and even in the non-appearance of such effect
in numerical Stroop tasks. Landerl et al., (2004) found no
congruency effect in 8 and 9 year-old DD children. Similar
results were obtained by Landerl and Kölle (2009) when
evaluating eight to ten year-old DD children (second, third
and fourth grades). Rubinsten and Henik (2005, 2006)
reported a reduced congruency effect even in young adults
with DD.

The above data support the deficit in numerical
representation hypothesis (either approximate or exact
representations) as the underlying cause of DD. However,
this theory was challenged by Rousselle and Nöel (2007)
who proposed the “access deficit” hypothesis, as they believe
that DD arises from a disconnection syndrome between non-
symbolic quantity representation (which remains intact) and
the symbols that denote these analogous magnitudes (digits
or number words). Neuropsychological and brain imaging
data indicate that there is an association between exact
arithmetic tasks and language codes (Dehaene, Spelke, Pinel,
Stanescu, & Tsivkin, 1999, Lemer, Dehaene, Spelke, &
Cohen, 2003), so that when we learn the numerical symbols,
we simply learn to “map“ arbitrary shapes to the relevant
representation of non-symbolic quantity. If this connection
does not develop adequately, even when the numerosity
representation remains intact, DD will appear as result of a
deficit in accessing the numerical meaning of symbols. In
this way, DD children would be able to make non-symbolic
magnitude comparisons, but would fail when comparing the
same quantities presented in symbolic format (for example,
Arabic digits).

In order to validate the “access deficit” hypothesis,
Rousselle and Nöel (2007) evaluated a group of children
with DD (selected through an untimed battery of arithmetic
achievement tasks) using quantity comparison tasks presented
in symbolic (digits) and non-symbolic (pairs of collections)
format. For the collection comparison tasks, two conditions
with perceptual control (density and surface) were designed,
which allowed to ensure that the subjects’ judgments were
made based on numerical information (discrete quantities)
and not on the perceptual features of the stimuli that covary
with numerosity (continuous quantities). The results showed
that children with mathematical disabilities performed
normally in all non-symbolic tasks (which implies that the
basic numerical concepts are intact), but, in the digit
comparison symbolic task, their results were significantly
different (they were slower and less accurate) that those for
the TD group. Similarly, when the individual processing
speed was adjusted in the symbolic Stroop task, DD children
showed a congruency effect such as that found for TD
children, however, they needed more time for the appearance
of physical differences to interfere with their numerical
judgement. The authors concluded that the mathematical
learning disorder is not a result of a difficulty in numerosity
representation, but rather a deficit in accessing the numerical
representation from a symbolic format (Rousselle & Nöel,

2007). These results were later replicated by Iuculano et al.,
(2008) using the comparison between symbolic and non-
symbolic (with area control) tasks of quantity comparison
in children with and without DD. Most recently, de Smedt
and Gilmore (2011) also replicated these results using
comparison and approximate addition tasks (presented in
both formats) in children with regular mathematic
achievement, children with low achievement in mathematics
and children with mathematics learning disabilities.

Although much experimental evidence supports the
hypotheses discussed above, the results diverge across the
research, arriving at conclusions in favour of either
hypothesis. These differences may be due to methodological
reasons in the experimental design. For example, the
batteries of experimental tasks are not always designed to
assess, in the same sample, several of the classic numerical
processing effects (numerical distance, numerical size and
size congruency), but are generally aimed at evaluating
only one of those effects. Sometimes the experimental
designs do not include paired tasks in both symbolic and
non-symbolic format.

It is worth mentioning that different sample selection
criteria have been used across the experimental studies:
untimed arithmetic achievement tests (Rousselle & Nöel,
2007), neurocognitive batteries with mathematical fluency
tasks with limited runtime (Landerl et al., 2009; Landerl
& Kölle, 2009; Mussolin, Mejias, & Nöel, 2010), item-
timed mental arithmetic test (Landerl, Bevan & Butterworth,
2004), or standardized software that combines basic
numerical ability sub-scales and arithmetic tasks (Iuculano
et al., 2008).

Multiple studies suggest that the selection of DD
children should be made through basic numerical processing
tasks controlling for reaction time (RT) (Butterworth &
Reigosa-Crespo, 2007; Feigenson, Carey, & Spelke, 2002;
Landerl et al., 2004) because RT measurements can show
abnormalities that accuracy cannot reveal (Butterworth,
2005; Jordan & Montani, 1997). Arithmetic tasks with RT
control are probably a very sensitive indicator for DD
diagnosis (Mussolin et al., 2010). The difficulties in higher-
level arithmetic processes (counting acquisition and addition
procedure disorders, as well as in numerical facts retrieval)
may be derived from an initial dysfunction in the core
numerical processing system, even when other causes are
plausible (Dehaene, Bossini, & Giraux, 1993; Desoetea,
Ceulemansa, Roeyersa, & Huylebroeck, 2009; Jordan,
Hanich, & Kaplan, 2003; van Loosbroek, Dirkx, Hulstijn,
& Janssen, 2009; Xu & Spelke, 2000). Moreover, there is
consensus in considering the calculation fluency deficit as
one of the distinguishing features of DD children (Barnes
et al., 2006; Geary & Hoard, 2005; Jordan & Montani,
1997).

