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A promising mechanism for generating a finite-time singularity in the incompressible
Euler equations is the stretching of vortex filaments. Here, we argue that interacting
vortex filaments cannot generate a singularity by analysing the asymptotic dynamics
of their collapse. We use the separation of the dynamics of the filament shape, from
that of its core, to derive constraints that must be satisfied for a singular solution to
remain self-consistent uniformly in time. Our only assumption is that the length scales
characterizing filament shape obey scaling laws set by the dimension of circulation as
the singularity is approached. The core radius necessarily evolves on a different length
scale. We show that a self-similar ansatz for the filament shapes cannot induce singular
stretching, due to the logarithmic prefactor in the self-interaction term for the filaments.
More generally, there is an antagonistic relationship between the stretching rate of the
filaments and the requirement that the radius of curvature of filament shape obeys the
dimensional scaling laws. This suggests that it is unlikely that solutions in which the
core radii vanish sufficiently fast to maintain the filament approximation exist.
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1. Introduction
There has been much effort, both numerical and analytical, to determine whether

smooth initial conditions of the three-dimensional Euler equation can develop
singularities in finite time (Leray 1934; Majda & Bertozzi 2001; Childress 2008;
Constantin 2008; Gibbon 2008). Vortex stretching creates a non-local source term in
the vorticity equation that scales quadratically with vorticity. This nonlinearity creates
the possibility of a singularity in which vorticity diverges as (t∗ − t)−1, though non-
locality creates uncertainty about whether this blowup can be realized. Beale, Kato
& Majda (1984) showed that any solution without a blowup in the time integral
of the maximum vorticity is smooth, thus demonstrating that a vorticity divergence
must be at least as strong as this simple argument suggests. More recent results
have established that, if the direction of the vorticity varies too smoothly in space
(Constantin 2008) or if vortex lines have sufficient regularity (Deng, Hou & Yu 2006;
Hou & Li 2006), then singularities are not possible.

On the numerical side there have been repeated efforts to determine whether a
particular initial condition could lead to a singularity, starting with the original study
of the Taylor–Green vortex (Taylor & Green 1937; Morf, Orszag & Frisch 1980;
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Meiron et al. 1983). In essentially every case, an initial report of numerical evidence
for a singular solution is followed, after a typical 5–10 year delay, with higher-
resolution simulations arguing against a singularity for the initial condition in question
– see the table in Gibbon (2008). It seems reasonable to conclude from these studies
that singular solutions do not form from generic initial data; thus, if singular solutions
to the Euler equation exist, they are likely to have either a small basin of attraction or
to be unstable. In either case, finding a singular solution requires systematic search.

The present study was undertaken with the goal of systematically searching
for (potentially unstable) singular solutions, where the initial conditions are vortex
filaments (Morf et al. 1980; Siggia 1985; Pumir & Siggia 1987, 1990; Kerr 1993;
Klein & Majda 1993; Klein, Majda & Damodaran 1995; Pelz 1997; Childress 2008;
Kimura 2010). Vortex filaments are especially promising initial data, since they can
potentially survive the addition of viscosity and generate singular solutions to the
Navier–Stokes equations. It has long been known that, when two vortex filaments
come together, there is significant vorticity amplification, with the vortex lines
developing a sharp kink. However, numerical simulations of specific initial conditions
have shown that when two antiparallel vortices come together, their cores flatten
significantly, halting vorticity amplification.

We aimed to discover whether there exist initial conditions of collections of vortex
filaments that evade strong core deformation during a collision: this requires that
the core radius σ remains smaller than any length scale associated with the vortex
filament. Such configurations, e.g. those involving simultaneous collision of multiple
vortex filaments, are likely to be unstable. Since the dynamics of filament shape
involves the dimensional circulation Γ , it is natural that any length scale associated
with the filament shape should satisfy `(t) = √Γ (t∗ − t). We show that surprisingly
the core radius σ has a different non-universal exponent that depends on the shape
of the filaments. The requirement that this exponent is larger than 1/2 sets a precise
dynamical criterion for core deformation to be avoided. We demonstrate that self-
similar solutions for the filament shape cannot satisfy this criterion, due to a specific
feature of the vortex interaction law, the logarithmic prefactor to the binormal law (the
first term in (2.2) below). More generally, we demonstrate that there is an antagonistic
relationship between the stretching rate of the filaments and the requirement that the
radius of curvature of filament shape obeys the dimensional scaling laws. Solutions
in which the core radius shrinks fast enough for self-consistency appear to violate the
dimensional scaling law for the filament curvature.