The aim of this study is to evaluate whether a group of
children with DD (diagnosed through an item-timed mental
arithmetic test) have a general deficit in magnitude
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NUMERICAL MAGNITUDE PROCESSING IN DEVELOPMENTAL DYSCALCULIA 955

representation (whether it is a deficit in number sense or
in numerical module), or a difficulty linking symbolic
representations onto their corresponding analogous
magnitudes. Unlike previous studies, a battery of
experimental tasks, where each task designed in symbolic
format (Arabic digits comparison, physical size of digits
comparison, symbolic Stroop tasks) is contrasted with a
equivalent one designed in a non-symbolic format
(collections comparison, physical size of geometric shapes
comparison, non-symbolic Stroop -the latter has hardly ever
been included in previous designs-see Iuculano et al., 2008)
was used in this study. To avoid subjects using strategies
based on low-level continuous (perceptual) variables in the
non-symbolic magnitude comparisons, three sets of
collections with different perceptual controls were generated:
surface, density and area.

This design will allow us to evaluate the effects of
numerical distance, numerical size and size congruency in
each presentation format. Studies carried out with TD
children have not been able to identify a modulation of the
congruency effect by numerical distance, and this issue has
not yet been examined in DD children (Landerl & Kölle,
2009). The modulation of the congruency effect by the
numerical size has not been either evaluated. In this regard,
the present study evaluates the automatic processing of
quantities according to the modulation of the congruency
effect by the numerical size for the non-symbolic format
(since stimuli were designed only for large numerical
distances-see section “Non-symbolic Tasks”-), and the
modulation of the congruency effect by distance and
numerical size in the symbolic format.

Two other issues distinguish this design from previous
studies. Firstly, RT of correct responses of each experimental
condition were adjusted with data of the simple RT task. In
this way, the time the subjects may have used in other
processing different from numerical processing (i.e. motor
execution) is eliminated from the RT obtained in the
experimental task. This method has been previously used
by Iuculano et al., (2008). Secondly, in each analysis, the
scores obtained in the backward digit span were included
as covariates. It has been reported that numerical knowledge
is strongly correlated with measures of working memory
obtained through the backward digit span (Chard et al.,
2005). In this regard, several studies indicate that DD
children tend to have a less developed working memory
capacity than TD children (Geary, Brown, & Samaranayake,
1991; Geary, Hamson, & Hoard, 2000; Geary, Hoard, &
Hamson, 1999; Koontz & Berch, 1996, McLean & Hitch,
1999; Swanson & Beebe-Frankenberger, 2004; Siegel &
Ryan, 1989; Wilson & Swanson, 2001). These evidences
suggest that different working memory difficulties can co-
occur with mathematical deficits, so it is necessary to control
this variable in studies with DD children. Despite this
evidence, most studies do not consider this important
covariation.

The access deficit hypothesis predicts the existence of
difficulties in processing symbolic patterns that denote
analogous magnitudes, whereas a deficit in magnitude
representation may reflect a strong inaccuracy in numerical
representation, regardless of the stimuli presentation format.
Manipulations between the presentation format, the size,
numerical distance, and size congruency enable the search
for new evidence regarding both hypotheses. If DD is a
disorder in the development of a cognitive system that
underlies the processing of numerical quantities
(Butterworth, 1999; Butterworth & Reigosa-Crespo, 2007;
Dehaene, 1997, 2001), we expect that DD children will
show difficulties in all numerical comparison tasks,
regardless of the presentation format with respect to TD
children. In addition, we expect that they will show no sign
of automatic number processing. On the contrary, if DD
children have a specific problem in accessing the symbolic
representation of numbers (as suggested by Rousselle &
Nöel, 2007), they must have difficulty in symbolic
processing, but show a similar performance to TD children
in the tasks where analogous magnitudes are processed.
Moreover, they must show automatic activation of the
semantic properties of quantities when these are presented
under conditions adapted to their symbolic processing speed.

Method

Participants

The sample of this study is a sub-group of a population
of 226 school-aged children, which participated in a
mathematical disabilities prevalence study that was carried
out in Havana city, Cuba (Reigosa-Crespo et al., 2012).
Initially, all children with signs of behavioural disorder risk
were excluded from the sample. To be included in the TD
group, children should show no sign of learning disorders
(according to the Signs of at-Risk Learning Disabilities
Questionnaire (SRD-L)), and to be included in the DD
group, children should show, at least, one sign of learning
disorders (according to SRD-L). The Ravens Colored
Progressive Matrices Test (Raven, Court, & Raven, 1992)
was administered to all the selected children as an
intellectual performance measure (nonverbal reasoning
ability). The scores were analyzed according to the Chilean
norms (Ivanovic et al., 2000). Children who had scores
between the 50th and 95th percentile were selected. The
arithmetic achievement of this group was evaluated through
The Arithmetic Mental Test developed by Reigosa and
colleagues (Reigosa-Crespo et al., 2012).