It is worth emphasizing that the solutions we construct are not strictly self-
similar: either the length scale characterizing the filament evolves differently than
that characterizing the core, or there is explicit time dependence (depending on the
logarithm of the time to the singularity) as the singularity is approached. Indeed, it has
already been proven that strictly self-similar solutions to the Euler equations cannot
be singular under certain integrability conditions of the vorticity profile, which include
finite-energy vortex filaments (Chae 2007, 2010).

Although our results are not mathematically rigorous, they are asymptotically self-
consistent, and appear to rule out an appealing class of initial data (interacting vortex
filaments) for forming singularities in the Euler equations.

2. Formulation
Vortex filaments approximate the velocity field produced by vortex tubes, in which

the vorticity distribution is limited to a tube of radius σ (Schwarz 1985; Saffman
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1992). When the radius of curvature of the filament is much larger than the core
radius, the velocity field produced by each vortex filament is given by the Biot–Savart
law,

v(r0)=− Γ4π
∫
(r0 − r(s))× t(s)

|r0 − r(s)|3 ds, (2.1)

with Γ the circulation of the filament, r(s) the shape of the filament, t the tangent
vector and r0 the location at which the velocity field is measured. The approximation
accurately captures the interaction of multiple filaments with each other, as long as the
core radius of each filament is much smaller than the inter-filament distance.

If r0 is on the axis of the vortex filament, the Biot–Savart law (2.1) is
(logarithmically) singular. This is evident if r(s) is expanded to second-order around
r0: r(s) = r0 + st0 + 1

2 s2κn0 + O(s3), where t0 and n0 are the orthogonal tangential
and normal vectors at r0, respectively, and κ = r−1

c the curvature of the filament. The
expansion is valid up to the length scale characterizing the shape of the filament,
namely rc in this case. Plugging this into (2.1), and evaluating the local contribution
to the velocity (small s), gives v ∼ ∫ rc

0 (1/s) ds, which is logarithmically divergent
because of its lower bound.

This divergence is cut off by setting the lower bound as the finite vortex core size σ ,
yielding the regularized Biot–Savart law (Saffman & Baker 1979; Schwarz 1985)

v(r0)=− Γ4π log
(rc

σ

)
κb− Γ

4π

∫ ′ (r0 − r(s))× t(s)

|r0 − r(s)|3 ds. (2.2)

Here, b = t × n is the binormal vector, and
∫ ′ the regularized integral that runs along

the non-local part of the filament. Note that the dynamics of the shape of the vortex
filament depends very weakly (logarithmically) on the dynamics of the core (σ ); hence
the two problems are naturally decoupled.

The large fluid shears associated with colliding vortex filaments can cause dramatic
changes to both the shape of the filament and the shape of the core. For the vortex
filament approximation to remain an accurate description of a collision, the core radii
of the vortex filaments must remain smaller than the length scales characterizing the
vortices uniformly in time; this means that the radius of the tubes must shrink more
quickly than the distance between colliding filaments.

The essence of our approach for searching for putative singularities of the Euler
equation is to start with initial conditions for which the vortex filament approximation
is valid, and then to determine whether there are solutions in which a finite-time
singularity exists and which the filament approximation remains valid uniformly in
time. For this to happen, the core radius σ must remain smaller than any length scale
associated with the vortex filament. We adopt a simplified, but reasonable, model for
the dynamics of the core, that the core radius evolves to satisfy volume conservation:
if s measures arclength along a filament, with the original filament parametrized by α,
then sα measures the stretching of a filament. We then have that

σ 2 = σ
2
0

sα
. (2.3)

In general, if the dynamics of the vortex core is decomposed into a local coordinate
system,

dr
dt
=Wt + Un+ Vb, (2.4)
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where n, t and b are respectively the normal, tangent and binormal vectors, then the
stretching of the filament evolves according to

dsα
dt
=
(

dv
ds

· t
)

sα = dW

ds
sα − Uκsα. (2.5)

The first term in (2.5) is the stretching of the filament due to local shear, whereas the
second term is due to motion in the normal direction. Since the circulation is constant,
the local vorticity in the vortex filament is given by ω = Γ (πσ 2)

−1 ∝ Γ sα. Hence, a
diverging vorticity is equivalent to a diverging sα.

3. Numerical simulations
We begin by simulating (2.2) and (2.5) numerically. The calculations of (2.2)

are carried out by treating the local contribution implicitly, with a second-order
Crank–Nicolson scheme, and the non-local one explicitly. The equation for the
stretching rate (2.5) is solved explicitly, evaluating the local normal and tangential
velocities on each vortex filament from the Biot–Savart equation (2.1). Moreover,
to resolve any singular events with sufficient accuracy, we implement a dynamic
remeshing scheme for the grid points along the filaments. A fixed total of N = 800
grid points are used for each filament. At each time step, the separation distance
between the points is varied as a function of the inter-filament separation distance and
the local curvature. Close to the singularity, roughly 25 % of the points are bunched at
the tip (and infinitesimal distance along the filament) with separation distance between
adjacent grid points comparable to the filament separation distance and radius of
curvature, thereby properly resolving the shape (for more details see the supplementary
material available at http://dx.doi.org/10.1017/jfm.2012.270).

We choose the initial condition introduced by Kerr (1993) for two antiparallel
vortex filaments; the advantage of this initial condition is that there have been two
independent efforts (Kerr 1993; Hou & Li 2006) to simulate the resulting dynamics
with the full Euler equations, so this provides an excellent basis for comparison to
our approximate solution. It should be emphasized that the majority of the vorticity
amplification in the full Euler equations for this initial condition comes about after
there has been significant flattening of the filament core, namely in the regime after
our approximations apply.

Figures 1 and 2 show the results of the vortex filament simulation. Figure 1(a)
shows several snapshots of the shapes of the filaments: the two filaments approach
each other, driven by the drifts in the binormal direction from the local term in
(2.2). Within the present approximation, the two vortex filaments collide in finite time.
Such singular collapse of vortex filament models have been previously observed in
theoretical studies (Klein et al. 1995) and even in experiments on quantum vortices
(Paoletti et al. 2008; Paoletti, Fisher & Lathrop 2010).

Figure 1(b) shows the minimum separation between the two filaments as a function
of time; this distance vanishes as (t∗ − t)1/2, where t∗ is the time of filament collision.
Figure 1(c) shows the time dependence of the filament radius during this process;
during the five-order-of-magnitude decrease in the inter-filament distance, the core
radius decreases by only a factor of two. Equation (2.3) then implies a fourfold
increase in sα, and hence the vorticity. The rate of decrease of the core with time to
the singularity (figure 1c) is much slower than the approach rate of the filaments to
each other.
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FIGURE 1. (Colour online) Numerical simulation of (2.2) and (2.5) with the Kerr initial
conditions (Γ1 = −Γ2 = 1, σ0 = 10−6). (a) Filament shapes; many time steps superimposed.
The first five time steps in units of 1− t/t∗ are 9.4× 10−1, 4.9× 10−1, 2.4× 10−1, 8.6× 10−2

and 2.7×10−2 and the last time step is 1.2×10−10. The initially flat filaments bend inwards as
their tips get closer. (b) The power-law scaling of the minimum separation distance between
the filaments and time to singularity. The dashed line has slope 0.5. The separation distance
decreases by five orders of magnitude. (c) Curvature κ as a function of y coordinate for
the same time steps as in (a). Curvature at the tip of the filaments increases by five orders
of magnitude. (d) The core radius σ as a function of y coordinate for the same time steps
as in (a). At the tip (y = 0), the core radius only decreases by a factor of two during the
approach, ruling out a self-consistent collapse.
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FIGURE 2. (Colour online) Projections of simulated filament shapes: (a, b, c) correspond
respectively to xy, xz and yz projections of the filament shapes (for many superimposed time
steps) numerically simulated using (2.2) and (2.5). The three-dimensional plot is shown in
figure 1(a). The time steps are the same as in figure 1.