Children that scored above 1.5 standard deviations (SD)
in The Arithmetic Mental Test, were included in the TD
group (! = 33), and children with scores below 2 SD were
included in the DD group (! = 32). The 65 children finally
selected were administered the Digit Span Scale (forward
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and backward) of the Wechsler Intelligence Scale for
Children (Revised) (WISC-R) (Sattler, 1982), that assesses
phonological short-term memory and working memory.
Sample details are described in Table 1.

Materials and Procedure

Arithmetic Mental Test: Item-timed computerized test,
which included 15 simple additions, 15 subtractions, and
15 multiplications, was presented in three separate blocks.
Two practice trials were given before the start of each block.
All arithmetic operations involved single-digit numbers
(from 1 to 9). Items were presented on a computer screen
in the form “2 + 4”. Children were asked to type the answer
as quickly as they could without making any mistakes. To
answer, children used the number keypad to the right of
the alphanumeric keypad. Reaction time was recorded when
the key corresponding to the calculated number was pressed.
All responses, both correct and incorrect were recorded.
Median RTs for correct responses in all tasks (addition,
subtraction and multiplication) were calculated. The medians
were adjusted, subtracting each one from the median of the
simple RT for that participant (adjRTs). This procedure
enables the adjustment of RT to the individual variability
in processing speed. It has been noted that children with
low numeracy tend to adopt strategies that produce generally
accurate answers but extremely long RT latencies (see also
Jordan & Montani, 1997); or that they simply guess quickly,
leading to inaccurate answers but short RT latencies. For
this reason, similar to the procedure described by Landerl,
Bevan and Butterworth (2004), an efficiency measure (EM)
for each test was calculated by diving adjRTs by the
proportion of hits (EM = adjRT/Hits). This is an inverse
measure (higher EM scores represent worse performance).
The mean of EM scores for each operation (addition,
subtraction, and multiplication) was used as an overall
measure of efficiency in the mental arithmetic test. The
software diagnoses DD based on norms calculated for each
age group. Therefore, the children who had an EM below
2 SD on the mental arithmetic test regarding the normative
sample were classified as dyscalculic.

Experimental Tasks

The experimental tasks were run using the stimulus
presentation software SuperLab 4.0 for Windows XP/2000.
Children were always asked to respond by pressing the
button on the side of the correct response (right or left).
Instructions emphasized both speed and accuracy. The
computer automatically recorded the RT of each response.
Each task was preceded by 8 training trials. The battery of
experimental tasks was administered in two sessions of 30-
40 min. In a first session, the Simple Reaction Time Task
was applied and then, the remaining comparison tasks were
applied in counterbalanced order. In a second session,
Stroop tasks were administered.
Simple Reaction Time Task: Some children are relatively

slow in pressing keys when responding to any stimuli. The
Simple Reaction Time test was designed to evaluate this
achievement. The score on this test was not analyzed by
itself. Instead, the RTs of the remaining experimental tasks
(described below) were adjusted taking this measure into
account (see statistical analysis section). Children were
presented with a blue circle over a white background. This
blue circle was counterbalanced across trials, appearing to
the left or the right side of the screen. Children were asked
to press the key corresponding to the side where the circle
appeared. Each trial started with the presentation of a blue
circle until a response was given, followed by inter-stimulus
interval that varied between 100 and 1500 ms (white screen).

!on-symbolic Tasks

Collection Comparisons: Children were simultaneously
presented with two white squares (side = 55 mm) containing
a variable number of vertical black rectangles or small blue
squares, and were instructed to select the one that contained
more elements. Both white squares were presented on a dark
grey background and were separated by a fixation cross
(distance between squares = 8 mm).

The task was administered in three intermixed conditions
of perceptual control: density, surface and area (see Table
2 for details of perceptual control in each set). Rousselle,
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Table 1
Sample Details

Group
Age Raven Forward Digit Backward Digit Arithmetic Mental
(years) (scores) Span (scores) Span* (scores) Test**(EM)