This scenario violates the Beale–Kato–Majda criterion (Beale et al. 1984), and
correspondingly the vortex filament approximation is itself inconsistent. In the full
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simulations of the Kerr initial condition, significant flattening of the core is observed
at t < t∗. Note that, given the different asymptotic rates of the inter-filament separation
distance and the core shrinkage rates (figure 1b,c), it follows that there exists no initial
core radius for which this initial condition can be asymptotically consistent. If the
initial core radius is smaller, the amount of vorticity amplification that occurs before
the filament approximation is violated increases dramatically, but this never leads to a
singularity.

4. The asymptotic solution and a consistency criterion
The simulations show that the vortex filament approximation fails before a

singularity is reached. We now would like to examine whether this is generally true.
Are there initial conditions for which two antiparallel filaments lead to a consistent
solution? Does the answer change if the filaments are not antiparallel, i.e. the two
filaments have different circulations?

To answer this, we need to develop an understanding of why the results of the
simulations occur. The key idea is to realize that, in the asymptotic limit, the shape of
the filaments follows the scaling law set by circulation to leading order, coupled to a
core that follows its own scaling law. There are two length scales – one characterizing
filament shape and the other size of the core – whose scaling exponents are coupled
through the governing equations. We want to know if any asymptotic filament shape
and dynamics (due to this coupling) can self-consistently stretch the core to generate a
singularity.

From dimensional analysis (see e.g. Gutierrez, Rivas & Vega 2003) as well as
the scaling laws computed numerically, to leading order, the characteristic length
scales governing the filament shapes are `i(t) =

√|Γi|(t∗ − t), where i = 1, 2 denotes
filament one or two with circulation Γi, and t∗ the time of singularity. Throughout
the remainder of this paper, we write all the equations for only the first filament
i = 1, with the second filament obeying the complementary equation. The shapes of
the filament then take the form

r1(s, t)= `1(t)G1(η), (4.1)

where η = s/`1(t), and s measures arclength along the filament. In general, G can
have explicit time dependence; we neglect this now, but return to it at the end of the
paper. Plugging the above similarity ansatz into (2.2) gives a set of coupled ordinary
integro-differential equations for the shapes of the filament.

Although these equations are difficult to solve (but, see below), we can still
use the asymptotic solution (4.1) to derive a condition for the self-consistency of
the collapse of the core. We need to use the asymptotic solution in (2.5). The
normal and tangential self-similar velocity components obey U = u(η)

√|Γi|/(t∗ − t)
and W = w(η)

√|Γi|/(t∗ − t), whereas the curvature of the filament is given by
κ = k(η)/

√|Γi|(t∗ − t); hence, Uκ = u(η)k(η)/(t∗ − t) and Ws = w′(η)/(t∗ − t). Here,
u(η), k(η) and w(η) are location-dependent prefactors, given by the solution of
asymptotic equations. Putting this together in (2.5), we obtain that

dsα
dt
= w′(η)− u(η)k(η)

t∗ − t
sα. (4.2)

Hence, the stretching rate of the filament obeys a power law sα ∼ (t∗ − t)−p(η), with the
position-dependent exponent p(η) given by the asymptotic solution! Equation (2.3)
then implies that the filament radius vanishes according to σ ∼ (t∗ − t)p(η)/2. We
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note that the observation that the prefactors in the asymptotic solutions for outer
filaments control the power-law exponents for the core collapse was anticipated by
Moffatt (2000), who studied the behaviour of inviscid vortex filaments under power-
law diverging strains.

We therefore have arrived at a criterion for self-consistency of the collapsing
filament solution: self-consistency requires that the filament radius decreases faster
than the inter-filament separation, or p > 1. Indeed, since the vorticity scales with sα,
this is a realization of the Beale–Kato–Majda criterion (Beale et al. 1984) for vortex
filaments. Recent rigorous theorems (Chae 2007) indicate that p = 1 is not allowed,
since it would imply a solution where all length scales follow the same scaling law,
namely ∼√t∗ − t. Such finite-energy ‘strictly’ self-similar solutions cannot be singular
(Chae 2007). Self-consistency condition p> 1 also satisfies the geometrical constraints
of Constantin, Fefferman & Majda (1996) and bounds of Deng et al. (2006) for
a singularity. Lastly, note that the self-consistency criterion justifies why in (2.2)
the filament radius only modifies the local term (first term on the right-hand side).
The filament radius becomes asymptotically negligible compared to the inter-filament
separation distance, and need not be accounted for in the non-local contribution to
the velocity. However, doing so would increase the accuracy of simulations where the
self-consistency criterion does not hold (see e.g. Pumir & Siggia 1987).