TD M 9.52 28.39 5.85 4.61 109.1
(! = 33) SD .27 3.94 1.75 1.41 26.31

DD M 9.49 27.22 6.03 3.84 194.49
(! = 32) SD .32 3.62 1.40 1.25 85.5

Significant differences between TD and DD group: **p < .001, * p < .05

https://doi.org/10.5209/rev_SJOP.2012.v15.n3.39387 Published online by Cambridge University Press

https://doi.org/10.5209/rev_SJOP.2012.v15.n3.39387


NUMERICAL MAGNITUDE PROCESSING IN DEVELOPMENTAL DYSCALCULIA

Palmers and Noël (2004) designed the density and surface
condition stimuli, and small numerosities (between 1 and
4) were not included in these arrays. These authors pointed
out that small numerosities (subitizing range) are supposed
to be apprehended by different quantification processes
from counting and approximated estimation of large
numerosities (Simon, 1997; Trick & Pylyshyn, 1994) and
therefore, it could not reflect the typical characteristics of
the comparison process. In spite of this, in the area
condition, arrays with numerosities between 1 and 4 were
also included. In this way, all numerosities can be compared
with the symbolic task and the corresponding analyses of
numeric size effect can be carried out. In the three
conditions, the numerical distances were of 1 (close
distances) and, 3 or 4 (far distances).

The task consisted of a total of 96 items: (3 density-
controlled collection pairs + 3 surface-controlled collection
pairs ) X 2 distances X 4 presentations + (3 area-controlled
collection pairs X 2 size X 2 distances X 2 sides X 2
presentations) (see details in Castro, Estévez, & Pérez,
2011). Each trial started with the presentation of a collection
pair until a response was given, followed by an ISI of 500
ms during which the fixation cross remained in full view.
Physical Size Comparison: Children were presented

with two identical geometric shapes and were asked to
select the larger physical size. (e.g. small circle: 166 mm
of diameter and larger circle: 184 mm of diameter). The
side of correct response was counterbalanced across the
left or the right side of the screen. The six geometric shape
pairs used (circles, triangles, rectangles, squares, ellipses
and rhombus) were presented four times, twice with the
larger shape on the right and twice with the larger shape
on the left, yielding a total of 24 pairs of geometric shapes
to be compared (6 pairs x 2 sides x 2 presentations). Each
trial started with the presentation of a shape pair until a

response was given, followed by an ISI of 500 ms (white
screen). The results of this task were not analyzed per se.
The medians of these RT were used to calculate a variable
delay in the non-symbolic Stroop task.
Stroop: The Stroop tasks (symbolic and non-symbolic)

were designed to examine the presence of signs indicating
automatic processing of the irrelevant numerical dimension
(numerical size) in each group.

Schwarz and Ischebeck (2003) proposed a relative speed
account of the number-size interference in non-symbolic
Stroop tasks. In accordance with their model, the decisions
are not based on all-or-none information, rather in the partial
information that continuously accumulates until the decision
is reached. As both processing types (numerical size and
physical size) are influenced by distance, the processing of
the relevant and irrelevant dimensions is influenced by the
distance (e.g., the physical and the numerical distance), to
increase numerical interference over physical decision,
difficulty physical comparison could be increased (e.g.
collection pairs with similar physical size) or the numerical
comparison could be facilitated (e.g. collection pairs with
far numerical distance). In accordance with this proposal,
we selected the stimuli with area control and far numerical
distance (3 or 4). The collection pairs varied between two
dimensions: numerical size and physical size. Each trial
started with the presentation of a collection pair of same
physical size (sum of total area of all elements = 56 mm2)
and different numerical size. Each collection pair was
presented four times, two in ascending order and two in
descending order, yielding a total of 48 collection pairs to
be compared (3 collection pairs X 2 sizes X 2 congruencies
X 2 presentations).

To balance the speed of physical and numerical
processing, a variant of the procedure proposed by Rousselle
& Nöel (2007) was used. Thus, the physical size difference

957

Table 2
Controlled perceptual features for collection comparison tasks in each set

Set Perceptual Variables

External Total Area Total Surface Distance
Densitya contour Occupied (area/ Total Perimeterd Element Size between

lengthb on the Screen brightness)c elementse

Density * *
Surface * * * *
Area * * *

The asterisk (*) indicates the perceptual variable is controlled.
a The proportion of occupied positions on the screen divided by the total number of possible positions.
b Perimeter delineated by external elements of the collection.
c Sum of the area of all elements of the collection.
d Sum of perimeter of all elements of the collection.
e Distance between the elements of the collection (never less than 8 pixels).
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between digits only appeared after a delay variable. This
delay was individually calculated by computing, for each
participant, the difference between his/her median of RT
needed to perform a physical size comparison (same
geometrical shapes, different size) and his/her median of
RT required to compare collections of the area condition
(different numerosities, same size). The difference in
milliseconds was rounded to the upper hundred. After the
delay, the physical size difference between collections
emerged: in one of them, the sum of total area of all
elements increased (81 mm2) and, in the other, it decreased
(36 mm2). Children were asked to choose the side with
“more blue”, ignoring numerical size. Collection pairs were
presented until a response was given, followed by an ISI
of 500 ms (white screen).

Symbolic Tasks

Arabic !umber Comparison: Two Arabic digits from 1
to 9 (Arial, 48-point font) were presented on the computer
screen and children were asked to select the largest digit
in numerical size. Comparison pairs varied along two
numerical sizes and two distances between digits: small
pairs (digits from 1 to 5) were contrasted with large pairs
(digits from 5 to 9) and close pairs (distance of 1) were
compared with far pairs (distance of 3 or 4). Three different
pairs of digits were used in each experimental sub-condition,
yielding a total of 48 pairs of single-digit number to be
compared (3 digit pairs X 2 sizes X 2 distances X 2 sides
X 2 presentations) (for more details see Rousselle & Nöel,
2007). Each trial started with the presentation of a digit
pair until a response was given, followed by an ISI of 500
ms (white screen).
Physical Size Comparison: Children were presented

with two identical Arabic digits (on a white screen) and
were asked to select the largest digit in physical size (e.g.,
2–2, Arial, 65 pt or 72 pt). The six digit pairs used were
presented in a fixed pseudo-random order. The side of the
correct response was counterbalanced. The six digit pairs
(2–2, 3–3, 4–4, 6–6, 8–8, and 9–9) were presented four
times, twice with the larger digit on the right and twice
with the larger digit on the left, yielding a total of 24 pairs
of digits to be compared (6 pairs X 2 sides X 2
presentations). Each trial started with the presentation of a
digit pair until a response was given, followed by an ISI
of 500 ms (white screen). The results of this task were not
analyzed per se. The medians of these RT were used to
calculate a variable delay in the symbolic Stroop task.
Stroop task: Children were presented with pairs of

Arabic digits (1–9) varying along two dimensions: physical
and numerical size. Congruency between the physical and
the numerical dimensions was manipulated: in congruent
pairs, the largest digit in physical size was also the largest
in numerical size (e.g., 2 4), while in incongruent trials,
the largest digit in physical size was the smallest in

numerical size (e.g., 2 4). In both conditions (congruent
and incongruent), the same digit pairs as those used in
Arabic number comparison were included, yielding a total
of 96 pairs of digits to be compared (3 digit pairs X 2
numerical sizes X 2 distances X 2 sides X 2 congruity
conditions X 2 presentations) (for more details see Rousselle
& Nöel, 2007).

Each trial started with the appearance of a pair of digits
presented in the same intermediate physical size. The physical
size difference between digits appeared after a delay variable.
This variable was computed using the procedure described
by Rousselle & Nöel (2007): for each participant, his/her
median RT in the physical size comparison task (same digits,
different size) was subtracted from his/her median RT in the
Arabic number comparison task (different digits, same size).
In this way, numerical and physical information are equally
likely to influence the decision process, more effectively
conditioning that numerical information (irrelevant dimension)
interferes in physical comparison (relevant dimension) (Noël,
Rousselle, & Mussolin, 2005).

The difference in milliseconds was rounded to the upper
hundred. After the delay, the physical size difference
between digits emerged with one digit increasing in size
(72 pt) and the other one decreasing (65 pt). Children were
asked to select the largest digit in physical size, ignoring
numerical size. Digit pairs were presented until a response
was given, followed by an ISI of 500 ms (white screen).

Statistical analysis

RT analyses were performed with the median RT of
correct responses only. Children with a number of correct
responses below 50% in any experimental sub-conditions
were excluded from the analyses. Median RT of correct
responses by sub-condition were adjusted (adjusRT) using
the median RT obtained in Simple RT task. As accuracy
data in both groups were at or near ceiling in all tasks (see
Table 3), these were not included in the analyses.

AdjusRT data were included in different repeated
measures ANCOVAs which evaluated, in both presentation
formats (symbolic or non-symbolic), the effects of numerical
processing (numerical size, numerical distance and size
congruency). Shapiro–Wilk’s normality test and Levene’s
variance homogeneity test indicated that the adjRTs data
did not completely fit parametric assumptions of
homogeneous variance and normal data distribution.
Therefore, a logarithmic transformation was used in the
adjRT analyses. Also, we tested (with T-tests) for differences
between groups in Raven and Digit Span (forward and
backward) scores. Digit Span scores were included because,
as is described above, DD children seemss to have an
atypical working memory development regarding TD
children. In case of any significant differences arising
between groups, these measures would be included as
covariates in the variance analyses.
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Results

Analysis of the Raven and Digit Span scores only
showed significant differences between groups in the
backward Digit Span, therefore this score was included as
a covariate in all variance analyses.