5. Analysis
5.1. Stretching and the asymptotic solution

If we plug the similarity ansatz equation (4.1) into (2.2) we get an equation for the
shape of the filament, namely

G1 − ηG′1 ≈ α
Γ1

|Γ1|G
′
1 × G′′1 − F[G], (5.1)

where α = [1/(2π)] ln(rc/σ) is the self-interaction term, and F[G] corresponds to the
(shape-dependent) non-local integral term on the right-hand side of (2.2), discussed in
more detail below.

We have used an approximate equality above because an important distinction
must be made between the velocity field given by taking the time derivative of the
self-similarity ansatz equation (4.1) on the left-hand side of (5.1), and the velocity
computed from the full Biot–Savart law on the right-hand side. Mainly, the equality is
only valid modulo the tangential component of the velocity field along the filaments.
To clarity this further, we write down an explicit expression for each velocity field.

Taking the time derivative of (4.1) gives ∂tr1 = −(|Γ1|/2`1)(G1 − ηG′1), which we
define as the velocity field capturing changes in the shape of the filaments:

vshape
1 (s, t)

l′1(t)
= G1(η)− ηG′1(η). (5.2)

Since the similarity ansatz only captures the shape of the filaments, its time derivative,
does not include velocity components that leave the shape unchanged, i.e. those
tangent to the filaments. The above velocity field is not the physical velocity
experienced by a fluid particle, but the velocity of a filament shape marker at arclength
s. It should be expected then that this velocity field results in no stretching. We can
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verify this explicitly by plugging (5.2) into the stretching equation (2.5):

p̃(η)=−1
2

(
d

dη
[(G1 − ηG′1) ·G′1] − (G1 − ηG′1) ·G′′1

)
= 0. (5.3)

The full velocity field v1 computed from the Biot–Savart law on the right-hand side
of (5.1) is the physical velocity experienced by a fluid particle, and can be thought
of as the shape velocity field plus a tangential component. To show this explicitly,
we fix a Lagrangian marker α along the filament and follow its motion. Initially, α
is equivalent to the arclength parameter, s(α, t0) = α. The velocity of the Lagrangian
marker is given by

v1(r(α, t), t)= ∂

∂t
[l1(t)G1(η)]α = l′1(t)[G1 − ηG′1] + st(α, t)G′1, (5.4)

where the partial derivative is taken for fixed α. The first term on the right-hand side
is equal to vshape

1 in (5.2), and the second term corresponds to the velocity moving the
particle along the filament. It is easy to show that the second term is the source of
stretching:

∂v1

∂s
· t1 = ∂α

∂s

∂

∂α
st(α, t)= 1

sα

∂sα
∂t
, (5.5)

where we have used the fact that the α and t partial derivatives commute. The
right-hand side of the above equation is exactly the expression for stretching discussed
before (4.2).

It is clear, then, that to compute the filaments’ stretching correctly, we need to
use the full velocity field from the Biot–Savart kernel. Since the self-interaction term
of the Biot–Savart kernel points along the binormal direction, it does not contribute
to stretching. The only term left to consider is the non-local contribution, F[G]. As
we will show, this term is sensitively dependent on the curvature of the filaments
G′′1. To proceed, then, we first derive an explicit expression for G′′1 from (5.1).
However, as we noted, (5.1) is only an equality modulo the component of the
velocity field tangent to the filaments. To get around this nuisance, we project out
the tangential component by taking the cross-product of both sides of (5.1) with
G′1. The first term on the right-hand side simplifies further using the vector identity
G′1 ×G′1 ×G′′1 = G′1(G

′
1 ·G′′1)−G′′1(G

′
1 ·G′1)=−G′′1, where in the last step we have used

|G′1| = 1, or equivalently G′1 ·G′′1 = 0.
Thus G′′1 using the explicit expression for the F[G] term in (5.1) is given by

G′′1(η)=−
|Γ1|
αΓ1

G′1(η)

×
(
G1(η)− Γ2

√|Γ2|
2π
√|Γ1|

∫ (√|Γ1|G1(η)−√|Γ2|G2(ζ )
)× G′2(ζ )

|√|Γ1|G1(η)−
√|Γ2|G2(ζ )|3

dζ

)
. (5.6)

The integration runs along the length of the second filament and the non-local portion
of the first filament, which can be thought of as another filament.

Note that the shape of the asymptotic solution has an explicit time dependence
through the parameter α = (2π)−1 log(rc/σ). If we assume that rc/σ →∞ as t→ t∗,
so that the asymptotic solution is self-consistent, then α→∞ as t→ t∗. Equation
(5.6) then implies that, as the singularity is approached, G′′→ 0; the filament curvature
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in similarity space asymptotically vanishes. Note that the curvature in real space
|G′′|/l1 still diverges, albeit more slowly than 1/

√
t∗ − t. This assertion is only valid

assuming that the non-local integral does not compensate for growth in α. The non-
local contribution F[G] is bounded as t→ t∗, since it corresponds to the Biot–Savart
integral over filaments with asymptotically fixed shape (time-independent integrand). If
non-self-similar solutions exist, the integrand can be time-dependent, a point that we
will return to later. Time dependence of the limits of this integral cannot compensate
for any form of divergence in α, since to match any solution of (5.6) properly to an
outer solution, the asymptotic limit η→∞ must satisfy G ∼ η. The contribution of
a straight line to the Biot–Savart integral, even when extended to infinity, is always
finite.

It is then permitted to replace the interaction integral in (5.6) with a (non-integral)
interaction term of straight filaments. Fortunately, in the limit of approaching the
singularity, this approximation becomes exact as the filaments become straight lines.
The corrections to the local approximation are of the order 1/α and vanish for a
self-consistent singularity.

At any point η along the asymptotic solution, the integral in (5.6) is dominated by
the point η2 on the other filament, which minimizes |√Γ1G1(η)−

√
Γ2G2(η2)|, i.e. the

point of closest approach. The non-self velocity field then simplifies to

vlocal
1 =− Γ2

2π
√

t∗ − t

[√|Γ1|G1(η)−√|Γ2|G2(η2)] × G′2(η2)

|√|Γ1|G1(η)−√|Γ2|G2(η2) |2
. (5.7)

Note that this approximation is similar to the heralded local induction approximation
(Saffman & Baker 1979) or the nearly parallel filament approximation (Klein et al.
1995), with one important caveat: there is a non-local relationship between the
positions that interact on the two filaments, given by the point of closest approach.

Now that we have an explicit expression for the full velocity field, we can calculate
the actual stretching. Stretching is caused by the non-local contribution to the velocity,
since local self-induced velocity points in the binormal direction and does not stretch.
From (2.5), the stretching exponent p is given by

p(η)=
√

t∗ − t√|Γ1|
(

dvlocal
1

dη
·G′1(η)

)
. (5.8)

Evaluating this expression at η = 0, which by definition corresponds to the closest
point of the two filaments in similarity space where G1(0) − G2(0) is perpendicular to
G′1(0) and G′2(0), gives

p1(η = 0)=− Γ2

2π
√|Γ1|

√|Γ1|G1(0)−√|Γ2|G2(0)

|√|Γ1|G1(0)−
√|Γ2|G2(0)|2

·

(
G′′2(0)

dη2

dη
× G′1(0)

)
. (5.9)

The most important feature of this result is that p(η = 0) vanishes in the limit
of τ →∞ because G′′ vanishes in this limit. Given the requirement of p > 1 for
a self-consistent singular collapse, we have violated our assumption that rc/σ →∞,
resulting in a contradiction. This shows that singularities of pairs of vortex filaments
cannot happen. We remark that the term dη2/dη, capturing the asymmetry between the
shape of the two filaments, remains regular because the circulations Γ1,2 are always
finite (see (5.10) below).

The essential reason for lack of any solution with singular stretching is that the
rather slow (logarithmic) flattening out of the filaments eventually overcomes any
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clever tricks with filament shapes that can be incorporated using initial conditions or
unequal circulations.