!on- Symbolic Tasks

Analysis of Distance and !umerical Size Effects

A repeated measures ANOVA was run on median RTs
with numerical size (small, large) and numerical distance
(close, far) as within-subject factors; and group (DD, TD)
as between-subjects factor. This analysis showed a
numerical distance effect F(1, 63) = 308.79, p < .001 and
a numerical size effect F(1, 63) = 124.17, p < .001. When
the covariate was introduced, a group effect was found F(1,
62) = 9.9594, p < .01, the processing speed of the TD group
was significantly lower than that of the DD group (see
Table 3). An interaction between size and group was found
F(1, 62) = 7.2823, p < .01. In the processing of small sizes,
DD children showed a significant increase of 83.35 ms in
their RT compared to TD children (p < .001), but there
were no significant differences in the processing speed of
large sizes.

Interaction between distance and group was not found.
The groups only differed in processing speed: the TD group
processed both numerical distances significantly faster than
the DD group (close dist.: TD = 645.06 ms, DD = 781.87
ms, p < .01; far dist.: TD = 422.58 ms, DD = 530.30 ms,
p < .01). Since the analysis of the size effect only showed
significant differences in the processing of small sizes, the
analysis of the distance effect was performed separately
for each size (small and large). The analysis with small

sizes showed a distance effect F(1, 62) = 17.036, p < .001
and a group effect F(1, 62) = 15.602, p < .001 and, although
there was no interaction between distance and group, the
groups were significantly different in their processing speed
(close dist.: TD = 422.79 ms, DD = 583.64 ms, p < .001;
far dist.: TD = 254.64 ms, DD = 379.3 ms, p < .001). In
the analysis with large sizes only a distance effect was
found F(1, 62) = 10.322, p < .01. Group effects or
interactions between distance and group were not found.
There was an interaction between size, distance and group
F(1, 62) = 6.1425, p < .05. This interaction appeared as a
product of the interaction between size and group described
above. Data from this analysis are shown in Figure 1.

Analysis of Size Congruency Effect

A repeated measure ANOVA was run on median RTs
with numerical size (small, large) and size congruency
(congruent, incongruent) as within-subject factors; and group
(DD, TD) as between-subjects factor. This analysis showed
a numerical size effect F(1, 65) = 6.5673, p < .05, but no
congruency effect. An interaction between congruency and
numerical size F(1, 65) = 18.968, p < .001 was found. For
congruent stimuli, a numerical size effect was not found,
although the data show similarities with the classic effect
(396.91 and 426.89 ms for small and large sizes respectively).
However, for incongruent stimuli, an inverse numerical size
effect appeared F(1, 65) = 21.216, p < .001 large sizes were
processed significantly faster than small ones (391 279 ms
and 559,267 ms, respectively). When the covariate was
introduced, a group effect appeared F(1, 64) = 8.3734, p <
.01. The processing speed of the TD group was significantly
lower than the DD group (see Table 3). No interaction was
found between size and group or between congruency and
group. The differences are found only in the processing speed,
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Table 3
AdjRT means (ms) and accuracy percentages by task and group

Group
Symbolic tasks Non-symbolic tasks

Digit Comparison Stroop Collection Comparison Stroop

TD RT 453.3 470.39 492.41 884.1
(! = 33) (117.07) (206) (150.61) (217.76)

95.33 96.78) 93.58 96.85
Accuracy (3.65) (3.97 (4.84) (5.1)

DD RT 589.36** 639.21* 620.56* 1131.04*
(! = 32) (172.52) (257.27) (151.94) (436.87)

94.66 96.29 94.77 95.24
Accuracy (5.16) (4.22) (2.37) (6.57)

Notes: SD is shown in brackets.
Significant differences with the ajusRT for TD group: ** p < .001 and *p < .01
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where the DD group showed an increase in RT of 168.23
ms in processing congruent stimuli and of 126.47 ms when
processing incongruent stimuli (p < .01 and p < .05
respectively), in comparison with the TD group. There was
also no interaction between size, congruency and group. Data
from this analysis are shown in Figure 2.

Symbolic Tasks

Analysis of Distance and !umerical Size Effects

A repeated measure ANOVA was run on median RTs
with numerical size (small, large) and numerical distance
(close, far) as within-subject factors; and group (DD, DT)
as between-subjects factor. This analysis showed a numerical
size effect F(1, 63) = 113.51, p < .001 and a numerical
distance effect F(1, 63) = 202.72, p < .001. When the
covariate was introduced, a group effect was found F(1,
62) = 13.173, p < .001 the processing speed of TD group
was significantly lower than that of the DD group (see
Table 3). Interaction between distance and group was not
found. The groups only differed in processing speed. The
DD group showed a significant RT increase of 167.7 ms
in far distances and of 119.95 ms in close distances (p < .01
and p < .001, respectively), in comparison with the TD
group. Similarly, interaction between size and group was

not found. The groups differed only in processing speed.
Regarding the TD group, the DD group showed a significant
RT increase of 123.44 ms in small sizes and 155.33 ms in
large sizes (p < .001 and p < .01 respectively). There was
no interaction between size, distance and group. Data from
this analysis are shown in Figure 1.

Analysis of Size Congruency Effect

A repeated measure ANOVA was run on median RTs
with numerical size (small, large), numerical distance (close,
far) and size congruency (congruent, incongruent) as within-
subject factors; and group (DD, TD) as between-subjects
factor. This analysis showed a congruency effect F(1, 64)
= 33.000, p < .001 and numerical distance effect F(1, 64)
= 17.188, p < .001. No numerical size effect was found.
An interaction between distance and numerical size was
found F(1, 64) = 10.699, p < .01, but not between
congruency and numerical size, or between congruency and
numerical distance. However, it is noteworthy that even if
in the incongruent condition there was no numerical distance
effect, in the congruent condition this effect appeared
inversely (F(1, 64) = 12.096, p < .001) close distances were
processed faster. This pattern is maintained for both groups
of children. When the covariate was introduced, a group
effect appeared: F(1, 63) = 7.4090, p < .01. The processing
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speed of the TD group was significantly lower than that of
the DD group (see Table 3). Interaction between congruency
and group was not found. The differences appear only in
processing speed, where the DD group was significantly
slower than the TD group for each condition (congruent,
TD = 331.68 ms, DD = 435.06 ms, p < .05; incongruent,
TD = 400.87 ms, DD = 533.18 ms, p < .01) (see Figure 2).
Interactions between numerical size and group or between
numerical size, distance and group were not found.

Analysis of Presentation Format Effect in numerical
comparison tasks (digit comparison vs. collection
comparison)

The above data show the performance of DD and TD
children for each format separately. In this section, taking
into consideration the presentation format (symbolic, non-
symbolic), the results between groups (DD, TD) are
contrasted. As others effects have already been analyzed,
only the results corresponding to presentation format will
be described here. A repeated measure ANOVA was run on
median RTs with presentation format (non-symbolic,
symbolic), numerical size (small, large) and numerical
distance (close, far) as within-subject factors; and group

(DD, TD) as between-subjects factor. This analysis showed
no format effect, but an interaction between format and
numerical size was found F(1, 64) = 39,403, p < .001. When
analyzing large sizes, we found that they were processed
faster in the symbolic format (p < .01). On the contrary,
small sizes were processed significantly faster when they
were presented in the non-symbolic format (p < .001). This
performance pattern may be due to the instant processing
that characterises the manipulation of numbers in the
subitizing range. An interaction between format and
numerical distance was found F(1, 63) = 41,620, p < .001.
For close distances, a presentation format effect was not
found, while for far distances, non-symbolic stimuli were
processed faster (p < .05). When the covariate was introduced,
a group effect appeared F (1, 62) = 17,955, p < .001. An
interaction between format, numerical size and group was
found, F(1, 62) = 5,7610, p < .05. In small sizes, the TD
group processed non-symbolic stimuli significantly faster,
(F(1, 62) = 9,8393, p < .01), and in large sizes, the symbolic
stimuli (F(1, 62) = 11,6069, p < .01). On the contrary, the
DD group processed both symbolic and non-symbolic stimuli
in a similar way. No interactions between format, numerical
distance and group or between format, size, numerical
distance and group were found (see Figure 1).
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Figure 2. Size Congruency Effect for each presentation format (symbolic, non-symbolic).
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Discussion

In this study, two hypotheses about the possible cognitive
mechanisms underlying DD were contrasted. The hypothesis
of a deficit in numerical representation proposes two variants
of possible deficits: one deficit is in number sense, which
refers to difficulties with the handling and representation of
approximate quantities; and the other deficit, in the number
module, responsible for the representation and manipulation
of exact numerosities. The other hypothesis assumes that
the dysfunction is not in numerical representation per se,
but rather in the connection between numerical symbols and
the analogous quantities represent by them. The low
difficulty level of the tasks was selected to assess whether
DD children would experience difficulties, even for the most
basic requirements of these tasks. The high accuracy levels
obtained by these children lead to the assumption that
numerical representation may be intact and that it is mainly
the processing component that is deficient.

In the non-symbolic comparison tasks, both groups
showed similar achievement patterns in numerical distance
and size congruency effects, and similar processing speed
except for small sizes. These findings support previous
evidence that suggests that DD children are slower to
compare numerosities in the subitizing range (Koontz &
Berch, 1996) and that difficulties in this processing range
can be shared with a normal development of counting and
magnitude comparisons (Bruandet, Molko, Cohen, &
Dehaene, 2004). In symbolic comparison tasks, children
with DD showed similar distance, size and size congruency
effects, but their response latencies were much higher than
those of the TD group. Similar results have been found in
previous studies with similar or younger children (Bachot,
Gevers, Fias, & Roeyers, 2005; Landerl et al., 2009; Landerl
& Kölle, 2009; Rousselle & Nöel, 2007).