5.2. Evaluating the prefactor numerically
It is possible to solve numerically for G and in turn p by going to higher order
in (5.7). This is useful for evaluating the prefactors in (5.9). The dependence
of η2 on η follows from the fact that the line connecting the closest approach
points should be perpendicular to the tangent vectors on the filaments, so that
G′2(η2) · [√Γ1G1(η)−

√
Γ2G2(η2)] = 0. Differentiating this relationship gives

dη2

dη
=

√ |Γ1|
|Γ2| G

′
2(η2) ·G′1(η)

G′′2(η2) ·

(
G2(η2)−

√ |Γ1|
|Γ2| G1(η)

)
+ |G′2(η2) |2

. (5.10)

The set of asymptotic equations for the filament shapes thus becomes a set of delay
differential equations. The equations are initialized by selecting the two closest points
on the filaments (denoted as η = η2 = 0), specifying the magnitude of G1(0) − G2(0),
and vectors G′1(0) and G′2(0) perpendicular to G1(0) − G2(0). The details of how to
solve the resulting delayed ordinary differential equations (ODEs) are discussed in the
supplementary material (text S1).

Figure 3 depicts two particular examples of the asymptotic solution for different
values of α. Increasing α results in higher radius of curvature and filaments that
resemble straight lines. Many asymptotic solutions are possible depending on the
value of the circulations and the choice of initial conditions in similarity (η) space.
These solutions describe the initial approach and sharpening of colliding vortex
filaments, as occurs for example in recent experiments on vortex interactions in
superfluid helium (Paoletti et al. 2008, 2010). Our method reveals a two-parameter
family of asymptotic collision geometries: pyramidal structures described by angles
dependent on the initial conditions. This contradicts the prediction of a universal
(albeit pyramidal shape) collision geometry (de Waele & Aarts 1994). Refer to the
supplementary material for an explicit demonstration of many possible asymptotic
collapse geometries. Understanding the relationship between collision geometry and
initial conditions in similarity space can potentially elucidate the signature of quantum
turbulence. However, our results demonstrate that in general there exists no self-
consistent singular stretching of two vortex filaments, for any asymptotic geometry
– and hence at some point in the time evolution the core deformation will be
significant and invalidate the assumptions underlying our solution.

6. Generalization
The argument of the previous section shows that a self-similar ansatz for the

filament shape does not allow singular stretching, due to the intrinsic connection
between the stretching rate and the curvature of the filament (5.9). For self-similar
solutions, the filament curvature vanishes in time due to the self-interaction term
of vortex filaments, and this forces the stretching rate also to vanish asymptotically.
Indeed, this argument naturally generalizes to the self-similar collapse of multiple
vortex filaments (e.g. Aref 1979) – in the same way as the two-filament case described
above, the logarithmic self-interaction term again naturally causes the curvature of
each filament to vanish asymptotically, and this in turn limits the filament stretching
rate, making a self-consistent singular solution impossible.
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FIGURE 3. (Colour online) Numerical solution of the asymptotic ODE using local
approximation for the initial conditions G1(0) = (0, 0, 1) and G2(0) = (0, 0,−1): G′1,2(0)
are parallel to the y axis; Γ1 =−Γ2 = 1. (a) For α1,2 = 1; the arrows in the inset are the G′′1(η)
vectors, depicting the helicity of the filament. (b) For α1,2 = 10; the filaments have a higher
radius of curvature and are starting to resemble straight lines.

Of course, although self-similar solutions for filament shape are a reasonable
expectation for the dynamics near a singular event, it is not the only possibility; there
could, for example, be oscillations as the singularity is approached (Pumir, Shraiman
& Siggia 1992; Pomeau & Sciamarella 2005). Here we present a generalization of
our argument for singular events that are not self-similar and demonstrate that there
is still necessarily an antagonistic connection between the stretching exponent p and
filament curvature; in particular, p will not asymptotically vanish only if the length
scale characterizing filament curvature is asymptotically different from

√
Γ (t∗ − t).

We consider that the solution near the collapse is given by a time-dependent
generalization of (4.1), G(η, τ ) with τ = − log(t∗ − t). Substituting into the governing
equation results in the following partial differential equation:

Gτ − 1
2(G− ηGη)≈ cτGη × Gηη + F[G], (6.1)

where the prefactor cτ (with c a constant) to the Gη × Gηη term arises from the
binormal law, assuming that the core radius decreases asymptotically faster than the
filament curvature. We have used approximate equality (similar to (5.1)) to emphasize
that rescaling the velocity on the left-hand side to real space captures the velocity of
the corresponding point on the filament at fixed arclength s. To follow a Lagrangian
marker α along the filament, the tangential stretching term, [(t∗ − t)/l(t)]st(α, t)Gη,
should be added to the left-hand side resulting in an equality.
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The stretching rate of G is evaluated as before using the velocity field on the
right-hand side of (6.1). Define the separation distance between Lagrangian markers β
on the filament in similarity space as l(β, τ0)= |Gη(η, τ0)|, where η(β, τ0)= β; then

lτ
l
= 1
ηβ

dηβ
dτ
. (6.2)

Plugging the independent scaling law for the stretching of the core (t∗ − t)p into the
real-space stretching sα (2.5) yields

p= 1
ηβ

dηβ
dτ
= dF[G]

dη
·Gη. (6.3)

As above, for a self-consistent collapse we must have p(η) > 1 for all finite η in the
limit τ →∞.

To see how the dynamics of the curvature of filaments in similarity space (denoted
with a bar, so as not to be confused with real-space curvature κ) κ̄ = |d2G/dη2| is
coupled to stretching, we follow β instead of η, since its partial derivative commutes
with that of τ (see e.g. Nakayama, Segur & Wadati 1992; Goldstein & Langer 1995):

κ̄τ = d
dτ

(
β2
η

d2G
dβ2
+ βηη dG

dβ

)
·n, (6.4)

where n is the unit vector along d2G/dη2. With some algebra, we obtain

κ̄τ =
(

d2Gτ

dη2
− 2β2

η

d2G
dβ2

dηβ/dτ
ηβ

)
·n, (6.5)

where (dηβ/dτ)/ηβ is simply the stretching and given by (6.2), so

κ̄τ = d2Gτ

dη2
·n− 2κ̄

dF[G]
dη

· t. (6.6)

Equation (6.3) then simplifies this to

κ̄τ = d2Gτ

dη2
·n− 2pκ̄ . (6.7)

The above equation establishes an intrinsic connection between stretching and
dynamics of curvature. If the first term on the right-hand side is dominant, κ̄
becomes singular or vanishes at finite τ , which is inconsistent with the assumption
of a singularity at the limit τ →∞. If the second term on the right-hand side
dominates, and if p approaches a non-zero constant as τ →∞, then the filament
curvature κ̄ decays exponentially in τ . In real space, this implies that the filament
radius of curvature would obey a different scaling law than the

√
Γ (t∗ − t) suggested

by dimensional analysis. In contrast, if p→ 0 as τ →∞, e.g. like the p ∼ 1/τ
demonstrated in the self-similar solution, the scaling laws are preserved up to
logarithmic corrections but filament stretching is not fast enough for the solution
to be asymptotically self-consistent.

The only way that this conundrum can be avoided is if p asymptotes to a constant
larger than 1, and that the right-hand side of (6.7) balances in the asymptotic limit, so
that (d2Gτ/dη2) · n̄ = 2pκ̄ + f (τ ), where f (τ ) can be a polynomial function of τ , and
(d2Gτ/dη2) follows from (6.1). Although we are not able to prove that such an exact
balance is impossible, it seems to us unlikely that it could occur; there will be two
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restrictions that must be satisfied at every point on the filament, the above balance and
also p > 1. But since each filament only has two degrees of freedom (i.e. curvature
and torsion), this is highly restrictive and cannot be generally satisfied.

7. Conclusions
We have developed a theoretical description of the collapse of interacting vortex

filaments, based on an ansatz of asymptotic solutions comprising filament shapes that
follow the scaling law set by dimensional analysis, and are weakly coupled to a
core with an arbitrary scaling law. We first applied this approach to the case of two
filaments, neglecting explicit time dependence. In all possible asymptotic geometries,
filament shapes slowly (logarithmically) straighten as they approach the singularity,
eliminating the tangential stretching due to interactions. This implies that the core
can never shrink fast enough to keep up with the collapse for any initial conditions.
A generalization to non-self-similar solutions explicitly illustrates the difficulty of
inducing self-consistent singular stretching without violating the scaling law set by the
dimension of circulation.

Although the approach outlined herein has failed to construct an explicit singular
solution of the Euler equation, the solutions we have described give the appropriate
outer solution for the shape of vortex filaments, suitable for characterizing their
stretching and distortion before vortex reconnection. We plan on reporting on these
solutions in a future work.
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