As noted in section “Non-symbolic Tasks”, Rousselle
and Nöel’s (2007) design did not include collections with
numerosities between 1 and 4. The authors, based on
previous evidence (Simon, 1997; Trick & Pylyshyn, 1994),
argue that numerosities in subitizing range are apprehended
through quantification processes different from counting
and approximate estimation in larger numerosities.
Therefore, these processes may not reflect the typical
characteristics of the comparison process. In accordance
with this, it has been described in the proposals of object
file system (Carey, 2001; 2004; Wynn, 1990; 1992) that,
when comparing small collections, numerosities are
bootstrapped by assigning an index to each object, which
remains in memory when the collection is not longer
available. Numerosity discrimination would result from the
observation of a disparity in the one-to-one correspondence
between the mental index stored in memory and objects in
a new set. This process does not reflect a numerosity
representation per se, but rather a more general cognitive
mechanism associated with selective attention and working

memory (with a limit of amount, usually up to four
elements) by which the sets are represented as “objects“
with different properties, but not as sets with a cardinal
value (Feigenson et al., 2002; Rousselle, Palmers, & Nöel,
2004; Simon, 1997; Leslie, Xu, Tremoulet, & Scholl, 1998;
Xu & Spelke, 2000). Then, it is considered that, as a product
of the visual-spatial nature of non-symbolic tasks, a plausible
explanation for discalculic children results in the processing
of small sizes is that their subitizing range difficulties may
reflect attentional and working memory deficits rather than
numerical representation deficits.

On the other hand, the deficit in numerical representation
hypothesis (whether the deficit is in number sense or in
numerical module) suggests that DD children should not
show a non-intentional processing of numerical size
represented through symbols, as result of a deficit in the
numerical concepts representation. However, the high
accuracy of their responses and the emergence of a
congruency effect similar to the TD group show that they
do. Another sign of numerical processing that was found,
is that the achievement of DD children has been influenced
by the distance and numerical size of the collection pairs
(which is expressed in distance and numerical size effects
similar to those for the TD group). These data, consistent
with recent evidence found by Landerl et al. (2009), Landerl
and Kölle (2009) and, De Smedt and Gilmore (2011),
indicate that the numerical representation of DD children
may be intact and that the problem is in the accessing and
processing of these representations, rather than in the
representation per se. This is in line with the proposal of
the access deficit hypothesis.

Other data that suggest that the deficit in DD could be
in processing and not in numeric representation arise from
studies with DD children older than 10 years (Kucian et
al., 2006; Mussolin, Mejias, & Nöel, 2010; Soltész, Szücs,
Dékány, Markus, & Csépe, 2007). In these studies, no
differences were found in the processing speed in symbolic
tasks between these children and children without
difficulties. Studies on the typical development of numeracy
skills show that, with increasing age and education, long-
term memory associations between compared pairs of digits
and the correct response are developed. This leads to an
automatization of the size comparison process, with a
consequent decrease in task execution time (Castro et al.,
2011; Logan, 1988; Rubinsten, Henik, Berger, & Shahar-
Shalev, 2002; Tzelgov, Meyer, & Henik, 1992). It appears
that the development of numeracy skills could follow, in
children with DD, a similar pattern to that of typical
development. Therefore, the achievement of DD children
may be improved and may eventually reach a similar skill
level than that of children without arithmetic difficulties.
However, more empirical evidence is required to corroborate
this hypothesis, especially through longitudinal studies that
show how size processing develops in DD children, and
how this development differs from typical development.
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Conclusions

The DD children of this study show a deficit in the
processing of analogous magnitudes in the subitizing range
that appears to be linked to attentional and / or working
memory difficulties, while the numerical representation
seems to be intact. This is expressed in similar numerical
distance and size congruency effects to those exhibited by
children with typical development. In the symbolic tasks,
DD children processed numerosities significantly slower
than the controls.

These data fit the access deficit hypothesis, which states
that the core deficit in DD does not lie in a deficient
numerical representation but rather in a deficit in the
connection between symbolic and analogous representations.
Subtle deficiencies in the integration of the numerical
representation core systems (analogous and verbal) may
prevent DD children from developing an accurate
understanding of how numerical symbols (e.g., Arabic
digits) represent analogous magnitudes (non-symbolic). It
is assumed that having a precise semantic representation
of numbers that is not fully developed or automatically
available, may have a strong negative impact on, if not all,
at least most arithmetic activities. These results provide
new evidence on the need to implement educational systems
and interventions aimed at strengthening the connection
between numerical symbols and the concepts that it
represent.

The precise deficit that causes, in DD children, the
appearance of the “disconnection“ between numerical
symbols and analogous magnitudes remains to be clarified.
It may be an interface deficit between the symbolic and
analogous systems or a deficit in the verbal processing system
(which is responsible for the symbolic representations) per
se. Alternatively, the existence of weak connections between
symbols and their underlying quantities could make the
learning of symbolic representations harder for children during
development. These ideas suggest the need for research with
tasks that assess the interface between representational
systems of DD children.
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